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Weak polynomial identities of small degree for the Weyl

algebra

Artem Lopatin, Carlos Arturo Rodriguez Palma and Liming Tang

Abstract. In this paper we investigate weak polynomial identities for the Weyl al-

gebra A1 over an infinite field of arbitrary characteristic. Namely, we describe weak

polynomial identities of the minimal degree, which is three, and of degrees 4 and 5.

We also describe weak polynomial identities in two variables.
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1 Introduction

Assume that F is an infinite field of arbitrary characteristic p = charF ≥ 0. All vector
spaces and algebras are over F and all algebras are associative, unless stated otherwise.
We write F〈x1, . . . , xn〉 for the free unital F-algebra with free generators x1, . . . , xn. In case
the free generators are x1, x2, . . . the corresponding free algebra is denoted by F〈X〉.

A polynomial identity for a unital F-algebra A is an element f(x1, . . . , xm) of F〈X〉
such that f(a1, . . . , am) = 0 in A for all a1, . . . , am ∈ A. The set IdF(A) = Id(A) of
all polynomial identities for A is a T-ideal, i.e., Id(A) is an ideal of F〈X〉 such that
φ(Id(A)) ⊂ Id(A) for every endomorphism φ of F〈X〉. Given an F-subspace V ⊂ A, we
write IdF(V) = Id(V) for the ideal of all polynomial identities for V. Note that Id(V) is an
L-ideal (or weak T-ideal), i.e., φ(Id(V)) ⊂ Id(V) for every linear endomorphism φ of F〈X〉,
but Id(V) is not a T-ideal in general. We say that a space V generates the algebra A, if any
element of A can be written as a non-commutative polynomial without free term in some
elements of V. If a space V generates the algebra A, then the polynomial identities for V
are called weak polynomial identities for the pair (A,V) and we denote Id(V) = Id(A,V).

Weak polynomial identities were introduced in 1973 by Razmyslov [24, 25] (see also
book [26]), who applied them to study polynomial identities of matrices. Razmyslov [24],
Drensky [4] and Koshlukov [17] described weak polynomial identities for the pair (M2, sl2)
over a field of an arbitrary characteristic, where sl2 is the space of all traceless matrices.
Weak polynomial identities of small degrees for the pair (M3, sl3) were studies by Drensky,
Rashkova [7] and by Blachar, Matzri, Rowen, Vishne [2].

For p = 0 weak polynomial identities for the pair (M2, H2) were described by Dren-
sky [3], where Hn stands for the space of all symmetric n × n matrices. Minimal weak
polynomial identities for the pair (Mn, Hn) for an arbitrary n > 1 were described by Ma
and Racine [23] in case the characteristic of F satisfies certain restrictions.

Weak polynomial identities were also considered in [6, 14, 15, 16, 18], etc. More details
on weak polynomial identities can be found in a recent survey by Drensky [5].

The Weyl algebra A1 is generated by V = F-span{x, y}. In this paper we consider
weak polynomial identities for the pair (A1,V). In Lemma 4.1 we show that the following
elements of F〈X〉 are weak polynomial identities for (A1,V):

• Γm(x1, . . . , xm) = [[x1, x2], x3 · · ·xm] for m ≥ 3,

• St3(x1, x2, x3) = x1[x2, x3]− x2[x1, x3] + x3[x1, x2],

• T4(x1, . . . , x4) = [x1, x2][x3, x4]− [x1, x3][x2, x4] + [x2, x3][x1, x4],
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Denote by I the ideal of F〈X〉 generated by

Γ3(xi, xj, xk), St3(xi, xj , xk), T4(xi, xj, xk, xl)

for all i, j, k, l > 0. In other words, I is the L-ideal generated by Γ3, St3, and T4. Given
f1, f2 ∈ F〈X〉, we say that f1 and f2 are equivalent and write f1 ≡ f2 in case f1 − f2 ∈ I.

In Theorem 6.3 we describe weak polynomial identities for (A1,V) of the minimal degree,
which is three. In Theorem 6.1 we show that every weak polynomial identity for (A1,V)
in two variables lies in I. Moreover, all weak polynomial identities for (A1,V) of degrees
4 and 5 belong to I by Propositions 7.1 and 7.2. Therefore, we formulate the following
conjecture:

Conjecture 1.1. The ideal of all weak polynomial identities for the pair (A1,V) is equal to
I.

The key definitions are given in Section 2 and some properties are considered in Sec-
tion 3. The proofs are based on the notion of a completely reduced form of elements of
F〈X〉, which is introduced in Section 5.

2 Definitions and known results

2.1 Polynomial identities for the Weyl algebra A1

The Weyl algebra A1 is the unital associative algebra over F generated by letters x, y
subject to the defining relation yx = xy+1 (equivalently, [y, x] = 1, where [y, x] = yx−xy),
i.e.,

A1 = F〈x, y〉/id{yx− xy − 1}.

We say that algebras A, B are called PI-equivalent and write A ∼PI B if Id(A) = Id(B).
We say that an L-ideal I ∈ F〈X〉 is generated by f1, . . . , fk ∈ F〈X〉 as an L-ideal, if I
is an F-span of {f (1)fi(g1, . . . , gm)f

(2)} for all f (1), f (2) ∈ F〈X〉, all linear combinations
g1, . . . , gm of letters {x1, x2, . . .}, and 1 ≤ i ≤ k. Obviously, in case fi is multilinear (see
Section 2.2 below) we can assume that g1, . . . , gm are letters.

Assume that p = 0. It is well-known that the algebra A1 does not have nontrivial poly-
nomial identities. Nevertheless, some subspaces of A1 satisfy certain polynomial identities.
As an example, Dzhumadil’daev proved that the standard polynomial

StN(x1, . . . , xN) =
∑

σ∈SN

(−1)σxσ(1) · · ·xσ(N)

is a polynomial identity for A
(−,s)
1 = F-span{ays | a ∈ F[x]} if and only if N > 2s (Theorem

1 of [9]). More results on polynomial identities for some subspaces of nth Weyl algebra were

obtained in [8, 10]. Considering A
(−,1)
1 with respect to the Lie bracket we obtain a simple

Lie algebra W1, which is called Witt algebra. The well-known open conjecture claims
that all polynomial identities for W1 follow from the standard Lie identity of degree 5.
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The Z-graded identities for W1 were described by Freitas, Koshlukov and Krasilnikov [13].
Moreover, Z-graded identities for the related Lie algebra of the derivations of the algebra
of Laurent polynomials were described in [11, 12].

The situation is drastically different in case p > 0. Namely, A1 is PI-equivalent to the
algebra Mp of all p× p matrices over F. Moreover, the Weyl algebra A1 over an arbitrary
associative (but possible non-commutative) F-algebra B is PI-equivalent to the algebra
Mp(B) of all p × p matrices over B (see Theorem 4.9 of [19] for more general result).

Polynomial identities for A
(−,s)
1 and other subspaces of A1 were studied in [20, 21].

2.2 Notations

An algebra that satisfies a nontrivial polynomial identity is called a PI-algebra. A T-
ideal I of F〈X〉 generated by f1, . . . , fk ∈ F〈X〉 is the minimal T-ideal of F〈X〉 that contains
f1, . . . , fk. We denote by 〈X〉m and 〈X〉 the monoids (with unity) freely generated by the
letters x1, . . . , xm and x1, x2, . . ., respectively. Given w ∈ 〈X〉m, we write degxi

(w) for the
number of letters xi in w and mdeg(w) ∈ N

m
0 for the multidegree (degx1

(w), . . . , degxm
(w))

of w, where N0 = {0, 1, 2, . . .} and N = {1, 2, . . .}. An element f ∈ F〈X〉 is called
(multi)homogeneous if it is a linear combination of monomials of the same (multi)degree.
Given f = f(x1, . . . , xm) of F〈X〉, we write f =

∑

δ∈Nm
0

fδ for multihomogeneous com-

ponents fδ of f with mdeg fδ = δ. If f ∈ F〈X〉 is multihomogeneous of multidegree
1m = (1, . . . , 1) (m times), then f is called multilinear. For δ = (δ1, . . . , δm) we denote
|δ| = δ1 + · · ·+ δm. Given δ ∈ N

m
0 , we write F〈X〉δ for all elements of F〈X〉 of multidegree

δ and we write Id(A,V)δ for all elements of Id(A,V) of multidegree δ.

3 Properties

3.1 Properties of A1

Given a ∈ F[x], we write ∂(a) for the usual derivative of a polynomial a with respect
to the variable x. Using the linearity of derivative and induction on the degree of a ∈ F[x]
it is easy to see that

[y, a] = ∂(a) holds in A1 for all a ∈ F[x]. (1)

The following properties are well-known (for example, see [1]):

Proposition 3.1. (a) {xiyj | i, j ≥ 0} and {yjxi | i, j ≥ 0} are F-bases for A1.

(b) If p = 0, then the center Z(A1) of A1 is F; if p > 0, then Z(A1) = F[xp, yp].

(c) If p > 0, then A1 is a free module over Z(A1) and the set {xiyj | 0 ≤ i, j < p} is a
basis.

(d) The algebra A1 is simple if and only if p = 0.

4
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3.2 Partial linearizations

Assume f ∈ F〈X〉 is multihomogeneous of multidegree δ ∈ N
m
0 . Given 1 ≤ i ≤ m

and γ ∈ N
k
0 for some k > 0 with |γ| = δi > 0, the partial linearization lin

γ
xi
(f) of f of

multidegree γ with respect to xi is the multihomogeneous component of

f(x1, . . . , xi−1, xi + · · ·+ xi+k−1, xi+k, . . . , xm+k−1)

of multidegree (δ1, . . . , δi−1, γ1, . . . , γk, δi+1, . . . , δm). As an example,

lin(2,1)
x2

(x21x
3
2x

2
3) = x21(x

2
2x3 + x2x3x2 + x3x

2
2)x

2
4.

The result of subsequent applications of partial linearizations to f is also called a par-
tial linearization of f . The complete linearization lin(f) of f is the result of subsequent

applications of lin1δ1
x1

, . . . , lin1δm
xm

to f .
Since F is infinite, it is well-known that the following lemma holds (see also Lemma 2.3

of [21]).

Lemma 3.2. Assume A is a unital F-algebra and V ⊂ A is an F-subspace.

1. If f is a polynomial identity for V, then all partial linearizations of f are also poly-
nomial identities for V.

2. Assume that all partial linearizations of a multihomogeneous element f of F〈X〉 are
equal to zero over some basis of V. Then f is a polynomial identity for V.

Note that part 1 of Lemma 3.2 does not hold in general for a finite field. As an example,
see [22] for the case of f(x1) = xn

1 and

A = V =
F〈X〉

id{gn | g ∈ F〈X〉 without constant term}
.

4 Identities

Lemma 4.1. The following elements of F〈X〉 are weak polynomial identities for (A1,V):

• Γm(x1, . . . , xm) = [[x1, x2], x3 · · ·xm] for all m ≥ 3,

• St3(x1, x2, x3) = x1[x2, x3]− x2[x1, x3] + x3[x1, x2],

• T4(x1, . . . , x4) = [x1, x2][x3, x4]− [x1, x3][x2, x4] + [x2, x3][x1, x4],

Proof. 1. Since [x, x] = [y, y] = 0 and [x, y] = −[y, x] = −1, we have

[u, v] ∈ Z(A1) for all u, v ∈ V. (2)

Thus Γm ∈ Id(A1,V).
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Since any g from the set {St3, T4} is multilinear, to show that g ∈ Id(A1,V) it is
enough to show that g(u1, . . . , um) = 0 in A1 for all u1, . . . , um ∈ {x, y}. Obviously,
g(x, . . . , x) = g(y, . . . , y) = 0.

2. Since St3(x, x, y) = St3(x, y, y) = 0, we obtain St3 ∈ Id(A1,V).

3. If (u1, . . . , u4) is equal to (x, x, x, y) or (x, y, y, y), then T4(uσ(1), . . . , uσ(4)) = 0 for all
σ ∈ S4. Similarly to T4(x, x, y, y) = 0 − 1 + 1 = 0, we obtain that T4(uσ(1), . . . , uσ(4)) = 0
for all σ ∈ S4 and (u1, . . . , u4) = (x, x, y, y). Thus T4 ∈ Id(A1,V).

Lemma 4.2. Any weak identity for the pair (A1,V) of degree ≤ 2 is zero.

Proof. By Lemma 3.2 it is enough to show that f = 0 for every multihomogeneous weak
identity f ∈ Id(A1,V) of degree ≤ 2.

If mdeg(f) = (δ) for δ ∈ {1, 2}, then f = αxδ
1 for α ∈ F and equality f(x) = 0 implies

α = 0.
Assume that mdeg(f) = (1, 1) and f = αx1x2 + βx2x1 for α, β ∈ F. Then f(x, x) = 0

implies that α + β = 0, i.e., f = α[x1, x2]. Hence 0 = f(x, y) = −α implies α = 0.

Lemma 4.3. The L-ideal generated by Γm, St3, T4, where m ≥ 3, coincides with I.

Proof. For m > 3 consider

Γm(x1, . . . , xm) = [x1, x2]x3x4 · · ·xm − x3x4 · · ·xm[x1, x2]
≡ x3[x1, x2]x4 · · ·xm − x3x4 · · ·xm[x1, x2]
...
≡ x3x4 · · ·xm[x1, x2]− x3x4 · · ·xm[x1, x2] = 0.

The claim is proven.

5 Completely reduced bracket-monomials

Definition 5.1. A product

xt1 · · ·xtl [xr1 , xs1 ] · · · [xrk , xsk ]

from F〈X〉, where t ∈ N
l, r, s ∈ N

k for some l ≥ 0, k > 0 with r1 < s1, . . . , rk < sk, is
called a bracket-monomial.

Lemma 5.2. If two bracket-monomials are equal in F〈X〉, then they are the same. In
other words, if

f = xt1 · · ·xtl [xr1 , xs1 ] · · · [xrk , xsk ] and f ′ = xt′
1
. . . xt′

l′
[xr′

1
, xs′

1
] · · · [xr′

k′
, xs′

k′
]

are bracket-monomials and f = f ′ in F〈X〉, then t = t′, r = r′, s = s′.

6
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Proof. Note that f can be written as a linear combinations of 2k pairwise different mono-
mials from 〈X〉 with coefficients ±1.

We can assume that l ≥ l′. Thus, t1 = t′1, . . . , tl′ = t′l′. Therefore, without loss of
generality, we may assume that l′ = 0. In case l > 0 we obtain that f is a linear combination
of pairwise different monomials which start with xt1 , but f ′ is a linear combination of
pairwise different monomials which start with xr′

1
and xs′

1
, where r′1 6= s′1; a contradiction.

Therefore, l′ = 0.
We have that f is a linear combination of pairwise different monomials which start

with xr1 and xs1 , but f ′ is a linear combination of pairwise different monomials which
start with xr′

1
and xs′

1
. Hence, {r1, s1} = {r′1, s

′
1} and inequalities r1 < s1, r

′
1 < s′1 imply

that r1 = r′1 and s1 = s′1. Therefore, without loss of generality we can assume that
f = [xr2 , xs2 ] · · · [xrk , xsk ] and f ′ = [xr′

2
, xs′

2
] · · · [xr′

k′
, xs′

k′
]. Repeating the above reasoning

several times we conclude the proof.

Definition 5.3. (a) A bracket-monomial

f = xt1 · · ·xtl [xr1 , xs1 ] · · · [xrk , xsk ] ∈ F〈X〉, (3)

where t ∈ N
l, r, s ∈ N

k for some l ≥ 0, k > 0 with r1 < s1, . . . , rk < sk is semi-reduced if

• t1 ≤ · · · ≤ tl;

• s1 ≤ · · · ≤ sk.

(b) A semi-reduced bracket-monomial f ∈ F〈X〉 defined by (3) is reduced if

• either l = 0 or l ≥ 1, tl ≤ s1.

(c) A reduced bracket-monomial f ∈ F〈X〉 defined by (3) is completely reduced if

• do not exist 1 ≤ i 6= j ≤ k with rj < ri < si < sj.

Example 5.4. Consider the list of all completely reduced bracket-monomials of multide-
gree 1m:

• m = 2: [x1, x2];

• m = 3: x1[x2, x3], x2[x1, x3];

• m = 4: x1x2[x3, x4], x1x3[x2, x4], x2x3[x1, x4], [x1, x2][x3, x4], [x1, x3][x2, x4];

• m = 5: x1x2x3[x4, x5], x1x2x4[x3, x5], x1x3x4[x2, x5], x2x3x4[x1, x5],x1[x2, x3][x4, x5],

x1[x2, x4][x3, x5], x2[x1, x3][x4, x5], x2[x1, x4][x3, x5], x3[x1, x4][x2, x5]

For 1 ≤ i < j we consider N
i
0 as a subset of Nj

0 by

(r1, . . . , ri) → (r1, . . . , ri, 0, . . . , 0
︸ ︷︷ ︸

j−i

).

Assume r ∈ N
i
0 and s ∈ N

j
0 for some i, j ≥ 1. Then we write r < s for the lexicographical

order on N
k
0, where k = max{i, j} and we consider r, s as elements of Nk

0.

7
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Definition 5.5. Consider a bracket-monomial

f = xt1 · · ·xtl [xr1 , xs1 ] · · · [xrk , xsk ] ∈ F〈X〉, (4)

where t ∈ N
l, r, s ∈ N

k for some l ≥ 0, k > 0 and r1 < s1, . . . , rk < sk. Then

(a) the monomial weight of f in case l > 0 is mw(f) = (tσ(1), . . . , tσ(l)) for some permu-
tation σ ∈ Sl such that

tσ(1) ≥ · · · ≥ tσ(l)

and mw(f) = (0) in case l = 0.

(b) the bracket weight of f is bw(f) = (sσ(1)−rσ(1), . . . , sσ(k)−rσ(k)) for some permutation
σ ∈ Sk such that

sσ(1) − rσ(1) ≥ · · · ≥ sσ(k) − rσ(k).

Example 5.6. (a) We have St3(x1, x2, x3) = f1 − f2 + f3 for the semi-reduced bracket-
monomials

f1 = x1[x2, x3], f2 = x2[x1, x3], f3 = x3[x1, x2].

Then mw(f1) = (1), mw(f2) = (2), mw(f3) = (3) and bw(f1) = (1), bw(f2) = (2),
bw(f3) = (1). Note that f1, f2 are reduced, but f3 is not reduced.
(b) We have T4(x1, . . . , x4) = h1 − h2 + h3 for the reduced bracket-monomials

h1 = [x1, x2][x3, x4], h2 = [x1, x3][x2, x4], h3 = [x2, x3][x1, x4].

Then mw(hi) = (0) for i = 1, 2, 3 and bw(h1) = (1, 1), bw(h2) = (2, 2), bw(h3) = (3, 1).
Note that h1, h2 are completely reduced, but h3 is not completely reduced.

Lemma 5.7. Assume that f ∈ F〈X〉 is multihomogeneous of multidegree δ ∈ N
m
0 . Then

there are semi-reduced bracket-monomials fi ∈ F〈X〉 and αi, β ∈ F such that

f ≡ βxδ1
1 · · ·xδm

m +
∑

i

αifi,

where mdeg(fi) = δ for all i. Moreover,

(a) if f ∈ Id(A1,V), then β = 0;

(b) if f is a bracket-monomial, then β = 0 and mw(fi) ≤ mw(f) for all i.

Proof. Assume that f1, f2 ∈ F〈x1, . . . , xm〉 are multihomogeneous and 1 ≤ i < j ≤ m.
Since

f1xjxif2 = f1xixjf2 − f1[xi, xj ]f2 = f1xixjf2 − f1f2[xi, xj ]− f1[[xi, xj ], f2],

by Lemma 4.3 we obtain that

f1xjxif2 ≡ f1xixjf2 − f1f2[xi, xj ]. (5)

8
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Lemma 4.3 also implies that

f1[xi, xj]f0f2 ≡ f1f0[xi, xj ]f2 (6)

for every f0 ∈ F〈X〉. Since equivalences (5) and (6) preserve the multidegree, applying
formulas (5) and (6) to f we obtain that f ≡ βxδ1

1 · · ·xδm
m +

∑

i αifi for some semi-reduced
bracket-monomials fi and β, αi ∈ F, where mdeg(fi) = δ.

Assume f ∈ Id(A1,V). Since [x, x] = 0, we have fi(x, . . . , x) = 0 in A1 for all i.
Therefore, 0 = f(x, . . . , x) = β x|δ|. Thus β = 0.

If f is a bracket-monomial, then it is easy to see that β = 0 and mw(fi) ≤ mw(f) for
all i.

Lemma 5.8. Consider a semi-reduced bracket-monomial

f = xt1 · · ·xtl [xr1 , xs1 ] · · · [xrk , xsk ] ∈ F〈X〉.

Then f ≡
∑

i αifi for some αi ∈ F, fi ∈ F〈X〉 such that fi is a reduced bracket-monomial,
mdeg(fi) = mdeg(f), and mw(fi) ≤ mw(f) for all i.

Proof. Since f is semi-reduced, we have r1 < s1, . . . , rk < sk, t1 ≤ · · · ≤ tl and also
s1 ≤ · · · ≤ sk, where l ≥ 0, k > 0.

We prove the lemma by induction on mw(f). If mw(f) = (0), then l = 0 and f is
reduced.

Assume that (0) < mw(f) and for every semi-reduced bracket-monomial f ′ ∈ F〈X〉
with mw(f ′) < mw(f) the statement of this lemma holds.

Assume that f is not reduced, i.e., l ≥ 1 and tl > s1. Using St3 from Lemma 4.1, we
obtain

xtl [xr1 , xs1] ≡ xs1 [xr1 , xtl ]− xr1 [xs1 , xtl ]. (7)

Thus f ≡ f1 − f2 for

f1 = xt1 · · ·xtl−1
xs1 [xr1 , xtl ][xr2 , xs2 ] · · · [xrk , xsk ],

f2 = xt1 · · ·xtl−1
xr1 [xs1 , xtl ][xr2 , xs2 ] · · · [xrk , xsk ].

Note that mdeg(f1) = mdeg(f2) = mdeg(f). Using part (b) of Lemma 5.7, we obtain semi-
reduced bracket-monomials g1i, g2j ∈ F〈X〉 and α1i, α2j ∈ F such that f1 ≡

∑

i α1ig1i and
f2 ≡

∑

j α2jg2j , where mdeg(g1i) = mdeg(g2j) = mdeg(f), mw(g1i) ≤ mw(f1) < mw(f)
and mw(g2j) ≤ mw(f2) < mw(f). Applying the induction hypothesis to g1i, g2j we
conclude the proof, since f ≡

∑

i α1ig1i −
∑

i α2ig2i.

Lemma 5.9. Consider a reduced bracket-monomial

f = xt1 · · ·xtl [xr1 , xs1 ] · · · [xrk , xsk ] ∈ F〈X〉.

Then f ≡
∑

i αifi for some αi ∈ F, fi ∈ F〈X〉 such that fi is a completely reduced
bracket-monomial, mdeg(fi) = mdeg(f), and mw(fi) ≤ mw(f) for all i.

9
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Proof. Since f is reduced, we have r1 < s1, . . . , rk < sk, t1 ≤ · · · ≤ tl ≤ s1 ≤ · · · ≤ sk,
where l ≥ 0, k > 0.

We prove the lemma by induction on mw(f).

1. Assume mw(f) = (0), i.e., f = [xr1 , xs1] · · · [xrk , xsk ]. To show that the statement of
this lemma holds for f we use induction on bw(f).

Obviously, if bw(f) = (1), i.e., f = [xr1 , xs1] with s1 − r1 = 1, then f is completely
reduced.

Assume (1) < bw(f) and for every reduced bracket-monomial f ′ ∈ F〈X〉 such that
mw(f ′) = (0) and bw(f ′) < bw(f) the statement of the lemma holds.

Assume that f is not completely reduced, i.e., there are 1 ≤ i 6= j ≤ k such that
rj < ri < si < sj. For short, denote a1 = rj, a2 = ri, a3 = si, a4 = sj. Note that
a1 < a2 < a3 < a4. Using equivalence (6) we obtain that

[xr1 , xs1 ] · · · [xrk , xsk ] ≡ [xa2 , xa3 ][xa1 , xa4 ] b

for some product b = [xr′
1
, xs′

1
] · · · [xr′

k−2
, xs′

k−2
] of brackets. Applying the equivalence

T4(xa1 , xa2 , xa3 , xa4) ≡ 0, we obtain

[xa2 , xa3 ][xa1 , xa4 ] ≡ −[xa1 , xa2 ][xa3 , xa4 ] + [xa1 , xa3 ][xa2 , xa4 ].

Thus f ≡ −f1 + f2 for
f1 = [xa1 , xa2 ][xa3 , xa4 ]b,

f2 = [xa1 , xa3 ][xa2 , xa4 ]b.

Note that mdeg(f1) = mdeg(f2) = mdeg(f). Since

bw([xa2 , xa3 ][xa1 , xa4 ]) = (a4 − a1, a3 − a2)

is greater than both bw([xa1 , xa2 ][xa3 , xa4 ]) and bw([xa1 , xa3 ][xa2 , xa4 ]), we can see that
bw(f1) < bw(f) and bw(f2) < bw(f).

We use equivalence (6) to obtain reduced bracket-monomials g1 and g2 such that g1 ≡ f1
and g2 ≡ f2, where mdeg(g1) = mdeg(g2) = mdeg(f), mw(g1) = mw(g2) = (0),

bw(g1) = bw(f1) < bw(f) and bw(g2) = bw(f2) < bw(f).

Applying the induction hypothesis to g1 and g2, we can see that the statement of this
lemma holds for f .

2. Assume that (0) < mw(f), that is, l ≥ 1, and for every reduced bracket-monomial
f ′ ∈ F〈X〉 with mw(f ′) < mw(f) the claim of this lemma holds. To show that the
statement of this lemma holds for f we use induction on bw(f).

Obviously, if bw(f) = (1), i.e., f = xt1 · · ·xtl [xr1 , xs1] with s1 − r1 = 1, then f is
completely reduced.

Assume (1) < bw(f) and for every reduced bracket-monomial f ′ ∈ F〈X〉 such that
mw(f ′) = mw(f) and bw(f ′) < bw(f) the statement of the lemma holds.
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Assume that f is not completely reduced, i.e., there are 1 ≤ i 6= j ≤ k such that
rj < ri < si < sj. For short, denote a1 = rj, a2 = ri, a3 = si, a4 = sj. Note that
a1 < a2 < a3 < a4 and tl ≤ a3. Using equivalence (6) we obtain that

[xr1 , xs1 ] · · · [xrk , xsk ] ≡ [xa2 , xa3 ][xa1 , xa4 ] b

for some product b = [xr′
1
, xs′

1
] · · · [xr′

k−2
, xs′

k−2
] of brackets, where tl ≤ s′1 ≤ · · · ≤ s′k−2.

Since T4(xa1 , xa2 , xa3 , xa4) ≡ 0, we obtain

[xa2 , xa3 ][xa1 , xa4 ] ≡ −[xa1 , xa2 ][xa3 , xa4 ] + [xa1 , xa3 ][xa2 , xa4 ].

Thus f ≡ −f1 + f2 for
f1 = xt1 · · ·xtl [xa1 , xa2 ][xa3 , xa4 ]b,

f2 = xt1 · · ·xtl [xa1 , xa3 ][xa2 , xa4 ]b.

Note that mdeg(f1) = mdeg(f2) = mdeg(f). Since

bw([xa2 , xa3 ][xa1 , xa4 ]) = (a4 − a1, a3 − a2)

is greater than bw([xa1 , xa2 ][xa3 , xa4 ]) and bw([xa1 , xa3 ][xa2 , xa4 ]), we can obtain the in-
equalities bw(f1) < bw(f) and bw(f2) < bw(f).

2.1. Assume that lt ≤ a2. Then lt ≤ a2 < a3 < a4 and tl ≤ s′1 ≤ · · · ≤ s′k−2. We
use equivalence (6) to obtain reduced bracket-monomials g1 and g2 such that g1 ≡ f1 and
g2 ≡ f2, where mdeg(g1) = mdeg(g2) = mdeg(f), mw(g1) = mw(g2) = mw(f),

bw(g1) = bw(f1) < bw(f) and bw(g2) = bw(f2) < bw(f).

Applying induction on bracket weight to g1 and g2, we obtain that the statement of the
lemma holds for f .

2.2. Assume a2 < tl. Using equivalence (7), we obtain f1 ≡ h1 − h2 for

h1 = xt1 · · ·xtl−1
xa2 [xa1 , xtl ][xa3 , xa4 ]b,

h2 = xt1 · · ·xtl−1
xa1 [xa2 , xtl ][xa3 , xa4 ]b.

Since tl > a1, a2, we have mw(h1) < mw(f) and mw(h2) < mw(f). Using part (b)
of Lemma 5.7 and Lemma 5.8, we obtain reduced bracket-monomials g1i′, g2j′ ∈ F〈X〉
and scalars α1i′ , α2j′ ∈ F such that h1 ≡

∑

i′ α1i′g1i′ and h2 ≡
∑

j′ α2j′g2j′, and where
mdeg(g1i′) = mdeg(g2j′) = mdeg(f),

mw(g1i′) ≤ mw(h1) < mw(f) and mw(g2j′) ≤ mw(h2) < mw(f).

We apply induction on monomial weight to g1i′ and g2j′ to show that the statement of
the lemma holds for f1. We establish that the statement of the lemma holds for f2 by
repeating the proof from part 2.1. Therefore, the statement of the lemma holds for f .

11
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Theorem 5.10. Assume that f ∈ F〈X〉 is multihomogeneous of multidegree δ ∈ N
m
0 . Then

there are completely reduced bracket-monomials fi ∈ F〈X〉 and αi, β ∈ F such that

f ≡ βxδ1
1 · · ·xδm

m +
∑

i

αifi,

where mdeg(fi) = δ for all i. Moreover,

(a) if f ∈ Id(A1,V), then β = 0;

(b) if f is a bracket-monomial, then β = 0 and mw(fi) ≤ mw(f) for all i.

Proof. Consequently applying Lemmas 5.7, 5.8, 5.9 we obtain the required.

6 Minimal weak polynomial identities

Theorem 6.1. Every weak polynomial identity for the pair (A1,V) in two variables lies in
the L-ideal I generated by St3, Γ3, T4.

Proof. Assume that f ∈ F〈x1, x2〉 is a weak polynomial identity in two variables for the pair
(A1,V). By Lemma 3.2, we can assume that f is multihomogeneous of multidegree (r, s)
for some r, s ≥ 0. Then Theorem 5.10 implies that f is equivalent to a linear combination
of completely reduced bracket-monomials of multidegree (r, s).

Assume that r ≥ s. If s = 0, then f ≡ 0 by the definition of completely reduced
bracket-monomials. Assume s > 0. Then

f(x1, x2) ≡
s∑

i=1

αix
r−i
1 xs−i

2 [x1, x2]
i

for some αi ∈ F. Since 0 = f(x, y) =
∑s

i=1(−1)iαix
r−iys−i in A1, we obtain by part (a) of

Proposition 3.1 that α1 = · · · = αs = 0, i.e., f ≡ 0.
The case of r < s can be considered similarly. The proof is completed.

Lemma 6.2. Every weak polynomial identity for the pair (A1,V) of degree 3 lies in the
L-ideal generated by Γ3 and St3.

Proof. Assume that f ∈ F〈X〉 is a weak polynomial identity of degree 3 for the pair
(A1,V). By Lemma 3.2, we can assume that f is multihomogeneous of multidegree ∆ with
|∆| = 3. By Theorem 5.10, f is equivalent to a linear combination of completely reduced
bracket-monomials of multidegree ∆.

Assume ∆ = (1, 1, 1). Then

f(x1, x2, x3) ≡ αx1[x2, x3] + βx2[x1, x3],

where α, β ∈ F. Since 0 = f(x, y, y) = −βy and 0 = f(x, y, x) = αx in A1, we obtain
α = β = 0. The definition of the ideal I implies the required.

If ∆ = (2, 1) or ∆ = (3), then Theorem 6.1 concludes the proof.

12
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Theorem 6.3. 1. The minimal degree of a non-trivial weak polynomial identity for the
pair (A1,V) is three.

2. The vector space Id(A1,V)∆ for |∆| = 3 has the following basis:

• Γ3(x1, x2, x3), Γ3(x1, x3, x2), and St3(x1, x2, x3), in case ∆ = 13;

• Γ3(x1, x2, x1), in case ∆ = (2, 1),

• ∅, in case ∆ = (3).

Proof. 1. It follows from Lemmas 4.1 and 4.2.

2. Lemma 6.2 implies that Γ3(x1, x2, x1) 6= 0 is a basis for Id(A1,V)(2,1) and ∅ is a basis
for Id(A1,V)(2,1) = {0}.

Since Γ3(x1, x2, x3) and St3(x1, x2, x3) are multilinear, Lemma 6.2 implies that every
element f ∈ Id(A1,V)13 lies in the F-span of

Γ3(xσ(1), xσ(2), xσ(3)) and St3(xσ(1), xσ(2), xσ(3))

for all σ ∈ S3. Since Γ3(x2, x3, x1) = −Γ3(x1, x2, x3) + Γ3(x1, x3, x2), we obtain that f lies
in the F-span of Γ3(x1, x2, x3), Γ3(x1, x3, x2), and St3(x1, x2, x3). The linear independence
follows from straightforward calculations.

7 Weak polynomial identities of degrees 4 and 5

Proposition 7.1. Any weak polynomial identity for the pair (A1,V) of degree 4 lies in the
L-ideal I generated by Γ3, St3, and T4.

Proof. Assume that f ∈ F〈X〉 is a weak polynomial identity of degree 4 for the pair
(A1,V). By Lemma 3.2, we can assume that f is multihomogeneous of multidegree ∆ with
|∆| = 4. By Theorem 5.10, f is equivalent to a linear combination of completely reduced
bracket-monomials of multidegree ∆.

Assume ∆ = 14. Using Example 5.4 we can see that

f(x1, . . . , x4) ≡ α1 x1x2[x3, x4] + α2 x1x3[x2, x4] + α3 x2x3[x1, x4]

+ β1[x1, x2][x3, x4] + β2[x1, x3][x2, x4],

where αi, βj ∈ F. Since we have 0 = f(x, x, y, x) = α1x
2, 0 = f(x, y, x, x) = −α2x

2,
and 0 = f(y, x, x, x) = −α3x

2, we thus obtain α1 = α2 = α3 = 0. Then equalities
0 = f(x, y, x, y) = β1 and 0 = f(x, x, y, y) = β2 imply that f = 0.

Assume ∆ = (2, 1, 1). Then

f(x1, x2, x3) ≡ α1 x
2
1[x2, x3] + α2 x1x2[x1, x3] + α3 [x1, x2][x1, x3],

where α1, α2, α3 ∈ F. We have α1 = 0, since 0 = f(x, y, x) = α1x
2. Thus, the equality

0 = f(x, x, y) = −α2x
2 implies α2 = 0. Finally, since 0 = f(y, x, x) = α3, we obtain that

f = 0.
If ∆ belongs to the list {(3, 1), (2, 2), (4)}, then Theorem 6.1 concludes the proof.
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Proposition 7.2. Any weak polynomial identity for the pair (A1,V) of degree 5 lies in the
L-ideal I generated by Γ3, St3, and T4.

Proof. Assume that f ∈ F〈X〉 is a weak polynomial identity of degree 5 for the pair
(A1,V). By Lemma 3.2, we can assume that f is multihomogeneous of multidegree ∆ with
|∆| = 5. By Theorem 5.10, f is equivalent to a linear combination of completely reduced
bracket-monomials of multidegree ∆.

Assume ∆ = 15. Using Example 5.4 we can see that f(x1, . . . , x5) is equivalent to

α1 x1x2x3[x4, x5] + α2 x1x2x4[x3, x5] + α3 x1x3x4[x2, x5] + α4 x2x3x4[x1, x5]

+β1 x1[x2, x3][x4, x5] + β2 x1[x2, x4][x3, x5] + β3 x2[x1, x3][x4, x5]

+ β4 x2[x1, x4][x3, x5] + β5 x3[x1, x4][x2, x5]

for some αi, βj ∈ F. Considering

f(x, x, x, y, x) = f(x, x, y, x, x) = f(x, y, x, x, x) = f(y, x, x, x, x) = 0,

we obtain α1 = α2 = α3 = α4 = 0. Equalities

f(y, y, x, x, x) = f(y, x, y, x, x) = f(x, y, y, x, x) = f(y, x, x, y, x) = 0

imply that β5 = β4 = β2 = β3 = 0. Finally, 0 = f(x, y, x, y, x) = β1x implies β1 = 0, i.e.,
f = 0.

Assume ∆ = (3, 1, 1). Then

f(x1, x2, x3) ≡ α1x
3
1[x2, x3] + α2x

2
1x2[x1, x3] + α3x1[x1, x2][x1, x3]

for some αi ∈ F. We have α1 = 0, since 0 = f(x, y, x) = α1x
3. Thus, the equality

0 = f(x, x, y) = −α2x
3 implies α2 = 0. Finally, since 0 = f(y, x, x) = α3y, we obtain that

f = 0.
Assume ∆ = (2, 2, 1). Then f(x1, x2, x3) is equivalent to

α1x
2
1x2[x2, x3] + α2x1x

2
2[x1, x3] + α3x1[x1, x2][x2, x3] + α4x2[x1, x2][x1, x3]

for some αi ∈ F. We have α1 = α3 = 0, since 0 = f(x, y, x) = α1x
2y − α3x. Thus, the

equality 0 = f(x, x, y) = −α2x
3 implies α2 = 0. Finally, since 0 = f(y, x, x) = α4x, we

obtain that f = 0.
Assume ∆ = (2, 1, 1, 1). Then f(x1, x2, x3, x4) is equivalent to

α1x
2
1x2[x3, x4] + α2x

2
1x3[x2, x4] + α3x1x2x3[x1, x4]

+ β1x1[x1, x2][x3, x4] + β2x1[x1, x3][x2, x4] + β3x2[x1, x3][x1, x4]

for some αi, βi ∈ F. Since 0 = f(x, x, y, x) = α1x
3 and 0 = f(x, y, x, x) = α2x

3, we have
α1 = α2 = 0,. Thus, the equality 0 = f(x, x, x, y) = −α3x

3 implies α3 = 0. Considering
0 = f(y, x, x, x) = β3x, we obtain β3 = 0. Finally, equalities 0 = f(y, y, x, x) = β2y and
0 = f(y, x, y, x) = β1y imply that β1 = β2 = 0, i.e., f = 0.

If ∆ belongs to the list {(4, 1), (3, 2), (5)}, then Theorem 6.1 concludes the proof.
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