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Topics in elliptic problems: from semilinear equations to
shape optimization

Hugo Tavares

Abstract. In this paper, which corresponds to an updated version of the author’s
Habilitation lecture in Mathematics, we do an overview of several topics in elliptic
problems. We review some old and new results regarding the Lane-Emden equation,
both under Dirichlet and Neumann boundary conditions, then focus on sign-changing
solutions for Lane-Emden systems. We also survey some results regarding fully non-
trivial solutions to gradient elliptic systems with mixed cooperative and competitive
interactions. We conclude by exhibiting results on optimal partition problems, with
cost functions either related with Dirichlet eigenvalues or to the Yamabe equation.
Several open problems are referred along the text.
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1 Introduction

Elliptic partial differential equations are a very important class of equations with con-
nections to applied sciences (e.g. physics or biology) as well as to other fields of Mathemat-
ics such as Differential Geometry, Functional Analysis and Calculus of Variations. Because
of these facts, they are a fascinating topic and an increasingly active field of research.

The purpose of this text is to give an overview of most of my research from the last
10 years in this field, as well as to point out new directions and open problems. The
text corresponds to a slightly updated version of the Habilitation lecture in Mathematics
I presented at Instituto Superior Técnico, Universidade de Lisboa, on May 22–23, 2023.

I have divided this lecture into four parts.
Section 2, entitled Semilinear elliptic problems: old and new, is mainly intended to give

context to the sections. Therein, I review (for non-experts) some classical material related
to variational methods and applications to the Lane-Emden equation,

−∆u = |u|p−1u in some domain Ω ⊂ RN ,

with p > 0 and under homogeneous Dirichlet and Neumann boundary conditions. Even
though most of the material is classical, the section finishes with some open questions and
some recent contributions made by myself. This section contains (with permission) parts
of my survey paper [191].
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In the remaining sections I focus mostly on more recent problems and on my research.
Section 3 deals with Elliptic Hamiltonian systems, in particular with Lane-Emden systems

−∆u = |v|q−1v, −∆v = |u|p−1u in Ω.

for p, q > 0. Under Dirichlet boundary conditions u = v = 0 on ∂Ω, we focus on least
energy nodal solutions in the subcritical case, while under Neumann boundary conditions
(where all nontrivial solutions are necessarily sign-changing) we focus on least energy solu-
tions, both in the subcritical and the critical cases. We are mostly interested in existence
result, as well as symmetry or symmetry breaking phenomena in case the underlying do-
main is a bounded radial set.

Section 4, entitled Existence of fully nontrivial solutions to a class of gradient elliptic
systems, focus in systems of type{

−∆ui + λiui = ui|ui|p−2
∑d

j=1 βij|uj|p in Ω,

ui = 0 on ∂Ω, i = 1, ...d,
(1.1)

with d ⩾ 2 equations, where N ⩾ 3, in a (Sobolev) critical or subcritical regime 0 < p ⩽
2∗/2 = N/(N − 2), and λi ∈ R. We assume that the coupling terms are symmetric, that
is βij = βji for i ̸= j, which provides a gradient structure to the problem. These systems
admit semitrivial solutions, that is, solutions (u1, . . . , ud) with zero components (some ui

might vanish identically), and we focus on reviewing conditions given in the literature
that ensure the existence of fully nontrivial solutions (in particular of least energy). We
conclude with a short subsection describing some results on normalized solution, a very
active topic of research at the moment, dealing with the less explored case of bounded
domains.

Finally, Section 5 deals with Optimal partition problems, which are problems of the
following type:

inf {Φ(ω1, . . . , ωm) : ωi ∈ A, ωi ∩ ωj = ∅ ∀i ̸= j} ,

where A is a class of admissible sets in a certain ambient space and Φ : Am → R is a cost
function. We address the case of spectral partitions (where the cost function is related
to Dirichlet eigenvalues) and of problems related with the Yamabe equation. We are
interested in obtaing existence and regularity results, as well as in the relation with system
(4.1). Very recent results regarding optimal partition problems with volume constraints
are also described.

Part of my works did not make it into this overview for the sake of brevity and coher-
ence of the material. I would like to emphasize, for instance, the work with D. Bonheure,
J. Földes, E. Moreira dos Santos and A. Saldaña about general criteria for the uniqueness
of critical points of functionals with a hidden convexity [37], the joint work with D. Cassani
and J. Zhang on gradient systems with critical growth in the sense of Moser in dimension
two [53], the work with E. Moreira dos Santos, G. Nornberg and D. Schiera on the phe-
nomenon of two principal half eigenvalues in the context of fully nonlinear Lane-Emden
type systems with possibly unbounded coefficients and weights [141], and the work with
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F. Agostinho and S. Correia [4] on a rather complete study of the positive H1-solutions of
the equation −u′′ + λu = |u|p−2u on the T -metric graph for λ > 0 and p > 2.

2 Semilinear elliptic problems: old and new

This section contains parts of my survey paper [191].

Many problems can be modelled with the aid of elliptic partial differential equations.
One of the most well known examples is the classical Poisson equation: given a bounded
regular domain Ω ⊂ RN , take

−∆u = f in Ω.

Its solutions may represent the shape of an elastic membrane in equilibrium subject to a
vertical load f : Ω → R (u(x) corresponds to the vertical displacement at the point x);
an electrostatic potential (for f = ρ/ε, where ρ(x) is the volume charge density and ε
the permittivity of the medium), a gravitational potential (for f = −4πGρ, where ρ is
the density of the object and G the gravitational constant), or the stationary solutions
for the heat equation (in this case, u represents a temperature, and f is a heat source).
To obtain existence and uniqueness of solution, one couples the equation with boundary
conditions: Dirichlet boundary conditions (u = g on ∂Ω) or Neumann boundary conditions
(uν := ∇u · ν = g on ∂Ω, where ν = ν(x) is the outer unit vector at x ∈ ∂Ω) are
typical examples arising in applications. Linear problems are very well understood and
can be found in classical textbooks (see for instance [93, 174]), while current research
aims at a good understanding of nonlinear problems. Among the wide class of possible
nonlinearities, the simplest to treat (although already quite rich mathematically, as we will
see), are semilinear problems, where f : R → R, f = f(u), is a nonlinear function, that is,
the nonlinearity occurs at the level of the zero order terms.

Let N ⩾ 3 and p > 0. For simplicity, let us work from now on with the prototypical
example of the Lane-Emden equation

−∆u = |u|p−1u in Ω. (2.1)

Equation (2.1) is not only a mathematical paradigm in nonlinear analysis of PDEs, but it
has also a physical motivation, since, for N = 3, normalized radial solutions of (2.1) solve
the Lane-Emden equation of index p, namely,

− 1

ξ2
(ξ2θ′)′ = |θ|p−1θ, θ(0) = 1, θ′(0) = 0.

The latter equation is used in astrophysics to model self-gravitating spheres of plasma,
such as stars or self-consistent stellar systems in polytropic-convective equilibrium, where

the pressure P and the density ρ (= kθp) satisfy a nonlinear relationship P = cρ
p+1
p , see

[59]. In this setting, a positive solution θ is often called a polytrope, and it contains, up
to constants, important physical information such as the radius of the star (the first zero
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r1 of θ), the total mass
∫
Br1

θp, the pressure θp+1 and for an ideal gas, the temperature is

proportional to θ.
The (homogeneous) Dirichlet case has been extensively studied:

−∆u = |u|p−1u in Ω, u = 0 on ∂Ω, (2.2)

and in the following four subsections we focus on this problem in the case where Ω is
a bounded regular domain. We remark that the study of the Neumann case has been
completed only recently with our contributions, see Section 2.5 below.

Clearly u ≡ 0 is always a solution, but we are interested in nontrivial ones. Recall that
(formally) a weak solution is a function u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇v −
∫
Ω

|u|p−1uv = 0 ∀v ∈ H1
0 (Ω),

and weak solutions correspond to critical points of the functional

I : H1
0 (Ω) → R, I(u) = 1

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

|u|p+1 (2.3)

(observe that (|t|p+1)′ = (p + 1)|t|p−1t for every t ∈ R, p > 0). To make these statements
precise and correct, we need a restriction on the exponent p, since the integral

∫
Ω
|u|p+1 is

not always finite for u ∈ H1
0 (Ω). One needs to recall Sobolev inequalities : for

1 ⩽ q ⩽ 2∗ :=
2N

N − 2
,

there exists CN,q > 0 such that(∫
Ω

|u|q
)1/q

⩽ CN,q

(∫
Ω

|∇u|2
)1/2

∀u ∈ H1
0 (Ω), (2.4)

which amounts to saying that the embedding H1
0 (Ω) ↪→ Lq(Ω) is continuous. The number

2∗ is the critical Sobolev exponent. Therefore, in conclusion, (2.3) is well defined only for
p ⩽ 2∗ − 1. In this case, in order to look for weak solutions of the problem (2.2), one may
try to find critical points of I.

Now the question is: how can we find a critical point of I? And how many of them
are there? The answer depends on p: not only the geometry of I changes from p < 1 to
p > 1, but also the situations p+ 1 < 2∗ and p+ 1 = 2∗ are very different: the embedding
of H1

0 (Ω) in Lq(Ω) is compact only for 1 ⩽ q < 2∗. The discussion of the case p > 2∗ − 1
is much harder and less is known.

Before moving on, we would like to point out that most of the results we describe below
for p ̸= 1 do not depend on the homogeneity of the map t 7→ |t|p−1t. Indeed, many results
are true for more general nonlinearities f(t). We also recall that the main purpose of this
section is to give some context to the forthcoming ones (even though I present some new
results of my own here, see the last paragraph of Subsection 2.2 and Subsection 2.5). For
this reason, I do not even dare to make a complete state of the art and many references
are left out.
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2.1 Dirichlet boundary conditions: the linear case p = 1.

Before going nonlinear, let us analyse what happens in the linear case p = 1, that
is: −∆u = u in Ω, u = 0 on ∂Ω. This problem may or may not have a (nontrivial)
solution; what we are asking, in other words, is if λ = 1 is an eigenvalue of the operator
A := −∆ with Dirichlet boundary conditions. In this context, indeed, λ ∈ R is called an
eigenvalue whenever −∆u = λu in Ω, u = 0 on ∂Ω admits a nontrivial (weak) solution.
From the spectral theory of compact operators (using the compactness of the embedding
H1

0 (Ω) ↪→ L2(Ω)), we deduce that the eigenvalues of −∆ (counting multiplicities) form a
nondecreasing sequence

0 < λ1(Ω) < λ2(Ω) ⩽ λ3(Ω) ⩽ . . . → ∞

and there is a Hilbert base of H1
0 (Ω) made of associated eigenfunctions (vn)n. Exactly as

for eigenvalues of a matrix, the eigenvalues admit a variational formulation, namely the
Courant-Fischer-Weyl min-max formulas

λ1(Ω) = min
{
R(u) : u ∈ H1

0 (Ω) \ {0}
}
, λk(Ω) = min

V ⊂H1
0(Ω)

dimV =k

max
u∈V \{0}

R(u) (k ⩾ 2), (2.5)

where R(u) =
∫
Ω
|∇u|2/

∫
Ω
u2, for u ̸≡ 0, is called the Rayleigh quotient. The details can

be found, for instance, in [174, Chapter 6]. Therefore, the question of whether problem
(2.2) in the case p = 1 admits a nontrivial solution or not depends on the domain: the
answer is affirmative only for domains for which 1 = λi(Ω) for some i.

Below, in Section 5, I present my work on spectral partition problems : optimal partition
problems where the cost function depend on the eigenvalues of each set of the partition.

2.2 Dirichlet boundary conditions: the sublinear case 0 < p < 1.

If 0 < p < 1, it is straightforward to see that I has a minimum in each direction: for a
fixed w ∈ H1

0 (Ω) \ {0}, this corresponds to studying the real function f(t) = I(tω), which
has the form at2 − b|t|p+1 for some a, b > 0. Using Sobolev inequalities and the direct
method of Calculus of Variations [93, Chapter 8.2], one shows that I admits a global
negative minimum in H1

0 (Ω): the level

inf{I(u) : u ∈ H1
0 (Ω)} < 0

is achieved, providing a nontrivial solution (which is called a least energy solution). We
know a lot about minimizers. First of all, they are signed: either u > 0 in Ω or u < 0
in Ω (this is a consequence of the inequality I(|u|) ⩽ I(u) and the strong maximum
principle [108, Chapter 2.2]). Positive solutions are unique [123]. This uniqueness also
implies symmetry properties in symmetric domains: for instance, if the domain is radially
symmetric (ball or annulus centered at the origin), the solution is radially symmetric
(working in the space H1

0,rad := {u ∈ H1
0 (Ω) : u(x) = u(|x|) ∀x ∈ Ω} provides a positive

solution). More generally, we can consider the situation of a domain Ω which is invariant
under a subgroup G of the orthogonal group O(N).
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In the previous paragraph we described properties of minimizers. Does I admit other
critical points (i.e., solutions of the problem (2.2))? The answer is affirmative (see e.g.
[29]): there exists a sequence of critical points (vk)k of I, which satisfies

I(vk) < 0, I(vk) → 0.

This is a consequence of the Z2–symmetry of the problem (the functional is invariant under
the map u 7→ −u); solutions can be found as saddle points of I, characterized via min-
max methods in an analogous way to what happens for eigenvalues (recall (2.5)). Observe
that, since positive (and negative) solutions are unique, the previous multiplicity result
yields the existence of infinitely many sign-changing solutions. The next step is then to
understand them as well as possible. The study of the zero-set of sign-changing solutions
(the free-boundary set Γ = {x ∈ Ω : u(x) = 0}) is particularly challenging, as the function
f(t) = |t|p−1p is not of class C1 for 0 < p < 1. The study of Γ has been done recently: up to
a subset with small Hausdorff dimension, Γ is a regular hypersurface [187, 188]. Moreover,
one may also ask if, among all sign-changing solutions, there is one that minimizes the
energy functional I, that is, if the level

cnod = inf{I(u) : u is a sign-changing critical point of I}

is achieved (solutions u such that I(u) = cnod are typically called least energy sign-changing
solutions or least energy nodal solutions). The answer is affirmative, as shown recently in
a joint work with D. Bonheure, E. Moreira dos Santos, E. Parini and T. Weth.

Theorem 2.1 ([38]). Let 0 < p < 1. There exist u ∈ H1
0 (Ω)∩L∞(Ω) such that I(u) = cnod.

Moreover, any function achieving the level cnod is a least energy nodal solution.

In our paper [38] it is also shown that, quite remarkably, the type of critical point we
find depends on the domain: there exist domains where the least energy nodal solution is a
local minimizer of I, and others where it is a saddle point (more precisely, of Mountain Pass
type, see Theorem 2.2 below). A complete understanding of how the domain influences
the type of critical point is an open problem. To conclude, we emphasize that the results
in [38] are valid for a class of nonlinearities f(t) which also include the Allen-Cahn-type
f(t) = λ(t − |t|p−1t), with p > 1 and λ > λ2(Ω). For C1 sublinear-type nonlinearities,
we further prove that least energy nodal solutions on radial domains are not radially
symmetric, but only foliated Schwarz symmetric, that is, there exists p ∈ ∂B1(0) such that
the solution is axially symmetric with respect to pR, and strictly decreasing in the polar

angle θ = arccos
(

x
|x| · p

)
.

2.3 Dirichlet boundary conditions: the superlinear–subcritical case 1 < p < 2∗−1.

For the case p > 1, by using Sobolev inequalities one can show that:

- the origin u = 0 is a strict local minimum of I;

- I is unbounded from below and from above.
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In this case, to obtain solutions we cannot simply minimize (nor maximize) the functional
in the whole H1

0 (Ω). Based on the geometry of the functional, we can use the following
version of the celebrated result by Ambrosetti and Rabinowitz [11].

Theorem 2.2 (Mountain Pass Theorem). Let H be a Hilbert space and let J : H → R be a
C1,1 functional satisfying

• J (0) = 0;

• there exists r > 0 such that

inf{J (u) : ∥u∥ ⩽ r} = 0, inf{J (u) : ∥u∥ = r} > 0;

• there exists v such that J (v) < 0.

Let Γ := {γ ∈ C([0, 1];H1
0 (Ω)) : γ(0) = 0, J (γ(1)) < 0}, and

c := inf
γ∈Γ

sup
u∈γ([0,1])

J (u).

Then there exists a sequence (uk)k ⊂ H such that J (uk) → c and J ′(uk) → 0.

The proof of this result uses deformation lemmas and the study of steepest descending
flows (a simple proof can be found in [93, Chapter 8]). The existence of a sequence (uk)k
such that J (uk) → c and J ′(uk) → 0, by itself, does not imply the existence of a critical
point (take the counterexample H = R, c = 0, uk = −k and J (x) = ex). A new concept
regarding compactness is needed:

A functional J ∈ C1(H,R) satisfies the Palais-Smale condition at c if, when-
ever we have a sequence (uk)k such that J (uk) → c and J ′(uk) → 0, then
there exists a subsequence (ukj)j of (uk)k and u ∈ H such that ukj → u in H.
In particular, J ′(u) = 0.

Using the compactness of the Sobolev embeddings (2.4) for q < 2∗, one proves that I
defined in (2.3) satisfies this condition, and the Mountain Pass Theorem provides the
existence of a critical point of I, hence a solution of (2.2). What can we now say about
this solution? Another possible variational characterization is via a Nehari manifold:

c = inf
N

I,

where

N = {u ∈ H1
0 (Ω) \ {0} : I ′(u)u = 0} = {u ∈ H1

0 (Ω) \ {0} :

∫
Ω

|∇u|2 =
∫
Ω

|u|p+1}.

Observe that I is bounded from below on N , and that the condition I ′(u)u = 0 is a free
constraint (in the sense that the associated Lagrange multiplier is zero). The solution
achieving c is also a least energy solution, in the sense that

c = inf{I(u) : u ∈ H1
0 (Ω) \ {0}, I ′(u) = 0}.
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Exactly as in the sublinear case, least energy solutions can be shown to be signed: they are
either strictly positive or strictly negative in Ω. However, uniqueness of positive solutions
does not hold in general, as an effect of the topology of the domain (there are multiplicity
results in annular domains) or of the geometry (dumbbell shaped domains). There is a
long standing conjecture [87, 122] that, if the domain is convex, then there is uniqueness
of positive solution of (2.2) for 1 < p < 2∗ − 1. A good review of the state-of-the-art
regarding this subject can be found in the introduction of [102]. What about the symmetry
in radial domains? When the domain is a ball, positive solutions are radially symmetric
(consequence of the so called moving plane method, which uses many types of maximum
principles, see [98] or [108, Chapter 2.6]). However, if Ω is an annulus, the solutions (at
least for large p) lose one axis of symmetry, being foliated Schwarz symmetric [28] (axially
symmetric and strictly decreasing with respect to the polar angle from the symmetry axis).
As we can see, there are some key changes between the cases p < 1 and p > 1.

Regarding the multiplicity of solutions, again by the Z2–invariance of the functional,
there exists infinitely many (sign-changing) solutions; however, unlike the sublinear case,
this time we can find a sequence of solutions (uk)k such that I(uk) → ∞. A long standing
open question is whether the symmetry of the functional is necessary to obtain multiplicity
results; see the introduction of [139, 164] for a good overview. A least energy nodal solution,
on the other hand, can be characterized by

cnod = inf
Nnod

I, where Nnod = {u ∈ H1
0 (Ω) \ {0}, I ′(u)u+ = I ′(u)u− = 0}, (2.6)

see [28, 55] (observe this set is not a C1-manifold). On bounded radial domains, the
associated solutions are not radial [3], but only foliated Schwarz symmetric [28].

The study of the regularity of the zero-set of sign changing solutions is actually simpler
in the superlinear case p > 1 than in the sublinear one p < 1 (although, in any case, is
not at all simple); this is as a consequence of the map f(t) = |t|p−1t being of class C1 for
p > 1 [110, 130].

2.4 Dirichlet boundary conditions: the critical case p = 2∗−1 = (N +2)/(N −2)

In this case, we are dealing with

−∆u = |u|2∗−2u in Ω, u = 0 on ∂Ω,

and the associated functional I does not satisfy the Palais-Smale condition for all levels
c. The question of whether there are (nontrivial) solutions or not for p = 2∗ − 1 or
p > 2∗−1 depends strongly on the domain. When Ω is star-shaped, for instance, there are
no solutions (by the Pohozaev identity, see for instance [19, Theorem 3.4.26]); however,
there are examples of contractible domains where solutions do exist. This shows that the
topology of the domain is not enough to characterize the situation, although it has some
influence: if, for some positive d, the homotopy group of Ω with Z2 coefficients is non trivial,
Hd(Ω,Z2) ̸= {0}, then we have a positive solution [20]. Multiplicity results are much more
recent (and challenging); recent contributions are, for instance, [69, 76, 143, 144].

In order to emphasize how delicate the situation is in the critical case p = 2∗ − 1, we
make two remarks:
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1. If the domain is not bounded but instead the whole RN , then we have (explicit!)
solutions, the so called bubbles :

Uδ,ξ = (N(N − 2))(N−2)/4 δ
N−2

2

(δ2 + |x− ξ|2)N−2
2

, for δ > 0, ξ ∈ RN . (2.7)

2. If we consider a linear perturbation of the problem, namely:

−∆u = λu+ |u|2∗−2u in Ω, u = 0 on ∂Ω

the situation changes. This problem has positive solutions for λ ∈ (0, λ1(Ω)) and
N ⩾ 4 (the problem is commonly known as the Brezis-Nirenberg problem [43]), and
for λ ∈ (λ∗(Ω), λ1(Ω)) in N = 3, for some λ∗(Ω) > 0. The topology of the domain,
in this situation, also influences multiplicity results: there exist at least catΩ(Ω)
solutions, where the (Lyusternik-Schnirelmann) category of Ω is the least integer
d such that there exists a covering of Ω by d closed contractible sets. As λ → 0,
the solutions tends to concentrate and blowup at certain points which depend on
geometric properties of Ω [109, 167].

We recommend the survey [157] for more results in the critical case. Therein, the reader
can also find a nice and simple general explanation of the use of the Lyapunov-Schmidt
reduction method as a powerful and useful technique to build solutions to semilinear elliptic
problems.

2.5 Lane-Emden equations with Neumann boundary conditions

Quite surprisingly, for the Neumann problem

−∆u = |u|p−1u in Ω, ∂νu = 0 on ∂Ω, (2.8)

very little was known before our work. Observe that solutions satisfy the compatibility
condition ∫

Ω

|u|p−1u = 0,

hence all nontrivial solutions necessarily change sign. Therefore, least energy solutions are
actually least energy nodal solutions.1

For the subcritical case p < 1, the existence of least energy (nodal) solutions was
established in [151]. When Ω is a ball, the authors proved that these solutions are not
radial but only foliated Schwarz symmetric (axially symmetric and decreasing as a function
of the polar angle).

For the critical exponent case p = 2∗ − 1, differently to the Dirichlet case (recall
Subsection 2.4), in the Neumann one there are solutions, as was shown in [80] using a dual
variational formulation.

1The situation changes drastically if we consider, instead, the problem −∆u+λu = |u|p−1u with λ > 0,
which allows positive solutions. This has been extensively studied since the celebrated papers [2, 129, 200].
Since the results are different in nature, we do not make a literature review of this case.
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Combining this with two of my works, one with A. Saldaña for the subcritical case
[172], and the other with A. Pistoia and D. Schiera for the critical one [160], we have the
following:

Theorem 2.3 (Combination of [151, 80] with my recent papers [160, 172]).
Let Ω be a bounded smooth domain in RN , N ⩾ 1. Assume that p < 2∗ − 1 and p ̸= 1
(with the convention that 2∗ = ∞ for N = 1, 2), or p = 2∗ − 1 and N ⩾ 4. Then there
exist least energy solutions, and they are all classical solutions. Moreover:

1. (Case N = 1 and Ω = (−1, 1)): every least energy solution is strictly monotone in
Ω.

2. (Case N ⩾ 2 and Ω a ball or an annulus):

(a) every least energy solution is foliated Schwarz symmetric and it is not radially
symmetric.

(b) there exist least energy radial solutions; they are classical and strictly monotone
in the radial variable.

The symmetry breaking is done by contradiction, and this is why it is so important to
prove the existence and monotonicity of least energy radial solutions. These are defined,
when Ω is symmetric, as solutions of the problem (2.8) which achieve the level

crad := inf{I(u) : u ∈ H1(Ω) is a nontrivial radial solution of (2.8)}.

A key element in the proof of the monotonicity is the use of a dual variational formula-
tion combined with a new Lt-norm-preserving transformation introduced in [172], which
combines a suitable flipping with a decreasing rearrangement. This combination allows
us to treat annular domains, sign-changing functions, and Neumann problems, which are
non-standard settings to use rearrangements and symmetrizations. Both [160] and [172]
prove the results of Theorem 2.3 for the more general context of Lane-Emden systems, and
the single equation case follows as corollary. We will discuss this in more detail in Section
3 below.

We point out two other things:

• in a recent work with A. Saldaña [173] we showed the convergence of least energy
nodal solutions in terms of p; in particular, the limit as p → 1 depends on the domain.

• jointly with M. Grossi and A. Saldaña [103], we deduced the blowup behavior as p ↗
2∗ − 1 of all radial solutions of (2.8); incidently, in order to prove it we had to prove
at the same time the behaviour of all radial Dirichlet solutions (2.2), generalizing the
work [109].

Another interesting open question is whether or not one has a solution for all p > 2∗−1.
In a joint work with A. Pistoia and A. Saldaña [159], using the Lyapunov-Schmidt reduction
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method, we proved the existence of solutions in the slightly supercritical case, when the
domain has some symmetries. For instance, if Ω is the ball, the main result therein is the
following:

Theorem 2.4 ([159]). Take N ⩾ 4, let Ω ⊂ RN be the unit ball centered at the origin,
and p = 2∗ − 1 + ε. There exists ε0 > 0 such that, for ε ∈ (0, ε0), the problem (2.8) has
a solution uε which is even in x1, . . . , xN−1 and odd in xN ; this solution “looks like” the
difference of two bubbles (2.7), concentrating at antipodal points as ε → 0.

This result has been recently extended to Lane-Emden systems, see [106].

3 Elliptic Hamiltonian systems

A natural extension of studying the single equation −∆u = |u|p−1u is to deal with
the following particular example of an elliptic Hamiltonian system2, also known in the
literature as Lane-Emden system:

−∆u = |v|q−1v, −∆v = |u|p−1u in Ω. (3.1)

One considers p, q > 0 in either the sublinear (pq < 1) or the superlinear (pq > 1) cases.
The correct notion of criticality correspond to (p, q) being on the critical hyperbola

1

p+ 1
+

1

q + 1
=

N − 2

N
. (3.2)

(see [78, 152]). In this setting, the more general notion of “linearity” is pq = 1 or, equiva-
lently, 1/(p+ 1) + 1/(q + 1) = 1, see [79]; being subcritical means that:

p, q > 0, pq ̸= 1, and
1

p+ 1
+

1

q + 1
>

N − 2

N
, (3.3)

and this condition is trivially satisfied if N = 1, 2 or if pq < 1.

A simple way of motivating these notions is to formally write v := −|∆u|
1
q
−1∆u, so

that (3.1) reduces to the higher order problem

∆
(
|∆u|

1
q
−1∆u

)
= |u|p−1u in Ω. (3.4)

This equation has the following associated Euler-Lagrange functional

u 7→ q

q + 1

∫
Ω

|∆u|
q+1
q − 1

p+ 1

∫
Ω

|u|p+1.

So, the notion of criticality (3.2) is related with the validity of the embeddingW 2, q+1
q (Ω) ↪→

Lp+1(Ω), while “linear” (with an abuse of language) is related to having the same homo-
geneity on the equation (3.4). This variational formulation can be made precise, see for
instance [36, Section 4] for the case of Dirichlet boundary conditions.

2The name has its origins in the following: (3.1) has the shape −∆u = −Hv(u, v), −∆v = Hu(u, v) for
H(u, v) = |u|p+1/(p+ 1)− |v|q+1/(q + 1).
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Figure 1: The curve on top is the critical hyperbola. The hyperbola below corresponds to
pq = 1. Image taken from [36].

Systems with a Hamiltonian structure such as (3.1) have been extensively studied in the
past 25 years, and many results are known regarding existence, multiplicity, concentration
phenomena, positivity, symmetry, Liouville theorems, etc. We refer to the surveys [36,
88, 171] for an overview of the topic. In the Dirichlet case, for (p, q) below the critical
hyperbola and not belonging to the linear one, existence, multiplicity and symmetry results
for least energy solutions have been shown using several variational approaches, each one
with its pros and cons. Together with D. Bonheure and E. Moreira dos Santos, I have
written a long and detailed survey [36] exploring the advantages and disadvantages of each
approach, defining rigorously the notion of least energy solution, and providing several
proofs. As for the critical or supercritical case (still with Dirichlet boundary conditions),
a Pohozaev-type identity also rules out the existence of nontrivial solutions in star shaped
domains for systems. When (p, q) approaches a point on the critical hyperbola, we are only
aware of concentration and blowup results in the paper [105] where, however, there is the
technical restriction of considering either p or q as being fixed. See also [104] for the case
when (p, q) approaches asymptotically at infinity the critical hyperbola. Some relations to
an 1-biharmonic equation have been shown in [1], when either p or q go to infinity.

Recalling what is known for the single equation case (recall Section 2 above), one is
tempted to ask about least energy nodal solutions in the Dirichlet case, and what happens
in the case of Neumann boundary conditions. These have been, indeed, my contributions
to the field, and I describe them below.

3.1 Dirichlet boundary conditions: least energy nodal solutions

Condition (3.2) or (3.3) (resp. the critical and subcritical cases) together with Sobolev
embeddings and the Rellich–Kondrachov theorem imply the following embeddings

W 2, p+1
p (Ω) ↪→ Lq+1(Ω) and W 2, q+1

q (Ω) ↪→ Lp+1(Ω), (3.5)
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which are compact in the subcritical case. A strong solution of

−∆u = |v|q−1v, −∆v = |u|p−1u in Ω u = v = 0 on ∂Ω, (3.6)

is defined as a pair (u, v) ∈ (W 2, q+1
q (Ω)∩W

1, q+1
q

0 (Ω))× (W 2, p+1
p (Ω)∩W

1, p+1
p

0 (Ω)) satisfying
the equations a.e. in Ω, and the boundary conditions in the trace sense. The system is
strongly coupled, in the sense that u ≡ 0 if, and only if, v ≡ 0, or u is sign-changing if,
and only if, v is sign-changing. Problem (3.6) has a variational structure, and (3.6) are
the Euler-Lagrange equations of the energy functional

(u, v) 7→ I(u, v) =

∫
Ω

∇u · ∇v − |u|p+1

p+ 1
− |v|q+1

q + 1
dx. (3.7)

We define a least energy solution as a nontrivial strong solution of (3.6) achieving the level

c := inf {I(u, v) : (u, v) ̸≡ (0, 0), (u, v) is a strong solution of (3.6)} . (3.8)

In view of (3.3) and (3.5), the functional I is well defined at strong solutions. As we said
before, existence of least energy solutions is established via several different approaches
in the subcritical case (3.3) (see [36]). Here we are interested in the least energy nodal
solutions, i.e., strong solution of (3.6) achieving the level

cnod := inf
{
I(u, v) : (u, v) is a strong solution of (3.6), u± ̸≡ 0, v± ̸≡ 0

}
. (3.9)

Actually we proved, together with D. Bonheure, E. Moreira dos Santos and M. Ramos [39],
the existence and partial symmetry of least energy nodal solutions for the more general
problem of Hénon–type:

−∆u = |x|β|v|q−1v, −∆v = |x|α|u|p−1u in Ω, u = v = 0 on ∂Ω. (3.10)

in the superlinear–subcritical case. It is not obvious that the level cnod is achieved, since
this no longer follows from a simple minimization argument. Indeed, even if we have enough
compactness to extract a converging subsequence, the limit could be a critical point (u, v)
such that both u and v are positive (or negative). The existence of a least energy nodal
solution for the scalar Lane-Emden equation [28, 55] follows from the minimization of the
functional over a nodal Nehari set (recall (2.6)). However, it is not clear at all how such a
nodal Nehari set associated with the energy functional

(u, v) 7→
∫
Ω

∇u · ∇v − |x|α |u|
p+1

p+ 1
− |x|β |v|

q+1

q + 1
dx.

could be defined. We follow a dual variational framework and polarization techniques,
proving the following.

Theorem 3.1 ([39]). Let N ⩾ 1, α ⩾ 0, β ⩾ 0 and suppose that (p, q) is superlinear and
subcritical. Then there exists a least energy nodal solution of (3.10).

Moreover, when N ⩾ 2 and Ω is either a ball or an annulus centered at the origin,
then every least energy nodal solution (u, v) is foliated Schwarz symmetric with to respect
to some direction e ∈ ∂B1(0).
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For the Lane-Emden equation, symmetry breaking in radial domains is proved via
a Morse index argument [3]. For the Hénon-Lane-Emden system (3.10), it is not clear
how to compute (or even define) the Morse index of the solutions. Nevertheless, using
a perturbation argument, in [39] we prove symmetry breaking (i.e., least energy nodal
solutions are not radial) for some ranges of the parameters, namely when α ∼ β and
p ∼ q. We also observe that our results contain, as a particular case, the following one for
the biharmonic problem, complementing some results from [203].

Corollary 3.2 ([39]). Let Ω ⊂ RN , N ⩾ 1 and assume that 1
2
> 1

p+1
> N−4

2N
. Then the

fourth order problem

∆2u = |x|α|u|p−1u in Ω, u = ∆u = 0 on ∂Ω

admits a least energy nodal solution. Moreover, if Ω is either a ball or an annulus centered
at the origin, N ⩾ 2, then any least energy nodal solution is such that u and −∆u are
foliated Schwarz symmetric with respect to the the same unit vector e ∈ RN .

3.2 Neumann boundary conditions: least energy solutions in the subcritical and
critical cases

The papers mentioned before in this section work with Dirichlet boundary conditions
and, up to our knowledge, the few papers addressing Neumann problems are [18, 158, 166,
208], where existence of positive solutions and concentration phenomena are studied, and
[40], which focuses on existence of positive radial solutions. However, these papers focus
on a different operator of the form Lw = −∆w + V (x)w, with V positive and bounded.
In comparison with problem

−∆u = |v|q−1v, −∆v = |u|p−1u in Ω uν = vν = 0 on ∂Ω, (3.11)

the shape of solutions changes drastically; for instance, the operator L with Neumann
boundary conditions induces the H1-norm

w 7→
∫
Ω

(|∇w|2 + V (x)w2),

and this allows the existence of positive solutions, while all nontrivial solutions of (3.11)
are sign-changing. Indeed, if (u, v) is a classical solution of (3.11), then by the Neumann
boundary conditions and the divergence theorem,∫

Ω

|u|p−1u =

∫
Ω

|v|q−1v = 0. (3.12)

Since u ≡ 0 if and only if v ≡ 0, (3.12) is only satisfied if (u, v) is trivial or if both
components are sign-changing (recall also what happens in the single equation case, Section
2.5) As far as we know, we were the first to study problem (3.11).
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The subcritical case. The study of the Neumann problem was initiated recently in a
joint paper with A. Saldaña [172], where we prove that, in the subcritical case, least
energy (nodal) solutions exist and, whenever Ω is a radial domain, they are not symmetric
but only foliated Schwarz symmetric.

For the Neumann problem, a strong solution of (3.11) is defined as a pair (u, v) ∈
W 2, q+1

q (Ω)×W 2, p+1
p (Ω) satisfying the equations a.e. in Ω, and the boundary conditions in

the trace sense. Least energy solutions can be defined exactly as in the previous section.

Theorem 3.3 ([172]). Consider (p, q) in the subcritical regime, i.e.,

1

p+ 1
+

1

q + 1
>

N − 2

N
, pq ̸= 1.

The least energy level is achieved and, if (u, v) is a least energy solution, then:

• it is a classical solution.

• (Monotonicity) If N = 1 and Ω = (−1, 1), then u′v′ > 0 in Ω; in particular, u and
v are both strictly monotone increasing or both strictly monotone decreasing in Ω.

• (Partial symmetry & symmetry breaking) If N ⩾ 2 and Ω is either a ball or an
annulus, then u and v are foliated Schwarz symmetric with respect to the same vector.
Moreover, u and v are not radially symmetric.

In particular, the case p = q leads to the results in the subcritical case in Theorem
2.3. The approach to show this theorem is based on a variant of the dual method [8, 79].
Before describing rigorously the dual framework, we formally observe that

−∆u = |v|q−1v, −∆v = |u|p−1u ⇐⇒ u = (−∆)−1(|v|q−1v), v = (−∆)−1(|u|p−1u);

by introducing the new dual variables f = |u|p−1u, g = |v|q−1v, we obtain

|f |
1
p
−1f = (−∆)−1g, |g|

1
q
−1f = (−∆)−1f.

In the definition of (−∆)−1, and recalling that we are dealing with Neumann boundary
conditions, one needs to take into account the normalization (3.12). To rigorously perform
these steps, we introduce some notation. Let p and q satisfy (3.3) and, for s > 1, let

Xs =
{
f ∈ Ls(Ω) :

∫
Ω

f = 0
}
, and X := X

p+1
p ×X

q+1
q , (3.13)

endowed with the norm ∥(f, g)∥X = ∥f∥ p+1
p
+∥g∥ q+1

q
. Let K denote the inverse (Neumann)

Laplace operator with zero average, that is, if h ∈ Xs(Ω), then u := Kh ∈ W 2,s(Ω) is the
unique strong solution of −∆u = h in Ω satisfying ∂νu = 0 on ∂Ω and

∫
Ω
u = 0. In this

setting, the (dual) energy functional ϕ : X → R is given by

ϕ(f, g) :=
p

p+ 1

∫
Ω

|f |
p+1
p +

q

q + 1

∫
Ω

|g|
q+1
q −

∫
Ω

g Kf, (f, g) ∈ X. (3.14)
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Since the conditions
∫
Ω
f =

∫
Ω
g = 0 are included in X, in order to associate an equation

to a critical point of ϕ, we require a suitable translation of K (which is related with (3.12)).

For t > 0, let Kt : X
t+1
t → W 2, t+1

t (Ω) be given by

Kth := Kh+ ct(h) for some ct(h) ∈ R such that


−∆(Kth) = h in Ω

∂ν(Kth) = 0 on ∂Ω,∫
Ω
|Kth|t−1Kth = 0.

(3.15)

Then, a critical point (f, g) of ϕ solves the dual system Kqf = |g|
1
q
−1g and Kpg = |f |

1
p
−1f

in Ω. This is the starting point for the existence part in Theorem 3.3. The symmetry
breaking result, on the other hand, is based on a contradiction argument which, in turn,
follows once we deduce the monotonicity of least energy radial solutions. The proof of the
latter is based on a new Lt–norm-preservation transformation introduced in [172], which
we now recall.

For Ω = BR(0)\Br(0) an annulus or Ω = BR(0) a ball (in which case we define r := 0),
let

I : L∞
rad(Ω) → Crad(Ω), Ih(x) :=

∫
{r⩽|y|⩽|x|}

h(y) dy = NωN

∫ |x|

r

h(ρ)ρN−1 dρ

F : Crad(Ω) → L∞
rad(Ω), Fh := (χ{Ih>0} − χ{Ih⩽0})h.

Definition 3.4 ([172]). For h ∈ Crad(Ω), the ⋇-transformation is given by

h⋇ ∈ L∞
rad(Ω), h⋇(x) := (Fh)#(ωN |x|N − ωNr

N),

where ωN = |B1| is the volume of the unitary ball in RN and # is the decreasing rear-
rangement given by

h# : [0, |Ω|] → R, h#(0) := ess supΩh h#(s) := inf{t ∈ R : |{h > t}| < s}, s > 0.

This transformation, in practice, is applied to radial functions h with zero average: if
Ω = BR(0)\Br(0), then Ih(R) =

∫
Ω
h = 0. Loosely speaking, this transformation does the

following: in many situations, the domain of hmay be split in r =: r0 < r1 < . . . < rN = R,
where

∫
ri<|x|<ri+1

h = 0; however, it may not be true that Ih(x) is nonnegative for every x.

We flip the graph of h in the annuli [ri, ri+1] where we do not have this property, obtaining
at the end I(Fh)(x) ⩾ 0 for every x ∈ Ω. We then apply a decreasing rearrangement, finally
placing the result back in the original domain using the transformation x 7→ ωN |x|N−ωNr

N .
For more details, insights, examples and comments regarding the definition of the flip-&-
rearrange transformation ⋇ we refer to [172, Section 3.2], see also Figure 2 for an example.
The following is a combination of Theorem 1.3 and Proposition 3.4 from [172].
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Theorem 3.5. Let p, q > 0 and take Ω to be a ball or an annulus centered at the origin.
Take f, g : Ω → R be continuous and radially symmetric functions with

∫
Ω
f =

∫
Ω
g = 0.

Then (f⋇, g⋇) ∈ Xrad,

∥f⋇∥ p+1
p

= ∥f∥ p+1
p

∥g⋇∥ q+1
q

= ∥g∥ q+1
q

and

∫
Ω

fKg ⩽
∫
Ω

f⋇Kg⋇. (3.16)

Furthermore, if f, g are nontrivial and the last statement in (3.16) holds with equality, then
f, g are monotone in the radial variable. Moreover, (Kf,Kg) is radially symmetric and
(Kf)r(Kg)r > 0.

Observe that annuli, sign-changing functions, and Neumann boundary data are non-
standard conditions to work with rearrangements. We take advantage of working with
radial functions and of the fact that we use Lebesgue spaces (and not Sobolev ones) within
a dual framework; this gives more flexibility in the construction of our transformation
although, on the other hand, it becomes harder to control the nonlocal operator K. In
this sense, instead of rearrange u, v directly, we are transforming the dual variables f, g
to obtain, together with variational techniques, information about the monotonicity of
solutions.

The critical case. In a joint work with A. Pistoia and D. Schiera [160], we extended some
of the results of the previous paragraph to the critical case. In this direction, the main
result of our paper is the following:

Theorem 3.6 ([160]). Let p, q satisfy (3.2), and moreover

N ≥ 6 and p, q >
N + 2

2(N − 2)
, or N = 5 and p, q >

17

13
, or N = 4 and p, q >

7

3
.

Then there exists a least energy (nodal) solution of (3.11), which is a classical solution.

Since the problem is critical, the embeddings (3.5) are not compact, and in general
the dual functional does not satisfy the Palais-Smale condition. We prove, however, a
compactness condition, which is based on a new class of Cherrier–type inequalities: for
every ε > 0 there exists C(ε) > 0 such that

∥u∥ Nη
N−2η

≤

(
2

2
N

S
+ ε

)
∥∆u∥η + C(ε)∥u∥W 1,η , ∀u ∈ W 2,η

ν (Ω),

where W 2,η
ν (Ω) := {u ∈ W 2,η(Ω) : ∂νu = 0 on ∂Ω}. Here, we are inspired by [35], in which

the case η = 2 is shown. We would like to observe that, exactly as in [80, 172], we use the
dual method.

If we take N ≥ 5, p = 1, q = N+4
N−4

, or equivalently, q = 1, p = N+4
N−4

, system (3.11)
reduces to the fourth order problem

∆2u = |u|
8

N−4u in Ω, uν = (∆u)ν = 0 on ∂Ω. (3.17)
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Figure 2: Examples of the functions Ih, Fh and h⋇ for a particular radial function h ∈
C(B1(0)). Images taken from [172].

If N > 6, then
N + 2

2(N − 2)
<

N + 4

N − 4
, and

N + 2

2(N − 2)
< 1,

hence the study of (3.17) is contained in Theorem 3.6 if N > 6. However, the case N = 5, 6
and p = 1 is not included. However, we prove directly that, for N ⩾ 5, there exists a least
energy (nodal) solution to problem (3.17). As a consequence, via a perturbation argument
we show the following for systems.

Theorem 3.7 ([160]). Let N = 5, 6. There exists ε = ε(N,Ω) such that, if p, q satisfy (3.2)
and either

|p− 1|+
∣∣∣∣q − N + 4

N − 4

∣∣∣∣ < ε or

∣∣∣∣p− N + 4

N − 4

∣∣∣∣+ |q − 1| < ε,

then there exists a least energy (nodal) solution of (3.11), which is a classical solution.
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We point out that the fact that least energy solutions are classical solutions is a con-
sequence of the following result, which is new.

Proposition 3.8 ([160, Proposition 1.3]). Let (u, v) be a strong solution to (3.11), where
p, q satisfy (3.2). Then (u, v) ∈ C2,ζ(Ω̄)×C2,η(Ω̄), with: ζ < q if 0 < q < 1, and ζ ∈ (0, 1)
if q ⩾ 1; η < p if 0 < p < 1, and η ∈ (0, 1) if p ⩾ 1.

We observe that, unlike what happens in the single equation case, a Brezis-Kato type
argument does not seem to work to prove this regularity result. Instead, we rely on the
bound |G(x, y)| ⩽ C/|x − y|N−2 for the (Neumann Laplacian’s) Green function, together
with the Hardy-Littlewood-Sobolev inequality.

In our paper, for p, q satisfying the conditions of Theorem 3.6 or Theorem 3.7, and
when Ω is a ball or an annulus, we also prove that least energy solutions are foliated
Schwarz symmetric with respect to the same vector and are not radial. Moreover, when
Ω is an annulus, least energy radial solutions exist; when Ω is a ball this is in general an
open problem, unless p = q = 2∗, where the answer is negative - see [160, Remark 6.5] for
more details.

4 Existence of fully nontrivial solutions to a class of gradient elliptic
systems

Consider the following system with d ⩾ 2 equations{
−∆ui + λiui = ui|ui|p−2

∑d
j=1 βij|uj|p in Ω,

ui = 0 on ∂Ω, i = 1, ...d,
(4.1)

where Ω is a domain of RN , N ⩾ 1, λi ∈ R, in a (Sobolev) critical or subcritical regime
0 < p ⩽ 2∗/2 = N/(N − 2) if N ⩾ 3, or 0 < p < +∞ for N = 1, 2. We assume from now
on that βij = βji for i ̸= j and so, from a mathematical point of view, this is an example
of a weakly coupled elliptic system with gradient terms3. From a physical point of view,
this arises naturally when looking for standing wave solutions (Φi(x, t) = eıλitui(x))) of
the following system of Gross-Pitaevskii/nonlinear Schrödinger equations:{

ı∂tΦi +∆Φi + Φi|Φi|p−2
∑d

j=1 βij|Φj|p = 0,

Φi = Φi(t, x), i = 1, ...d,
(4.2)

where ı is the imaginary unit. These equations model important phenomena in Nonlinear
Optics [5] and Bose-Einstein condensation [168, 198]. In the models, the solutions are
the corresponding condensate amplitudes, βii represent self-interactions within the same
component, while βij (i ̸= j) express the strength and the type of interaction between
different components i and j. When βij > 0 this represents cooperation, while βij < 0

3Indeed, it has the form −∆ui+λiui = Hui
(u1, . . . , um), with H(u1, . . . , um) = 1

2p

∑m
i,j=1 βij |ui|p|uj |p.
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represents competition. Both cases Ω = RN and Ω bounded are of interest [94, 95], the
latter appearing also as a limiting case of the system in RN with (confining) trapping
potential.

Weak solutions of (4.1) correspond to critical points of the functional J : H1
0 (Ω;Rd) →

R defined by

J(u) = J (u1, . . . , ud) :=
1

2

d∑
i=1

∫
Ω

(|∇ui|2 + λiu
2
i )−

1

2p

∫
Ω

d∑
i,j=1

βij |ui|p |uj|p .

One is typically interested in least energy solutions, that is, solutions of the following
problem

inf{J(u) : u ̸= 0, u solution of (4.1)}.

To prove existence of least energy solutions for λi > 0 does not require, in general, differ-
ent methods from the ones used for the single equation case (recall Section 2). A more
challenging question, instead, is the following.

Q1: Do least energy solutions (u1, . . . , ud) have nontrivial components, that is,
is it true that ui ̸≡ 0 for every i?

If the answer to the above question is negative, then:

Q2: Are there solutions (at higher energy levels) satisfying such property? Is
there, in particular, a least energy positive solution, as defined below?

Having this in mind, we make the following definition (see for instance [86, 195]).

Definition 4.1. A vector u = (u1, · · · , ud) ∈ H1
0 (Ω;Rd) is called a fully nontrivial solution

of (4.1) if it is a weak solution of the system with ui ̸≡ 0 for every i = 1, . . . , d; if this is
not the case but nevertheless u ̸= 0, then we call it semitrivial. The vector u is called a
positive solution of (4.1) if u is a solution and ui > 0 for every i = 1, . . . , d. A positive
solution u is called a least energy positive solution if J(u) ⩽ J(v) for any positive solution
v of (4.1).

The literature around the subject exploded since the seminal paper [132], and it would
be impossible to cite all contributions. Moreover, some papers deal with the case Ω
bounded, others with the case of the whole space Ω = RN ; some deal with general p,
others with particular choices of p. In order to highlight my contributions to the topic and
to give the reader a coherent and general picture, from now on I will be always referring to
the case Ω bounded and smooth, and treat the case of a general p. It should be remarked,
however, that I will be mentioning papers which deal with the case p = 2 only (but the
method, in my opinion, works for general p), or papers that deal with the case Ω = RN

and radial functions, but the methods also work for Ω bounded.
We divide our discussion from now on between the subcritical case 2p < 2∗ and the

critical one 2p = 2∗.
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4.1 Subcritical case

Consider in this subsection the subcritical case 2p < 2∗. As mentioned before, the
existence of least energy solutions is not an issue for λi > 0: one can consider the energy
level

c := inf
N

J, where N = {u ̸≡ 0 : J ′(u)[u] = 0} is the Nehari manifold.

We start our discussion with the case of systems with d = 2 equations:
−∆u1 + λ1u1 = β11u1|u1|2p−2 + β12u1|u1|p−2|u2|p in Ω,

−∆u2 + λ2u2 = β22u2|u2|2p−2 + β12u2|u2|p−2|u1|p in Ω,

u1 = u2 = 0 on ∂Ω.

(4.3)

Regarding question Q1, after preliminary results by [9, 135, 179], a full answer was obtained
in [136].

Theorem 4.2 ([136, Theorem 1]). There exists β̄ = β̄(λ2/λ1, β11, β22) > 0 such that

• for β12 < β̄, all least energy solutions of (4.3) are semitrivial.

• for β12 > β̄, all least energy solutions of (4.3) are fully nontrivial.

Therefore, it makes sense to ask question Q2 for β12 < β̄. In this situation, one needs
to consider a Nehari-type set of a different kind:

d2 := inf
N2

J, where N2 = {u : ui ̸≡ 0, ∂iE(u)ui = 0 ∀i} .

Theorem 4.3 ([136, 179]). There exists β = β(λ2/λ1, β11, β22) ⩽ β̄ such that a least energy
positive solution exists for β12 < β.

For the expression of the optimal values β and β, we refer to [65, 136, 178]. However,

in the case 1 < p < 2 it is known that β̄ = β = 0, see [136, Lemma 1 combined with
Lemma 2].

I would also like to highlight my joint work with T. Weth [194], where we study the
symmetry of least energy positive solutions in radial domains in the competitive case:

Theorem 4.4 ([194, Theorem 1.4]). Let Ω be a radial bounded domain, (u1, u2) a least
energy positive solution of (4.3) and β12 < 0. Then u1, u2 are foliated Schwarz symmetric
with respect to antipodal points.

In general, solutions are not radial, see for instance [194, Remark 5.4]. On the other
hand, if Ω is a ball and β12 > 0, then by Schwarz symmetrization it is easy to see that least
energy solutions are radial. Also for β12 > 0, the paper [201] treats the case of the annulus,
where symmetry breaking may also occur. To understand the possible symmetries in the
d ⩾ 3-equations case remains a challenging open problem.
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The question now is what happens when we increase the number of equations. We
observe that there is an increase in complexity mainly due to the several possible combi-
nations of βij’s. However, surprisingly enough, we will see that in some situations even the
parameters λi play an important role.

From now on, we focus on the case 4 ⩽ 2p < 2∗ (where the functional is of class C2).
Following the introduction in [183], to summarize the main results which were known before
our work, we split our discussion into several cases. We first focus on three situations where
we have the same type of interaction terms, providing some references in which existence
of least energy positive solutions is proved.

• Strong cooperation: λ1 = · · · = λd = λ > 0, βii > 0, and βij = β (for every
i ̸= j) larger than a positive constant depending on βii and λ (see Corollary 2.3 and
Theorem 2.1 in [134]; see also Theorem 1.6 and Remark 3 in [180]). Other sufficient
conditions in a purely cooperative setting have been given in [178, Section 4], [134,
Theorem 2.1] and [60].

• Weak cooperation: λi > 0, βii > 0, 0 < βij ⩽ Λ for some small Λ depending on λi

and βii, and the matrix (βij) is positive definite (see Theorem 2 in [131]);

• Competition: if λi > 0, βii > 0, and βij ≤ 0 for every i ̸= j, then there exists a least
energy positive solution (see Theorem 1.1. plus Remark 1.5 in [133]; we refer also to
Theorem 3.1 in [134], and to Corollary 1.4 plus Proposition 1.5 in [180]).

It is natural to assume that βij is either large, or small, with respect to βii and βjj. Indeed,
if, for instance βii ≤ βij ≤ βjj and λi > λj, then a positive solution of (4.1) does not exist,
see Theorem 1-(ii) in [178] or Theorem 0.2 in [27].

As far as the possible occurrence of simultaneous cooperation and competition is con-
cerned, in [175] a d = 3 components system is considered, showing that a least energy
positive solution of (4.1) does exist if β13, β23 ≤ 0, and β12 ≫ 1 is very large (depending
on β13 and β23 fixed a priori, which is a technical downsize that can be removed, see the
upcoming paragraph Mixed coefficients case). In [180, Theorems 1.6, 1.7 and 1.9] the
author considered an arbitrary d-component system, proving the existence of least energy
positive solutions whenever the d components are divided into m groups, with m ≤ d, and

• the relation between components of the same group is purely cooperative, with cou-
pling parameters greater than an explicit positive constant;

• the relation between components of different groups is competitive, and the compe-
tition is very strong.

When restricted to a 3-component system, this leads for instance to the existence of a least
energy solution if β12 > β > 0, and β13, β23 ≪ −1 (depending on β12, which again is a
downsize).

After giving this context, we now summarize our main contributions to the field.
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Cooperative case (βij > 0 for every i, j) Even though in the d = 2 equations case a result
holds for arbitrary λ1 < λ2, all results cited in the strongly cooperative case for d ⩾ 3
impose λi ∼ λ and βij ∼ β. In the case 2 < 2p < 4, with F. Oliveira [150] we observed
(using an induction argument in the number of equations) that the situation is the same
as in the two equation case:

Theorem 4.5 ([150]). Let N ⩾ 1, λi > 0, βij > 0 for every i, j = 1, . . . , d, and βij = βji

for i ̸= j. For 1 < p < 2, all possible least energy solutions of (4.1) are fully nontrivial.

As for the case 4 ⩽ 2p < 2∗, it was proven in [85] that, when λ1 = · · · = λd, these
questions may be reduced to a maximization problem in Rd and to the solution of a linear
system. This reduction allowed the construction of examples (see Section 6 in [85]) which
gave evidence, for the first time, of the increase in complexity when one passes from d = 2
to d ≥ 3 equations. Indeed, we stated qualitatively in [86] (joint with S. Correia and F.
Oliveira) what kind of combinations on the parameters give rise either to semitrivial or to
fully nontrivial least energy solutions. In particular, it became evident from our analysis
that the different families of parameters play distinct roles: while the choice of the βii

coefficients can be somehow arbitrary, only some combinations between different λi, and
also between different βij’s allow for fully nontrivial least energy solutions to arise.

Theorem 4.6 ([86]). Let d ⩾ 3, 0 < λ1 ≤ λ2 ≤ · · · ≤ λd and βij ≡ β.

1. (Existence result) There exists α = α(λ1/λ2, d,N) such that, if

λk ⩽ αλ2 for every k ̸= 2,

then there exists a constant B = B(βii) > 0, such that, for β > B, all least energy
solutions of (4.1) are fully nontrivial.

2. (Nonexistence result) There exists a constant Λ = Λ(λ1/λ2) such that, if

λ2Λ ⩽ λi for some i ⩾ 3, and β > max{β11, . . . , βdd},

then every least energy solution of (4.1) is semitrivial (more precisely, uj ≡ 0 for
every i ⩾ j).

Therefore, for d ⩾ 3, in a way, only perturbations of the 2–equation case (in terms of
the parameters) allow for least energy solutions which are fully nontrivial.

In [86], we have similar results regarding the parameters βij: least energy solutions are
fully nontrivial if these coefficients are large and “close” to each other; otherwise, they
necessarily become semitrivial. The proofs are based on classification results, comparison
of energies between the main systems and appropriate subsystems, and a priori bounds.

A natural open question is whether there are positive solutions under the range of
parameters where least energy solutions are semitrivial, and how to characterize them
variationally.
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Mixed coefficients case Having in mind the idea of organizing the components of a
solution to the system into m ⩽ d groups, we follow [180, 183].

Definition 4.7. Given an arbitrary 1 ⩽ m ⩽ d, we say that a vector a = (a0, ..., am) ∈ Nm+1

is an m-decomposition of d if

0 = a0 < a1 < · · · < am−1 < am = d.

Given an m-decomposition a of d, for h = 1, ...,m we define

Ih := {i ∈ {1, ..., d} : ah−1 < i ⩽ ah} ,

and

K1 :=
{
(i, j) ∈ I2h for some h = 1, ...,m, with i ̸= j

}
,

K2 := {(i, j) ∈ Ih × Ik with h ̸= k} .

In this way, we say that ui and uj belong to the same group if (i, j) ∈ K1 and to a different
group if (i, j) ∈ K2.

As we will see below, the general idea is that we obtain existence results wherever
the interaction between elements of the same group is strongly cooperative, while there is
either weak cooperation or competition between elements of different groups.

The following is our main result, from a project with N. Soave.

Theorem 4.8 ([183]).

1. There exists K = K(λi, βii) > 0 such that, if

−∞ < βij < K for every i ̸= j,

then the system (4.1) admits a least energy positive solution.

2. Consider a decomposition of {1, . . . , d} = I1 ∪ . . . ∪ Im and assume the following.

i) Inside each group Ih:

βij ≡ βh > max{βii : i ∈ Ih} for every (i, j) ∈ I2h with i ̸= j;

λi ≡ λh for every i ∈ Ih

ii) Between different groups: there exists K = K(λi, βii) > 0:

βij = β < K for every (i, j) ∈ K2;

Then the system (4.1) admits a least energy positive solution.
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In summary, if we particularize the discussion to the d = 3 equations case, our results
combined with what was known allows for a good understanding of the bigger picture:
there exists 0 < β ⩽ β such that the system (4.1) admits a least energy positive solution
when one of the following conditions is verified:

β12 ∼ β13 ∼ β23 > β; λ1 < λ2 ∼ λ3

β12 > β and −∞ < β13 = β23 < β; λ1 = λ2

−∞ < β12, β13, β23 < β.

In particular, we improve the dependences of some βij which were present in the afore-
mentioned [175, 180], in the sense that β and β̄ only depend on λi and βii for i = 1, . . . , d.
Observe that having cooperative parameters too far apart, or too different λi, may lead to
semitrivial solutions (recall Theorem 4.6 and the paragraph that follows it).

A partial symmetry result is also proved in [183] in the case of m = 2 groups of
components (in the line of Theorem 4.4); however, the symmetry of the general case is, up
to our knowledge, an open problem.

The variational formulation associated with these solutions would be too technical to
explain in this document; here I just give the idea that they are Nehari–type sets with m
equations; it is quite straightforward to prove that the associated critical points have at
least m nontrivial components; to prove that all components are nontrivial, we make use
of the C2 regularity of the functional J in the case 4 ⩽ 2p.

We conclude our section by mentioning that other related and recent results in the
subcritical case can be found in [72, 75, 84, 85, 150, 155, 202].

4.2 Critical case

For the critical case 2p = 2∗, when d = 1, system (4.1) is reduced to the classical
Brézis-Nirenberg problem [43] (recall also Subsection 2.4):

−∆u+ λ1u = β11u1|u1|2p−2, u = 0 on ∂Ω,

where the existence of a positive ground state is shown for −λ1(Ω) < λ1 < 0 when N ⩾ 4,
where λ1(Ω) is the first Dirichlet eigenvalue. For the d = 2 equation case (4.3), in [64] it
is shown that there exist 0 < β1 < β2 (depending on λi and βii) such that

the system (4.3) has a least energy positive solution if

β12 ∈ (−∞, β1) ∪ (β2,∞) when N = 4, p = 2. (4.4)

We mention that, when p = 2 and β ∈ [min{β11, β22},max{β11, β22}], system (4.3) does
not have a least energy positive solution. Still for d = 2 equations but in the higher
dimensional case, the same authors in [66] proved that

the system (4.3) has a least energy positive solution for any

β12 ̸= 0 when N ⩾ 5, 2p = 2∗. (4.5)
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In particular, from (4.4) and (4.5), one deduces that the structure of least energy positive
solutions in the critical case changes significantly from N = 4 to N ⩾ 5. Once again,
the reason behind this change is the fact that p ∈ (1, 2) whenever N ⩾ 5, while p = 2
for N = 4 (we recall that, in the subcritical case, the importance of this fact has been
implicitly pointed out by Mandel in [136], see also [150]). For more results regarding the
general critical case with d = 2 equations, see [63, 70, 154].

For three or more equations (d ⩾ 3), in the critical case 2p = 2∗, before our work only
the purely competitive case [75, 204] and the purely cooperative case [206] had been stud-
ied, and conditions for the existence of least energy positive solutions had been provided.

Together with S. You [195], working with N = 4, we considered for the first time the
critical case with simultaneous cooperation and competition; the higher dimensional case
N ⩾ 5 was treated later in a collaboration with S. You and W. Zou [196]. We make the
following assumptions:

−λ1(Ω) < λ1, . . . , λd < 0, Ω is a bounded smooth domain of RN , (4.6)

and
βii > 0 ∀i = 1, . . . , d, βij = βji ∀i, j = 1, . . . , d, i ̸= j. (4.7)

Theorem 4.9 ([195], critical case N = 4). Fix an m-decomposition a of d, for some 1 <
m < d. There exists a least energy positive solution under (4.6)–(4.7) with N = 4 (p = 2)
in each one of the following situations:

• −∞ < βij < Λ ∀i ̸= j, for some Λ > 0 depending only on βii, λi;

• λi = λh for every i ∈ Ih, h = 1, . . . ,m;
βij = βh > max{βii : i ∈ Ih} for every (i, j) ∈ I2h with i ̸= j, h = 1, . . . ,m;
βij = b < Λ for every (i, j) ∈ K2;

• λi = λh for every i ∈ Ih, h = 1, . . . ,m;
βij = βh > α

α−1
maxi∈Ih{βii} for every (i, j) ∈ I2h with i ̸= j, h = 1, . . . ,m;

|βij| ⩽ Λ
αd2

for every (i, j) ∈ K2;

Here Λ is a precise constant and α > 1 is arbitrary.

Theorem 4.10 ([196], critical case N ⩾ 5). Assume that (4.6) and (4.7) hold, N ⩾ 5. Then
the system admits a least energy positive solution in each one of the following situations:

1. βij > 0 ∀i, j = 1, . . . , d, i ̸= j.

2. βij ⩽ 0 ∀i, j = 1, . . . , d, i ̸= j.

3. a is an m-decomposition of d for some 1 < m < d, and

βij ⩾ 0 ∀(i, j) ∈ K1, −ε ⩽ βij < 0 ∀(i, j) ∈ K2,

for some ε = ε(λi, βii, (βij)(i,j)∈K1) > 0;
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4. a is an m-decomposition of d for some 1 < m < d, we have βij ⩾ 0 ∀(i, j) ∈ K1, and
for every M > 1 there exists b = b(λi, βii, (βij)(i,j)∈K1 ,M) > 0 such that

1

M
⩽

∣∣∣∣βi1j1

βi2j2

∣∣∣∣ ⩽ M, ∀(i1, j1), (i2, j2) ∈ K2 and βij ⩽ −b ∀(i, j) ∈ K2.

Moreover, under case 1, the solution is a least energy solution.

The results in Theorem 4.9 are similar to the ones in Theorem 4.8; in both, the fact
that the functional J is of class C2 is explored. For N ⩾ 5 this is not the case and this is
why the results of Theorem 4.10 (and the techniques used to prove it) are different. The
proofs of cases 3 and 4 in Theorem 4.10 are based on an asymptotic study as βn

ij → 0− and
βn
ij → −∞ for (i, j) ∈ K2, respectively. This study also allows to answer open questions in

the literature, see the forthcoming paragraph “A few works about the strongly competing
case”. Based upon Theorem 4.10, it is natural to ask what happens when some interactions
between elements of different groups are neither too strong nor too weak. For simplicity
and to avoid too technical conditions, we present here the following result for the case of
only two groups (m = 2), for the partition I1 = {1, 2}, I2 = {3}.

Theorem 4.11. Assume that m = 2, d = 3 and let 0 < σ0 < σ1. Then there exists
β̂ = β̂((σi)i, (βii)i, (λi)i) > 0 such that, if

β13, β23 ∈ [−σ1,−σ0], β12 > β̂,

then the system (4.1) has a least energy positive solution.

We leave a few open problems for the case N ⩾ 5. Does a least energy positive
solution exist under the general conditions β12 > 0 and β13, β23 < 0? This seems a natural
generalization of (4.5). And what happens when more equations are present? Is it true
that, in general, a least energy solution exists when βij > 0 for (i, j) ∈ K1, and βij < 0 for
(i, j) ∈ K2? Is it possible to obtain optimal thresholds, if this is not the case?

For other topics related to critical systems (e.g. blowing up solutions as λi → 0− or
the case λi = 0 in the whole space), see [62, 72, 91, 107, 111, 161, 163, 162]. In particular,
I highlight a joint work with Angela Pistoia [163], where the study of blowing up solutions
as λi → 0− is treated in the spirit of [109, 142, 167]. I also mention the works [162, 163]
where, for the first time, a Coron-type problem for these systems was studied (the second
is a collaboration between myself, A. Pistoia and N. Soave). These three works use the
Lyapunov-Schmidt reduction method, and we recall Subsection 2.4 for the references in
the 1–equation case.

A few works about the strongly competing case The asymptotic study of (4.1) as
βij → −∞ for (i, j) ∈ K2 has been performed in a joint publication with N. Soave, S.
Terracini and A. Zilio [184]. Therein, it is showed that uniform bounds in L∞–norm
imply uniform bounds in Hölder spaces, which then allow to pass to a strong limit ui as
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βij → −∞. Moreover, the regularity of the common nodal set Γ := {x ∈ Ω : ui(x) = 0 ∀i}
is studied. This follows previous work [145, 193]. All least energy positive solutions
satisfy these uniform L∞–bounds, therefore the results in [184] may be used. While in the
subcritical case 2p < 2∗ it is straightforward to check that all components do not vanish
in the limit [180], this is not as easy to check in the critical case 2p = 2∗, due to the lack
of compactness in some Sobolev embeddings. We proved it in [196], and present here the
actual statement in the case m = d:

Corollary 4.12 (Combination of [184] with [196]). Assume that N ⩾ 4, d ⩾ 2,−λ1(Ω) <
λi < 0. Let βn

ij < 0, n ∈ N and βn
ij → −∞ when i ̸= j, and let (un

1 , . . . , u
n
d) be a least

energy positive solution with βij = βn
ij. Then, passing to a subsequence, we have

un
i → u∞

i strongly in H1
0 ∩ C0,α(Ω), i = 1, . . . , d, α ∈ (0, 1),

and

lim
n→∞

∫
Ω

βn
ij|un

i |p|un
j |p = 0, and u∞

i · u∞
j ≡ 0 for every i ̸= j,

where u∞
i ∈ C0,1(Ω) and Ω =

⋃d
i=1 {u∞

i > 0}. Moreover, for every i = 1, . . . , d, {u∞
i > 0}

is a connected domain, and u∞
i is a least energy positive solution of

−∆u+ λiu = βii|u|2
∗−2u, u ∈ H1

0 ({u∞
i > 0}).

Finally, the set Γ := {x ∈ Ω : u∞
i (x) = 0 ∀i} is, up to a subset of Hausdorff dimension at

most N − 2, a collection of regular hypersurfaces.

This result answers a question left open in [66, Remark 1.4(i)], namely, whether or not
the limiting configuration was fully nontrivial. So far this was known to be the case only
for N ⩾ 9 and βij ≡ β for every i ̸= j (see [204, Theorem 1.3]). We have shown the answer
is always positive in general.

As an application of Corollary 4.12, we can obtain the existence of a least energy nodal
solution to the Brézis-Nirenberg problem also in some lower dimensions:

−∆u+ λu = µ|u|2∗−2u, u ∈ H1
0 (Ω), (4.8)

where µ > 0,−λ1(Ω) < λ < 0 and N ⩾ 4.

Theorem 4.13 ([196]). Assume that N ⩾ 4, d = 2, λ1 = λ2 = λ ∈ (−λ1(Ω), 0), and
β11 = β22 = µ > 0. Let (u∞

1 , u∞
2 ) be as in Corollary 4.12 for d = 2. Then u∞

1 − u∞
2 is a

least energy nodal solution of (4.8) and has two nodal domains.

The existence of sign-changing solutions (not necessarily of least energy) to the Brézis-
Nirenberg problem (4.8) has been studied in [58, 66, 112, 113, 176] with N ⩾ 4 in a general
domain. In some symmetric domains, see [16, 54, 77]. We mention that in [58, 66] the
authors proved the existence of least energy nodal solutions for N ⩾ 6. However, there
are few results considering the lower-dimensional situations (N = 4, 5) in the literature.
Recently, the authors in [170] proved that (4.8) has a least energy sign-changing solution
for N = 5 with λ ∈ (−λ1(Ω),−λ), for some λ ∈ (0, λ1(Ω)). Here, we improve and extend
this result to the case N ⩾ 4.
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4.3 A quick detour on normalized solutions for NLS in bounded domains

In all previous subsections, the coefficients λi are fixed a priori. Here we briefly explore
a different perspective. To simplify the presentation (since the focus here is not on the
number of equations), we deal with the d = 2 equations case only, where the system (4.2)
becomes (with β = β12 = β21, µ1 = β11 and µ2 = β22){

ı∂tΨ1 +∆Ψ1 +Ψ1(µ1|Ψ1|2p−2 + β|Ψ1|p−2|Ψ2|p) = 0

ı∂tΨ2 +∆Ψ2 +Ψ2(µ2|Ψ2|2p−2 + β|Ψ2|p−2|Ψ1|p) = 0.
(4.9)

The flow generated by solutions to the system (4.9) preserves, at least formally, the
masses

Q(Ψ1(t)) =

∫
Ω

|Ψ1(t)|2, Q(Ψ2(t)) =

∫
Ω

|Ψ2(t)|2.

We look for standing wave solutions (Ψ1(t, x),Ψ2(t, x)) = (eıλ1tu1(x), e
ıλ2tu2(x)) of (4.9)

such that (u1, u2) ∈ H1
0 (Ω;R2) and

Q(Ψ1(t)) ≡ Q(u1) = ρ1, Q(Ψ2(t)) ≡ Q(u2) = ρ2, (4.10)

for some prescribed ρ1, ρ2 ≥ 0. Therefore, unlike fixing λ1, λ2 a priori as in the previous
subsections and simply looking for solutions of (4.3), here we look for normalized solutions
of (4.3); namely, we ask if, given ρ1, ρ2 ⩾ 0, there exists λ1, λ2 ∈ R and u1, u2 ∈ H1

0 (Ω) so
that 

−∆u1 + λ1u1 = µ1u1|u1|2p−2 + βu1|u1|p−2|u2|p

−∆u2 + λ2u2 = µ2u2|u2|2p−2 + βu2|u2|p−2|u1|p∫
Ω
u2
i = ρi, i = 1, 2,

u1, u2 ∈ H1
0 (Ω).

(4.11)

Throughout this section we are interested in positive solutions.
Solutions of (4.11) can be seen as critical points of the energy functional

E(Ψ1,Ψ2) :=
1

2

∫
Ω

|∇Ψ1|2 + |∇Ψ2|2 −
1

2p

∫
Ω

µ1|Ψ1|2p + 2β|Ψ1|p|Ψ2|p + µ2|Ψ2|2p.

(another quantity formally preserved by the flow generated by the solutions of system
(4.9)) constrained to the manifold

Mρ1,ρ2 :=

{
(u1, u2) ∈ H1

0 (Ω;R2) :

∫
Ω

u2
1 = ρ1,

∫
Ω

u2
2 = ρ2

}
. (4.12)

From this point of view, the main aim is to provide conditions on p and ρ1, ρ2 (and also on
µ1, µ2, β) so that E|Mρ1,ρ2

has critical points or, more specifically, if it admits minima, either

global or local. We call such solutions energy ground states (in the literature, the least
energy solutions studied in the previous subsections are also called action ground states).
In this context, the unknowns λ1, λ2 appear as Lagrange multipliers. As a second aim,
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one considers the stability properties of such ground states with respect to the evolution
system (4.9).

The simplest case one can face is that of a single Nonlinear Schrödinger (NLS) equation
in RN , with a pure power nonlinearity:

−∆u1 + λ1u1 = µ1u1|u1|2p−2 in RN ,

∫
RN

u2
1 = ρ1, u1 ∈ H1(RN). (4.13)

In such case, the problem can be completely solved by simple scaling arguments. Indeed, it
is known that such problem, up to translation, has a unique positive solution; if we denote
by Z the unique radial (decreasing) solution for λ1 = 1, see [126], then u(x) = hZ(hp−1x),
h > 0, solves (4.13) with λ1 = h2p−1 and ρ1 = h2+N(1−p)∥Z∥2L2(RN ). Therefore, for p ̸=
1 + 2/N , the problem (4.13) admits a positive solution for every value of the mass, while
for p = 1 + 2/N it admits a positive solution only for the mass ρ1 = ∥Z∥2L2(RN ). This,

among other things, leads to the classification of the exponent p in (4.11) according to the
following four cases:

(H1) superlinear, L2-subcritical: 1 < p < 1 + 2/N ;

(H2) L2-critical: p = 1 + 2/N ;

(H3) L2-supercritical, Sobolev–subcritical: 1 + 2/N < p < 2∗/2;

(H4) Sobolev–critical: p = 2∗/2, for N ⩾ 3.

Moreover, observe that the solutions found in the L2-subcritical case (H1) are associated
with orbitally stable solitary waves of the corresponding evolution equation, while in the
remaining cases there is instability [56, 57].

However, whenever one considers a system, as well as non-homogeneous nonlinearities,
bounded domains or confining potentials, the situation cannot be solved by such simple
scaling arguments. Apart from when global minimization can be applied, see [169], as far
as we know the first result in the literature is due to Jeanjean [119], for the superlinear,
Sobolev-subcritical NLS single equation on RN with a non-homogeneous nonlinearity. In
recent years, other papers appeared, dealing with the NLS equation or system, always in the
Sobolev subcritical regime, either on RN [22, 23, 25, 31, 99, 100, 26] or on a bounded domain
[67, 146, 147, 148, 156]. In this short subsection, we focus mainly in our contributions to
the bounded domain case.

These two settings (Ω bounded and Ω = RN) are rather different in nature: each one
requires a specific approach, and the results are in general not comparable. A key differ-
ence is that RN is invariant under translations and dilations, which has advantages and
disadvantages: on the one hand, translations are responsible for a loss of compactness; on
the other hand, in the Sobolev subcritical case, dilations can be used to produce variations
and eventually construct natural constraints such as the so-called Pohozaev manifold. This
tool is not available when working in bounded domains, and also the gain of compactness
is lost when we face the Sobolev critical case. However, a common key tool in the study of
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normalized solution is the Gagliardo-Nirenberg inequality, which can be used to estimate
the non-quadratic part in E in terms of the quadratic one, which also leads naturally to
the threshold p = 1 + 2/N appearing in the classification (H1)-(H4).

In the first three cases (H1)-(H3), the study of the single equation

−∆u1 + λ1u = µ1u1|u1|2p−2 in Ω,

∫
Ω

u2
1 = ρ1, u1 ∈ H1

0 (Ω), (4.14)

in a bounded domain has been carried out in [147, 156], where the first is a joint work with
B. Noris and G. Verzini. Notice that (4.14) is a particular case of (4.11), when ρ2 = 0, with
associated energy u1 7→ E(u1, 0) = E(u1). We also denote Mρ1 := Mρ1,0. Summarizing, it
is known that

• (H1) implies that (4.14) has a solution for every ρ1, which is a global minimizer of
E|Mρ1

;

• (H2) implies that (4.14) has a solution for 0 ≤ ρ1 < ρ∗(Ω, N, p, µ1) < +∞, which is
a global minimizer of EMρ1

;

• (H3) implies that (4.14) has at least two solutions for 0 ≤ ρ1 < ρ∗(Ω, N, p, µ1) < +∞,
and one of these is a local minimizer of E|Mρ1

.

More precise results are given if Ω = B1(0). Moreover, all the minimizers above are
associated with orbitally stable solitary waves of the corresponding evolution equation.
This shows, in particular, that the boundary has a stabilizing effect; in the L2-critical
and L2-supercritical cases there exist standing waves which are orbitally stable (which, we
recall, is not the case in the whole RN).

Up to our knowledge, the first paper dealing with the NLS system (4.11) (with both
ρi > 0) is another joint work with B. Noris and G. Verzini [148]. Among other things, in
this paper we deal with the L2-supercritical, Sobolev–subcritical case (H3), obtaining the
existence of orbitally stable solitary waves, in case both ρ1, ρ2 are sufficiently small and
ρ1/ρ2 is uniformly bounded away from 0 and +∞. This result is perturbative in nature.
The existence results follow by a multi-parametric extension of a Ambrosetti-Prodi-type
reduction [10], while the stability follows from the Grillakis-Shatah-Strauss stability theory
[101].

In a third paper with B. Noris and G. Verzini [149], on the one hand, in the cases
(H1)-(H2)-(H3) we extend to systems defined in a bounded domain the above described
results [147, 156] for the single equation; on the other hand, we treat for the first time
the Sobolev critical case (H4), obtaining results which are new also in the case of a single
equation.

In conclusion, our works remain important as they showed that the presence of the
boundary has a stabilizing effect, complementing earlier observations by [94, 95]. In these
papers, it is proved that also in the L2-critical and L2-supercritical cases there exist stand-
ing waves which are orbitally stable.
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The topic of normalized solutions has been very active in the past few years, mainly
in the case of Ω = RN , and it would be impossible and out of the scope of this document
to mention all contributions and do a state of the art. Therefore, we conclude by simply
mentioning the following recent literature regarding the case of the whole space [24, 30,
120, 121, 140, 153, 181, 182, 207].

5 Optimal partition problems

Shape optimization problems are a class of problems where the general goal is to min-
imize (or maximize) a certain cost functional among a class of shapes, which are typically
subsets of Euclidean spaces, manifolds or even metric graphs. Two of the most famous
examples (stated here in a slightly informal way) are the isoperimetric problem:

min{per(ω) : ω ⊂ RN , |ω| = a}

or the problem of finding the drum of a fixed N -volume that has the lowest fundamental
frequency:

min{λ1(ω) : ω ⊂ RN , |ω| = a},
for a fixed a > 0. Here, per(ω), |ω| and λ1(ω) denote respectively the perimeter, the
measure and the first Dirichlet eigenvalue of a set ω. In both situations the solution is
a ball, as a consequence of the isoperimetric and the Rayleigh-Faber-Krahn inequalities,
respectively.

In this section we focus on a subclass of shape optimization problems, namely on the
so called optimal partition problems. Generally speaking, the aim is to study

inf {Φ(ω1, . . . , ωm) : ωi ∈ A, ωi ∩ ωj = ∅ ∀i ̸= j} , (5.1)

where A is a class of admissible sets in a certain ambient space and Φ : Am → R is
a cost function. Observe that, here, the term partition simply means that the shapes
are disjoint; the condition that their union exhausts (in some sense) the whole domain is
usually a consequence (a posteriori) of the minimizing property of an optimal partition.

The problem of finding a partition that minimizes a certain cost function depending
on disjoint shapes, despite its clear mathematical interest, appears quite naturally both
in physics (e.g. in liquid crystals or Cahn-Hilliard fluids [12]), engineering (in situations
where it is necessary to minimize the cost of a structure made of several materials) or image
processing [14]. They are also important to characterize the limiting behavior of solutions
to competing systems such as (4.1), and play a fundamental role in the study of the nodal
sets of eigenfunctions of Schrödinger operators [21, 33, 41, 114, 115, 116, 117, 118], as well
as in the proof of monotonicity formulae [7, 83, 189].

In general, these kind of problems may only have a solution in a relaxed sense [48, 49],
except when one imposes certain geometric constraints on the admissible domains, or some
monotonicity properties on the cost function (we refer the reader to the book by Bucur
and Buttazzo [45] for a good survey on these issues).

In this chapter we focus on our contributions to the field in four different classes of
problems.
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5.1 Spectral optimal partitions

Let Ω be a smooth bounded domain of RN , and let k ⩾ 1, m ⩾ 2 be integers. Consider
the class of m open partitions of Ω:

P(Ω) = {(ω1, . . . , ωm) | ωi ⊂ Ω is a nonempty open set for all i, ωi ∩ ωj = ∅ ∀i ̸= j } .

We wish to solve

c0 = inf

{
m∑
i=1

λk(ωi) : (ω1, . . . , ωm) ∈ P(Ω)

}
(5.2)

where λk(ωi) is the k–th eigenvalue of (−∆, H1
0 (ωi)), counting multiplicities.4 The cost

function

Φ(ω1, . . . , ωm) =
m∑
i=1

λk(ωi)

has good properties: it is monotone decreasing with respect to set inclusion, and it is
lower semicontinuous for the γ–convergence. Therefore, the general abstract result of [46]
implies the existence of a solution for (5.2) in the class of quasi-open sets. Going from
quasi-open to open sets is, however, not an easy task. By using a penalization technique
with partition of unity functions, Bourdin, Bucur and Oudet [42] gave a different proof
for the existence of quasi-open solutions, while proving the existence of open solutions for
the two-dimensional case N = 2 (by using a compactness result [190] which only holds in
dimension two).

The general goals are to determine the existence of a solution to this problem, the
optimal regularity of the associated eigenfunctions, and the regularity of the interfaces.
Related with the latter, we make the following definition (Hdim (·) denotes the Hausdorff
dimension of a set):

Definition 5.1 ([165]). An open partition (ω1, . . . , ωm) ∈ P(Ω) is called regular if:

1. denoting Γ = Ω\
⋃m

i=1 ωi, it holds Hdim (Γ) ⩽ N − 1;

2. there exists a relatively open subset R ⊆ Γ, such that

• Hdim(Γ\R) ≦ N − 2;

• R is a collection of hypersurfaces of class C1,α (for some 0 < α < 1 ), each one
separating two different elements of the partition.

The study of (5.2) in the case k = 1 is the simplest, as it can be characterized by an
absolute minimization of an energy functional in a singular space, namely

c0 = c̃0 := inf


m∑
i=1

∫
Ω

|∇ui|2 dx :
ui ∈ H1

0 (Ω) and

∫
Ω

u2
i dx = 1 ∀i,

ui · uj ≡ 0 ∀i ̸= j

 . (5.3)

4For simplicity, here we are considering the sum of eigenvalues, but other combinations are possible,
see for instance [165, p. 365].
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Figure 3: Example of a regular 5-partition in dimension N = 2.

This minimization problem was the main object of study in [50, 83], where it is
proved that a nonnegative Lipschitz continuous solution (u1, . . . , um) to (5.3) exists, and
that the partition ({u1 > 0}, . . . , {um > 0}) is a regular element of P(Ω), achieving
infP(Ω)

∑m
i=1 λ1(ωi) (i.e., it is an optimal partition). The existence result was first proved

in [83] together with the regularity for N = 2. The regularity result in any space dimension
was then stated in [50], see also [192, Section 8] for a detailed proof (the latter is a joint
work with S. Terracini). In my opinion, the simplest approach to this situation nowadays
is to consider limiting profiles of solutions to the singularly perturbed problem

−∆ui = λi,βui + β
m∑
j=1

j ̸=i

uiu
2
j , ui ∈ H1

0 (Ω), i = 1, . . . ,m, (5.4)

under the constraints ∫
Ω

u2
i dx = 1, i = 1, . . . ,m,

so that the parameters λi,β appear as Lagrange multipliers.
These systems (similar to the ones that have appeared before in Section 4) have been the

object of an intensive study in the last fifteen years, in particular in the case of competitive
interaction β < 0 and the study of the singular limit β → −∞. Their relation with optimal
partition problems has also been addressed, for instance in [32, 50, 61, 83, 115, 193].
We have shown in [145, 193] that, in some situations, phase separation occurs between
different components as the competition parameter increases, i.e., β → −∞. In particular
it is shown that, by taking an L∞ bounded family of solutions (uβ)β, and corresponding
bounded coefficients (λi,β)β, then there exists a limiting profile ui := limβ→+∞ uiβ such
that ({u1 ̸= 0}, . . . , {um ̸= 0}) ∈ P(Ω), and

−∆ũi = λiũi in {ui ̸= 0}.

This clearly illustrates the relation between optimal partitions involving eigenvalues and
the system of Schrödinger equations (5.4). In particular, it is known that (5.3) can be well
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approximated (as β → −∞) by the ground state (least energy) levels of (5.4), namely:

inf

{∫
Ω

m∑
i=1

|∇ui|2 − β
∑
i<j

u2
iu

2
j : ui ∈ H1

0 (Ω) and

∫
Ω

u2
i dx = 1 ∀i

}
.

Thus, using this approach and the results from a joint paper with S. Terracini [192], one
proves once again the existence of a regular partition to the problem of summing first
eigenvalues. However, passing to higher eigenvalues is not an easy task, as one needs to
construct suitable minimax characterizations at higher energy levels of (5.4). In another
paper with S. Terracini [193], by using a new notion of vector genus, several sign changing
solutions are build for (5.4), and by taking the least energy nodal solution among these,
one approaches the second eigenfunctions associated with the optimal partition problem
infP(Ω)

∑m
i=1 λ2(ωi). By putting together the previous results, one then can actually solve

(5.2) for a combination of sums of first and second eigenvalues. In order to solve the general
problem with higher eigenvalues, however, it does not seem completely clear to us which
variational characterization for solutions of (5.4) one could take.

To finally solve the general case, in [165] (a joint work with M. Ramos and S. Terracini)
we followed instead a different strategy relying on a double approximation procedure, which
I describe next. The relevant and surprising fact is that, instead of taking minimax levels
for a certain energy functional, we are able to approximate the problem (5.2) for every
k ∈ N through a symmetric constrained energy minimization. The strategy was influential
also in later papers and other contexts, see for instance [124, 137, 138].

In order to cope with the problem of not knowing the multiplicity of each set of the
optimal partition a priori, our motivation was to try to find approximate solutions of (5.2)
through the minimization process of a certain energy functional. Partially inspired by [115]
(where a different problem is treated), we let p ∈ N and consider the problem

inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

(
k∑

j=1

(λj (ωi))
p

)1/p

. (5.5)

Observe that (5.5) is a reasonably good approximation for (5.2) for large p, as, given k ∈ N
and any positive real numbers a1, . . . , ak, there holds (a

p
1 + · · ·+ apk)

1/p → max {a1, . . . , ak}
as p → ∞. Thus, for any given partition (ω1, . . . , ωm) ∈ P(Ω),

m∑
i=1

(
k∑

j=1

λj (ωi)
p

)1/p

→
m∑
i=1

λk (ωi) as p → +∞.

We proved that an optimal solution (ω1p, . . . , ωmp) of (5.5) exists and approaches, as p →
∞, a solution of our original problem (5.2). To show the latter, we approximated (5.5)
by a system of type (5.4) where the competition occurs between groups (in the spirit of
Section 4).

The final result is the following.
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Theorem 5.2 ([165]). Given k ⩾ 1, there exists a regular optimal partition (ω1, . . . , ωm)
for the problem (5.2). Moreover, for each i, at least one eigenfunction ui associated with
λk(ωi) is globally Lipschitz continuous, which is the optimal regularity in this case.

We observe that a free boundary condition was also proved, involving some k–eigenfunctions
in a neighborhood of regular points of the interfaces; however, the actual statement is too
technical to include in this work.

For k = 1, finer results for the singular set are proved in the recent paper [6], namely
that the (N − 2)–Hausdorff dimension of the singular set is finite, together with a strati-
fication result. In [197], together with A. Zilio, we characterized and proved regularity of
all possible minimal partitions of problem like (5.5) (which involve combinations of eigen-
functions up to a certain order) and their eigenfunctions. On the other hand, it remains
an open problem to prove the same for the original problem (5.2) with k ⩾ 2.

5.2 Long-range spectral optimal partitions

In this subsection we discuss a related class of optimal partition problems. Instead of
considering classes of partitions where the sets are simply mutually disjoint, we introduce
a restriction about the distance between sets. Given r > 0, consider the set of all m-
partitions of Ω whose elements are at distance at least r:

Pr(Ω) =

{
(ω1, . . . , ωm)

∣∣∣∣ ωi ⊂ Ω is a nonempty open set for all i,
dist(ωi, ωj) ⩾ r ∀i ̸= j

}
.

It is straightforward that there exists r̄ > 0 (which depends on Ω and on m) such that
Pr(Ω) ̸= ∅, for every r ∈ [0, r̄). For any such r, we are concerned with the following
optimization problem:

cr := inf

{
m∑
i=1

λ1(ωi) : (ω1, . . . , ωm) ∈ Pr(Ω)

}
, (5.6)

where λ1(·) denotes the first Dirichlet eigenvalue. In a joint paper with N. Soave, S.
Terracini and A. Zilio [185], we have proved the following:

Theorem 5.3 ([185]).

1. Existence. The level cr is achieved by an open optimal partition (Ω1,r, . . . ,Ωm,r);

2. Regularity of Eigenfunctions. If ui,r is a first eigenfunction associated with Ωi,r, then
it is globally Lipschitz continuous.

3. Exterior sphere condition and exact distance between the optimal sets. Given x0 ∈
∂Ωi,r\∂Ω, there exists j ̸= i and y0 ∈ ∂Ωj,r such that |x0−y0| = r, and Ωi,r∩Br(y0) =
∅; in particular, dist(Ωi,r,Ωj,r) = r and each set Ωi,r satisfies an exterior sphere
condition of radius r at any of its boundary point.
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The latter is a statement which is specific of these long range optimal partition prob-
lems. This statement, together with [52, Lemma 6.4], yields the following important
information about the free boundary Γr := ∪m

i=1∂Ωi,r:

4. Measure of the Free Boundary. The sets ∂Ωi,r have locally finite perimeter in Ω.

Under an additional regularity assumption on the free boundary ∂Ωi,r, we have also derived
a free boundary condition satisfied by the eigenfunctions of the optimal partitions (see
[185, Theorem 1.6]). The validity of such regularity remains a crucial open problem in the
general setting for optimal partition problems with a distance constraint. The difficulty is
related with the construction of admissible variations.

The approach used in [185] consists of studying the following relaxed formulation of cr
in terms of measurable functions rather than sets:

c̃r = inf

{
m∑
i=1

∫
Ω

|∇ui|2
∣∣∣∣ ui ∈ H1

0 (Ω),
∫
Ω
u2
i = 1 ∀i,

dist(suppui, suppuj) ⩾ r, ∀i ̸= j

}
, (5.7)

proving the equivalence between cr and c̃r. We also show a relation between (5.7) and an
elliptic system with nonlocal competition terms

−∆ui,β = λi,βui,β + βui,β(x)
∑
j ̸=i

∫
Br(x)

Vr(x− y)u2
j,β(y) dy (5.8)

where Vr ∈ L∞(RN) satisfies Vr > 0 a.e. in Br(0), Vr = 0 a.e. on RN \ Br(0), and β < 0.
The only other results available so far regarding segregation problems driven by long-range
competition are given in [52], where the authors analyze the spatial segregation for systems
of type

−∆ui,β = βui,β

∑
j ̸=i

(1Br ⋆ |uj|p) in Ω, ui,β = fi ⩾ 0 in Ωr\Ω, (5.9)

with 1 ⩽ p ⩽ +∞, as β → −∞. In the above equation, 1Br denotes the characteristic
function of Br, the ball of center 0 and radius r, Ωr is the neighborhood of radius r of Ω,
and ⋆ stands for the convolution for p < +∞, so that

(1Br ⋆ |uj|p) (x) =
∫
Br(x)

|uj(y)|p dy ∀x ∈ Ω, with 1 ⩽ p < +∞;

in case p = +∞, it is meant that the integral should be replaced by the supremum over
Br(x) of |uj|. In [52], the authors prove the equicontinuity of families of viscosity solutions
{uβ : β < 0} to (5.9), the local uniform convergence to a limit configuration u, and then
study the free-boundary regularity of the positivity sets {ui > 0} in cases p = 1 and
p = +∞, mostly in dimension N = 2.

The techniques adopted in the local and nonlocal cases are completely different. Pow-
erful tools typically employed in the former ones, such as monotonicity formulas, free
boundary conditions and blow-up methods, cannot be adapted in the context of optimal
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partitions at distance, due to the nonlocal nature of the interaction between different den-
sities/sets. This is why the free boundary regularity for problem (5.2) is settled, while the
same problem for (5.6) is open. However, the common optimal Lipschitz regularity of ur

suggests that it should be possible to look at both problems, the local and the nonlocal
ones, as a 1-parameter family, where the parameter is the distance r between the different
supports. The main results of a joint paper with N. Soave and A. Zilio [186] establish that
this is possible, at least at the level of the eigenfunctions. More precisely:

Theorem 5.4 ([186]). There exists a constant C > 0 such that

∥ur∥Lip(Ω) := ∥ur∥L∞(Ω) + ∥∇ur∥L∞(Ω) ⩽ C,

for any 0 < r < r̄, and any minimizer ur of c̃r = cr.

Observe that, for each fixed r > 0, Lipschitz regularity may be proved via a barrier
argument, which is possible due to the exterior sphere condition (see [184, Theorem 3.4]).
However, the barrier used depends on the radius, and the argument breaks down as r → 0+.
In [186] we relied on different methods.

Combining this theorem with the information obtained in previous papers (and de-
scribed in the previous subsection) about the local case r = 0, we have the following
(denoting the level in (5.2) for k = 1 by c0)

Theorem 5.5 ([186]). There exists C > 0 such that

c0 ⩽ cr ⩽ c0 + Cr for sufficiently small r > 0.

In particular, cr → c0 as r → 0. Moreover, given any minimizer ur of cr for r > 0, there
exists u0 ∈ H1

0 (Ω) ∩ Lip(Ω), solution to c0, such that, up to a subsequence,

ur → u0 strongly in H1
0 (Ω) ∩ C0,α(Ω), for every α ∈ (0, 1).

In this way, we are establishing a relation between problems (5.2) and (5.6). We believe
that these results may pave the way towards the development of a common free boundary
regularity theory. In particular, we wonder if the very complete information known for the
free boundary in the limiting problem (5.2) can be used to deduce properties for the free
boundary arising in (5.6), at least for a small r.

5.3 Spectral partition problems with volume constraint

While the literature is full of examples of shape optimization problems with volume
constraints (see for instance [118, Chapters 2 and 3] and references therein), up to our
knowledge no one considered optimal partition problems with volume constraints. These
can be easily motivated, considering for instance the situation of a farmer that is planting
several crops in a region Ω, while on the other hand there is a legal limit on the amount
of land that can be used for agriculture. This leads to a problem as follows:

inf

{
Φ(ω1, . . . , ωm) : ωi ∈ A ∀i, ωi ∩ ωj = ∅ ∀i ̸= j,

m∑
i=1

|ωi| ⩽ a

}
. (5.10)
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Given a bounded domain Ω ⊂ RN and 0 < a < |Ω|, we consider the following proto-
typical model problem

ca := inf

{
m∑
i=1

λ1(ωi) : (ω1, . . . , ωm) ∈ Pa(Ω)

}
, (5.11)

where Pa(Ω) stands for the set of m-partitions of Ω with volume constraint a, i.e.,

Pa(Ω) :=

{
(ω1, . . . , ωm)

∣∣∣ ωi ⊂ Ω are nonempty open sets for all i,

ωi ∩ ωj = ∅ for all i ̸= j and
∑m

i=1 |ωi| ⩽ a

}
.

Here, | · | stands for the Lebesgue measure.
In order to investigate the problem (5.11), we introduce a weak formulation that in-

volves a minimization problem where the variables are functions rather than domains,
namely

c̃a = inf
(u1,...,um)∈Ha

J(u1, . . . , um), where J(u1, . . . , um) :=
m∑
i=1

∫
Ω

|∇ui|2 (5.12)

and

Ha :=

(u1, . . . , um) :

ui ∈ H1
0 (Ω) and

∫
Ω

u2
i = 1 for every i,

uiuj ≡ 0 for i ̸= j,
m∑
i=1

|Ωui
| ⩽ a

 ,

with Ωui
:= {ui ̸= 0} for all i = 1, . . . ,m. This is a joint project with P. Andrade, E.

Moreira dos Santos and M. Santos [15], whose main result reads as follows:

Theorem 5.6 ([15]). The problem (5.11) admits a solution. Moreover:

1. Given any optimal partition (ω1, . . . , ωm) ∈ Pa(Ω), we have that

each Ωi is connected and
k∑

i=1

|Ωi| = a.

If ui is a first eigenfunction associated with the set Ωi, we have that ui is locally
Lipschitz continuous in Ω.

2. Problems (5.11) and (5.12) are equivalent in the following sense:

• ca = c̃a;

• if (u1, . . . , um) ∈ H is an optimal solution of (5.12) and Ωui
:= {ui ̸= 0}, then

(Ωu1 , . . . ,Ωum) ∈ Pa(Ω) solves (5.11);

• if (ω1, . . . , ωk) ∈ Pa(Ω) is an optimal partition for (5.11) and ui is a first
eigenfunction associated with the set Ωi, then (u1, . . . , um) ∈ Ha is a minimizer
of (5.12).
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An important part of the proof is based on showing the equivalence with a minimization
problem for the following penalized functional:

Jµ(u1, . . . , uk) :=
k∑

i=1

∫
Ω

|∇ui|2∫
Ω

u2
i

+ µ

[
k∑

i=1

|Ωui
| − a

]+
, for (u1 . . . , uk) ∈ H,

where
H :=

{
(u1, . . . , uk) ∈ H1

0 (Ω;Rk)
∣∣∣ ui ̸= 0 ∀i, ui · uj ≡ 0 ∀i ̸= j

}
.

The main difficulty when leading with this problem is mostly related with the produc-
tion of admissible variations which, on the other hand, give relevant information to the
problem. We would also like to point out that, even though the sets Ωui

are quasi-open, we
do not use this fact directly in our paper, nor the concept of γ-convergence of quasi-open
set is used. Instead, the proof follows nontrivial adaptations of ideas from [44, 127] (shape
optimization with measure constraints with one set only, no partitions) and [83, 115] (par-
tition problem, no measure constraint). The study of the regularity of the free boundary
and the production of numerical simulations are the subject of current work.

We conclude by mentioning the following related (although not equivalent) problems
regarding optimal partitions [34, 47, 89], where the cost function is

Φ(ω1, . . . , ωm) =
k∑

i=1

(λℓ(ωi) +m|ωi|)

defined on partitions. This problem does not have measure constraints, although for a
large m there the optimal configurations will not occupy the whole Ω. We refer to our
introduction in [15] for more details.

5.4 Optimal partitions related with the Yamabe equation

Several papers over the years refer to optimal partitions with nonlinear costs. This
is related with the study of nodal solutions of single equations. We refer for instance to
[81, 82], where the optimal cost in (5.1) is

Φ(ω1, . . . , ωk) :=
k∑

i=1

c(ωi), (5.13)

c(ωi) being the least energy solution of equations of the form −∆ = f(u) with subcritical–
superlinear growth, and homogeneous Dirichlet boundary conditions in a bounded domain.
As a prototypical example, the authors take

−∆u+ λu = µ|u|p−1u in ω, u = 0 on ∂ω (5.14)

with λ > −λ1(Ω) and 1 < p < 2∗ − 1 = (N + 2)/(N − 2)+ in the focusing case µ > 0
(the defocusing case is considered in [61]). On the other hand, the Sobolev critical case
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p = 2∗ − 1, λ ∈ (−λ1(Ω), 0) is tackled by us in [195, 196] (recall Subsection 4.2). In these
papers, the existence of optimal partitions is proved, while its regularity (in the sense of
Definition 5.1) is determined when combining these references with my joint paper with
S. Terracini [192]. As an important application, we refer that in the special case of m = 2
partition problems, one finds in this way a least energy nodal solution of (5.14) (recall, for
instance, Theorem 4.13). We also refer to the recent paper [68], where optimal partition
problems related with polyharmonic semilinear equations are considered.

Some of the things that have been mentioned can be adapted to the context of optimal
partition problems on Riemannian manifolds. One of the most relevant related problems
is the study of the Yamabe equation, which has an interesting and fascinating history. It
is by now classical to show that, answering the question

Given (M, g), a closed Riemannian manifold of dimension N ⩾ 3 with metrig
g, is there a conformal metric with constant scalar curvature?

amounts to finding positive smooth solutions to the Yamabe equation:

−∆gu+ κNSgu = |u|2∗−2u on M, (5.15)

where Sg is the scalar curvature, ∆g := divg∇g the Laplace-Beltrami operator, κN :=
N−2

4(N−1)
. In this case, the existence of a positive solution was established thanks to the

combined efforts of Yamabe [205], Trudinger [199], Aubin [17] and Schoen [177]. A detailed
account is given in [128].

It is natural to consider an optimal partition problem of type (5.1) with cost (5.13),
where this time c(ω) represents a least energy solution to the Yamabe equation (5.15) in
ω ⊂ M , with homogeneous Dirichlet boundary conditions on ∂ω. However, it is important
to remark that optimal partitions do not always exist! In fact, there is no optimal m-
partition for the Yamabe equation on the standard sphere SN for any m ⩾ 2. In [73],
jointly with M. Clapp and A. Pistoia, we proved the following.

Theorem 5.7 ([73]). Assume that (M, g) is not locally conformally flat and dimM ⩾ 10.
If dimM = 10, assume furthermore that

|Sg(q)|2 <
5

28
|Wg(q)|2g ∀q ∈ M, (5.16)

where Wg(q) is the Weyl tensor of (M, g) at q.
Then, for every m ⩾ 2 there exists an optimal m-partition {ω1, . . . , ωm} for the Yamabe

equation on (M, g), such that each ωi is connected and is regular in the sense of Definition
5.1.

In particular, for m = 2, this yields the existence of a least energy nodal solution to the
Yamabe equation (5.15) having precisely two nodal domains.

We follow the approach of considering a singular perturbation, i.e., to approximate the
problem with a system of Yamabe-equations joined by a variational competition term (in
the spirit of Section 5.1), proving the existence of fully nontrivial least energy solutions
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and studying the behavior as the competition coefficient diverges. To prove this and to
prevent blowup, a new compactness criterion is established. To verify this criterion, we
introduce a test function and perform rather delicate estimates (inspired by fine estimates
established in [92, 128]), particularly in dimension 10 - where not only the exponents but
also the coefficients of the energy expansion play a role - leading to the geometric inequality
stated in assumption (5.16).

In order to prove the optimal regularity of the limiting profiles ui, the regularity of the
free boundaries M ∖

⋃m
i=1 ωi and the free boundary condition, we use local coordinates.

This reduces the problem to the study of segregated profiles satisfying a system involving
divergence type operators with variable coefficients. We are able to prove a priori bounds
in Hölder spaces, by deducing an Almgren-type monotonicity formulae and by performing a
blowup analysis, combining what is known in case of the pure Laplacian [51, 145, 192, 184]
with some ideas from papers dealing with variable coefficient operators [125, 97, 96, 188].
We remark that, in a recent work with M. Dias [90], we were able to obtain uniform
Lipschitz bounds, which are the optimal uniform estimates in this context.

The existence of nodal solutions to the Yamabe equation (5.15) on an arbitrary manifold
(M, g) is largely an open problem. In [13], the existence of a least energy nodal solution
is established when (M, g) is not locally conformally flat and dimM ⩾ 11. Theorem (5.7)
recovers and extends this result. We also note that an optimal m-partition {ω1, . . . , ωm}
gives rise to what in [13] is called a generalized metric ḡ := ū2∗−2g conformal to g by taking
ū := u1 + · · ·+ um with ui a positive solution to (5.15) in ωi. So Theorem 5.7 may be seen
as an extension of the main result in [13].

As we mentioned before, optimal m-partitions on the standard sphere SN do not exist.
However, if one considers partitions with the additional property that every set ωi is
invariant under the action of a suitable group of isometries, then optimal m-partitions of
this kind do exist and they give rise to sign-changing solutions to the Yamabe equation
(5.15) with precisely m-nodal domains for every m ⩾ 2, as shown in [74]. The case of a
general manifold M possessing some symmetries is treated in [71].
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[37] Denis Bonheure, Juraj Földes, Ederson Moreira dos Santos, Alberto Saldaña, and
Hugo Tavares. Paths to uniqueness of critical points and applications to partial
differential equations. Trans. Amer. Math. Soc., 370(10):7081–7127, 2018.

[38] Denis Bonheure, Ederson Moreira dos Santos, Enea Parini, Hugo Tavares, and To-
bias Weth. Nodal solutions for sublinear-type problems with Dirichlet boundary
conditions. Int. Math. Res. Not. IMRN, (5):3760–3804, 2022.

[39] Denis Bonheure, Ederson Moreira dos Santos, Miguel Ramos, and Hugo Tavares.
Existence and symmetry of least energy nodal solutions for Hamiltonian elliptic
systems. J. Math. Pures Appl. (9), 104(6):1075–1107, 2015.

[40] Denis Bonheure, Enrico Serra, and Paolo Tilli. Radial positive solutions of elliptic
systems with Neumann boundary conditions. J. Funct. Anal., 265(3):375–398, 2013.
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bations on the Yamabe problem. Math. Ann., 358(1-2):511–560, 2014.

[93] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

[94] Gadi Fibich and Frank Merle. Self-focusing on bounded domains. Phys. D, 155(1-
2):132–158, 2001.

[95] Reika Fukuizumi, Fouad Hadj Selem, and Hiroaki Kikuchi. Stationary problem re-
lated to the nonlinear Schrödinger equation on the unit ball. Nonlinearity, 25(8):2271,
2012.

[96] Nicola Garofalo, Arshak Petrosyan, and Mariana Smit Vega Garcia. An epiperimetric
inequality approach to the regularity of the free boundary in the Signorini problem
with variable coefficients. J. Math. Pures Appl. (9), 105(6):745–787, 2016.

[97] Nicola Garofalo and Mariana Smit Vega Garcia. New monotonicity formulas and the
optimal regularity in the Signorini problem with variable coefficients. Adv. Math.,
262:682–750, 2014.

[98] Basilis Gidas, Wei Ming Ni, and Louis Nirenberg. Symmetry and related properties
via the maximum principle. Comm. Math. Phys., 68(3):209–243, 1979.

[99] Tianxiang Gou and Louis Jeanjean. Existence and orbital stability of standing waves
for nonlinear Schrödinger systems. Nonlinear Anal., 144:10–22, 2016.

[100] Tianxiang Gou and Louis Jeanjean. Multiple positive normalized solutions for non-
linear schrödinger systems. Nonlinearity, 31(5):2319, 2018.

[101] Manoussos Grillakis, Jalal Shatah, and Walter Strauss. Stability theory of solitary
waves in the presence of symmetry, I. Journal of Functional Analysis, 74(1):160–197,
1987.

[102] Massimo Grossi, Isabella Ianni, Peng Luo, and Shusen Yan. Non-degeneracy and
local uniqueness of positive solutions to the Lane-Emden problem in dimension two.
J. Math. Pures Appl. (9), 157:145–210, 2022.

[103] Massimo Grossi, Alberto Saldaña, and Hugo Tavares. Sharp concentration estimates
near criticality for radial sign-changing solutions of Dirichlet and Neumann problems.
Proc. Lond. Math. Soc. (3), 120(1):39–64, 2020.

[104] I. A. Guerra. Asymptotic behaviour of a semilinear elliptic system with a large
exponent. J. Dynam. Differential Equations, 19(1):243–263, 2007.

[105] Ignacio Guerra. Solutions of an elliptic system with a nearly critical exponent. Ann.
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