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A complete invariant for doodles on a 2-sphere

Jacob Mostovoy

Abstract. We define a complete invariant for doodles on a 2-sphere which takes values
in a series of chord diagrams of a certain type. The coefficients in the diagrams with
n chords are finite type invariants of doodles of order at most 2n.

To the memory of Sergei Duzhin

1 Introduction

The theory of finite-type knot invariants may be thought of as a nilpotency theory for
knots. Nilpotent and residually nilpotent groups can be studied by embedding them into
algebras of power series; most notably, the free group on n letters x1, . . . , xn maps into the
algebra of the noncommutative power series in X1, . . . , Xn by

xi 7→ 1 +Xi.

One may describe this embedding by saying that a word that involves only non-negative
exponents is mapped to the formal sum of its subwords [10].

In a similar fashion, the set of isotopy classes of knots maps to the power series in
chord diagrams by means of the Kontsevich integral. In this case, however, the injectivity
of this map is a major open problem. Moreover, the combinatorial interpretation of the
Kontsevich integral of a knot is rather sophisticated and involves Drinfeld associators [3].

The Kontsevich integral contains complete information about the finite type invariants
of a knot. One may be tempted to construct universal finite-type knot invariants by using
the same elementary method that works for the free groups. Namely, one can encode knots
by diagrams of some kind and then assign to a knot a formal sum of the subdiagrams of
its diagram. In particular, if knots are represented by so-called clasp diagrams [12], the
formal sum of the subdiagrams taken by modulo diagrams with n + 1 clasps is, in fact,
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a universal invariant of order n. This construction, however, is no replacement for the
Kontsevich integral since the values of this invariant lie in a certain algebra which is rather
more involved than the (already uncomputable) algebra of chord diagrams. Essentially, it
is a restatement of the original approach of Vassiliev in different terms.

The combinatorics of knots is much more complex than that of words in a free group.
However, for other knotted objects, the approach via sums of subdiagrams may be very
efficient. Pure braids, which are closely related to knots, form groups that are almost
direct products of free groups. Each pure braid has a unique normal (“combed”) form; the
formal sum of the subwords of such a normal form is a universal finite type invariant whose
values lie in the same algebra as the Kohno integral for braids, of which the Kontsevich
integral is a generalization. This universal invariant is injective and this is one way to
show that the finite type invariants distinguish non-equivalent pure braids [13,14].

In the present note, we consider the set of equivalence classes of curves in S2 without
triple self-intersections, called “doodles” by Khovanov1 in [9]. We show that the sums of
subdiagrams give a finite type invariant of curves of doodles in S2, which is complete in
the sense that it distinguishes non-equivalent curves.

The theory of curves in S2 without triple self-intersections may be thought of as a toy
version of knot theory. Such curves are encoded by Gauss-type diagrams; the equivalence
is generated by certain moves similar to the Reidemeister moves. These curves may be
presented as closures of braid-like groups [6, 9] and possess invariants similar to the knot
group and to polynomial invariants [4]. The radical difference between doodles and knots
in S3 lies in the fact that the problem of distinguishing doodles is, essentially, trivial: there
exists a simplification algorithm that produces a unique representative for each equivalence
class of doodles, and this representative is minimal in the number of crossings. In view of
this circumstance, the theory of doodles is mostly important as a testing ground for knot
theoretic constructions.

The finite-type invariants of doodles have been studied by Vassiliev and Merkov; not
only in S2 but also in the more difficult case of doodles in R2, see [11, 16]. In particular,
among other things, Merkov showed that finite type invariants of doodles in S2 distinguish
non-equivalent doodles. His method is based on the use of the Polyak-Viro type invariants
that count the subdiagrams of the arrow diagram of a doodle. What we do is very close in
spirit and is based on the work of Goussarov, Polyak and Viro [7], who defined the finite
type invariants for virtual knots in terms of a certain universal invariant2. In the case
of knots, the Polyak-Viro type knot invariants span the space of all finite type invariants
(this result is known as the Goussarov Theorem) while the Goussarov-Polyak-Viro universal
invariant for “compact” virtual knots is strictly weaker. As we shall see, in the case of
doodles in S2 both approaches produce complete sets of invariants and, therefore, are
equivalent in strength.

1The term “doodles” was first used [5] for a different class of curves. Khovanov’s terminology has now
superseded that of Fenn and Taylor.

2Their definition is different from the definition of the finite type invariants for virtual knots given by
Kauffman in [8].
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2 Doodles and their arrow diagrams

A doodle is an immersion S1 → S2 with a finite number of transversal self-intersections
(or crossings). Doodles are considered modulo isotopies of S2 and the following two moves:

These moves can also be considered on curves in R2 or in other surfaces as it is done
in [2]. We will refer to two doodles that can be connected by these transformations as
being equivalent. A trivial doodle is a doodle without crossing points. All trivial doodles
in S2 are equivalent.

A doodle in S2 is determined up to isotopy by its arrow diagram3, which is a chord
diagram with directed chords. The skeleton (that is, the outer circle) of the chord diagram
corresponds to the parameter along the curve, the chords connect the inverse images of
the crossings. At each crossing the branches of the doodle can be ordered in such a way
that the tangent vectors to the first and the second branches form a positive basis of the
tangent space to S2. Each chord of the arrow diagram of the doodle is directed from the
first branch to the second branch.

12

4

3

1

3 4

2

Figure 1: A doodle and its arrow diagram

The moves R1, R2 on doodles translate into the moves R′
1, R

′
2 on their arrow diagrams:

R’1

and
R’2

3It would be more natural to use the term “Gauss diagram”. However, Arnold in [1] uses the term
“Gauss diagram” for the underlying chord diagram of the arrow diagram, so we follow the terminology of
Merkov. The term “arrow diagram” has also been used in a somewhat different context in [15].
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Here, and in what follows, the convention is that we show only the relevant part of the
arrow diagram; the omitted chords are the same in all the diagrams that appear in the
same move or equation. Unless explicitly indicated, the orientations on the segments of
the skeleton may be arbitrary but the same on all the diagrams.

Not each arrow diagram comes from a doodle; if it does, it is called realizable. The
above moves, however, make sense for all arrow diagrams. We consider two arrow diagrams
that are connected by these moves to be equivalent.

A doodle may be simplified by means of the moves R1, R2 that decrease the number of
crossings. If a doodle cannot be simplified, it is called minimal. Each doodle is equivalent
to a unique (up to isotopy) minimal doodle [9]. The same holds for arrow diagrams and
the moves R′

1, R
′
2; the proof of this fact is, essentially, the same as in the case of doodles.

Note that by applying a move R′
1 or R

′
2 in a way that decreases the number of crossings

to a realizable arrow diagram we again obtain a realizable diagram. It follows that the
minimal diagram equivalent to a realizable arrow diagram is also realizable. We arrive at
the following

Proposition 2.1. If two realizable arrow diagrams are equivalent, the corresponding doodles
are also equivalent.

In other words, the set of equivalence classes of doodles is a subset of the set of equiv-
alence classes of arrow diagrams. In what follows we will identify doodles and realizable
arrow diagrams.

A function on the set of isotopy classes of doodles that are preserved by the moves
R1, R2 is called an invariant of doodles in S2. Proposition 2.1 implies that any function
on the arrow diagrams that is preserved by the moves R′

1, R
′
2 gives rise to an invariant of

doodles and that each doodle invariant arises in this way.
Write D for the set of all arrow diagrams and QD for the vector space over Q generated

by this set. The moves R′
1, R

′
2 define a set of relations in QD which equate the left-hand

side of a move to the right-hand side:

= =R’’1: R’’2:

Define the linear map
ID : QD → QD

by sending a diagram D into the sum of all the diagrams obtained from D by deleting a
subset of chords of D. The relations R′′

1 and R′′
2 in QD are sent by ID to the following

relations:

= 0

(1)

and
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+ + =   0
(2)

Denote by A the quotient of QD by the relations (1) and (2). The map ID composed with
the quotient map gives rise to the map

I : QD → A,

which, by construction, is an invariant of doodles in S2.
For n ≥ 0 define An to be the quotient of A by the subspace spanned by the diagrams

with more than n chords. There is a natural projection An+1 → An which annihilates the
diagrams with n+ 1 chords. Write In for the composition

QD
I−→ A → An.

The main result of the present note is the following

Theorem 2.2. The map
In : QD → An

gives rise to a finite type invariant of doodles of order at most 2n. For a non-trivial doodle
D with n or fewer crossings,

In(D) ̸= 0.

If D1, D2 are non-equivalent doodles with n or fewer crossings,

In+1(D1) ̸= In+1(D2).

We will refer to the doodle invariant defined by In (which we will also denote by In) as
the n-th diagram invariant.

For each n, the invariant In is the composition of In+1 with the projection of An+1 onto
An. Let A be the inverse limit of the spaces Ai and

I : QD → A
the inverse limit of the Ii. Theorem 2.2 implies

Corollary 2.3. The map I is a complete invariant of doodles in S2.

Let Vn be the kernel of the projection An+1 → An. The space A is isomorphic to the
product of all the Vn. Another consequence of Theorem 2.2 is

Corollary 2.4. The map I composed with the projection of A to Vn is a finite type invariant
of order at most 2n.

If a basis is chosen in each Vn, the map I becomes a series of arrow diagrams whose
coefficients are finite type invariants, and the coefficient at any basis diagram in Vn is a
finite type invariant of order at most 2n.

In fact, we will see that Theorem 2.2 holds even if An is replaced by a certain quotient
of An which admits an explicit description. We consider it in the next section. In Section 4
we will show that In is an invariant of order 2n.



142 Jacob Mostovoy

3 Quiver diagrams and the diagram invariants

Let us say that two chords in a chord diagram are adjacent if their endpoints are
adjacent:

If a chord diagram C has a distinguished pair of adjacent chords, C can be reduced
by deleting one of the chords in the pair. The reduction of a diagram C defines a map
from the set of chords of C to the set of chords of the reduced diagram C ′: it maps both
adjacent chords to one chord that replaces them and is one-to-one on the other chords.
Let us say that a chord diagram without pairs of adjacent chords is reduced.



Figure 2: Reduction of a chord diagram

Lemma 3.1. Let C ′ be a reduced diagram obtained from a chord diagram C by a sequence of
successive reductions. Then C ′ does not depend on the order in which the pairs of adjacent
chords are chosen.

Proof. If a chord diagram C has two pairs of adjacent chords, these pairs are either disjoint
or have one chord in common. In both cases, the result of reducing C with respect to both
pairs does not depend on the order. It is obvious in the case when the pairs are disjoint;
if they are not, inspection shows that the order of reductions does not matter in this case
either.

Quiver diagrams4 are a generalization of arrow diagrams. A quiver diagram is a chord
diagram in which the endpoints of the chords are labelled by nonnegative integers in such
a way that the sum of the labels for every chord is at least 1. Quiver diagrams in which
every chord has one end labelled with 1 and the other end with 0 may be identified with
arrow diagrams if we take the direction of each chord from 0 towards 1. Define the degree
of a quiver diagram to be the sum of its labels. The underlying chord diagram of a quiver
diagram is obtained by forgetting the labels of the endpoints.

One may define the reduction of a quiver diagram with two adjacent chords as the
reduction of the underlying chord diagram with the following rule for the labels: the labels
of the adjacent endpoints of the adjacent chords are added together while the labels of
the other chords remain the same, see Figure 3. We say that a quiver diagram is reduced

4The term “quiver” here has nothing to do with directed graphs and refers to a pack of arrows.
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if its underlying chord diagram is reduced. As in Lemma 3.1, any sequence of reductions
of a given quiver diagram always terminates in the same reduced diagram. Let Q be the

 m+pm n
p q

n+q

Figure 3: Reduction of a quiver diagram

vector space over Q spanned by all the quiver diagrams modulo the subspace spanned by
the following relations:

(i) a diagram is equal to its reduction;

(ii) a diagram with an isolated chord5 is zero;

(iii) +  1 1 0   1   0 1+ =  0 .

Define Qn to be the quotient of Q by the subspace spanned by the diagrams of degrees
greater than n. For a reduced chord diagram C without isolated chords and at most n
chords, let QC

n ⊂ Qn be the subspace spanned by the quiver diagrams whose underlying
chord diagram is C.

Proposition 3.2. The vector space Qn is the direct sum of all the subspaces QC
n .

Indeed, in Qn any diagram is equal to its reduction and all the quiver diagrams that
participate in the relation (iii) have the same underlying chord diagram.

Proposition 3.3. Given a reduced chord diagram C without isolated chords, mark one
endpoint for each chord. The set of all quiver diagrams of degree at most n with the
underlying chord diagram C and the labels of the marked endpoints all zero form a basis
of QC

n .

One can think of such quiver diagrams as arrow diagrams whose arrows may have
multiplicities.

Proof. Let us choose one particular chord of a diagram D and assume that in the diagram

D = D(p, q) = p q

5that is, a chord whose endpoints are adjacent.
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with p, q > 0 the marked endpoint of the shown chord is on the right. We have

p q =
p q-1

0 1 = −
p q-1

1 0 −
p q-1

1 1

= − p+1 q-1 − p+1 q

or, in other words,
D(p, q) = −D(p+ 1, q − 1)−D(p+ 1, q)

from where do we get

D(p, q) = −D(p+ 1, q − 1) +D(p+ 2, q − 1)−D(p+ 3, q − 1) + . . . . (3)

This sum is finite since any diagram of degree n+1 or more is zero in QC
n . Now, if q−1 > 0,

the identity (3) can be used to express the diagrams on the right-hand side in terms of the
diagrams D(m, q− 2) and so on, until we express D(p, q) in terms of diagrams of the form
D(m, 0). Then, this algorithm can be applied to all other chords of D.

Rewriting in this way the relations in QC
n we obtain a tautology so all the diagrams

whose marked endpoints are labelled with 0 are linearly independent.

Since arrow diagrams can be considered as quiver diagrams and the relations among
the diagrams in An also hold in Qn we get a map

qn : An → Qn.

The second part of Theorem 2.2 is a consequence of the following statement:

Theorem 3.4. For a non-trivial doodle D with n crossings or fewer,

qn(In(D)) ̸= 0.

If D1, D2 are non-equivalent doodles with n or fewer crossings,

qn+1(In+1(D1)) ̸= qn+1(In+1(D2)).

Proof. Assume that the arrow diagram XD of a minimal doodle D contains a pair of
adjacent chords. These chords must point in the same direction since otherwise they could
be eliminated by a move R′

2; this would mean that the doodle is not minimal. These
chords cannot intersect each other, see Figure 4; the only possible situation when a pair
of adjacent chords appears in a minimal doodle diagram is when these chords are parallel
as shown in Figure 5 (a); in fact, in this case there may be a cluster with more than two
parallel chords with adjacent endpoints as in Figure 5 (b). Such a cluster of parallel chords
with adjacent endpoints divides the arrow diagram XD into two parts and no other chord
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C D

A B

A

C

B

D

Figure 4: A pair of intersecting adjacent chords pointing in the same direction and what
they might look like in a doodle. The points B and C must be joined in S2 by a segment
of the doodle containing no other intersection points, which is impossible.

A

C

B

D

DC
BA

(a)                                                       (b)

Figure 5: Doodles whose arrow diagrams have adjacent chords

intersects any of the chords of the cluster. The reduction of XD consists of replacing each
maximal cluster of m parallel arrows in XD with one chord whose initial point is marked
by 0 and the final point by m. Denote the resulting reduced quiver diagram by r(XD), see
Figure 6. If XD is reduced to begin with, we set r(XD) = XD.

Assume D is minimal and has at most n crossings. Since each chord in r(XD) has
one endpoint marked 0, we can choose a basis in Qn as in Proposition 3.3 such that
r(XD) is a basis element. Then, the coefficient of r(XD) in qn(In(D)) is equal to 1 since
there is precisely one subdiagram that gives r(XD); namely, XD itself. It follows that
qn(In(D)) ̸= 0.

Now, let D1 ̸= D2 be two minimal doodles with at most n crossings. Without loss of
generality, assume that D1 has at least as many crossings as D2. Then, if the underlying
chord diagrams of the arrow diagram XD1 and XD2 are different, r(XD1) ̸= r(XD2) and we
can choose a basis for Qn in such a way that both r(XD1) and r(XD2) are basis elements.
Then, the coefficient of r(XD1) in qn(In(D1)) is 1 while in r(XD2) it is 0. Indeed, if r(XD1)
is a subdiagram of r(XD2), we would have r(XD1) = r(XD2) since the degree of r(XD1) is
at least as big as that of r(XD2). This, however, is impossible.

If the underlying chord diagrams of XD1 and XD2 coincide, XD2 differs from XD1 by
the reversal of the directions of some chords. Let c be a chord in XD2 whose direction
differs from its direction in XD1 . Choose a basis for Qn+1 so that XD1 is a basis element
and let W be the quiver diagram obtained from XD1 by increasing the label of the chord
c by 1. Then, the coefficient of W in qn+1(In+1(D1)) is zero while in qn+1(In+1(D2)) it is
±1.
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0

2

3

0



Figure 6: The diagrams XD and r(XD).

4 The diagram invariants are of finite type

The theory of finite-type invariants for doodles was developed by Vassiliev in [16]. A
singular doodle consists of the following data:

• an immersed curve S1 → S2 with a finite number of self-intersection points, such
that the tangent lines to the branches of the curve at each self-intersection point are
all distinct;

• a linear order in the branches of the curve at each self-intersection point.

A singular point of a singular doodle is a self-intersection point where three or more
branches meet. The complexity of a singular point is the number of branches that meet
there minus 1. The complexity of a singular doodle is the sum of the multiplicities of its
singular points.

Choose a singular point x of a singular doodle D and let v be the tangent vector to the
last branch of D at x. Write v⊥ for the vector obtained from v by rotating it by π/2 in
the positive direction. Let D′ and D′′ be the singular doodles obtained by moving the last
branch of D slightly off x in the directions v⊥ and −v⊥, respectively. A one-step resolution
of D at x is the formal difference D′ −D′′. This procedure can be iterated. The order of
D′ and D′′ is one less than that of D; therefore, by taking consecutive one-step resolutions
we arrive at a linear combination of usual doodles that we call the complete resolution of
D.

An invariant of doodles can be extended to linear combinations of doodles by linearity.
An invariant is said to be of order m if it vanishes on the complete resolution of any
singular doodle with complexity greater than m.

Proposition 4.1. The nth diagram invariant In vanishes on any singular doodle of com-
plexity greater than n+ s where s is the number of singular points of the singular doodle.

Since the complexity of each singular point is at least 2, the number s of singular points
is at most half the complexity of the singular doodle. If a singular doodle has complexity
c with c > 2n, then c > n+ s and Proposition 4.1 implies that that In is zero on it, which
establishes Theorem 2.2.
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Sketch of the proof of Proposition 4.1. IfR is a region in S2 with piecewise smooth bound-
ary, a flat tangle is an immersion of a 1-manifold into R which is transversal to the bound-
ary and has a finite number of transversal double points, all in the interior of R.

Assume R1 and R2 intersect along a component of their boundary, and T is a flat
tangle in R1 ∪ R2 which is transversal to ∂R1. Then T defines two flat tangles, T1 in R1

and T2 in R2 and we say that T is a product of T1 and T2.
A flat tangle T gives rise to an arrow diagram whose skeleton is the 1-manifold paramet-

rizing T . One may also talk about the sum of all the subdiagrams of the arrow diagram
of T , we denote this sum by I(T ). In the same way as the singular doodle, we may define
singular flat tangles. Proposition 4.1 is a consequence of the following fact: for the singular
flat tangle Tk with one singular point where k branches of Tk intersect, I(Tk) involves only
diagrams with at least k − 1 chords.

Indeed, this is true for k = 3:

I
(

1

2 3 )
= I

(
1

2 3 )
− I

( 2

1 3
)

=

1

23

−
1

23

+

1

23

+

1

23

+

1

23

−
1

23

−
1

23

−
1

23

For k > 3 use induction. Let T ′ − T ′′ be a one-step resolution of Tk:

T ′ = 1

k-1 k

, T ′′ =
k-1

1
k .

Then, I(T ′) = I1(T
′) + I2(T

′) where I1(T
′) consists of the diagrams that have at least one

chord with an endpoint on the kth branch and I2(T
′) consists of the diagrams that have no

such chords. Similarly, we write I(T ′′) = I1(T
′′) + I2(T

′′). Now, I2(T
′) = I2(T

′′). On the
other hand, both I1(T

′) and I2(T
′′) are products of I(Tk−1) and of a linear combination of

tangles with at least one chord. Therefore, by the induction assumption these expressions
involve only diagrams with (k − 2) + 1 = k − 1 chords and the same is true for

I(Tk) = I1(T
′)− I1(T

′′).

5 Some remarks

5.1 In the definition of the spaces An and Qn, the coefficients of the diagrams can be
taken in the field F2 with two elements. The diagram invariants defined in this fashion
still distinguish doodles.
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5.2 One may apply the constructions of this note to long doodles; these are doodles in
S2 that pass through a given point (thought of as the infinity in the Riemann sphere).
Long doodles are parametrized by the real line and the preimages of the self-intersection
points are naturally ordered. As a consequence, the branches of such a doodle at each
self-intersection point are also ordered and each self-intersection point carries a sign which
is positive whenever the ordered pair of tangent vectors to the doodle forms a positive
basis. Instead of arrow diagrams, long doodles may be encoded by chord diagrams with
signed chords; the construction of the subdiagram invariant for such signed chord diagrams
is entirely similar to the one described in the present note.
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