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Identities for subspaces of the Weyl algebra

Artem Lopatin, Carlos Arturo Rodriguez Palma

Abstract. In this paper we describe the polynomial identities of degree 4 for a certain
subspace of the Weyl algebra over an infinite field of arbitrary characteristic.

1 Introduction

Assume that F is an infinite field of arbitrary characteristic p = charF ≥ 0. All
vector spaces and algebras are over F and all algebras are unital and associative, unless
stated otherwise. We write F〈x1, . . . , xn〉 for the free unital F-algebra with free generators
x1, . . . , xn. In case the set of free generators is infinite and enumerable, and denoted by
X = {x1, x2, . . . }, the corresponding free algebra is denoted by F〈X〉.

1.1 Witt algebra W1

The Weyl algebra A1 is the unital associative algebra over F generated by letters x, y
subject to the defining relation yx = xy+1 (equivalently, [y, x] = 1, where [y, x] = yx−xy),
i.e.,

A1 = F〈x, y〉/id{yx− xy − 1}.

For s > 0 define by A
(−,s)
1 the F-span of ays in A1 for all a ∈ F[x]. It is easy to see that

the following two conditions hold:

• the space A
(−,s)
1 is closed with respect to the Lie bracket [ ·, · ];
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• the Lie bracket [ ·, · ] is not trivially zero on A
(−,s)
1 if and only if s = 1 (for example,

see Corollary 3.5 of [13]).

Note that in case p = 0 the space A
(−,1)
1 together with the multiplication given by the

Lie bracket is the Witt algebra W1, which is a simple infinite dimensional Lie algebra.
Similarly, considering n pairs {xi, yi} (1 ≤ i ≤ n) instead of {x, y} we can define the nth

Witt algebra Wn, which is also a simple infinite dimensional Lie algebra.

1.2 Polynomial identities

A polynomial identity for a unital F-algebra A is an element f(x1, . . . , xm) of F〈X〉
such that f(a1, . . . , am) = 0 in A for all a1, . . . , am ∈ A. The set IdF(A) = Id(A) of
all polynomial identities for A is a T-ideal, that is, Id(A) is an ideal of F〈X〉 such that
φ(Id(A)) ⊂ Id(A) for every endomorphism φ of F〈X〉. An algebra that satisfies a non-
trivial polynomial identity is called a PI-algebra. A T-ideal I of F〈X〉 generated polyno-
mials f1, . . . , fk in F〈X〉 is the minimal T-ideal of F〈X〉 that contains f1, . . . , fk. Denote
I = Id(f1, . . . , fk). We say that f ∈ F〈X〉 is a consequence of f1, . . . , fk if f ∈ I. Given
a monomial w in F〈x1, . . . , xm〉, we write degxi

(w) for the number of letters xi in w and
mdeg(w) ∈ N

m for the multidegree (degx1
(w), . . . , degxm

(w)) of w, where N = {0, 1, 2, . . .}.
An element f ∈ F〈X〉 is called (multi)homogeneous if it is a linear combination of monomi-
als of the same (multi)degree. Given f = f(x1, . . . , xm) of F〈X〉, we write f =

∑

δ∈Nm fδ for
multihomogeneous components fδ of f with multidegree mdeg fδ = δ. For δ = (δ1, . . . , δm)
we denote |δ| = δ1 + · · · + δm. We say that algebras A, B are PI-equivalent and write
A ∼PI B if Id(A) = Id(B).

Given an F-subspace V ⊂ A, we write IdF(V) = Id(V) for the ideal of all polynomial
identities for V. Note that φ(Id(V)) ⊂ Id(V) for every linear endomorphism φ of F〈X〉,
but Id(V) is not a T-ideal in general.

Assume that p = 0. It is well-known that the algebra A1 does not have nontrivial
polynomial identities. Namely, it follows from Kaplansky’s Theorem [10] and the fact that
A1 is simple with Z(A1) = F. Nevertheless, some subspaces of A1 satisfy certain polynomial
identities. As an example, Dzhumadil’daev proved that the standard polynomial

StN(x1, . . . , xN) =
∑

σ∈SN

(−1)σxσ(1) · · ·xσ(N)

is a polynomial identity for A
(−,s)
1 if and only if N > 2s (Theorem 1 of [5]). More results on

polynomial identities for some subspaces of nth Weyl algebra were obtained in [4, 6]. The
polynomial Lie identities for the nth Witt algebra Wn were studied by Mishchenko [15],
Razmyslov [16] and others. The well-known open conjecture claims that all polynomial
identities for W1 follow from the standard Lie identity

∑

σ∈S4

(−1)σ[[[[x0, xσ(1)], xσ(2)], xσ(3)], xσ(4)].

Z-graded identities forW1 were described by Freitas, Koshlukov and Krasilnikov [9]. More-
over, Z-graded identities for the related Lie algebra of the derivations of the algebra of
Laurent polynomials were described in [7, 8].
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The situation is drastically different in case p > 0. Namely, A1 is PI-equivalent to the
algebra Mp of all p× p matrices over F. Moreover, the Weyl algebra A1 over an arbitrary
associative (but possible non-commutative) F-algebra B is PI-equivalent to the algebra
Mp(B) of all p× p matrices over B (see Theorem 4.9 of [12] for more general result).

Over a field of an arbitrary characteristic, minimal polynomials identities for

• A
(−,1)
1 for an arbitrary p,

• A
(−,s)
1 for p = 2,

were described in [13]. Moreover, similar result was obtained in [13] for the so-called
parametric Weyl algebras, which were introduced and studied by Benkart, Lopes, On-
drus [1, 2, 3].

1.3 Results

In this paper we described all polynomial identities for A
(−,1)
1 of degree 4. Namely,

polynomial identities of multidegree

• (3,1) were considered in Proposition 3.2;

• (2,2) were considered in Proposition 3.4;

• (2,1,1) were considered in Proposition 3.6;

• (1,1,1,1) were considered in Propositions 4.3 and 4.4.

It is clear that there is no polynomial identities of multidegree (4). See [11] for the computer
program for Wolfram Mathematica to assist the proofs of Lemma 3.3, 4.2 and Proposi-
tions 4.3, 4.4.

2 Auxiliary notions

2.1 Properties of A1

Given a ∈ F[x], we write a′ for the usual derivative of the polynomial a with respect to
the variable x. Using the linearity of derivative and induction on the degree of a ∈ F[x] it
is easy to see that

[y, a] = a′ holds in A1 for all a ∈ F[x]. (1)

Thus for all i, j ≥ 0 the associative multiplication and the Lie bracket on A
(−,1)
1 are given

by
xiy xjy = xi+jy2 + jxi+j−1y and [xiy, xjy] = (j − i)xi+j−1y, (2)

where we use notation that

xi = 0 in A1 in case i ∈ Z is negative.

The following properties are well-known (for example, see [3]):



114 Artem Lopatin, Carlos Arturo Rodriguez Palma

Proposition 2.1. (a) {xiyj | i, j ≥ 0} and {yjxi | i, j ≥ 0} are F-bases for A1. In

particular, {xiy | i ≥ 0} is an F-basis for A
(−,1)
1 .

(b) If p = 0, then the center Z(A1) of A1 is F; if p > 0, then Z(A1) = F[xp, yp].

(c) If p > 0, then A1 is a free module over Z(A1) and the set {xiyj | 0 ≤ i, j < p} is a
basis.

(d) The algebra A1 is simple if and only if p = 0.

Theorem 5.4 of [13] implies the following statement:

Proposition 2.2. (a) A minimal polynomial identity for A
(−,1)
1 has degree 3.

(b) Every homogeneous polynomial identity for A
(−,1)
1 of degree 3 is equal to ξ St3 for

some ξ ∈ F.

2.2 Partial linearizations

Assume f ∈ F〈X〉 is multihomogeneous of multidegree δ ∈ N
m. Given 1 ≤ i ≤ m and

γ ∈ N
k for some k > 0 with |γ| = δi, the partial linearization lin

γ
xi
(f) of f of multidegree

γ with respect to xi is the multihomogeneous component of

f(x1, . . . , xi−1, xi + · · ·+ xi+k−1, xi+k, . . . , xm+k−1)

of multidegree (δ1, . . . , δi−1, γ1, . . . , γk, δi+1, . . . , δm). As an example,

lin(1,1)
x2 (x1x

2
2x

3
3) = x1(x2x3 + x3x2)x

3
4.

The result of subsequent applications of partial linearizations to f is also called a par-
tial linearization of f . The complete linearization lin(f) of f is the result of subsequent

applications of lin1δ1
x1

, . . . , lin1δm
xm

to f , where 1k stands for (1, . . . , 1) (k times).
Assume A is a unital F-algebra and V ⊂ A is an F-subspace. Since F is infinite, it is

well-known that if f is a polynomial identity for V, then all partial linearizations of f are
also polynomial identities for V. Note that the above claim does not hold in general for a
finite field (as an example, see [14] for the case of f(x1) = xn

1 and V = A). The following
lemma is well-known.

Lemma 2.3. Assume that all partial linearizations of a multihomogeneous element f of
F〈X〉 are equal to zero over some basis of V. Then f is a polynomial identity for V.

Proof. Let {vj} be a basis for V. Note that f(
∑

j α1jvj , . . . ,
∑

j αmjvj) is a linear combi-
nation of partial linearizations of f evaluated on the basis {vj}, where α1j , . . . , αmj ∈ F

for all j. Therefore, the required is proven.
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Example 2.4. Assume that p = 2 and A is the unital associative commutative algebra
generated by e1, . . . , en with the ideal of relations generated by e21, . . . , e

2
n, where n > 0.

Denote by V the maximal ideal of A generated by e1, . . . , en. Let us apply Lemma 2.3 to
show that f(x1) = x2

1 is the polynomial identity for V.
All partial linearizations of f(x1) are f(x1) and f11(x1, x2) = x1x2 + x2x1. Since

B = {ei1 · · · eik | 1 ≤ i1 < · · · < ik ≤ n, k ≥ 1} is a basis for V and

f(ei1 · · · eik) = f11(ei1 · · · eik , ej1 · · · ejr) = 0

in A for all 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jr ≤ n with k, r > 0, we obtain that
f(x1) ∈ Id(V) by Lemma 2.3. Note that f(x1) is not a polynomial identity for A, since
f(1) = 1, but f11 ∈ Id(A).

3 Non-multilinear identities for A
(−,1)
1 of degree four

In this section we will denote ci = xiy for i ≥ 0. Note that in the presentation
cicjckcl =

∑

r,t≥0 βrtx
ryt in A1 the coefficient βrt ∈ F is unique for all r, t ≥ 0 by part (a)

of Proposition 2.1.
Consider the following multihomogeneous elements of F〈X〉 of degree 4:

Φ22 = x2
1x

2
2 − 3x1x2x1x2 + 2x1x

2
2x1 + 2x2x

2
1x2 − 3x2x1x2x1 + x2

2x
2
1,

Ψ = x2[x1, x4]x3 + x3[x1, x4]x2,

Ψ211 = Ψ(x1, x1, x3, x2) = x1[x1, x2]x3 + x3[x1, x2]x1.

Denote Φ211 = lin(1,1)
x2

Φ22, Φlin = lin(Φ22) and

Ψlin = lin(Ψ211) = Ψ(x1, x2, x4, x3) + Ψ(x2, x1, x4, x3).

Lemma 3.1. Given i, j, k, l ≥ 0, we denote e = i+ j + k + l. Then in the presentation of
cicjckcl as the linear combination of basis elements {xryt | r, t ≥ 0} of A1 the coefficient of

(a) xey4 is 1;

(b) xe−1y3 is j + 2k + 3l, in case e ≥ 1;

(c) xe−2y2 is (k + 2l)(j + k + l − 1) + l(k + l − 1), in case e ≥ 2;

(d) xe−3y is l(k + l − 1)(j + k + l − 2), in case e ≥ 3.

The remaining coefficients are zeros. Moreover, we may apply parts (b), (c), (d) for every
e ≥ 0, since in case of negative degree of x the corresponding coefficient is zero.
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Proof. Assume i, j, k, l ≥ 1. We apply equality (1) to obtain that

cjckcl = xjyxk(xly + lxl−1)y
= xj(yxk+l)y2 + lxj(yxk+l−1)y
= xj+k+ly3 + (k + 2l)xj+k+l−1y2 + l(k + l − 1)xj+k+l−2y in A1.

Applying the obtained formula to cicjckcl we conclude the proof. Note that in these
calculations xk with negative k ∈ Z always has zero coefficient. Then these calculation are
valid for i, j, k, l ≥ 0 and the required is proven.

Proposition 3.2. There is no non-trivial multihomogeneous polynomial identities for A
(−,1)
1

of multidegree (3, 1).

Proof. Assume that f(x1, x2) = α1x
3
1x2 + α2x

2
1x2x1 + α3x1x2x

2
1 + α4x2x

3
1 is a polynomial

identity for A
(−,1)
1 , where α1, . . . , α4 ∈ F. We will show that f = 0 is the trivial identity. For

all i, j ≥ 1 we have f(ci, cj) = 0 in A1. Applying parts (a)–(d), respectively, of Lemma 3.1,
we obtain that

α1 + α2 + α3 + α4 = 0, (3)

(3i+ 3j)α1 + (4i+ 2j)α2 + (5i+ j)α3 + 6iα4 = 0, (4)

(2i2 + 6ij + 3j2 − i− 3j)α1 + (5i2 + 5ij + j2 − 3i− j)α2+
(8i2 + 3ij − 4i)α3 + (11i2 − 4i)α4 = 0,

(5)

j(i+ j − 1)(2i+ j − 2)α1 + i(i+ j − 1)(2i+ j − 2)α2+
i(2i− 1)(2i+ j − 2)α3 + i(2i− 1)(3i− 2)α4 = 0,

(6)

respectively. We can rewrite formula (4) as

(3α1 + 4α2 + 5α3 + 6α4)i+ (3α1 + 2α2 + α3)j = 0. (7)

We subtract equality (7) with i = j = 1 from equality (7) with i = 1, j = 2 to obtain
that 3α1 +2α2 +α3 = 0. Thus it follows from equality (3) that for an arbitrary p we have
α3 = −3α1 − 2α2 and α4 = 2α1 + α2. Taking i = 1, j = 2 and i = 1, j = 3 in equality (6)
we obtain that α2 = −4α1 = 0. Thus f = 0 in case p 6= 2.

Assume p = 2. We have α2 = α4 = 0 and α3 = α1. Considering i = 1, j = 2 in
equality (5) we can see that α1 = 0. The required is proven.

Lemma 3.3. The elements Φ22, Φ211, Φlin are polynomial identities for A
(−,1)
1 . In case

p = 2 the elements Ψ211, Ψ, and [[x1, x2], [x3, x4]] are polynomial identities for A
(−,1)
1 .

Proof. Using Lemma 3.1 and straightforward calculations (by means of a computer pro-
gram) we can see that Φ22 and its partial linearizations lin(1,1)

x1
(Φ22), Φ211 = lin(1,1)

x2
(Φ22)

and the complete linearization Φlin = lin(Φ22) are equal to zero over the set {ci | i ≥ 0}.

Since {ci | i ≥ 0} is a basis of A
(−,1)
1 , Lemma 2.3 concludes the proof for Φ22, Φ211, Φlin.
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Assume p = 2. Since Ψ211, Ψ, Ψlin, and [[x1, x2], [x3, x4]] are zero over the set {ci | i ≥ 0},
Lemma 2.3 concludes the proof for Ψ211, Ψ, and [[x1, x2], [x3, x4]].

Proposition 3.4. Assume f is a multihomogeneous polynomial identity for A
(−,1)
1 of mul-

tidegree (2, 2). Then f = αΦ22 for some α ∈ F.

Proof. Assume that

f(x1, x2) = α1x
2
1x

2
2 + α2x1x2x1x2 + α3x1x

2
2x1 + α4x2x

2
1x2 + α5x2x1x2x1 + α6x

2
2x

2
1

is a polynomial identity for A
(−,1)
1 , where α1, . . . , α6 ∈ F. Hence f(ci, cj) = 0 in A1 for all

i, j ≥ 0. Applying parts (a)–(d), respectively, of Lemma 3.1, we obtain that

α1 + α2 + α3 + α4 + α5 + α6 = 0, (8)

(i+ 5j)α1 + (2i+ 4j)α2 + (3i+ 3j)α3+
(3i+ 3j)α4 + (4i+ 2j)α5 + (5i+ j)α6 = 0, if i+ j ≥ 1,

(9)

(3ij + 8j2 − 4j)α1 + (i2 + 5ij + 5j2 − i− 3j)α2+
(3i2 + 6ij + 2j2 − 3i− j)α3 + (2i2 + 6ij + 3j2 − i− 3j)α4+

(5i2 + 5ij + j2 − 3i− j)α5 + (8i2 + 3ij − 4i)α6 = 0, if i+ j ≥ 1,
(10)

j(2j − 1)(i+ 2j − 2)α1 + j(i+ j − 1)(i+ 2j − 2)α2+
i(i+ j − 1)(i+ 2j − 2)α3 + j(i+ j − 1)(2i+ j − 2)α4+

i(i+ j − 1)(2i+ j − 2)α5 + i(2i− 1)(2i+ j − 2)α6 = 0, if i+ j ≥ 2.
(11)

Taking i = 0, j = 1 in equality (9) we obtain

5α1 + 4α2 + 3α3 + 3α4 + 2α5 + α6 = 0.

Considering i = 0, j = 1 and i = 1, j = 0 in equality (10) we obtain that

4α1 + 2α2 + α3 = 0 and α4 + 2α5 + 4α6 = 0, (12)

respectively.
Let p 6= 2. Considering i = 0, j = 2 and i = 2, j = 0 in equality (11) we obtain that

3α1+α2 = 0 and α5+3α6 = 0, respectively. It it easy to see that the above five equalities
imply that

α2 = α5 = −3α1, α3 = α4 = 2α1 and α6 = α1. (13)

Hence, f = α1Φ22.
Let p = 2. Equality (9) implies that (α1 + α3 + α4 + α6)(i + j) = 0 for all i, j ≥ 0

with i+ j ≥ 1. Considering i = 1, j = 0 we obtain that α1 + α3 + α4 + α6 = 0. Similarly,
equality (10) implies that ij(α1+α2+α5+α6)+jα3+iα4 = 0 for all i, j ≥ 0 with i+j ≥ 1.
Equalities (12) imply that α3 = α4 = 0. Applying equality (8) we can see that

α3 = α4 = 0, α5 = α2 and α6 = α1. (14)
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In other words, f = α1[x
2
1, x

2
2] + α2(x1x2x1x2 + x2x1x2x1). By Lemma 3.1 we can see that

0 = lin(1,1)
x2

(f)(c1, c1, c2) = (α1 + α2)x
2y. (15)

Thus α1 = α2 and the proof is completed.

Recall that for i1, . . . , ik, j1, . . . , jk ∈ Z, two multisets {i1, . . . , ik}m and {j1, . . . , jk}m
are equal if for every l ∈ Z we have |{1 ≤ t ≤ k | it = l}| = |{1 ≤ t ≤ k | jt = l}|.

Lemma 3.5. Assume A is an associative algebra and V ⊂ A is an F-subspace. Suppose

(a) any polynomial identity of V of multidegree (3, 1) is trivial;

(b) any polynomial identity of V of multidegree (2, 2) is equal to ξΦ22 for some ξ ∈ F.

Then every polynomial identity f of V of multidegree (2, 1, 1) is equal to

αx1St3(x1, x2, x3)− β [[x1, x2], [x1, x3]] + γ St3(x1, x2, x3)x1 + ξh(x1, x2, x3)

for some α, β, γ, ξ ∈ F and h(x1, x2, x3) is given as

h(x1, x2, x3) = x2
1x3x2+2x3x

2
1x2+x3x2x

2
1−x1x2x3x1+3x1x3x2x1−3x1x3x1x2−3x3x1x2x1.

Proof. First, we have that f(x1, x2, x3) =
∑

αijklxixjxkxl, where the sum ranges over all
1 ≤ i, j, k, l ≤ 3 with {i, j, k, l}m = {1, 1, 2, 3}m and αijkl ∈ F. For short, we write α1223 for
α1123, etc. Applying part (a) to f(x1, x1, x2) = 0 we obtain that

α1223 + α2123 + α1213 = 0,
α2312 + α1312 + α1321 = 0,
α3122 + α3212 + α3121 = 0.

Similarly, applying part (b) to f(x1, x2, x2) = 0 we obtain that

α1223 + α1232 = ξ,
α2312 + α3212 = ξ,
α1213 + α1312 = −3ξ,
α2131 + α3121 = −3ξ,
α1231 + α1321 = 2ξ,
α2123 + α3122 = 2ξ.

These equations imply the required equality for f for α = α1223, β = α2123, γ = α2312 .

Proposition 3.6. The following set is an F-basis of the space of all polynomial identities
for A

(−,1)
1 of multidegree (2, 1, 1):

(a) x1St3(x1, x2, x3), St3(x1, x2, x3)x1, Φ211, in case p 6= 2;

(b) x1St3(x1, x2, x3), St3(x1, x2, x3)x1, Ψ211, [[x1, x2], [x1, x3]], in case p = 2.
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Proof. By Proposition 2.2 and Lemma 3.3 all elements from the formulation of the propo-
sition are identities for A

(−,1)
1 .

1. At first, we will show that any polynomial identity f ∈ F〈X〉 for A
(−,1)
1 of multide-

gree (2, 1, 1) is an F-linear combination of elements from the formulation of the propo-

sition. Since x1St3(x1, x2, x3) and St3(x1, x2, x3)x1 are polynomial identities for A
(−,1)
1 by

Lemma 2.2, Lemma 3.5 implies that it is enough to complete the proof for

f(x1, x2, x3) = −β [[x1, x2], [x1, x3]] + ξh(x1, x2, x3),

where β, ξ ∈ F.
Assume p 6= 2. Since 0 = f(c3, c2, c1) = 2(β − ξ)x6y by Lemma 3.1, we obtain that

ξ = β. By straightforward calculations we can see that

[[x1, x2], [x1, x3]]− h(x1, x2, x3) =
1

2
(x1St3(x1, x2, x3) + St3(x1, x2, x3)x1 − Φ211) .

The required is proven.
Assume that p = 2. By straightforward calculations we can see that

h(x1, x2, x3) = x1St3(x1, x2, x3) + Ψ211(x1, x2, x3).

Note that
Φ211 = x1St3(x1, x2, x3) + St3(x1, x2, x3)x1.

The required is proven.

2. To show that elements from the formulation of the lemma are linearly independent in
case p 6= 2, we consider

αx1St3(x1, x2, x3) + β St3(x1, x2, x3)x1 + γ Φ211(x1, x2, x3) = 0

for some α, β, γ ∈ F. Taking the coefficients of x2
1x2x3 and x2

1x3x2 we therefore obtain
α + γ = −α + γ = 0. Thus α = γ = 0 and the required is proven.

Similarly, for p = 2 we consider

αx1St3(x1, x2, x3) + β St3(x1, x2, x3)x1 + γΨ211 + δ[[x1, x2], [x1, x3]] = 0

for some α, β, γ, δ ∈ F. Taking the coefficients of x2
1x3x2, x2x3x

2
1, x1x3x2x1 we obtain

−α = β = −α − β + δ = 0. Thus α = β = δ = 0 and the required is proven.

4 Multilinear identities for A
(−,1)
1 of degree four

As in Section 3 we denote ci = xiy for i ≥ 0. Consider the following multilinear
elements of F〈X〉 of degree 4:

Γ = −x1x2x3x4 + 2x1x2x4x3 + x1x3x4x2 − 2x1x4x2x3
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+2x2x1x3x4 − 2x2x1x4x3 − 2x2x3x1x4 + x2x3x4x1 + x2x4x1x3

+x3x1x2x4 − 2x3x1x4x2 + x3x4x1x2 + x4x1x2x3 − x4x2x3x1,

Λ = −3x1x2x3x4 + 3x1x2x4x3 + 2x1x3x2x4 − 2x1x4x2x3

+3x2x1x3x4 − 3x2x1x4x3 − 2x2x3x1x4 + 2x2x4x1x3

−x3x1x4x2 + x3x2x4x1 + x4x1x3x2 − x4x2x3x1,

∆ = x2x1x3x4 + x2x4x1x3 + x3x1x2x4 + x3x4x1x2 + x4x1x2x3 + x4x1x3x2.

A monomial from F〈X〉 of multidegree (1, 1, 1, 1) is called reduced if it does not belong
to the following list:

x1x4x3x2, x2x4x3x1, x3x2x1x4, x3x4x2x1, x4x2x1x3, x4x3x1x2, x4x3x2x1. (16)

An element from F〈X〉 of multidegree (1, 1, 1, 1) is called reduced if it is a linear combination
of reduced monomials. Note that Γ, Λ, ∆ are reduced.

Lemma 4.1. For every homogeneous f ∈ F〈X〉 of multidegree (1, 1, 1, 1) there exist multi-
linear f1, f2 ∈ F〈X〉 of degree 4 such that f = f1 + f2,

• f1 is reduced;

• f2 is a linear combination of polynomials of the form xiSt3(xj , xk, xl), St3(xi, xj , xk)xl

where {i, j, k, l} = {1, 2, 3, 4}.

Proof. Consider the usual lexicographical order on the set of all monomials from F〈X〉 of
multidegree (1, 1, 1, 1). Denote by L the subspace of F〈X〉 generated by xiSt3(xj , xk, xl),
St3(xi, xj , xk)xl for {i, j, k, l} = {1, 2, 3, 4}. Given a monomial w ∈ F〈X〉 of multidegree
(1, 1, 1, 1), we write w ≡ 0, if w − h ∈ L for some h ∈ F〈X〉 such that all monomials of
h are less than w. Since x1St3(x2, x3, x4) ∈ L, we obtain that x1x4x3x2 ≡ 0. Similarly,
considering x2St3(x1, x3, x4) ∈ L, x3St3(x1, x2, x4) ∈ L, x4St3(x1, x2, x3) ∈ L, respectively,
we obtain that

x2x4x3x1 ≡ 0, x3x4x2x1 ≡ 0, x4x3x2x1 ≡ 0,

respectively. Moreover, considering St3(x1, x3, x4)x2 ∈ L, St3(x1, x2, x3)x3 ∈ L and also
St3(x1, x2, x3)x4 ∈ L, respectively, we can see that

x4x3x1x2 ≡ 0, x4x2x1x3 ≡ 0, x3x2x1x4 ≡ 0,

respectively. Consequently, applying the obtained equivalences to f , it is easy to see that
the claim holds.

Lemma 4.2. The elements Γ, Λ are polynomial identities for A
(−,1)
1 . If p = 2, then ∆ is

also a polynomial identity for A
(−,1)
1 .
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Proof. Using Lemma 3.1 and straightforward calculations (by means of a computer pro-
gram) we can see that Γ, Λ are equal to zero over the set {ci | i ≥ 0}. Since the set

{ci | i ≥ 0} is a basis of A
(−,1)
1 , Lemma 2.3 concludes the proof. Similarly, we prove

Lemma 4.2 for ∆ in case p = 2.

The following remark can be verified by straightforward calculations.

Remark 4.1. The following equalities hold in F〈X〉:

1.

4 Γ− 2Λ = Φlin + x1St3(x2, x3, x4) + x2St3(x1, x3, x4) + 2 x3St3(x1, x2, x4)

+ St3(x2, x3, x4)x1 + St3(x1, x3, x4)x2 + 2St3(x1, x2, x4)x3.

2.

x1St3(x2, x3, x4)− x2St3(x1, x3, x4) + x3St3(x1, x2, x4)− x4St3(x1, x2, x3)

+ St3(x2, x3, x4)x1 − St3(x1, x3, x4)x2 + St3(x1, x2, x4)x3 − St3(x1, x2, x3)x4 = 0.

Proposition 4.3. The following set is an F-basis of the space of all polynomial identities
for A

(−,1)
1 of multidegree (1, 1, 1, 1) in case p 6= 2:

Γ, Φlin, x1St3(x2, x3, x4), x2St3(x1, x3, x4), x3St3(x1, x2, x4), x4St3(x1, x2, x3),

St3(x2, x3, x4)x1, St3(x1, x3, x4)x2, St3(x1, x2, x4)x3.

Proof. By Proposition 2.2 and Lemmas 3.3, 4.2 all elements from the formulation of the
proposition are identities for A

(−,1)
1 . By part 1 of Remark 4.1 we can consider Λ instead of

Φlin in the formulation of the proposition.
Assume that f ∈ F〈X〉 is a polynomial identity for A

(−,1)
1 of multidegree (1, 1, 1, 1). By

Lemma 4.1 and part 2 of Remark 4.1 we can assume that f is reduced, i.e.,

f = α1 x1x2x3x4 + α2 x1x2x4x3 + α3 x1x3x2x4 + α4 x1x3x4x2 + α5 x1x4x2x3

+α6 x2x1x3x4 + α7 x2x1x4x3 + α8 x2x3x1x4 + α9 x2x3x4x1 + α10 x2x4x1x3

+α11 x3x1x2x4 + α12 x3x1x4x2 + α13 x3x2x4x1 + α14 x3x4x1x2

+α15 x4x1x2x3 + α16 x4x1x3x2 + α17 x4x2x3x1,

(17)

where α1, . . . , α17 ∈ F. Note that

Γ = h1 − x4x2x3x1 and Λ = h2 + x4x1x3x2 − x4x2x3x1,

where h1, h2 are linear combinations of reduced monomials different from x4x1x3x2 and
x4x2x3x1. Then h = f + (α16 + α17)Γ − α16Λ does not contain monomials x4x1x3x2,
x4x2x3x1. Hence, considering polynomial identity h instead of f , we can assume that
α16 = α17 = 0.
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To obtain equations on α1, . . . , α15 we consider f(ci, cj, ck, cl) = 0 and take the coeffi-
cient of xrys for certain i, j, k, l, r, s. The resulting linear equation γ1α1 + · · ·+ γ15α15 = 0
for some γ1, . . . , γ15 ∈ F we write down as the line (γ1, . . . , γ15) in the matrix A below.
Here is the list of parameters i, j, k, l, r, s which we consider:

• f(c1, c0, c0, c0), xy
4; • f(c1, c0, c0, c0), y

3; • f(c0, c1, c0, c0), y
3;

• f(c0, c0, c1, c0), y
3; • f(c2, c0, c0, c0), y

2; • f(c0, c2, c0, c0), y
2;

• f(c0, c0, c2, c0), y
2; • f(c1, c1, c0, c0), y

2; • f(c1, c0, c1, c0), y
2;

• f(c1, c1, c1, c0), y; • f(c1, c1, c0, c1), y; • f(c1, c0, c1, c1), y;
• f(c2, c1, c0, c0), y; • f(c2, c0, c1, c0), y; • f(c0, c2, c1, c0), y.

The resulting matrix is

A =





















































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 2 3 2 1 1 3 2 1
1 1 2 3 2 0 0 0 0 0 2 3 1 3 2
2 3 1 1 3 2 3 1 1 3 0 0 0 0 3
0 0 0 0 0 0 0 2 6 2 0 0 6 2 0
0 0 2 6 2 0 0 0 0 0 2 6 0 6 2
2 6 0 0 6 2 6 0 0 6 0 0 0 0 6
0 0 0 0 0 0 0 0 0 0 1 2 2 4 1
0 0 0 0 0 1 2 1 2 4 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 0
0 0 0 0 0 0 0 0 2 2 0 0 0 0 0
0 0 0 2 2 0 0 0 0 0 0 0 0 0 2





















































.

Since det(A) = −64 is non-zero, we obtain that α1 = · · · = α15 = 0, i.e, f = 0. Thus any

polynomial identity f ∈ F〈X〉 for A
(−,1)
1 of multidegree (1, 1, 1, 1) is an F-linear combination

of polynomial identities from the formulation of the proposition.
Note that we have proven that any element f ∈ F〈X〉 of multidegree (1, 1, 1, 1) can

be written as a linear combination of 15 monomials, modulo the subspace generated by
elements from the formulation of the proposition. Comparing the dimensions, we obtain
that elements from the formulation of the proposition are linearly independent.

Proposition 4.4. The following set is an F-basis of the space of all polynomial identities
for A

(−,1)
1 of multidegree (1, 1, 1, 1) in case p = 2:

Γ, Ψ, ∆, Λ, x1St3(x2, x3, x4), x2St3(x1, x3, x4), x3St3(x1, x2, x4), x4St3(x1, x2, x3),

St3(x2, x3, x4)x1, St3(x1, x3, x4)x2, St3(x1, x2, x4)x3,

[[x1, x3], [x2, x4]].
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Proof. By Proposition 2.2 and Lemmas 3.3, 4.2 all elements from the formulation of the
proposition are identities for A

(−,1)
1 .

Assume that f ∈ F〈X〉 is a polynomial identity for A
(−,1)
1 of multidegree (1, 1, 1, 1). By

Lemma 4.1 and part 2 of Remark 4.1 we can assume that f is reduced, i.e., can be written
as in formula (17). Note that

g = [[x1, x3], [x2, x4]] + x2St3(x1, x3, x4) + St3(x1, x2, x4)x3

= x1x2x4x3 + x1x3x2x4 + x1x3x4x2 + x1x4x2x3

+ x2x1x3x4 + x2x3x1x4 + x2x3x4x1 + x2x4x1x3

+ x3x1x2x4 + x3x1x4x2 + x4x1x2x3 + x4x2x3x1.

is reduced. Thus

Γ = h1 + x3x4x1x2 + x4x2x3x1,
Ψ = h2 + x3x4x1x2

∆ = h3 + x3x4x1x2 + x4x1x3x2,
Λ = h4 + x1x2x4x3 + x3x2x4x1 + x4x1x3x2 + x4x2x3x1,
g = h5 + x1x2x4x3 + x4x2x3x1,

(18)

where h1, . . . , h5 are linear combinations of reduced monomials which do not lie in the set
S:

S = {x1x2x4x3, x3x2x4x1, x3x4x1x2, x4x1x3x2, x4x2x3x1}.

Consider (18) as a system of liner equations on elements of S. Since the corresponding
matrix













0 0 1 0 1
0 0 1 0 0
0 0 1 1 0
1 1 0 1 1
1 0 0 0 1













is invertible, the elements from the set S are linear combinations of Γ, Ψ, ∆, Λ, g and
reduced monomials which do not lie in the set S. Hence, without loss of generality we can
assume that α2 = α13 = α14 = α16 = α17 = 0.

To obtain equations on α1, α3, α4, α5, . . . , α12, α15 we consider f(ci, cj , ck, cl) = 0 and
take the coefficient of xrys for certain i, j, k, l, r, s. The resulting linear equation

γ1α1 + γ3α3 + · · ·+ γ12α12 + γ15α15 = 0

for some γi ∈ F we write down as the line (γ1, γ3, γ4, γ5, . . . , γ12, γ15) in the matrix A below.
Here is the list of parameters i, j, k, l, r, s which we consider:

• f(c1, c0, c0, c0), xy
4; • f(c1, c0, c0, c0), y

3; • f(c0, c1, c0, c0), y
3;

• f(c0, c0, c1, c0), y
3; • f(c1, c1, c0, c0), y

2; • f(c1, c0, c1, c0), y
2;

• f(c1, c1, c1, c0), y; • f(c1, c1, c1, c0), xy
2; • f(c1, c1, c0, c1), y;

• f(c1, c1, c0, c1), xy
2; • f(c1, c0, c1, c1), y; • f(c1, c0, c1, c1), xy

2.
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The resulting matrix is

A =









































1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 0 0 0
0 0 1 0 1 1 1 1 1 0 1 0









































.

Since det(A) = 1, we obtain that α1 = α3 = α4 = α5 = · · · = α12 = α15 = 0, i.e, f = 0.

Thus any polynomial identity f ∈ F〈X〉 for A
(−,1)
1 of multidegree (1, 1, 1, 1) is an F-linear

combination of polynomial identities from the formulation of the proposition.
Note that we have proven that any element f ∈ F〈X〉 of multidegree (1, 1, 1, 1) can

be written as a linear combination of 12 monomials, modulo the subspace generated by
elements from the from formulation of the proposition. Comparing the dimensions, we
obtain that elements from the formulation of the proposition are linearly independent.
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