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On a version of the problem B of Mahler involving deriva-

tives

Diego Alves

Abstract. In 1902, Paul Stäckel constructed an analytic function f(z) in a neigh-
borhood of the origin, which was transcendental, and with the property that both
f(z) and its inverse, as well as its derivatives, assumed algebraic values at all alge-
braic points in this neighborhood. Inspired by this result, Mahler in 1976 questioned
the existence of a transcendental entire function f(z) such that f(Q) and f−1(Q) are
subsets of Q. This problem was solved by Marques and Moreira in 2017. As Stäcklel’s
result involved derivatives, it is natural to question whether we have an analogous
result for transcendental entire functions involving derivatives. In this article, we
show that there are an uncountable amount of such functions.

1 Introduction

An analytic function f over a domain Ω ⊆ C is said to be a transcendental function

over C(z), if the only polynomial complex P in two variables satisfying P (z, f(z)) = 0,
for all z ∈ Ω, is the null polynomial. From the well-known characterization that an entire
function is transcendental if and only if it is not a polynomial function, we obtain several
examples of transcendental functions, such as the sine and cosine trigonometric functions
and the exponential function.

At the end of the 19th century, after the proof of the Hermite-Lindemann Theorem,
which demonstrates that the exponential function assumes transcendental values in every
non-zero algebraic number, the question arose: does a transcendental entire function almost
always (e.g. with the exception of a finite subset of Q) assume transcendental values in
algebraic points?

In this sense, Straüs in 1886, tried to prove that an analytic and transcendental function
in a neighborhood of the origin cannot assume rational values in all rational points of its
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domain. However, he was surprised when Weierstrass presented him with a counterexample
in the same year. Weierstrass also conjectured that there were transcendental entire func-
tions that assumed algebraic values at all algebraic points. This conjecture was confirmed
by Stäckel [5] who proved the following more general result: if Σ is a countable subset of
C and T is a dense subset of C, then there exists an entire and transcendental function f
such that f(Σ) ⊆ T. The Weierstrass conjecture is obtained by taking Σ = T = Q. In this
context of arithmetic behavior of analytic functions, Stäckel has other results, of which we
highlight the following, proved in [6]

Theorem of Stäckel. There exists a transcendental function

f(z) = −z +

∞
∑

h=2

fhz
h,

with rational coefficients, which converges in a neighbourhood of the origin and has the

property that both f(z) and its inverse function, as well as all their derivatives, are algebraic

at all algebraic points in this neighbourhood.

Based on this theorem, Mahler [2] questioned whether this result (without involving
derivatives) could be extended to transcendental entire functions, and named this question
Problem B. Precisely, we transcribe below the statement of the question proposed by
Mahler:

Problem B. Does there exist an entire transcendental function

f(z) =

∞
∑

h=0

fhz
h

with rational coefficients fh such that both f(z) and its inverse function are algebraic in

all algebraic points?

Since, by Picard’s Great Theorem, an entire and transcendental function cannot even
be one-to-one (let alone admit an inverse), it is believed that Mahler when enunciating the
Problem B, was actually referring to the inverse image instead of the function inverse, as
it might seem at first reading. This understanding was adopted by Marques and Moreira
[3], who in 2017 solved the Problem B of Mahler proving the following result:

Theorem 1.1 (Cf. Theorem 1 of [3]). There are uncountably many transcendental entire

functions f(z) with rational coefficients such that

f(Q) = f−1(Q) = Q,

where f−1(Q) is the inverse image of Q by f.

Since Stäckel’s result involved derivatives, it is natural to ask whether we could extend
the previous theorem to a version involving derivatives, as follows:
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Problem B involving derivatives. Does there exist an entire transcendental function f(z)
with rational coefficients such that

[

f (j)(Q) ∪
(

f (j)
)−1

(Q)
]

⊆ Q, for all j ≥ 0?

Here f (j) denotes the derivative of order j of f with f (0) = f and
(

f (j)
)−1

(Q) denotes

the inverse image of Q by the function f (j).
We refer the reader to [2, 7] (and references therein) for more about this subject.
In this paper, inspired by the ideas of Marques and Moreira [3], and using the theorems

of Rouché and Hurwitz, we provide an affirmative answer to the question above, proving
the following theorem:

Theorem 1.2. There are uncountably many transcendental entire functions f(z) with ra-

tional coefficients such that

f (j)(Q) ⊆ Q and
(

f (j)
)−1

(Q) ⊆ Q, for all j ≥ 0.

For a more didactic exposition and for the sake of completeness, we will review some
basic facts about zeros of analytic functions in a complex variable. Under certain assump-
tions, it is possible to compare the number of zeros of two (or more) analytic functions in a
domain in which both are defined. It is on this topic that the next two theorems address.

Rouché’s Theorem. Let U ⊆ C be a domain and suppose that f, g : U → C are analytic

functions. Let V ⊆ U be a bounded and closed domain whose boundary ∂V is a piece-wise

smooth Jordan curve such that V − ∂V is a domain. If

|f(z)− g(z)| < |f(z)|, for all z ∈ ∂V, (1)

then f and g have the same number of zeros inside V, each of them counted as many times

as their multiplicity.

Proof. See [4, Chapter 6].

Hurwitz’s Theorem. Let G be a domain and suppose that {fn : G → C}n is a sequence

of analytic functions on G that uniformly converge on compact subsets of G to f. If f 6≡ 0
and there is R > 0 such that B(a, R) ⊆ G and furthermore f does not vanish at any point

of ∂B(a, r), then there is an integer N such that f and fn have the same number of zeros

in B(a;R).

Proof. See [1, Chapter VII].

In the applications made in this work, we will work with integer functions and the set
V will always be a closed ball. In Rouché’s Theorem notations, we will have U = C and
V = B(a, R), therefore, to apply Rouché’s Theorem, our only concern will be to check
whether the inequality (1) is satisfied.

Now, we are ready to demonstrate Theorem 1.2.
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2 The proof

To simplify our exposition, we will denote the set of real algebraic numbers by A, and
given two integers a and b with a < b, [a,b] to denote the set {a, a + 1, . . . , b}. Let us
consider {α1, α2, α3, . . .} an enumeration of Q such that α1 = 0 and for every n ≥ 1,

• α3n−1 and α3n are non-real complex numbers with α3n−1 = α3n;

• α3n+1 is a real number.

We will construct the desired function inductively. We start with f1(z) = z2 and P1(z) = 1.
Note that f1({α1}) = f−1

1 ({α1}) = {0} ⊆ Q. We will construct a sequence of analytic
functions f2(z), f3(z), . . . of the form

fm(z) = fm−1(z) + ǫmz
m+1Pm(z) =

tm
∑

i=2

aiz
i,

satisfying

(i) fm(z), Pm(z) ∈ A[z]− {0} and atm 6= 0, where tm ≥ m+ 1;

(ii) Pm−1(z)|Pm(z) and Pm(0) 6= 0;

(iii) ǫm ∈ A;

(iv) 0 < |ǫm| <
1

L(Pm)mm+1+deg Pm

:= Γm;

(v) a2, . . . , am+1 ∈ Q− {0},

where L(Pm) denotes the length of the polynomial Pm, given by the sum of absolute values
of its coefficients. The desired function will have the form

f(z) = z2 +
∑

n≥2

ǫnz
n+1Pn(z).

Now using that |P (z)| ≤ L(P )max{1, |z|}degP , for all P (z) ∈ C[z], we get that for all
z ∈ B(0, R) (where R is a fixed arbitrary positive real number)

|ǫnz
n+1Pn(z)| <

(

max{1, R}

n

)n+1+deg Pn

:= un.

Since un < (1/2)n, for all sufficiently large n, it follows by the comparison test and by the
Weierstrass M-test that the series

f(z) = z2 +
∑

n≥2

ǫnz
n+1Pn(z)
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converges uniformly on each ball B(0, R) (which implies uniform convergence on compact
subsets of C). In particular, f is an entire function.

Suppose we have constructed fn satisfying conditions (i) to (v). Now, we will construct
fn+1 with the desired properties. Since fn is a polynomial of degree greater than n, the
set An defined below is finite

An =
n
⋃

j=0

(f (j)
n )−1({α1, . . . , α3n+1}) = {0, y1, . . . , ys}.

So, we define
fn+1(z) = fn(z) + ǫn+1z

n+2Pn+1(z),

where

Pn+1(z) = Pn(z)(z − α2) · · · (z − α3n+1)

s
∏

i=1

(z − yi)
deg fn+n+1

and ǫn+1 will be chosen later. Note that Pn+1(z) ∈ A[z]. Indeed, if yk is not real, as yk is a

zero of f
(j)
n (z)−αi, for some j ∈ [0, . . . , n] and i ∈ [1, 3n+1] and fn(z) ∈ A[z], we have that

yk is a zero of f
(j)
n (z)−αi. Since {α1, . . . , α3n+1} is closed for complex conjugation, it follows

that yk ∈ An. Thus, Pn+1(z) ∈ A[z] since Pn(z) ∈ A[z] and the set of algebraic numbers
{α2, . . . , α3n+1, y1, . . . , ys} is composed of real numbers and pairs of conjugate of complex
(non-real) numbers. Also Pn+1(0) 6= 0, since Pn(0) 6= 0 and α2, . . . , α3n+1, y1, . . . , ys are
not null. As An is a finite set, we can choose a positive real number rn+1 such that

n+ 1 < rn+1 < n+ 2 and An ∩ ∂B(0, rn+1) = ∅.

So, for all j ∈ [0, n] and i ∈ [1, 3n + 1], we have min
|z|=rn+1

|f (j)
n (z) − αi| > 0. In this way, we

can choose ǫn+1 satisfying

|ǫn+1| <

min
|z|=rn+1

|f (j)
n (z)− αi|

max
0≤k≤n

max
|z|=rn+1

|
(

zn+2Pn+1(z)
)(k)

|
= Λi,j, (2)

for all i ∈ [1, 3n+ 1] and for all j ∈ [0, n]. Therefore, for any j ∈ [0, n] and i ∈ [1, 3n+ 1],
we obtain that for all w ∈ ∂B(0, rn+1)

∣

∣f (j)
n (w)− αi

∣

∣ ≥ min
|z|=rn+1

|f (j)
n (z)− αi|

> |ǫn+1|| max
0≤k≤r

max
|z|=rn+1

|
(

zn+2Pn+1(z)
)(k)

|

≥ |ǫn+1|

∣

∣

∣

∣

[

(

zn+2Pn+1(z)
)(j)

]

|z=w

∣

∣

∣

∣

= |f
(j)
n+1(w)− αi − (f (j)

n (w)− αi)|.
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Then, by Rouché’s theorem, f
(j)
n (z)− αi and f

(j)
n+1(z)− αi have the same number of zeros

(counting multiplicities) in B(0, rn+1), for any j ∈ [0, n] and i ∈ [1, 3n + 1]. Note that,

if 0 is a root of multiplicity m ≥ 1 of f
(j)
n (z) − αi, then 0 is a root of multiplicity m of

f
(j)
n+1(z) − αi. In fact, if j = 0, since f

(0)
n (z) = fn(z) and f

(0)
n+1(z) = fn+1(z) has the same

coefficients up to order 2, with the coefficient of order 2 not zero, it follows that m = 2 and
0 is a multiplicity root m = 2 of f

(j)
n+1(z)− αi. If j ≥ 1, then the multiplicity m is equal to

1, since
[

(

f (j)
n (z)− αi

)′
]

|z=0
= f (j+1)

n (0) = (j + 1)!aj+1,

which is not zero because 2 ≤ j + 1 ≤ n + 1 and a2, . . . , an+1 are non-zero. Since the

coefficients of fn(z) and fn+1(z) coincide up to the order n+1, we have f
(j)
n (0) = f

(j)
n+1(0),

for all j ∈ [0, n+ 1], so that f
(j)
n+1(0)− αi = f

(j)
n (0)− αi = 0 and

[

(

f
(j)
n+1(z)− αi

)′
]

|z=0

= f
(j+1)
n+1 (0) = f (j+1)

n (0) = (j + 1)!aj+1 6= 0.

Therefore, 0 is a root of multiplicity m = 1 of f
(j)
n+1(z)−αi. On the other hand, if an element

λ ∈ B(0, rn+1) − {0} is a zero of multiplicity m ≥ 1 of f
(j)
n (z) − αi, then λ = yl for some

l ∈ {1, . . . , s}, so that λ is a zero of multiplicity greater than deg fn of [zn+2Pn+1(z)]
(j)

,

since j ≤ n. Therefore, λ is also a zero of multiplicity m of f
(j)
n+1(z) − αi. From these

facts, we obtain that the polynomials f
(j)
n+1(z)− αi and f

(j)
n (z)− αi (for any j ∈ [0, n] and

i ∈ [1, 3n+1]) have exactly the same zeros with the respective multiplicities in B(0, rn+1).
In particular, for all i ∈ [1, 3n+ 1] and j ∈ [0, n], we have

(f (j)
n )−1(αi) ∩ B(0, rn+1) = (f

(j)
n+1)

−1(αi) ∩ B(0, rn+1). (3)

This argument ensures that no new pre-image from the set {α1, . . . , α3n+1} by f
(j)
n+1 in

B(0, rn+1), with j ∈ [0, n], will appear in addition to those already existing by the function

f
(j)
n . Note also that, since fn+1 ∈ A[z] has degree greater than n and Q is algebraically

closed, f
(j)
n+1({α1, . . . , α3n+1}) and

(

f
(j)
n+1

)−1

({α1, . . . , α3n+1}), with j ∈ [0, n], are subsets

of Q.
Let’s write

fn+1(z) =

tn+1
∑

i=2

aiz
i.

The coefficients of fn+1 from the order 2 to the order n+1 coincide with the coefficients
of fn, and therefore are non-zero rational numbers. We show that it is possible to choose
ǫn+1 ∈ A satisfying (2), (iv) and such that an+2 is also a non-zero rational number. In fact,
let cn+2 be the coefficient of zn+2 in fn(z), then

an+2 = cn+2 + ǫn+1Pn+1(0).
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Since Pn+1(0) 6= 0, we can choose p/q ∈ Q− {0} such that

0 <

∣

∣

∣

∣

cn+2 −
p

q

∣

∣

∣

∣

< |Pn+1(0)|min{Γn+1,Λ1,0, . . . ,Λ3n+1,0, . . . ,Λ1,n . . . ,Λ3n+1,n}.

We define ǫn+1 = (p/q − cn+2) /Pn+1(0), then ǫn+1 ∈ A, satisfies (iv) and (2) and further-
more, an+2 = p/q ∈ Q− {0}. So, by construction, the function

f(z) = z2 +
∞
∑

n=2

ǫnz
n+1Pn(z) = lim

n→∞
fn(z)

is an entire function and has rational coefficients. Now, let’s check that

f (j)(Q) ⊆ Q and (f (j))−1(Q) ⊆ Q, for all j ≥ 0. (4)

To see the first inclusion, notice that by construction

fn(αi) = fi(αi), for all n ≥ i.

In this way, we have
f(αi) = lim

n→∞
fn(αi) = fi(αi) ∈ Q.

Also, as the multiplicity of αi in P tends to infinity when n tends to infinity, we have (by
the general Leibniz rule for differentiation) a similar property involving the derivatives of f
and of the functions fn, precisely: given a positive integer j, there exists m = m(j, i) ∈ N

such that
f (j)
n (αi) = f (j)

m (αi) for all n ≥ m.

As fn converges uniformly on compact subsets of C for f the same kind of convergence
occurs from f

(j)
n to f (j), for all j ≥ 1, so that

f (j)(αi) = lim f (j)
n (αi) = f

(j)
m(j,i)(αi) ∈ Q,

showing the first inclusion in (4).
To prove the second inclusion in (4), we start by noting that if i ≤ 3n+1 and t, j ≤ n,

then
(f (j)

n )−1(αi) ∩B(0, rt) = (f
(j)
n+1)

−1(αi) ∩ B(0, rt). (5)

This follows directly from (3) and from rt ≤ rn+1. Therefore, if i, t are positive integers
and j is a non-negative integer and we set l = max{t, i, j}, then we have

(f (j)
n )−1(αi) ∩B(0, rt) = (f

(j)
l )−1(αi) ∩ B(0, rt) for all n ≥ l. (6)

Indeed, if n = l, then the result is obvious. Hence, we can suppose n ≥ l + 1. In this case,
max{t, i, j} = l ≤ n− 1, consequently i ≤ 3l + 1 ≤ 3(n− 1) + 1, so by (5),

(

f
(j)
l

)−1

(αi) ∩ B(0, rt) =
(

f
(j)
l+1

)−1

(αi) ∩ B(0, rt)

...

=
(

f
(j)
n−1

)−1

(αi) ∩ B(0, rt),

=
(

f (j)
n

)−1
(αi) ∩ B(0, rt),
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proving what we had asserted. From this it follows that

(f
(j)
l )−1(αi) ∩B(0, rt) ⊆ (f (j))−1(αi) ∩ B(0, rt), where l = max{t, i, j}.

In fact, let y ∈ (f
(j)
l )−1(αi) ∩ B(0, rt), then we have f

(j)
n (y) = αi for all n ≥ l, and

consequently, f (j)(y) = lim
n→∞

f (j)
n (y) = αi. Therefore, y belongs to (f (j))−1(αi) ∩ B(0, rt).

We claim that

(f
(j)
l )−1(αi) ∩B(0, rt) = (f (j))−1(αi) ∩ B(0, rt), where l = max{t, i, j}. (7)

Let us suppose by absurdity that there is

w ∈ (f (j))−1(αi) ∩B(0, rt) \ (f
(j)
l )−1(αi) ∩ B(0, rt),

then w would be at a positive distance δ from the finite set (f
(j)
l )−1(αi) ∩B(0, rt). We set

S = (f (j))−1(αi)
⋃

[

⋃

n≥l

(f (j)
n )−1(αi)

]

.

Since f (j) is a non-constant integer and for each n ≥ l, fn is a polynomial of degree greater
than j, we have that S is countable. Therefore, it is possible to choose β < δ such that

B = B(w, β) ⊆ B(0, rt) and S ∩ ∂B = ∅.

Since f
(j)
n (z) − αi converges uniformly on compact subsets of C for the entire function

f (j)(z)−αi, which does not vanish at any point of ∂B, follows by Hurwitz’s Theorem that

f (j)(z)−αi and f
(j)
n (z)−αi has the same number of zeros in B(w, β) for all sufficiently large

n. On the other hand, by (6), the zeros of f
(j)
n (z)−αi and f

(j)
l (z)−αi in B(0, rt) coincide

for n ≥ l. So, since f
(j)
l (z) − αi has no zeros B(w, β), it follows that f (j)(z) − αi does

not have zeros in B(w, β). However, w ∈ B(w, β) and f (j)(w) − αi = 0, a contradiction.
Therefore the equality (7) holds. From this it follows that (f (j))−1(Q) ⊆ Q, for all j ≥ 0.
In fact, using (7), we obtain

(f (j))−1(αi) =
∞
⋃

t=max{i,j}

(f (j))−1(αi) ∩B(0, rt)

=
∞
⋃

t=max{i,j}

(f
(j)
t )−1(αi) ∩B(0, rt)

which is a subset of Q.

By construction, f is an entire function and is not a polynomial (because its coefficients
of order greater than to 1 are non-zero), so f is a transcendental function. Finally, note
that there is an uncountable amount of possible choices for f, because at each step, we have
infinite possibilities of choices for ǫn+1 and thus also for an+2. In this way, we construct
an uncountable amount of transcendental entire functions f , with rational coefficients and
such that

[

f (j)(Q) ∪ (f (j))−1(Q)
]

⊆ Q, for all j ≥ 0.
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