Communications in Mathematics 33 (2025), no. 1, Paper no. 1 DOI: https://doi.org/10.46298/cm.13107 ©2025 Artem Lopatin, Carlos Arturo Rodriguez Palma and Liming Tang This is an open access article licensed under the CC BY-SA 4.0

Weak polynomial identities of small degree for the Weyl algebra

Artem Lopatin, Carlos Arturo Rodriguez Palma and Liming Tang

Abstract. In this paper we investigate weak polynomial identities for the Weyl algebra A_1 over an infinite field of arbitrary characteristic. Namely, we describe weak polynomial identities of the minimal degree, which is three, and of degrees 4 and 5. We also describe weak polynomial identities in two variables.

Contents

1 Introduction

Assume that F is an infinite field of arbitrary characteristic $p = \text{char } \mathbb{F} > 0$. All vector spaces and algebras are over $\mathbb F$ and all algebras are associative, unless stated otherwise. We write $\mathbb{F}\langle x_1, \ldots, x_n \rangle$ for the free unital F-algebra with free generators x_1, \ldots, x_n . In case the free generators are x_1, x_2, \ldots the corresponding free algebra is denoted by $\mathbb{F}(X)$.

A polynomial identity for a unital F-algebra A is an element $f(x_1, \ldots, x_m)$ of $\mathbb{F}\langle X \rangle$ such that $f(a_1, \ldots, a_m) = 0$ in A for all $a_1, \ldots, a_m \in A$. The set $\text{Id}_{\mathbb{F}}(A) = \text{Id}(A)$ of all polynomial identities for A is a T-ideal, i.e., Id(A) is an ideal of $\mathbb{F}\langle X\rangle$ such that $\phi(\text{Id}(\mathcal{A})) \subset \text{Id}(\mathcal{A})$ for every endomorphism ϕ of $\mathbb{F}\langle X\rangle$. Given an F-subspace $\mathcal{V} \subset \mathcal{A}$, we write $\mathrm{Id}_{\mathbb{F}}(\mathcal{V}) = \mathrm{Id}(\mathcal{V})$ for the ideal of all polynomial identities for \mathcal{V} . Note that $\mathrm{Id}(\mathcal{V})$ is an *L-ideal* (or *weak T-ideal*), i.e., $\phi(\text{Id}(\mathcal{V})) \subset \text{Id}(\mathcal{V})$ for every linear endomorphism ϕ of $\mathbb{F}\langle X \rangle$, but Id(V) is not a T-ideal in general. We say that a space V generates the algebra A, if any element of $\mathcal A$ can be written as a non-commutative polynomial without free term in some elements of V. If a space V generates the algebra A, then the polynomial identities for V are called *weak* polynomial identities for the pair $(\mathcal{A}, \mathcal{V})$ and we denote Id(\mathcal{V}) = Id(\mathcal{A}, \mathcal{V}).

Weak polynomial identities were introduced in 1973 by Razmyslov [\[24,](#page-15-0) [25\]](#page-15-1) (see also book [\[26\]](#page-15-2)), who applied them to study polynomial identities of matrices. Razmyslov [\[24\]](#page-15-0), Drensky [\[4\]](#page-14-0) and Koshlukov [\[17\]](#page-15-3) described weak polynomial identities for the pair (M_2, sl_2) over a field of an arbitrary characteristic, where sl_2 is the space of all traceless matrices. Weak polynomial identities of small degrees for the pair (M_3, sl_3) were studies by Drensky, Rashkova [\[7\]](#page-14-1) and by Blachar, Matzri, Rowen, Vishne [\[2\]](#page-14-2).

For $p = 0$ weak polynomial identities for the pair (M_2, H_2) were described by Dren-sky [\[3\]](#page-14-3), where H_n stands for the space of all symmetric $n \times n$ matrices. Minimal weak polynomial identities for the pair (M_n, H_n) for an arbitrary $n > 1$ were described by Ma and Racine $[23]$ in case the characteristic of $\mathbb F$ satisfies certain restrictions.

Weak polynomial identities were also considered in [\[6,](#page-14-4) [14,](#page-15-5) [15,](#page-15-6) [16,](#page-15-7) [18\]](#page-15-8), etc. More details on weak polynomial identities can be found in a recent survey by Drensky [\[5\]](#page-14-5).

The Weyl algebra A_1 is generated by $V = \mathbb{F}\text{-span}\{x, y\}$. In this paper we consider weak polynomial identities for the pair (A_1, V) . In Lemma [4.1](#page-4-2) we show that the following elements of $\mathbb{F}\langle X\rangle$ are weak polynomial identities for (A_1, V) :

- $\Gamma_m(x_1, \ldots, x_m) = [[x_1, x_2], x_3 \cdots x_m]$ for $m \geq 3$,
- St₃ $(x_1, x_2, x_3) = x_1[x_2, x_3] x_2[x_1, x_3] + x_3[x_1, x_2]$
- $T_4(x_1, \ldots, x_4) = [x_1, x_2][x_3, x_4] [x_1, x_3][x_2, x_4] + [x_2, x_3][x_1, x_4],$

Denote by $\mathcal I$ the ideal of $\mathbb F\langle X\rangle$ generated by

$$
\Gamma_3(x_i, x_j, x_k), \text{St}_3(x_i, x_j, x_k), T_4(x_i, x_j, x_k, x_l)
$$

for all $i, j, k, l > 0$. In other words, $\mathcal I$ is the L-ideal generated by Γ_3 , St_3 , and T_4 . Given $f_1, f_2 \in \mathbb{F}\langle X \rangle$, we say that f_1 and f_2 are *equivalent* and write $f_1 \equiv f_2$ in case $f_1 - f_2 \in \mathcal{I}$.

In Theorem 6.3 we describe weak polynomial identities for (A_1, V) of the minimal degree, which is three. In Theorem [6.1](#page-11-1) we show that every weak polynomial identity for (A_1, V) in two variables lies in $\mathcal I$. Moreover, all weak polynomial identities for (A_1, V) of degrees 4 and 5 belong to $\mathcal I$ by Propositions [7.1](#page-12-1) and [7.2.](#page-13-0) Therefore, we formulate the following conjecture:

Conjecture 1.1. *The ideal of all weak polynomial identities for the pair* (A_1, V) *is equal to* I*.*

The key definitions are given in Section [2](#page-2-0) and some properties are considered in Section [3.](#page-3-1) The proofs are based on the notion of a completely reduced form of elements of $\mathbb{F}\langle X\rangle$, which is introduced in Section [5.](#page-5-0)

2 Definitions and known results

2.1 Polynomial identities for the Weyl algebra A_1

The *Weyl algebra* A_1 is the unital associative algebra over $\mathbb F$ generated by letters x, y subject to the defining relation $yx = xy+1$ (equivalently, $[y, x] = 1$, where $[y, x] = yx-xy$), i.e.,

$$
A_1 = \mathbb{F}\langle x, y \rangle / \mathrm{id} \{ yx - xy - 1 \}.
$$

We say that algebras A, B are called PI-equivalent and write $\mathcal{A} \sim_{\text{PI}} \mathcal{B}$ if Id(\mathcal{A}) = Id(\mathcal{B}). We say that an L-ideal $I \in \mathbb{F}\langle X\rangle$ is generated by $f_1, \ldots, f_k \in \mathbb{F}\langle X\rangle$ as an L-ideal, if I is an F-span of $\{f^{(1)}f_i(g_1,\ldots,g_m)f^{(2)}\}$ for all $f^{(1)},f^{(2)}\in \mathbb{F}\langle X\rangle$, all linear combinations g_1, \ldots, g_m of letters $\{x_1, x_2, \ldots\}$, and $1 \leq i \leq k$. Obviously, in case f_i is multilinear (see Section [2.2](#page-3-0) below) we can assume that g_1, \ldots, g_m are letters.

Assume that $p = 0$. It is well-known that the algebra A_1 does not have nontrivial polynomial identities. Nevertheless, some subspaces of A_1 satisfy certain polynomial identities. As an example, Dzhumadil'daev proved that the standard polynomial

$$
St_N(x_1,\ldots,x_N)=\sum_{\sigma\in\mathcal{S}_N}(-1)^{\sigma}x_{\sigma(1)}\cdots x_{\sigma(N)}
$$

is a polynomial identity for $A_1^{(-,s)} = \mathbb{F}\text{-span}\{ay^s \mid a \in \mathbb{F}[x]\}$ if and only if $N > 2s$ (Theorem 1 of $[9]$). More results on polynomial identities for some subspaces of nth Weyl algebra were obtained in [\[8,](#page-14-7) [10\]](#page-14-8). Considering $A_1^{(-,1)}$ with respect to the Lie bracket we obtain a simple Lie algebra W_1 , which is called Witt algebra. The well-known open conjecture claims that all polynomial identities for W_1 follow from the standard Lie identity of degree 5.

The Z-graded identities for W_1 were described by Freitas, Koshlukov and Krasilnikov [\[13\]](#page-14-9). Moreover, Z-graded identities for the related Lie algebra of the derivations of the algebra of Laurent polynomials were described in [\[11,](#page-14-10) [12\]](#page-14-11).

The situation is drastically different in case $p > 0$. Namely, A_1 is PI-equivalent to the algebra M_p of all $p \times p$ matrices over $\mathbb F$. Moreover, the Weyl algebra A_1 over an arbitrary associative (but possible non-commutative) F-algebra B is PI-equivalent to the algebra $M_p(\mathsf{B})$ of all $p \times p$ matrices over **B** (see Theorem 4.9 of [\[19\]](#page-15-9) for more general result). Polynomial identities for $A_1^{(-,s)}$ and other subspaces of A_1 were studied in [\[20,](#page-15-10) [21\]](#page-15-11).

2.2 Notations

An algebra that satisfies a nontrivial polynomial identity is called a PI-algebra. A Tideal I of $\mathbb{F}\langle X\rangle$ generated by $f_1,\ldots,f_k\in\mathbb{F}\langle X\rangle$ is the minimal T-ideal of $\mathbb{F}\langle X\rangle$ that contains f_1, \ldots, f_k . We denote by $\langle X \rangle_m$ and $\langle X \rangle$ the monoids (with unity) freely generated by the letters x_1, \ldots, x_m and x_1, x_2, \ldots , respectively. Given $w \in \langle X \rangle_m$, we write $\deg_{x_i}(w)$ for the number of letters x_i in w and $mdeg(w) \in \mathbb{N}_0^m$ for the multidegree $(\deg_{x_1}(w), \ldots, \deg_{x_m}(w))$ of w, where $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$ and $\mathbb{N} = \{1, 2, \ldots\}$. An element $f \in \mathbb{F}\langle X \rangle$ is called (multi)homogeneous if it is a linear combination of monomials of the same (multi)degree. Given $f = f(x_1, \ldots, x_m)$ of $\mathbb{F}\langle X \rangle$, we write $f = \sum_{\underline{\delta} \in \mathbb{N}_0^m} f_{\underline{\delta}}$ for multihomogeneous components $f_{\underline{\delta}}$ of f with mdeg $f_{\underline{\delta}} = \underline{\delta}$. If $f \in \mathbb{F}\langle X \rangle$ is multihomogeneous of multidegree $1^m = (1, \ldots, 1)$ (*m* times), then f is called *multilinear*. For $\underline{\delta} = (\delta_1, \ldots, \delta_m)$ we denote $|\underline{\delta}| = \delta_1 + \cdots + \delta_m$. Given $\underline{\delta} \in \mathbb{N}_0^m$, we write $\mathbb{F}\langle X \rangle_{\underline{\delta}}$ for all elements of $\mathbb{F}\langle X \rangle$ of multidegree $\underline{\delta}$ and we write $\mathrm{Id}(\mathcal{A}, \mathcal{V})_{\underline{\delta}}$ for all elements of $\mathrm{Id}(\mathcal{A}, \mathcal{V})$ of multidegree $\underline{\delta}$.

3 Properties

3.1 Properties of A_1

Given $a \in \mathbb{F}[x]$, we write $\partial(a)$ for the usual derivative of a polynomial a with respect to the variable x. Using the linearity of derivative and induction on the degree of $a \in \mathbb{F}[x]$ it is easy to see that

$$
[y, a] = \partial(a) \text{ holds in } A_1 \text{ for all } a \in \mathbb{F}[x]. \tag{1}
$$

The following properties are well-known (for example, see [\[1\]](#page-14-12)):

Proposition 3.1. *(a)* $\{x^i y^j \mid i, j \ge 0\}$ *and* $\{y^j x^i \mid i, j \ge 0\}$ *are* \mathbb{F} -bases for A_1 .

- *(b)* If $p = 0$, then the center $Z(A_1)$ of A_1 is F ; if $p > 0$, then $Z(A_1) = F[x^p, y^p]$.
- (c) If $p > 0$, then A_1 is a free module over $Z(A_1)$ and the set $\{x^i y^j \mid 0 \le i, j < p\}$ is a *basis.*
- *(d)* The algebra A_1 *is simple if and only if* $p = 0$ *.*

Weak polynomial identities of small degree for the Weyl algebra

3.2 Partial linearizations

Assume $f \in \mathbb{F}\langle X \rangle$ is multihomogeneous of multidegree $\underline{\delta} \in \mathbb{N}_0^m$. Given $1 \leq i \leq m$ and $\gamma \in \mathbb{N}_0^k$ for some $k > 0$ with $|\gamma| = \delta_i > 0$, the *partial linearization* $\lim_{x_i}^{\gamma}(\overline{f})$ of \overline{f} of multidegree γ with respect to x_i is the multihomogeneous component of

$$
f(x_1, \ldots, x_{i-1}, x_i + \cdots + x_{i+k-1}, x_{i+k}, \ldots, x_{m+k-1})
$$

of multidegree $(\delta_1, \ldots, \delta_{i-1}, \gamma_1, \ldots, \gamma_k, \delta_{i+1}, \ldots, \delta_m)$. As an example,

$$
\mathrm{lin}_{x_2}^{(2,1)}(x_1^2x_2^3x_3^2)=x_1^2(x_2^2x_3+x_2x_3x_2+x_3x_2^2)x_4^2.
$$

The result of subsequent applications of partial linearizations to f is also called a partial linearization of f. The *complete linearization* $\text{lin}(f)$ of f is the result of subsequent applications of $\lim_{x_1}^{1^{\delta_1}}$ $\frac{1^{\delta_1}}{x_1}, \ldots, \lim_{x_m} 1^{\delta_m}$ $\frac{1}{x_m}$ to f.

Since $\mathbb F$ is infinite, it is well-known that the following lemma holds (see also Lemma 2.3 of [\[21\]](#page-15-11)).

Lemma 3.2. *Assume A is a unital* $\mathbb{F}-algebra$ *and* $\mathcal{V} \subset \mathcal{A}$ *is an* $\mathbb{F}-subspace$.

- *1. If* f *is a polynomial identity for* V*, then all partial linearizations of* f *are also polynomial identities for* V*.*
- 2. Assume that all partial linearizations of a multihomogeneous element f of $\mathbb{F}\langle X \rangle$ are *equal to zero over some basis of* V *. Then* f *is a polynomial identity for* V *.*

Note that part 1 of Lemma [3.2](#page-4-3) does not hold in general for a finite field. As an example, see [\[22\]](#page-15-12) for the case of $f(x_1) = x_1^n$ and

$$
\mathcal{A} = \mathcal{V} = \frac{\mathbb{F}\langle X \rangle}{\mathrm{id}\{g^n \mid g \in \mathbb{F}\langle X \rangle \text{ without constant term}\}}.
$$

4 Identities

Lemma 4.1. *The following elements of* $\mathbb{F}\langle X \rangle$ *are weak polynomial identities for* (A_1, V) *:*

- $\Gamma_m(x_1, \ldots, x_m) = [[x_1, x_2], x_3 \cdots x_m]$ *for all* $m \geq 3$ *,*
- St₃ $(x_1, x_2, x_3) = x_1[x_2, x_3] x_2[x_1, x_3] + x_3[x_1, x_2]$
- $T_4(x_1, \ldots, x_4) = [x_1, x_2][x_3, x_4] [x_1, x_3][x_2, x_4] + [x_2, x_3][x_1, x_4]$

Proof. 1. Since $[x, x] = [y, y] = 0$ and $[x, y] = -[y, x] = -1$, we have

$$
[u, v] \in Z(A_1) \text{ for all } u, v \in \mathsf{V}.
$$
 (2)

Thus $\Gamma_m \in \text{Id}(A_1, V)$.

Since any g from the set $\{St_3, T_4\}$ is multilinear, to show that $g \in Id(A_1, V)$ it is enough to show that $g(u_1, \ldots, u_m) = 0$ in A_1 for all $u_1, \ldots, u_m \in \{x, y\}$. Obviously, $g(x, \ldots, x) = g(y, \ldots, y) = 0.$

2. Since $St_3(x, x, y) = St_3(x, y, y) = 0$, we obtain $St_3 \in Id(A_1, V)$.

3. If (u_1, \ldots, u_4) is equal to (x, x, x, y) or (x, y, y, y) , then $T_4(u_{\sigma(1)}, \ldots, u_{\sigma(4)}) = 0$ for all $\sigma \in S_4$. Similarly to $T_4(x, x, y, y) = 0 - 1 + 1 = 0$, we obtain that $T_4(u_{\sigma(1)}, \ldots, u_{\sigma(4)}) = 0$ for all $\sigma \in S_4$ and $(u_1, \ldots, u_4) = (x, x, y, y)$. Thus $T_4 \in \text{Id}(\mathsf{A}_1, \mathsf{V})$. □

Lemma 4.2. *Any weak identity for the pair* (A_1, V) *of degree* ≤ 2 *is zero.*

Proof. By Lemma [3.2](#page-4-3) it is enough to show that $f = 0$ for every multihomogeneous weak identity $f \in \text{Id}(A_1, V)$ of degree ≤ 2 .

If $\text{mdeg}(f) = (\delta)$ for $\delta \in \{1, 2\}$, then $f = \alpha x_1^{\delta}$ for $\alpha \in \mathbb{F}$ and equality $f(x) = 0$ implies $\alpha = 0.$

Assume that $\text{mdeg}(f) = (1, 1)$ and $f = \alpha x_1 x_2 + \beta x_2 x_1$ for $\alpha, \beta \in \mathbb{F}$. Then $f(x, x) = 0$ implies that $\alpha + \beta = 0$, i.e., $f = \alpha[x_1, x_2]$. Hence $0 = f(x, y) = -\alpha$ implies $\alpha = 0$. \Box

Lemma 4.3. *The L-ideal generated by* Γ_m , St_3 , T_4 *, where* $m \geq 3$ *, coincides with* \mathcal{I} *.*

Proof. For $m > 3$ consider

$$
\Gamma_m(x_1, \ldots, x_m) = [x_1, x_2] x_3 x_4 \cdots x_m - x_3 x_4 \cdots x_m [x_1, x_2]
$$

\n
$$
\equiv x_3 [x_1, x_2] x_4 \cdots x_m - x_3 x_4 \cdots x_m [x_1, x_2]
$$

\n
$$
\vdots
$$

\n
$$
\equiv x_3 x_4 \cdots x_m [x_1, x_2] - x_3 x_4 \cdots x_m [x_1, x_2] = 0.
$$

 \Box

The claim is proven.

5 Completely reduced bracket-monomials

Definition 5.1. A product

$$
x_{t_1} \cdots x_{t_l} [x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}]
$$

from $\mathbb{F}\langle X\rangle$, where $\underline{t} \in \mathbb{N}^l$, $\underline{r}, \underline{s} \in \mathbb{N}^k$ for some $l \geq 0$, $k > 0$ with $r_1 < s_1, \ldots, r_k < s_k$, is called a *bracket-monomial*.

Lemma 5.2. If two bracket-monomials are equal in $\mathbb{F}\langle X \rangle$, then they are the same. In *other words, if*

$$
f = x_{t_1} \cdots x_{t_l} [x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}] \text{ and } f' = x_{t'_1} \cdots x_{t'_{l'}} [x_{r'_1}, x_{s'_1}] \cdots [x_{r'_{k'}}, x_{s'_{k'}}]
$$

are bracket-monomials and $f = f'$ in $\mathbb{F}\langle X \rangle$, then $\underline{t} = \underline{t}'$, $\underline{r} = \underline{r}'$, $\underline{s} = \underline{s}'$.

Weak polynomial identities of small degree for the Weyl algebra

Proof. Note that f can be written as a linear combinations of 2^k pairwise different monomials from $\langle X \rangle$ with coefficients ± 1 .

We can assume that $l \geq l'$. Thus, $t_1 = t'_1, \ldots, t_{l'} = t'_{l'}$. Therefore, without loss of generality, we may assume that $l' = 0$. In case $l > 0$ we obtain that f is a linear combination of pairwise different monomials which start with x_{t_1} , but f' is a linear combination of pairwise different monomials which start with $x_{r'_1}$ and $x_{s'_1}$, where $r'_1 \neq s'_1$; a contradiction. Therefore, $l'=0$.

We have that f is a linear combination of pairwise different monomials which start with x_{r_1} and x_{s_1} , but f' is a linear combination of pairwise different monomials which start with $x_{r'_1}$ and $x_{s'_1}$. Hence, $\{r_1, s_1\} = \{r'_1, s'_1\}$ and inequalities $r_1 < s_1$, $r'_1 < s'_1$ imply that $r_1 = r_1'$ and $s_1 = s_1'$. Therefore, without loss of generality we can assume that $f = [x_{r_2}, x_{s_2}] \cdots [x_{r_k}, x_{s_k}]$ and $f' = [x_{r'_2}, x_{s'_2}] \cdots [x_{r'_{k'}}, x_{s'_{k'}}]$. Repeating the above reasoning several times we conclude the proof. \Box

Definition 5.3. (a) A bracket-monomial

$$
f = x_{t_1} \cdots x_{t_l} [x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}] \in \mathbb{F}\langle X \rangle,
$$
\n(3)

where $\underline{t} \in \mathbb{N}^l$, $\underline{r}, \underline{s} \in \mathbb{N}^k$ for some $l \geq 0$, $k > 0$ with $r_1 < s_1, \ldots, r_k < s_k$ is *semi-reduced* if

- $t_1 \leq \cdots \leq t_l$;
- $s_1 < \cdots < s_k$.

(b) A semi-reduced bracket-monomial $f \in \mathbb{F}\langle X \rangle$ defined by [\(3\)](#page-6-0) is *reduced* if

• either $l = 0$ or $l > 1$, $t_l \leq s_1$.

(c) A reduced bracket-monomial $f \in \mathbb{F}\langle X \rangle$ defined by [\(3\)](#page-6-0) is *completely reduced* if

• do not exist $1 \leq i \neq j \leq k$ with $r_j < r_i < s_i < s_j$.

Example 5.4. Consider the list of all completely reduced bracket-monomials of multidegree 1^m :

- $m = 2$: $[x_1, x_2]$;
- $m = 3: x_1[x_2, x_3], x_2[x_1, x_3];$
- $m = 4$: $x_1x_2[x_3, x_4]$, $x_1x_3[x_2, x_4]$, $x_2x_3[x_1, x_4]$, $[x_1, x_2][x_3, x_4]$, $[x_1, x_3][x_2, x_4]$;
- $m = 5: x_1x_2x_3[x_4, x_5], x_1x_2x_4[x_3, x_5], x_1x_3x_4[x_2, x_5], x_2x_3x_4[x_1, x_5], x_1[x_2, x_3][x_4, x_5],$ $x_1[x_2, x_4][x_3, x_5], x_2[x_1, x_3][x_4, x_5], x_2[x_1, x_4][x_3, x_5], x_3[x_1, x_4][x_2, x_5]$

For $1 \leq i < j$ we consider \mathbb{N}_0^i as a subset of \mathbb{N}_0^j by

$$
(r_1,\ldots,r_i)\to (r_1,\ldots,r_i,\underbrace{0,\ldots,0}_{j-i}).
$$

Assume $\underline{r} \in \mathbb{N}_0^i$ and $\underline{s} \in \mathbb{N}_0^j$ $\frac{1}{0}$ for some $i, j \geq 1$. Then we write $\underline{r} < \underline{s}$ for the lexicographical order on \mathbb{N}_0^k , where $k = \max\{i, j\}$ and we consider \underline{r} , <u>s</u> as elements of \mathbb{N}_0^k .

Definition 5.5. Consider a bracket-monomial

$$
f = x_{t_1} \cdots x_{t_l} [x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}] \in \mathbb{F}\langle X \rangle,
$$
\n
$$
(4)
$$

where $\underline{t} \in \mathbb{N}^l$, $\underline{r}, \underline{s} \in \mathbb{N}^k$ for some $l \geq 0$, $k > 0$ and $r_1 < s_1, \ldots, r_k < s_k$. Then

(a) the *monomial weight* of f in case $l > 0$ is $mw(f) = (t_{\sigma(1)}, \ldots, t_{\sigma(l)})$ for some permutation $\sigma \in \mathcal{S}_l$ such that

$$
t_{\sigma(1)} \geq \cdots \geq t_{\sigma(l)}
$$

and $m w(f) = (0)$ in case $l = 0$.

(b) the *bracket weight* of f is bw $(f) = (s_{\sigma(1)} - r_{\sigma(1)}, \ldots, s_{\sigma(k)} - r_{\sigma(k)})$ for some permutation $\sigma \in \mathcal{S}_k$ such that

$$
s_{\sigma(1)} - r_{\sigma(1)} \geq \cdots \geq s_{\sigma(k)} - r_{\sigma(k)}.
$$

Example 5.6. (a) We have $St_3(x_1, x_2, x_3) = f_1 - f_2 + f_3$ for the semi-reduced bracketmonomials

$$
f_1 = x_1[x_2, x_3], f_2 = x_2[x_1, x_3], f_3 = x_3[x_1, x_2].
$$

Then $mw(f_1) = (1)$, $mw(f_2) = (2)$, $mw(f_3) = (3)$ and $bw(f_1) = (1)$, $bw(f_2) = (2)$, $bw(f_3) = (1)$. Note that f_1, f_2 are reduced, but f_3 is not reduced.

(b) We have $T_4(x_1, \ldots, x_4) = h_1 - h_2 + h_3$ for the reduced bracket-monomials

$$
h_1 = [x_1, x_2][x_3, x_4], \quad h_2 = [x_1, x_3][x_2, x_4], \quad h_3 = [x_2, x_3][x_1, x_4].
$$

Then mw $(h_i) = (0)$ for $i = 1, 2, 3$ and bw $(h_1) = (1, 1)$, bw $(h_2) = (2, 2)$, bw $(h_3) = (3, 1)$. Note that h_1 , h_2 are completely reduced, but h_3 is not completely reduced.

Lemma 5.7. Assume that $f \in \mathbb{F}\langle X \rangle$ is multihomogeneous of multidegree $\underline{\delta} \in \mathbb{N}_0^m$. Then *there are semi-reduced bracket-monomials* $f_i \in \mathbb{F}\langle X \rangle$ *and* $\alpha_i, \beta \in \mathbb{F}$ *such that*

$$
f \equiv \beta x_1^{\delta_1} \cdots x_m^{\delta_m} + \sum_i \alpha_i f_i,
$$

where $\text{mdeg}(f_i) = \underline{\delta}$ *for all i. Moreover,*

- *(a)* if $f \in \text{Id}(A_1, V)$ *, then* $\beta = 0$ *;*
- *(b)* if f is a bracket-monomial, then $\beta = 0$ and $m w(f_i) \le m w(f)$ for all i.

Proof. Assume that $f_1, f_2 \in \mathbb{F}\langle x_1, \ldots, x_m \rangle$ are multihomogeneous and $1 \leq i \leq j \leq m$. Since

$$
f_1x_jx_if_2 = f_1x_ix_jf_2 - f_1[x_i, x_j]f_2 = f_1x_ix_jf_2 - f_1f_2[x_i, x_j] - f_1[[x_i, x_j], f_2],
$$

by Lemma [4.3](#page-5-1) we obtain that

$$
f_1 x_j x_i f_2 \equiv f_1 x_i x_j f_2 - f_1 f_2 [x_i, x_j]. \tag{5}
$$

Weak polynomial identities of small degree for the Weyl algebra

Lemma [4.3](#page-5-1) also implies that

$$
f_1[x_i, x_j] f_0 f_2 \equiv f_1 f_0[x_i, x_j] f_2 \tag{6}
$$

for every $f_0 \in \mathbb{F}\langle X \rangle$. Since equivalences [\(5\)](#page-7-0) and [\(6\)](#page-8-0) preserve the multidegree, applying formulas [\(5\)](#page-7-0) and [\(6\)](#page-8-0) to f we obtain that $f \equiv \beta x_1^{\delta_1} \cdots x_m^{\delta_m} + \sum_i \alpha_i f_i$ for some semi-reduced bracket-monomials f_i and $\beta, \alpha_i \in \mathbb{F}$, where $\text{mdeg}(f_i) = \delta$.

Assume $f \in \text{Id}(A_1, V)$. Since $[x, x] = 0$, we have $f_i(x, \ldots, x) = 0$ in A_1 for all i. Therefore, $0 = f(x, \dots, x) = \beta x^{|\underline{\delta}|}$. Thus $\beta = 0$.

If f is a bracket-monomial, then it is easy to see that $\beta = 0$ and $m w(f_i) \leq m w(f)$ for all i. □

Lemma 5.8. *Consider a semi-reduced bracket-monomial*

$$
f = x_{t_1} \cdots x_{t_l}[x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}] \in \mathbb{F}\langle X \rangle.
$$

Then $f \equiv \sum_i \alpha_i f_i$ for some $\alpha_i \in \mathbb{F}$, $f_i \in \mathbb{F}\langle X \rangle$ such that f_i is a reduced bracket-monomial, $\text{mdeg}(f_i) = \text{mdeg}(f)$, and $\text{mw}(f_i) \leq \text{mw}(f)$ for all i.

Proof. Since f is semi-reduced, we have $r_1 < s_1, \ldots, r_k < s_k$, $t_1 \leq \cdots \leq t_l$ and also $s_1 \leq \cdots \leq s_k$, where $l \geq 0$, $k > 0$.

We prove the lemma by induction on $mw(f)$. If $mw(f) = (0)$, then $l = 0$ and f is reduced.

Assume that $(0) < \text{mw}(f)$ and for every semi-reduced bracket-monomial $f' \in \mathbb{F}\langle X \rangle$ with $mw(f') < mw(f)$ the statement of this lemma holds.

Assume that f is not reduced, i.e., $l \geq 1$ and $t_l > s_1$. Using St₃ from Lemma [4.1,](#page-4-2) we obtain

$$
x_{t_l}[x_{r_1}, x_{s_1}] \equiv x_{s_1}[x_{r_1}, x_{t_l}] - x_{r_1}[x_{s_1}, x_{t_l}].
$$
\n(7)

Thus $f \equiv f_1 - f_2$ for

$$
f_1 = x_{t_1} \cdots x_{t_{l-1}} x_{s_1} [x_{r_1}, x_{t_l}][x_{r_2}, x_{s_2}] \cdots [x_{r_k}, x_{s_k}],
$$

$$
f_2 = x_{t_1} \cdots x_{t_{l-1}} x_{r_1} [x_{s_1}, x_{t_l}][x_{r_2}, x_{s_2}] \cdots [x_{r_k}, x_{s_k}].
$$

Note that $\text{mdeg}(f_1) = \text{mdeg}(f_2) = \text{mdeg}(f)$. Using part (b) of Lemma [5.7,](#page-7-1) we obtain semireduced bracket-monomials $g_{1i}, g_{2j} \in \mathbb{F}\langle X \rangle$ and $\alpha_{1i}, \alpha_{2j} \in \mathbb{F}$ such that $f_1 \equiv \sum_i \alpha_{1i} g_{1i}$ and $f_2 \equiv \sum_j \alpha_{2j} g_{2j}$, where $\text{mdeg}(g_{1i}) = \text{mdeg}(g_{2j}) = \text{mdeg}(f)$, $\text{mw}(g_{1i}) \le \text{mw}(f_1) < \text{mw}(f)$ and $\text{mw}(g_{2j}) \leq \text{mw}(f_2) < \text{mw}(f)$. Applying the induction hypothesis to g_{1i}, g_{2j} we conclude the proof, since $f \equiv \sum_i \alpha_{1i} g_{1i} - \sum_i \alpha_{2i} g_{2i}$. \Box

Lemma 5.9. *Consider a reduced bracket-monomial*

$$
f = x_{t_1} \cdots x_{t_l}[x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}] \in \mathbb{F}\langle X \rangle.
$$

Then $f \equiv \sum_i \alpha_i f_i$ *for some* $\alpha_i \in \mathbb{F}$, $f_i \in \mathbb{F}\langle X \rangle$ *such that* f_i *is a completely reduced bracket-monomial,* $\text{mdeg}(f_i) = \text{mdeg}(f)$ *, and* $\text{mw}(f_i) \leq \text{mw}(f)$ *for all i.*

Proof. Since f is reduced, we have $r_1 < s_1, \ldots, r_k < s_k$, $t_1 \leq \cdots \leq t_l \leq s_1 \leq \cdots \leq s_k$, where $l \geq 0, k > 0$.

We prove the lemma by induction on $mw(f)$.

1. Assume mw(f) = (0), i.e., $f = [x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}]$. To show that the statement of this lemma holds for f we use induction on bw(f).

Obviously, if $bw(f) = (1)$, i.e., $f = [x_{r_1}, x_{s_1}]$ with $s_1 - r_1 = 1$, then f is completely reduced.

Assume (1) < br/>bw(f) and for every reduced bracket-monomial $f' \in \mathbb{F}\langle X \rangle$ such that $mw(f') = (0)$ and $bw(f') < bw(f)$ the statement of the lemma holds.

Assume that f is not completely reduced, i.e., there are $1 \leq i \neq j \leq k$ such that $r_j \langle r_i \rangle \langle s_i \rangle \langle s_j \rangle$. For short, denote $a_1 = r_j$, $a_2 = r_i$, $a_3 = s_i$, $a_4 = s_j$. Note that $a_1 < a_2 < a_3 < a_4$. Using equivalence [\(6\)](#page-8-0) we obtain that

$$
[x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}] \equiv [x_{a_2}, x_{a_3}] [x_{a_1}, x_{a_4}] b
$$

for some product $b = [x_{r'_1}, x_{s'_1}] \cdots [x_{r'_{k-2}}, x_{s'_{k-2}}]$ of brackets. Applying the equivalence $T_4(x_{a_1}, x_{a_2}, x_{a_3}, x_{a_4}) \equiv 0$, we obtain

$$
[x_{a_2}, x_{a_3}][x_{a_1}, x_{a_4}] \equiv -[x_{a_1}, x_{a_2}][x_{a_3}, x_{a_4}] + [x_{a_1}, x_{a_3}][x_{a_2}, x_{a_4}].
$$

Thus $f \equiv -f_1 + f_2$ for

$$
f_1 = [x_{a_1}, x_{a_2}][x_{a_3}, x_{a_4}]b,
$$

$$
f_2 = [x_{a_1}, x_{a_3}][x_{a_2}, x_{a_4}]b.
$$

Note that $\text{mdeg}(f_1) = \text{mdeg}(f_2) = \text{mdeg}(f)$. Since

bw(
$$
[x_{a_2}, x_{a_3}][x_{a_1}, x_{a_4}]
$$
) = ($a_4 - a_1, a_3 - a_2$)

is greater than both bw $([x_{a_1}, x_{a_2}][x_{a_3}, x_{a_4}])$ and bw $([x_{a_1}, x_{a_3}][x_{a_2}, x_{a_4}])$, we can see that $bw(f_1) < bw(f)$ and $bw(f_2) < bw(f)$.

We use equivalence [\(6\)](#page-8-0) to obtain reduced bracket-monomials g_1 and g_2 such that $g_1 \equiv f_1$ and $g_2 \equiv f_2$, where $mdeg(g_1) = mdeg(g_2) = mdeg(f)$, $mw(g_1) = mw(g_2) = (0)$,

$$
\operatorname{bw}(g_1) = \operatorname{bw}(f_1) < \operatorname{bw}(f) \quad \text{and} \quad \operatorname{bw}(g_2) = \operatorname{bw}(f_2) < \operatorname{bw}(f).
$$

Applying the induction hypothesis to g_1 and g_2 , we can see that the statement of this lemma holds for f .

2. Assume that $(0) < \text{mw}(f)$, that is, $l \geq 1$, and for every reduced bracket-monomial $f' \in \mathbb{F}\langle X \rangle$ with $mw(f') < mw(f)$ the claim of this lemma holds. To show that the statement of this lemma holds for f we use induction on $bw(f)$.

Obviously, if bw(f) = (1), i.e., $f = x_{t_1} \cdots x_{t_l} [x_{r_1}, x_{s_1}]$ with $s_1 - r_1 = 1$, then f is completely reduced.

Assume (1) < br/>bw(f) and for every reduced bracket-monomial $f' \in \mathbb{F}\langle X \rangle$ such that $mw(f') = mw(f)$ and $bw(f') < bw(f)$ the statement of the lemma holds.

Assume that f is not completely reduced, i.e., there are $1 \leq i \neq j \leq k$ such that $r_j \leq r_i \leq s_i \leq s_j$. For short, denote $a_1 = r_j$, $a_2 = r_i$, $a_3 = s_i$, $a_4 = s_j$. Note that $a_1 < a_2 < a_3 < a_4$ and $t_1 \le a_3$. Using equivalence [\(6\)](#page-8-0) we obtain that

$$
[x_{r_1}, x_{s_1}] \cdots [x_{r_k}, x_{s_k}] \equiv [x_{a_2}, x_{a_3}] [x_{a_1}, x_{a_4}] b
$$

for some product $b = [x_{r'_1}, x_{s'_1}] \cdots [x_{r'_{k-2}}, x_{s'_{k-2}}]$ of brackets, where $t_l \leq s'_1 \leq \cdots \leq s'_{k-2}$. Since $T_4(x_{a_1}, x_{a_2}, x_{a_3}, x_{a_4}) \equiv 0$, we obtain

$$
[x_{a_2}, x_{a_3}][x_{a_1}, x_{a_4}] \equiv -[x_{a_1}, x_{a_2}][x_{a_3}, x_{a_4}] + [x_{a_1}, x_{a_3}][x_{a_2}, x_{a_4}].
$$

Thus $f \equiv -f_1 + f_2$ for

$$
f_1 = x_{t_1} \cdots x_{t_l} [x_{a_1}, x_{a_2}] [x_{a_3}, x_{a_4}] b,
$$

$$
f_2 = x_{t_1} \cdots x_{t_l} [x_{a_1}, x_{a_3}] [x_{a_2}, x_{a_4}] b.
$$

Note that $\text{mdeg}(f_1) = \text{mdeg}(f_2) = \text{mdeg}(f)$. Since

$$
bw([x_{a_2}, x_{a_3}][x_{a_1}, x_{a_4}]) = (a_4 - a_1, a_3 - a_2)
$$

is greater than $bw([x_{a_1}, x_{a_2}][x_{a_3}, x_{a_4}])$ and $bw([x_{a_1}, x_{a_3}][x_{a_2}, x_{a_4}])$, we can obtain the inequalities bw (f_1) < bw (f) and bw (f_2) < bw (f) .

2.1. Assume that $l_t \leq a_2$. Then $l_t \leq a_2 < a_3 < a_4$ and $t_l \leq s_1' \leq \cdots \leq s_{k-2}'$. We use equivalence [\(6\)](#page-8-0) to obtain reduced bracket-monomials g_1 and g_2 such that $g_1 \equiv f_1$ and $g_2 \equiv f_2$, where $mdeg(g_1) = mdeg(g_2) = mdeg(f)$, $mw(g_1) = mw(g_2) = mw(f)$,

 $bw(q_1) = bw(f_1) < bw(f)$ and $bw(q_2) = bw(f_2) < bw(f)$.

Applying induction on bracket weight to g_1 and g_2 , we obtain that the statement of the lemma holds for f .

2.2. Assume $a_2 < t_l$. Using equivalence [\(7\)](#page-8-1), we obtain $f_1 \equiv h_1 - h_2$ for

$$
h_1 = x_{t_1} \cdots x_{t_{l-1}} x_{a_2} [x_{a_1}, x_{t_l}] [x_{a_3}, x_{a_4}] b,
$$

$$
h_2 = x_{t_1} \cdots x_{t_{l-1}} x_{a_1} [x_{a_2}, x_{t_l}] [x_{a_3}, x_{a_4}] b.
$$

Since $t_l > a_1, a_2$, we have $mw(h_1) < mw(f)$ and $mw(h_2) < mw(f)$. Using part (b) of Lemma [5.7](#page-7-1) and Lemma [5.8,](#page-8-2) we obtain reduced bracket-monomials $g_{1i'}$, $g_{2j'} \in \mathbb{F}\langle X \rangle$ and scalars $\alpha_{1i'}$, $\alpha_{2j'} \in \mathbb{F}$ such that $h_1 \equiv \sum_{i'} \alpha_{1i'} g_{1i'}$ and $h_2 \equiv \sum_{j'} \alpha_{2j'} g_{2j'}$, and where $\mathrm{mdeg}(g_{1i'}) = \mathrm{mdeg}(g_{2j'}) = \mathrm{mdeg}(f),$

$$
\text{mw}(g_{1i'}) \le \text{mw}(h_1) < \text{mw}(f) \quad \text{and} \quad \text{mw}(g_{2j'}) \le \text{mw}(h_2) < \text{mw}(f).
$$

We apply induction on monomial weight to $g_{1i'}$ and $g_{2j'}$ to show that the statement of the lemma holds for f_1 . We establish that the statement of the lemma holds for f_2 by repeating the proof from part 2.1. Therefore, the statement of the lemma holds for f . \Box **Theorem 5.10.** Assume that $f \in \mathbb{F}\langle X \rangle$ is multihomogeneous of multidegree $\underline{\delta} \in \mathbb{N}_0^m$. Then *there are completely reduced bracket-monomials* $f_i \in \mathbb{F}\langle X \rangle$ *and* $\alpha_i, \beta \in \mathbb{F}$ *such that*

$$
f \equiv \beta x_1^{\delta_1} \cdots x_m^{\delta_m} + \sum_i \alpha_i f_i,
$$

where $\text{mdeg}(f_i) = \delta$ *for all i. Moreover,*

- *(a)* if $f \in \text{Id}(A_1, V)$ *, then* $\beta = 0$ *;*
- *(b)* if f is a bracket-monomial, then $\beta = 0$ and $\text{mw}(f_i) \leq \text{mw}(f)$ for all i.

Proof. Consequently applying Lemmas [5.7,](#page-7-1) [5.8,](#page-8-2) [5.9](#page-8-3) we obtain the required.

6 Minimal weak polynomial identities

Theorem 6.1. *Every weak polynomial identity for the pair* (A1, V) *in two variables lies in the L-ideal* $\mathcal I$ *generated by* St_3 , Γ_3 , T_4 *.*

Proof. Assume that $f \in \mathbb{F}\langle x_1, x_2 \rangle$ is a weak polynomial identity in two variables for the pair (A_1, V) . By Lemma [3.2,](#page-4-3) we can assume that f is multihomogeneous of multidegree (r, s) for some $r, s \geq 0$. Then Theorem [5.10](#page-11-2) implies that f is equivalent to a linear combination of completely reduced bracket-monomials of multidegree (r, s) .

Assume that $r \geq s$. If $s = 0$, then $f \equiv 0$ by the definition of completely reduced bracket-monomials. Assume $s > 0$. Then

$$
f(x_1, x_2) \equiv \sum_{i=1}^{s} \alpha_i x_1^{r-i} x_2^{s-i} [x_1, x_2]^i
$$

for some $\alpha_i \in \mathbb{F}$. Since $0 = f(x, y) = \sum_{i=1}^s (-1)^i \alpha_i x^{r-i} y^{s-i}$ in A_1 , we obtain by part (a) of Proposition [3.1](#page-3-3) that $\alpha_1 = \cdots = \alpha_s = 0$, i.e., $f \equiv 0$.

The case of $r < s$ can be considered similarly. The proof is completed.

Lemma 6.2. *Every weak polynomial identity for the pair* (A_1, V) *of degree* 3 *lies in the L*-ideal generated by Γ_3 and St_3 .

Proof. Assume that $f \in \mathbb{F}\langle X \rangle$ is a weak polynomial identity of degree 3 for the pair (A_1, V) . By Lemma [3.2,](#page-4-3) we can assume that f is multihomogeneous of multidegree Δ with $|\Delta| = 3$. By Theorem [5.10,](#page-11-2) f is equivalent to a linear combination of completely reduced bracket-monomials of multidegree Δ .

Assume $\Delta = (1, 1, 1)$. Then

$$
f(x_1, x_2, x_3) \equiv \alpha x_1[x_2, x_3] + \beta x_2[x_1, x_3],
$$

where $\alpha, \beta \in \mathbb{F}$. Since $0 = f(x, y, y) = -\beta y$ and $0 = f(x, y, x) = \alpha x$ in A₁, we obtain $\alpha = \beta = 0$. The definition of the ideal $\mathcal I$ implies the required.

If $\Delta = (2, 1)$ or $\Delta = (3)$, then Theorem [6.1](#page-11-1) concludes the proof.

 \Box

 \Box

 \Box

Theorem 6.3. 1. *The minimal degree of a non-trivial weak polynomial identity for the pair* (A_1, V) *is three.*

2. *The vector space* $\text{Id}(A_1, V)_{\Delta}$ *for* $|\Delta| = 3$ *has the following basis:*

- $\Gamma_3(x_1, x_2, x_3)$, $\Gamma_3(x_1, x_3, x_2)$, and $\text{St}_3(x_1, x_2, x_3)$, in case $\Delta = 1^3$;
- $\Gamma_3(x_1, x_2, x_1)$ *, in case* $\Delta = (2, 1)$ *,*
- \emptyset *, in case* $\Delta = (3)$ *.*

Proof. 1. It follows from Lemmas [4.1](#page-4-2) and [4.2.](#page-5-2)

2. Lemma [6.2](#page-11-3) implies that $\Gamma_3(x_1, x_2, x_1) \neq 0$ is a basis for Id($A_1, V_{(2,1)}$ and \emptyset is a basis for $\mathrm{Id}(A_1, V)_{(2,1)} = \{0\}.$

Since $\Gamma_3(x_1, x_2, x_3)$ and $St_3(x_1, x_2, x_3)$ are multilinear, Lemma [6.2](#page-11-3) implies that every element $f \in \mathrm{Id}(A_1, V)_{1^3}$ lies in the F-span of

 $\Gamma_3(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)})$ and $\text{St}_3(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)})$

for all $\sigma \in S_3$. Since $\Gamma_3(x_2, x_3, x_1) = -\Gamma_3(x_1, x_2, x_3) + \Gamma_3(x_1, x_3, x_2)$, we obtain that f lies in the F-span of $\Gamma_3(x_1, x_2, x_3)$, $\Gamma_3(x_1, x_3, x_2)$, and $St_3(x_1, x_2, x_3)$. The linear independence follows from straightforward calculations. \Box

7 Weak polynomial identities of degrees 4 and 5

Proposition 7.1. Any weak polynomial identity for the pair (A_1, V) of degree 4 lies in the *L*-ideal **I** generated by Γ_3 , St₃, and T_4 .

Proof. Assume that $f \in \mathbb{F}\langle X \rangle$ is a weak polynomial identity of degree 4 for the pair (A_1, V) . By Lemma [3.2,](#page-4-3) we can assume that f is multihomogeneous of multidegree Δ with $|\Delta| = 4$. By Theorem [5.10,](#page-11-2) f is equivalent to a linear combination of completely reduced bracket-monomials of multidegree Δ .

Assume $\Delta = 1^4$. Using Example [5.4](#page-6-1) we can see that

$$
f(x_1,...,x_4) \equiv \alpha_1 x_1 x_2 [x_3, x_4] + \alpha_2 x_1 x_3 [x_2, x_4] + \alpha_3 x_2 x_3 [x_1, x_4] + \beta_1 [x_1, x_2][x_3, x_4] + \beta_2 [x_1, x_3][x_2, x_4],
$$

where $\alpha_i, \beta_j \in \mathbb{F}$. Since we have $0 = f(x, x, y, x) = \alpha_1 x^2$, $0 = f(x, y, x, x) = -\alpha_2 x^2$, and $0 = f(y, x, x, x) = -\alpha_3 x^2$, we thus obtain $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Then equalities $0 = f(x, y, x, y) = \beta_1$ and $0 = f(x, x, y, y) = \beta_2$ imply that $f = 0$.

Assume $\Delta = (2, 1, 1)$. Then

$$
f(x_1, x_2, x_3) \equiv \alpha_1 \, x_1^2 [x_2, x_3] + \alpha_2 \, x_1 x_2 [x_1, x_3] + \alpha_3 \, [x_1, x_2] [x_1, x_3],
$$

where $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}$. We have $\alpha_1 = 0$, since $0 = f(x, y, x) = \alpha_1 x^2$. Thus, the equality $0 = f(x, x, y) = -\alpha_2 x^2$ implies $\alpha_2 = 0$. Finally, since $0 = f(y, x, x) = \alpha_3$, we obtain that $f=0.$

If Δ belongs to the list $\{(3, 1), (2, 2), (4)\}$, then Theorem [6.1](#page-11-1) concludes the proof. \Box

Proposition 7.2. Any weak polynomial identity for the pair (A_1, V) of degree 5 lies in the *L*-ideal **I** generated by Γ_3 , St₃, and T_4 .

Proof. Assume that $f \in \mathbb{F}\langle X \rangle$ is a weak polynomial identity of degree 5 for the pair (A_1, V) . By Lemma [3.2,](#page-4-3) we can assume that f is multihomogeneous of multidegree Δ with $|\Delta| = 5$. By Theorem [5.10,](#page-11-2) f is equivalent to a linear combination of completely reduced bracket-monomials of multidegree Δ .

Assume $\Delta = 1^5$. Using Example [5.4](#page-6-1) we can see that $f(x_1, \ldots, x_5)$ is equivalent to

$$
\alpha_1 x_1 x_2 x_3 [x_4, x_5] + \alpha_2 x_1 x_2 x_4 [x_3, x_5] + \alpha_3 x_1 x_3 x_4 [x_2, x_5] + \alpha_4 x_2 x_3 x_4 [x_1, x_5] + \beta_1 x_1 [x_2, x_3] [x_4, x_5] + \beta_2 x_1 [x_2, x_4] [x_3, x_5] + \beta_3 x_2 [x_1, x_3] [x_4, x_5] + \beta_4 x_2 [x_1, x_4] [x_3, x_5] + \beta_5 x_3 [x_1, x_4] [x_2, x_5]
$$

for some $\alpha_i, \beta_j \in \mathbb{F}$. Considering

$$
f(x, x, x, y, x) = f(x, x, y, x, x) = f(x, y, x, x, x) = f(y, x, x, x, x) = 0,
$$

we obtain $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$. Equalities

$$
f(y, y, x, x, x) = f(y, x, y, x, x) = f(x, y, y, x, x) = f(y, x, x, y, x) = 0
$$

imply that $\beta_5 = \beta_4 = \beta_2 = \beta_3 = 0$. Finally, $0 = f(x, y, x, y, x) = \beta_1 x$ implies $\beta_1 = 0$, i.e., $f=0.$

Assume $\Delta = (3, 1, 1)$. Then

$$
f(x_1, x_2, x_3) \equiv \alpha_1 x_1^3 [x_2, x_3] + \alpha_2 x_1^2 x_2 [x_1, x_3] + \alpha_3 x_1 [x_1, x_2] [x_1, x_3]
$$

for some $\alpha_i \in \mathbb{F}$. We have $\alpha_1 = 0$, since $0 = f(x, y, x) = \alpha_1 x^3$. Thus, the equality $0 = f(x, x, y) = -\alpha_2 x^3$ implies $\alpha_2 = 0$. Finally, since $0 = f(y, x, x) = \alpha_3 y$, we obtain that $f=0.$

Assume $\Delta = (2, 2, 1)$. Then $f(x_1, x_2, x_3)$ is equivalent to

$$
\alpha_1 x_1^2 x_2 [x_2, x_3] + \alpha_2 x_1 x_2^2 [x_1, x_3] + \alpha_3 x_1 [x_1, x_2] [x_2, x_3] + \alpha_4 x_2 [x_1, x_2] [x_1, x_3]
$$

for some $\alpha_i \in \mathbb{F}$. We have $\alpha_1 = \alpha_3 = 0$, since $0 = f(x, y, x) = \alpha_1 x^2 y - \alpha_3 x$. Thus, the equality $0 = f(x, x, y) = -\alpha_2 x^3$ implies $\alpha_2 = 0$. Finally, since $0 = f(y, x, x) = \alpha_4 x$, we obtain that $f = 0$.

Assume $\Delta = (2, 1, 1, 1)$. Then $f(x_1, x_2, x_3, x_4)$ is equivalent to

$$
\alpha_1 x_1^2 x_2 [x_3, x_4] + \alpha_2 x_1^2 x_3 [x_2, x_4] + \alpha_3 x_1 x_2 x_3 [x_1, x_4]
$$

$$
+ \beta_1 x_1 [x_1, x_2] [x_3, x_4] + \beta_2 x_1 [x_1, x_3] [x_2, x_4] + \beta_3 x_2 [x_1, x_3] [x_1, x_4]
$$

for some $\alpha_i, \beta_i \in \mathbb{F}$. Since $0 = f(x, x, y, x) = \alpha_1 x^3$ and $0 = f(x, y, x, x) = \alpha_2 x^3$, we have $\alpha_1 = \alpha_2 = 0$. Thus, the equality $0 = f(x, x, x, y) = -\alpha_3 x^3$ implies $\alpha_3 = 0$. Considering $0 = f(y, x, x, x) = \beta_3 x$, we obtain $\beta_3 = 0$. Finally, equalities $0 = f(y, y, x, x) = \beta_2 y$ and $0 = f(y, x, y, x) = \beta_1 y$ imply that $\beta_1 = \beta_2 = 0$, i.e., $f = 0$.

If Δ belongs to the list $\{(4, 1), (3, 2), (5)\}$, then Theorem [6.1](#page-11-1) concludes the proof. \Box

Acknowledgements

The first author was supported by FAPESP 2018/23690-6.

References

- [1] G. Benkart, S. Lopes, and M. Ondrus. A parametric family of subalgebras of the Weyl algebra I. Structure and automorphisms. *Trans. AMS*, 367(3):1993-2021, 2015.
- [2] G. Blachar, E. Matzri, L. Rowen, and U. Vishne. l-weak identities and central polynomials for matrices. *In Polynomial Identities in Algebras, Springer INdAM Series*, 44:69-95, 2021.
- [3] V. Drensky. Weak identities in the algebra of symmetric matrices of order two (Russian). *Pliska, Stud. Math. Bulg.*, 8:77-84, 1986.
- [4] V. Drensky. Identities of representations of nilpotent Lie algebras. *Commun. Algebra*, 25(7):2115-2127, 1997.
- [5] V. Drensky. Weak polynomial identities and their applications. *Commun. Math.*, 29:291-324, 2021.
- [6] V. Drensky and P. Koshlukov. Weak polynomial identities for a vector space with a symmetric bilinear form. *Mathematics and Education in Mathematics, Proc. 16th Spring Conf., Sunny Beach/Bulg.*, pages 213-219, 1987.
- [7] V. Drensky and T. Rashkova. Weak polynomial identities for the matrix algebras. *Commun. Algebra*, 21(10):3779-3795, 1993.
- [8] A. Dzhumadil'daev. N-commutators. *Comment. Math. Helv.*, 79(3):516-553, 2004.
- [9] A. Dzhumadil'daev. 2p-commutator on differential operators of order p. *Lett. Math. Phys.*, 104(7):849-869, 2014.
- [10] A. Dzhumadil'daev and D. Yeliussizov. Path decompositions of digraphs and their applications to Weyl algebra. *Adv. in Appl. Math.*, 67:36-54, 2015.
- [11] C. Fideles and P. Koshlukov. \mathbb{Z} -graded identities of the Lie algebras U_1 . *J. Algebra*, 633:668-695, 2023.
- [12] C. Fidelis and P. Koshlukov. Z-graded identities of the Lie algebras U_1 in characteristic 2. *Math. Proc. Camb. Phil. Soc.*, 174(1):49-58, 2023.
- [13] J. Freitas, P. Koshlukov, and A. Krasilnikov. Z-graded identities of the Lie algebra W1. *J. Algebra*, 427:226-251, 2015.

- [14] I. Isaev and A. Kislitsin. Identities in vector spaces and examples of finite-dimensional linear algebras having no finite basis of identities. *Algebra and Logic*, 52(4):290-307, 2013.
- [15] I. Isaev and A. Kislitsin. Identities in vector spaces embedded in finite associative algebras. *J. Math. Sciences*, 221(6):849-856, 2017.
- [16] A. Kislitsin. Minimal nonzero L-varieties of vector spaces over the field \mathbb{Z}_2 . *Algebra and Logic*, 61(4):313-317, 2022.
- [17] P. Koshlukov. Weak polynomial identities for the matrix algebra of order two. *J. Algebra*, 188:610-625, 1997.
- [18] P. Koshlukov. Finitely based ideals of weak polynomial identities. *Commun. Algebra*, 26(10):3335-3359, 1998.
- [19] A. Lopatin and C. A. Rodriguez Palma. Identities for a parametric Weyl algebra over a ring. *J. Algebra*, 595:279-296, 2022.
- [20] A. Lopatin and C. A. Rodriguez Palma. Identities for subspaces of a parametric Weyl algebra. *Lin. Algebra Appl.*, 654:250-266, 2022.
- [21] A. Lopatin and C. A. Rodriguez Palma. Identities for subspaces of the Weyl algebra. *Commun. Math.*, 32(2):111-125, 2024.
- [22] A. Lopatin and I. Shestakov. Associative nil-algebras over finite fields. *Inter. J. Algebra Comput.*, 23(8):1881-1894, 2013.
- [23] W. Ma and M. Racine. Minimal identities of symmetric matrices. *Trans. Amer. Math. Soc.*, 320(1):171-192, 1990.
- [24] Yu. Razmyslov. Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero. *Algebra and Logic*, 12(1):47-63, 1973.
- [25] Yu. Razmyslov. On a problem of Kaplansky. *Math. USSR, Izv.*, 7(3):479-496, 1973.
- [26] Yu. Razmyslov. Identities of algebras and their representations, volume 138 of *Transl. Math. Monogr.* Amer. Math. Soc., Providence, RI, 1994.

Received: February 23, 2024 Accepted for publication: February 26, 2024 Communicated by: Ivan Kaygorodov