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On the primitive subspace of the Lando framed graph bial-
gebra

Maksim Karev

Abstract. Lando framed graph bialgebra is generated by framed graphs modulo 4-
term relations. We provide an explicit set of generators of its primitive subspace
and a description of the set of relations between the generators. We also define an
operation of leaf addition that endows the primitive subspace of Lando algebra with
a structure of a module over the ring of polynomials in one variable and construct a
4-invariant that satisfies a simple identity with respect to the vertex-multiplication.

Introduction

The theory of finite-type knot invariants was first proposed by V. Vassiliev [18], who
introduced a filtration on the space of knot invariants with finite-dimensional components.
A similar filtration on invariants of plane curves was later proposed by Arnold in [1]. In
both cases, the graded vector spaces associated with these filtrations can be realized as
subspaces of the duals to the finite-dimensional spaces of chord diagrams [2, 9], with the
framing added in the case of plane curves. These associated graded spaces are known as
the spaces of (framed) weight systems.

Despite significant progress, the study of the space of the finite type invariants for knots
and plane curves remains incomplete. For example, even the dimensions of the spaces
of weight systems are only known for the first few terms [6, 14]. However, the existence
of the structure of a commutative cocommutative connected bialgebra of a finite type,
rich combinatorics, and its unexpected relations to other mathematical concepts (e.g. Lie
algebras) make these spaces an extremely interesting object of study.

One such relation is the existence of a map from a dual of a quotient of the algebra
generated by graphs on 𝑛 vertices to the degree 𝑛 grading component of the space of weight
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systems. This map was first described in [8] and then extended to the framed case in [9].
The above-mentioned quotient of the algebra of graphs is referred to as the Lando framed
graph bialgebra, or simply the Lando bialgebra. The dimensions of the graded components
of the Lando bialgebra are not known in general, see [15,16]. The linear functions on the
Lando bialgebra are known as framed 4-invariants. The state of the art of the study of
4-invariants can be found in [7].

The theory of weight systems is more developed than the theory of 4-invariants, with
three different realizations of the space of weight systems (algebras 𝒜,ℬ and 𝒞 of [4]), each
with its advantages and disadvantages. For two of these realizations, the description of the
corresponding primitive subspace is direct in the sense that the generators and relations
are known. However, for the Lando bialgebra, the current state-of-the-art description of
the primitive subspace is not direct – we can only say that it is generated by images of the
generators of the graph space under the projection operator (see [8]).

In this note, we introduce a graph-theoretic analogue of algebra 𝒞. Our proposed
construction gives a more direct description of its primitive subspace in terms of generators
and relations. We also introduce a graph-theoretic counterpart of the well-known operation
of bubble insertion and propose a new 4-invariant.

This note is dedicated to the memory of S.V. Duzhin, who introduced the theory
of finite-type knot invariants to the author. I am grateful to B. Bychkov for valuable
discussions and D. Fomichev for implementing computer codes to verify the constructions
in this note. I am also grateful to Jacob Mostovoy, and the anonymous referee, whose
comments allowed me to make the text clearer.

Below, K is a characteristic 0 field.

1 Bialgebra structures on the spaces generated by isomorphism classes
of framed finite simple graphs

Definition 1.1. The framing on a finite graph is a function 𝑓 from the set of its vertices to
F2.

The framed graphs have a naturally defined notion of framing preserving isomorphism.
We will refer to the equivalence classes of framed finite simple graphs, as just framed graphs.

S.A. Joni and G.C. Rota [5] have proposed to endow the vector space spanned by the
framed graphs with the structure of a commutative cocommutative connected bialgebra of
finite type over K:

Definition 1.2. The graded bialgebra 𝐺𝒥ℛ over K is spanned by framed graphs. The grading
is given by the number of vertices of the graph. The product on 𝐺𝒥ℛ is the extension by
linearity of the disjoint union of graphs. The unit element is the empty graph, the counit
element maps the empty graph to 1, and all the other graphs to 0. The coproduct is given by

∆𝒥ℛ(Γ) =
∑︁

Γ𝑝 ⊗ Γ𝑞,
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where the sum is taken over all possible ways to split the set of vertices of Γ into two disjoint
subsets 𝑝 and 𝑞. We denote by Γ𝑝 (Γ𝑞, respectively), the full subgraph of Γ generated by the
set of vertices 𝑝 (𝑞, respectively).

We define the following algebra closely related to 𝐺𝒥ℛ.

Definition 1.3. Let Γ be a framed graph. A coloring on the edges of Γ is the function
𝐶 : 𝐸(Γ) → {𝑏, 𝑟}.

Below we will refer to the edges with coloring 𝑏 (coloring 𝑟, respectively) as to black
(respectively, red) edges1.

We define the following commutative cocommutative connected bialgebra of finite type
structure on the vector space spanned by the colored framed graphs:

Definition 1.4. The graded bialgebra 𝐺𝒞 over K is spanned by colored framed graphs. The
grading is given by the number of vertices of the graph. The product on 𝐺𝒞 is the extension
by the linearity of the disjoint union of graphs. The unit element is the empty graph, the
counit element maps the empty graph to 1, and all other graphs to 0. The coproduct is
given by

∆𝒞(Γ) =
∑︁

Γ𝑝 ⊗ Γ𝑞,

where the sum is taken over all possible ways to split the set of vertices of graph Γ into two
disjoint subsets 𝑝 and 𝑞, such that no vertex from 𝑝 is connected to a vertex from 𝑞 by a
red edge. We denote by Γ𝑝 (Γ𝑞, respectively), the full subgraph of Γ generated by the set of
vertices 𝑝 (𝑞, respectively), respecting the coloring of the edge.

The proof that the introduced operations define a bialgebra structure is a routine
verification of the axioms, which we omit.

The algebra 𝐺𝒥ℛ admits an injective graded bialgebra map 𝜄 to the algebra 𝐺𝒞. Namely,
every framed graph is mapped to itself all the edges colored black.

In this note, we use the following convention for visualizing the elements of 𝐺𝒞. The
color of an edge of a depicted graph corresponds to the value of the coloring function on
it. Capital letters indicate the framings of the vertices. Small letters stand for subsets of
vertices of 𝐺𝒞; the subsets corresponding to different letters are not necessarily disjoint. A
small letter written on an edge endpoint indicates that, besides the edges that are drawn
explicitly, this vertex is also connected to each vertex from the subset denoted by that
letter. The parts of the graphs that are omitted from the picture are assumed to be the
same.

We define 𝐼𝒞 to be the ideal of 𝐺𝒞 spanned by all the possible elements of the form:

1We follow [11] in the choice of the colors.
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𝑥

𝐴

𝐵

𝑦

−

𝑥

𝐴

𝐵

𝑦

+

𝑥

𝐴

𝐵

𝑦

.

Theorem 1.1. The inclusion 𝜄 : 𝐺𝒥ℛ → 𝐺𝒞 gives rise to a bialgebra isomorphism 𝜑 : 𝐺𝒥ℛ →
𝐺𝒞/𝐼𝒞, where the bialgebra structure on 𝐺𝒞/𝐼𝒞 is induced from 𝐺𝒞.

Proof. We define the map 𝐺𝒞 to 𝐺𝒥ℛ on the generators as follows. Let 𝑘 be the set of
the red edges of graph Γ. To every red edge of the graph,, we assign one of two states:
state 𝑏 corresponds to changing the color of the corresponding edge to black, and state 𝑟
corresponds to removing the edge. For a collection of states 𝑝 ∈ {𝑏; 𝑟}𝑘, denote by Γ𝑝 the
graph obtained from Γ by removing the edges for which the value of 𝑝 is 𝑟 and painting the
rest of the edges black.

Interpret this graph as an element of 𝐺𝒥ℛ. Define

𝜓(Γ) =
∑︁

𝑝∈{𝑏;𝑟}𝑘
(−1)𝑝𝑟Γ𝑝,

where 𝑝𝑟 means the number of edges with state 𝑟 in 𝑝.
The map 𝜓 evaluated on any element of 𝐼𝒞 is 0. Moreover, its restriction on the image

of 𝜄 is a two-sided inverse to 𝜄. As any element of 𝐺𝒞 modulo 𝐼𝒞 is equivalent to a linear
combination of graphs with all the edges colored black, the isomorphism on the level of
algebras follows.

The ideal 𝐼𝒞 satisfies
∆𝒞𝐼𝒞 ⊂ 𝐼𝒞 ⊗𝐺𝒞 +𝐺𝒞 ⊗ 𝐼𝒞,

which implies that the bialgebra structure on the quotient 𝐺𝒞/𝐼𝒞 is well-defined. The fact
that the map 𝜓 is a coalgebra morphism is a routine check we omit.

According to the Milnor-Moore theorem [12] any commutative cocommutative graded
connected bialgebra 𝐴 of finite type over K with the coproduct operation ∆ is isomorphic
to the symmetric algebra of its primitive subspace, that is, the graded subspace of 𝐴 formed
by the elements 𝑝 ∈ 𝐴 such that

∆(𝑝) = 𝑝⊗ 1 + 1⊗ 𝑝.

Given a bialgebra 𝐴, we will denote its primitive subspace by 𝑃𝐴.
In particular, it follows that the restrictions of the maps 𝜑 and 𝜓 to the corresponding

primitive subspaces are graded linear isomorphisms. It turns out that the primitive subspace
of 𝐺𝒞/𝐼𝒞 admits a simple description.
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Proposition 1.2. The primitive subspace of 𝐺𝒞/𝐼𝒞 is generated by the connected framed
graphs with all the edges colored red.

Proof. Using the relations, we can represent any element of 𝐺𝒞/𝐼𝒞 as a linear combination
of classes of the graphs with all the edges colored red. On the other hand, the class of any
connected framed graph with all the edges colored red is a primitive element. Also, the
relations allow us to represent any element of the factor as a disjoint union of connected
framed graphs colored red. The assertion follows.

The isomorphism between 𝐺𝒥ℛ and 𝐺𝒞/𝐼𝒞 implies the following formula for the projec-
tion operator from 𝐺𝒥ℛ to the subspace of its primitive elements.

Proposition 1.3. Let 𝜋𝒥ℛ is a linear endomorphism of 𝐺𝒥ℛ defined on the generators as

𝜋𝒥ℛ(Γ) =
∑︁

Γ′′⊂Γ′⊂Γ

(−1)𝑒(Γ
′)−𝑒(Γ′′)Γ′′

where the summation goes along all possible pairs Γ′′ ⊂ Γ′ of subgraphs of Γ, such that Γ′ is
connected, and Γ′′ a spanning subgraph of Γ.

The map 𝜋𝒥ℛ is a projection on the primitive subspace along the subspace of decomposable
elements.

Proof. The map 𝜋𝒥ℛ is the composition of the following operations: the isomorphism 𝜑,
the realization of the resulting element as a linear combination of the framed graphs with
all the edges colored red, the projection 𝜋𝒞, which is defined on the graphs with all the
edges colored red as

𝜋𝒞(Γ) =

{︃
Γ, Γ is connected

0, otherwise

and the isomorphism 𝜓.

This formula is an alternative version of the projection formula [8,13]. The reader is
invited to compare this statement with the Remark to section 2.2 of [7] — it describes,
implicitly, the result of applying 𝜓 to a primitive element of 𝐺𝒞/𝐼𝒞.

We would like to remark that the algebra 𝐺𝒞/𝐼𝒞 admits one more projection to the
subspace of primitives: a graph with all the edges colored red is mapped to the join of its
connected components. It would be interesting to get an explicit description of its kernel.

Recall, that the Lando framed graph bialgebra ℒ (or just the Lando bialgebra, [8, 9])
is defined as the quotient of 𝐺𝒥ℛ by the biideal ℱ𝒥ℛ generated by 4-elements, usually
written in the form.

Γ− Γ′
𝑢𝑣 − (−1)𝑓(𝑣)(Γ̃𝑢𝑣 − Γ̃′

𝑢𝑣).

This formula has the following meaning. Let Γ be a graph, and let 𝑢, 𝑣 be two of its
vertices joined by an edge. Then Γ′

𝑢𝑣 denotes the graph obtained from Γ by erasing the
edge between 𝑢 and 𝑣. The graph Γ̃𝑢𝑣 is obtained from Γ by the following operation: for
every vertex 𝑤 different from 𝑢, 𝑣 and connected by an edge with 𝑣, the vertices 𝑢 and 𝑤
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are joined by an edge in Γ̃𝑢𝑣 if and only if the vertices 𝑢 and 𝑤 are not joined in Γ. The
adjacencies of all other possible pairs of vertices in Γ and Γ̃𝑢𝑣 are the same. The graph
Γ̃′
𝑢𝑣 is obtained from Γ̃𝑢𝑣 by erasing the edge between 𝑢 and 𝑣. Finally, the framing of the

vertex 𝑢 in both Γ̃𝑢𝑣 and Γ̃′
𝑢𝑣 is set to 𝑓(𝑢) + 𝑓(𝑣).

Using the isomorphism between 𝐺𝒥ℛ and 𝐺𝒞/𝐼𝒞 any 4-element can be written as a
class of the following element of 𝐺𝒞:

𝑥

𝐴

𝐵

𝑦

− (−1)𝐵

𝑥 △ 𝑦

𝐴+𝐵

𝐵

𝑦

(1)

Here, the vertex 𝑢 has framing 𝐴, the vertex 𝑣 has framing 𝐵, 𝑥 and 𝑦 are subsets of
vertices of the graph that are joined by edges to the corresponding vertices (𝑥 ∩ 𝑦 can
be non-empty), and 𝑥 △ 𝑦 denotes the symmetric difference of the corresponding sets of
vertices. The difference between the left-hand side and the right-hand side of the expression
is the following: in the graph on the right the edges of the graph that connected elements
of 𝑥 ∩ 𝑦 to the vertex of framing 𝐴 are erased, but the edges between the vertices forming
𝑦 ∖ 𝑥 and the vertex of framing 𝐴 are added. Moreover, the framing 𝐴 is changed to 𝐴+𝐵
(recall, that the framing takes values in F2, so we can add the values). In the following,
any depicted element of 𝐺𝒞 means its class modulo 𝐼𝒞.

The following proposition describes the image ℱ𝒥ℛ under the isomorphism 𝜑.

Proposition 1.4. ℱ𝒞 = 𝜑(ℱ𝒥ℛ) is the graded biideal of 𝐺𝒞/𝐼𝒞 generated by the elements:

∑︁
𝑏=𝑏1∪𝑏2

𝑎

𝐴

𝐵𝑐

𝑏1

𝑏2

− (−1)𝐵
∑︁

𝑐=𝑐1∪𝑐2

𝑎

𝐴+𝐵

𝐵𝑐1

𝑐2

𝑏

, (2)

where the subsets 𝑎, 𝑏, 𝑐 of vertices of the unshown part of the graph are pairwise disjoint.

Proof. Take a 4-element of the form shown in equation 1. Denote 𝑎 = 𝑥 − 𝑦, 𝑏 = 𝑥 ∩ 𝑦,
𝑐 = 𝑦 − 𝑥.

Modulo 𝐼𝒞, every graph with a black edge can be presented as a sum of the same graph
with the corresponding edge colored red and the same graph with the corresponding edge
removed. The inclusion-exclusion principle implies that the element from the hypothesis is
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the following combination of the 4-elements

∑︁
𝑏′⊂𝑏
𝑐′⊂𝑐

(−1)|𝑏−𝑏′|+|𝑐−𝑐′|

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑎

𝐴

𝐵𝑐′
𝑏′ − (−1)𝐵

𝑎

𝐴+𝐵

𝐵
𝑐′

𝑏′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The fact that every 4-element can be realized as a linear combination of the elements of
the type under discussion is obvious.

Notice that as the constructed elements form a biideal of 𝐺𝒞/𝐼𝒞, the primitive subspace
of 𝒩 = (𝐺𝒞/𝐼𝒞)/ℱ𝒞 admits a realization as the quotient of 𝑃 (𝐺𝒞/𝐼𝒞) by its intersection
with ℱ𝒞. Clearly, ℱ𝒞 is graded by the number of connected components, so the intersection
consists precisely of all elements of ℱ𝒞 that admit a realization as a linear combination
of connected graphs. It provides an explicit description of the primitive subspace of the
Lando bialgebra in terms of generators and relations.

This construction allows us to answer in part exercise 8 of Chapter 14 of [4]. Namely,
we claim that the space ℒ in its realization as a quotient 𝒩 = (𝐺𝒞/𝐼𝒞)/ℱ𝒞 can be treated
as an analogue of the algebra 𝒞. Indeed:

• there is a natural inclusion of ℒ to this space which is in fact isomorphism;

• the generators of the primitive subspace are connected graphs.

The elements of 𝐼𝒞 can be naturally treated as analogues of the STU-relations.
It was shown in [6] that the bialgebra ℒ carries the structure of a Hopf module over its

subbialgebra 𝐵ℒ generated by the graphs with the framing identically equal to 0. Namely,
the Larson-Sweedler theorem [10] implies that ℒ is a free 𝐵ℒ-module generated by the
subbialgebra of the graphs with the framing identically equal to 1. Denote the latter
subbialgebra by 𝑊ℒ.

Theorem 1.5. The primitive subspace 𝑃ℒ admits a direct sum decomposition

𝑃ℒ = 𝑃𝐵ℒ ⊕ 𝑃𝑊ℒ,

where the subspace 𝑃𝐵ℒ consists of a linear combination of graphs whose framing is
identically equal to 0, and 𝑃𝑊ℒ consists of a linear combination of graphs whose framing
is identically equal to 1.

The structural results of [6] imply that the subspace 𝑃𝑊ℒ is isomorphic to the subspace
of 𝑃𝒩 generated by the connected graphs with red edges only, such that the framing of at
least one vertex is 1.

Using the developed framework, we can give an alternative definition of the framed
chromatic polynomial. It is defined as the multiplicative function obeying the following
relations :
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𝑥

𝐴

𝐵

𝑦

= (−1)𝐴+𝐵+|𝑥∩𝑦| 𝐴+𝐵 + 𝐴𝐵

𝑥 ∪ 𝑦

.

2 Leaf attachment

Let us discuss a simple corollary of the relations in 𝒩 .

Theorem 2.1. The following identity holds:

𝑥 𝐴

𝐵𝑦
0 =

𝑥 𝐴

𝐵𝑦
0

Proof. The relations applied to the edge connecting the vertex of framing 𝐶 to the vertex
of framing 𝐵 read:

𝑥 𝐴

𝐵𝑦
𝐶 +

𝑥 𝐴

𝐵𝑦
𝐶 +

𝑥 𝐴

𝐵𝑦
𝐶

= (−1)𝐶
𝑥 𝐴

𝐵 + 𝐶𝑦
𝐶 ,

that implies

𝑥 𝐴

𝐵𝑦
𝐶 −

𝑥 𝐴

𝐵𝑦
𝐶

= (−1)𝐶

⎛⎜⎝ 𝑥 𝐴

𝐵 + 𝐶𝑦
𝐶 −

𝑥 𝐴+ 𝐶

𝐵𝑦
𝐶

⎞⎟⎠ .

For 𝐶 = 0 the right-hand part vanishes identically.

Recall, that the forest algebra 𝒯 [3] is defined as the subalgebra of ℒ generated by trees
with all the vertices having framing 0. Clearly, its image under the isomorphism 𝜑 is the
subalgebra of 𝒩 also generated by trees with all the vertices framing 0 and all the edges
colored red. The previous proposition trivially implies the structural result of [3]:
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Theorem 2.2. The forest algebra 𝒯 is a subbialgebra of 𝒩 with the dimension one primitive
subspace in every grading.

Indeed, it says that any tree can be obtained by a sequence of leaf attachments to the
graph on a single vertex. The resulting tree does not depend on the choice of the vertices
which we attach the leaves at each step of the construction.

Also, we deduce the following:

Theorem 2.3. There is a well-defined action of 𝒯 on 𝑃𝒩 defined on the generators as
follows. For a tree 𝑇 with the framing of all the vertices identically equal to 0 and a
connected graph Γ, choose a vertex 𝑣 of 𝑇 and a vertex 𝑤 of Γ, and join the chosen vertices
𝑣 and 𝑤 by an edge.

In particular, we see, that the subspaces 𝑃𝑊ℒ have at least one non-trivial generator
in every grading component: it can be obtained by the action of a tree on 𝑛 vertices on
a single vertex graph with the framing of the vertex 1. For every natural 𝑛 the obtained
element is non-zero, as the framed chromatic polynomial [6] takes on it a non-zero value.

The leaf attachment operation is an intersection graph counterpart of the operation of
bubble insertion [4]. P. Vogel in [19] provides a construction of a non-trivial element of the
kernel of the operation of bubble insertion. It would be interesting to know if the described
action of 𝒯 on 𝑃𝒩 is free.

3 A 4-invariant related to the number of 3-colorings of a graph.

As the elements of the Lando bialgebra can be either expressed in terms of graphs
whose all edges are black or in terms of graphs whose all edges are red, the same invariant
of graphs may produce two different 4-invariants.

For instance, it is known that the values of the chromatic polynomial (that is, the
numbers of 𝑘-colorings of the vertices of a graph) are 4-invariants of graphs [3, 7]. On the
other hand, the number of 3-colorings of a graph may be used to produce a new 4-invariant
as follows.

For a generating element Γ of 𝒩 represented by a graph with red edges only, define
𝒲(Γ) to be equal the number of proper 3-colorings of Γ multiplied by 2−𝜒(Γ)(−1)𝑓 , where
𝜒(Γ) is the Euler characteristics of Γ, and 𝑓 is the sum of framings of all the vertices of Γ.

Theorem 3.1. The function 𝒲 extends by linearity to a 4-invariant.

Proof. We have to check that the linear extension of 𝒲 to the ideal ℱ𝒞𝒞 vanishes identically.
The map that multiplies a framed graph by (−1)𝑓 and sets the framing of all the vertices

to 0 is a well-defined map on the quotient modulo the 4-elements. so, for simplicity, we
assume, that from now on all the vertices have framing 0.

The elements (2) can be generated as follows. The initial data is the tuple (Γ, 𝑣, 𝑎, 𝑏),
where Γ is a graph, 𝑣 – a vertex of Γ, and 𝑎, 𝑏 are two disjoint subsets of vertices of Γ such
that no vertex of 𝑎 ∪ 𝑏 is adjacent to 𝑣.
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Attach a leaf 𝑢 to 𝑣. Now, every vertex in 𝑎 ∪ 𝑏 can have 3 possible states, which we
call state 𝑈 , state 𝑉 and state 𝑈𝑉 .

For the collection of states 𝑆 : 𝑎 ∪ 𝑏 → {𝑈, 𝑉, 𝑈𝑉 } form a new graph Γ𝑆 as follows:
connect by edges all the vertices of the state 𝑈 with the vertex 𝑢, all the vertices of the
state 𝑉 to the vertex 𝑣, and all the vertices of the state 𝑈𝑉 to both the vertices 𝑢 and 𝑣.
Now the elements 2 are the linear combinations∑︁

{𝑆 : 𝑎∪𝑏→{𝑈,𝑉,𝑈𝑉 } |𝑆(𝑏)={𝑈}}

Γ𝑆 −
∑︁

{𝑆′ : 𝑎∪𝑏→{𝑈,𝑉,𝑈𝑉 } |𝑆′(𝑎)={𝑈}}

Γ𝑆′ . (3)

Now consider proper colorings of the vertices of the graphs Γ𝑆 and Γ𝑆′ in three colors which
we denote 𝐸,𝐹,𝐻. Without loss of generality suppose, the vertex 𝑢 is colored 𝐸, and the
vertex 𝑣 is colored 𝐹 . For any vertex 𝑤 ∈ 𝑎 we have

• if 𝑤 is in the state 𝑈𝑉 , then it can only be colored 𝐻,

• if 𝑤 is in the state 𝑈 , it can be either colored 𝐹 or 𝐻,

• if 𝑤 is in the state 𝑉 , it can be either colored 𝐸 or 𝐻.

Notice, that the number of edges of a graph with a vertex 𝑤 in the state 𝑈𝑉 is one
more than those of graphs with the corresponding vertex in the states 𝑈 or 𝑉 . Due to the
factor (−2)−𝜒(Γ)(−1)𝑓 in the definition of 𝒲, with all the states of elements 𝑎 ∪ 𝑏− {𝑤}
fixed, the colorings of 𝑤 in the state 𝑈𝑉 cancel out the colorings with 𝑤 colored 𝐻 being
in the state 𝑈 and 𝑤 colored 𝐻 being in the state 𝑉 .

It means that having fixed the colorings of 𝑢 and 𝑣 the sum (3) reduces to verification
of the identity ∑︁

{𝑆 : 𝑎∪𝑏→{𝑈,𝑉 } |𝑆(𝑏)={𝑈}}

𝒲 ′
𝑎(Γ𝑆) =

∑︁
{𝑆′ : 𝑎∪𝑏→{𝑈,𝑉 } |𝑆′(𝑎)={𝑈}}

𝒲 ′
𝑏(Γ𝑆′),

where 𝑊 ′
𝑎(Γ𝑆) for 𝑆 : 𝑎 ∪ 𝑏→ {𝑈, 𝑉 } with 𝑆(𝑏) = {𝑈} is the number of proper colorings of

the graph Γ𝑆, with vertex 𝑢 colored 𝐸, vertex 𝑣 colored 𝐹 , the vertex 𝑤 ∈ 𝑎 colored 𝐹 if it
is in the state 𝑈 , and colored 𝐸, if it is in the state 𝑉 . Notice, that due to the structure of
Γ𝑆, the vertices of 𝑏 can only be colored 𝐹 or 𝐻. The definition of 𝑊 ′

𝑏 is essentially the
same but with the roles of 𝑎 and 𝑏 interchanged.

But the identity to verify holds true. Namely, the sets of colorings that contribute to
left-hand side are in the bijection with the set of coloring that contributes to the right-hand
side: keep the coloring of 𝑢, 𝑣, and all the vertices colored 𝐹 , but for all other vertices
swap the colors 𝐸 and 𝐻. After the colors swap, the colorings of the vertices of 𝑏 uniquely
define their states.

We mention one evident property of the 4-invariant 𝒲. Namely, given two graphs Γ
and Γ′, a vertex 𝑢 of Γ and a vertex 𝑣 of Γ′ denote Γ∇𝑢𝑣Γ

′ the result of identification of
vertices 𝑢 and 𝑣. Clearly

𝒲(Γ∇𝑢𝑣Γ
′) = −2

3
𝒲(Γ)𝒲(Γ′).
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In particular, the operation of the leaf attachment multiplies the value of 𝒲 by 2. It is
known [17] that sl2-weight system has a similar multiplicativity property with respect to
the vertex-multiplication.

As a conclusion, we notice that for 𝑛 = 4 the grading component 𝑃𝒩4 has at least 4
linearly independent elements represented by graphs with all the edges colored red with
supports given by a chain 𝑃4 and a cycle 𝐶4 and various framings of their vertices. They
differ by the values of the framed chromatic polynomial and invariant 𝒲 on them. The
existence of the action of the tree algebra on 𝑃𝒩 implies, that for any 𝑛 ≥ 4 the dimension
dim𝑃𝒩𝑛 is greater or equal to 4.
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