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Cohomology and deformations of left-symmetric Rinehart

algebras

Abdelkader Ben Hassine, Taoufik Chtioui, Mohamed Elhamdadi and Sami Mabrouk

Abstract. We introduce a notion of left-symmetric Rinehart algebras, which is a
generalization of the notion of left-symmetric algebras. The left multiplication gives
rise to a representation of the corresponding sub-adjacent Lie-Rinehart algebra. We
construct left-symmetric Rinehart algebras from O-operators on Lie-Rinehart alge-
bras. We extensively investigate representations of left-symmetric Rinehart algebras.
Moreover, we construct a graded Lie algebra on the space of multi-derivations whose
Maurer–Cartan elements characterize left-symmetric Rinehart algebras and study
deformations of left-symmetric Rinehart algebras, which are controlled by the sec-
ond cohomology class in the deformation cohomology. We also give the relationships
between O-operators and Nijenhuis operators on left-symmetric Rinehart algebras.
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1 Introduction

Left-symmetric algebras are algebras for which the associator

(x, y, z) := (x · y) · z − x · (y · z)

satisfies the identity (x, y, z) = (y, x, z). These algebras appeared as early as 1896 in
the work of Cayley [8] as rooted tree algebras. In the 1960s, they also arose from the
study of several topics in geometry and algebra, such as convex homogenous cones [30],
affine manifolds and affine structures on Lie groups [19,27] and deformations of associative
algebras [14]. In 2006, Burde [6] wrote an interesting survey showing the importance of
left-symmetric algebras in many areas, such as vector fields, rooted tree algebras, vertex
algebras, operad theory, deformation complexes of algebras, convex homogeneous cones,
affine manifolds and left-invariant affine structures on Lie groups [6].

Left symmetric algebras are the underlying algebraic structures of non-abelian phase
spaces of Lie algebras [1, 21], leading to a bialgebra theory of left-symmetric algebras
[3]. They can also be seen as the algebraic structures behind the classical Yang-Baxter
equations. Precisely, they provide a construction of solutions of the classical Yang-Baxter
equations in certain semidirect product Lie algebra structures (that is, over the double
spaces) induced by left-symmetric algebras [2, 22].

The notion of Lie-Rinehart algebras was introduced by J. Herz in [15] and further
developed in [28, 29]. A a notion of (Poincaré) duality for this class of algebras was
introduced in [16, 17]. Lie-Rinehart structures have been the subject of extensive studies,
in relations to symplectic geometry, Poisson structures, Lie groupoids and algebroids and
other kinds of quantizations (see [18,20,23,24,25,26]). For further details and a history of
the notion of Lie-Rinehart algebra, we refer the reader to [18]. Lie-Rinehart algebras have
been investigated furthermore in [4, 7, 11, 12].

A left-symmetric algebroid is a geometric generalization of a left-symmetric algebra.
See [23, 24, 25] for more details and applications. The notion of a Nijenhuis operator on a
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left-symmetric algebroid was introduced in [24], which could generate a trivial deformation.
More details on deformations of left-symmetric algebras can be found in [31].

In this paper, we introduce a notion of left-symmetric Rinehart algebras, which is a
generalization of a left-symmetric algebra and an algebraic version of left symmetric alge-
broids. The following diagram shows how left-symmetric Rinehart algebras fit in relation
to Lie algebras, left-symmetric algebras and Lie-Rinehart algebras.

Lie algebra

��

generalization // Lie-Rinehart algebra

��
Left-symmetric algebra

OO

generalization // Left-symmetric Rinehart

OO

The paper is organized as follows. In Section 2, we recall some definitions concerning
left-symmetric algebras and Lie-Rinehart algebra. In Section 3, we introduce the notion
of left-symmetric Rinehart algebra and give some of its properties. As in the case of a
left-symmetric algebras, one can obtain the sub-adjacent Lie-Rinehart algebra from a left-
symmetric Rinehart algebra by using the commutator. The left multiplication gives rise
to a representation of the sub-adjacent Lie-Rinehart algebra. We construct left-symmetric
Rinehart algebras using O-operators. Section 4 is devoted to the study of representations
and cohomology of left-symmetric Rinehart algebra. In Section 5, we construct a graded
Lie algebra whose Maurer-Cartan elements are left-symmetric Rinehart algebras which
give rise to a coboundary operator. Section 6 is devoted to introduce the deformation
cohomology associated to a left-symmetric Rinehart algebra, which controls the deforma-
tions. In Section 7, we introduce the notion of a Nijenhuis operator, which could generate
a trivial deformation. In addition, we investigate some connection between O-operators
and Nijenhuis operators.

Throughout this paper all vector spaces are over a field K of characteristic zero.

2 Preliminaries

In this section, we briefly recall some basics of left-symmetric algebras and Lie-Rinehart
algebras [6].

Definition 2.1. A left-symmetric algebra is a vector space L endowed with a linear map
· : L⊗ L −→ L such that for any x, y, z ∈ L,

(x, y, z) = (y, x, z), or equivalently, (x · y) · z − x · (y · z) = (y · x) · z − y · (x · z),

where the associator (x, y, z) := (x · y) · z − x · (y · z).

Let adL (resp. adR) be the left multiplication operator (resp. right multiplication
operator) on L that is, i.e. adL(x)y = x · y (resp. adR(x)y = y · x), for any x, y ∈ L. The
following lemma is given in [6].
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Lemma 2.2. Let (L, ·) be a left-symmetric algebra. The commutator [x, y] = x · y − y · x
defines a Lie algebra L, which is called the sub-adjacent Lie algebra of L. The algebra L

is also called a compatible left-symmetric algebra on the Lie algebra L. Furthermore, the
map adL : L → gl(L) with x 7→ Lx gives a representation of the Lie algebra (L, [·, ·]).

Definition 2.3. Let (L, ·) be a left-symmetric algebra and M a vector space. A represen-
tation of L on M consists of a pair (ρ, µ), where ρ : L −→ gl(M) is a representation of the
sub-adjacent Lie algebra L on M and µ : L −→ gl(M) is a linear map satisfying:

ρ(x) ◦ µ(y)− µ(y) ◦ ρ(x) = µ(x · y)− µ(y) ◦ µ(x), ∀ x, y ∈ L. (1)

The map ρ is called a left representation and µ is a right representation. Usually, we
denote a representation by (M ; ρ, µ). Then (L; adL, adR) is a representation of (L, ·) which
is called adjoint representation.

The cohomology complex for a left-symmetric algebra (L, ·) with a representation
(M ; ρ, µ) is given as follows. The set of (n + 1)-cochains is given by

Cn+1(L,M) = Hom(∧nL⊗ L,M), ∀n ≥ 0. (2)

For all ω ∈ Cn(L,M), the coboundary operator δ : Cn(L,M) −→ Cn+1(L,M) is given by

δω(x1, x2, . . . , xn+1) =

n∑

i=1

(−1)i+1ρ(xi)ω(x1, . . . , x̂i, . . . , xn+1)

+

n∑

i=1

(−1)i+1µ(xn+1)ω(x1, . . . , x̂i, . . . , xn, xi)

−
n∑

i=1

(−1)i+1ω(x1, . . . , x̂i, . . . , xn, xi · xn+1)

+
∑

1≤i<j≤n

(−1)i+jω([xi, xj], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1).

We then have the following lemma whose proof comes from a direct computation using
identity (1).

Lemma 2.4 (See [5]). The map δ satisfies δ2 = 0.

Definition 2.5. A Lie-Rinehart algebra L over an associative commutative algebra A is a
Lie algebra over K with an A-module structure and a linear map ρ : L → Der(A), such
that the following conditions hold:

1. For all a ∈ A and x, y ∈ L

ρ([x, y]) = ρ(x)ρ(y)− ρ(x)ρ(y) and ρ(ax) = aρ(x).
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2. The compatibility condition:

[x, ay] = ρ(x)ay + a[x, y], ∀a ∈ A, x, y ∈ L. (3)

Let (L,A, [·, ·]L, ρ) and (L′, A′, [·, ·]L′, ρ′) be two Lie-Rinehart algebras, then a Lie-
Rinehart algebra homomorphism is defined as a pair of maps (g, f), where the maps
f : L → L′ and g : A → A′ are two algebra homomorphisms such that:

(1) f(ax) = g(a)f(x) for all x ∈ L and a ∈ A,

(2) g(ρ(x)a) = ρ′(f(x))g(a) for all x ∈ L and a ∈ A.

Now, we recall the definition of module over a Lie-Rinehart algebra (for more details
see [10]).

Definition 2.6. Let M be an A-module. Then M is a module over a Lie-Rinehart algebra
(L,A, [·, ·], ρ) if there exists a map θ : L⊗M → M such that:

1. θ is a representation of the Lie algebra (L, [·, ·]) on M .

2. θ(ax,m) = aθ(x,m) for all a ∈ A, x ∈ L,m ∈ M.

3. θ(x, am) = aθ(x,m) + ρ(x)am for all x ∈ L, a ∈ A,m ∈ M.

We have the following lemma giving a characterization of of the θ which are represen-
tations.

Lemma 2.7. The map θ is representation if and only if L ⊕ M is Lie-Rinehart algebra
over A, where [·, ·]L⊕M and θL⊕M are given by

[x1 +m1, x2 +m2]L⊕M = [x1, x2] + ρ(x1)m2 − ρ(x2)m1,

θL⊕M (x1 +m1) = θ(x1)

for all x1, x2 ∈ L and m1, m2 ∈ M .

3 Some basic properties of a left-symmetric Rinehart algebras

In this section, we introduce a notion of left-symmetric Rinehart algebras illustrated
by some examples. As in the case of a left-symmetric algebra, we obtain the sub-adjacent
Lie-Rinehart algebra from a left-symmetric Rinehart algebra using the commutator. In
addition, we construct left-symmetric Rinehart algebras using O-operators.

Definition 3.1. A left-symmetric Rinehart algebra is a quadruple (L,A, ·, ℓ) where (L, ·)
is a left-symmetric algebra, A is an associative commutative algebra and ℓ : L → Der(A)
a linear map such that the following conditions hold:
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1. L is an A-module.

2. For all a ∈ A and x, y ∈ L

ℓ(x · y − y · x) = ℓ(x)ℓ(y)− ℓ(x)ℓ(y) and ℓ(ax) = aℓ(x).

3. The compatibility conditions: for all a ∈ A and x, y ∈ L

x · (ay) =ℓ(x)ay + a(x · y), (4)

(ax) · y =a(x · y). (5)

Example 3.2. It is clear that any left-symmetric algebra is a left-symmetric Rinehart
algebra.

Example 3.3. A Novikov Poisson algebra is a left-symmetric Rinehart algebra (see [32]).

Example 3.4. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and let L ⊕ Abe the
direct sum of L and A. Then (L⊕ A,A, ·L⊕A, ℓL⊕A) is a left-symmetric Rinehart algebra,
where the ·L⊕A is defined by the following expression, for all x1, x2 ∈ L, a1, a2 ∈ A;

(x1 + a1) ·L⊕A (x2 + a2) = x1 · x2 + ℓ(x1)(a2);

and ℓL⊕A : L⊕ A → Der(A) is defined by ℓL⊕A(a1 + x1) = ℓ(x1). Indeed, it obvious that
(L⊕A, ·L⊕A) is a left-symmetric algebra, ℓL⊕A is a representation of left-symmetric algebra
L⊕A and ℓL⊕A ∈ Der(A).
By direct calculation, we have ℓL⊕A(b(x1 + a1)) = bℓL⊕A(x1 + a1) for all b, a1 ∈ A and
x1 ∈ L. On the other hand, letting x1, x2 ∈ L and b, a1, a2 ∈ A, we have

(x1 + a1) ·L⊕A b(x2 + a2) =(a1 + x1) ·L⊕A (bx2 + ba2)

=x1 · (bx2) + ℓ(x1)(ba2)

=b(x1 · x2) + ℓ(x1)b(x2) + ℓ(x1)(b)a2 + bℓ(x1)(a2)

=b
(
x1 · x2 + ℓ(x1)(a2)

)
+ ℓ(x1)b(x2) + ℓ(x1)(b)a2

=b
(
(x1 + a1) ·L⊕A (x2 + a2)

)
+ ℓL⊕A(x1 + a1)b(x2 + a2).

Moreover,

b(x1 + a1) ·L⊕A (x2 + a2) =(bx1 + ba1) ·L⊕A (x2 + a2)

=(bx1) · x2 + ℓ(bx1)(a2)

=b(x1 · x2) + bℓ(x1)(a2)

=b
(
x1 · x2 + ℓ(x1)a2

)

=b
(
(x1 + a1) ·L⊕A (x2 + a2)

)
.

Now we have the following theorem.
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Theorem 3.5. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra. Then, (L,A, [·, ·], ℓ)
is a Lie-Rinehart algebra, denoted by LC, called the sub-adjacent Lie-Rinehart algebra of
(L,A, ·, ℓ).

Proof. Since (L, ·) is a left-symmetric algebra, we have that (L, [·, ·]) is a Lie algebra. For
any a ∈ A, by direct computations, we have

[x, ay] = x · (ay)− (ay) · x = a(x · y) + ℓ(x)ay − a(y · x)

= a[x, y] + ℓ(x)(a)y,

which implies that (L,A, [·, ·], ℓ) is a Lie-Rinehart algebra.
To see that the linear map ℓ : L −→ Der(A) is a representation, we only need to show

that ℓ[x,y] = [ℓx, ℓy]Der(A), which follows directly from the fact that (L, ·) is a left-symmetric
algebra. This ends the proof.

Definition 3.6. Let (L1, A1, ·1, ℓ1) and (L2, A2, ·2, ℓ2) be two left-symmetric Rinehart al-
gebras. A homomorphism of left-symmetric Rinehart algebras is a pair of two algebra
homomorphisms (f, g) where f : L1 −→ L2 and g : A1 −→ A2 such that:

f(ax) = g(a)f(x), g(ℓ1(x)a) = ℓ2(f(x))g(a), ∀x, y ∈ L1, a ∈ A1.

The following proposition is immediate.

Proposition 3.7. Let (f, g) be a homomorphism of left-symmetric Rinehart algebras from
(L1, A1, ·1, ℓ1) to (L2, A2, ·2, ℓ2). Then (f, g) is also a Lie-Rinehart algebra homomorphism
of the corresponding sub-adjacent Lie-Rinehart algebras.

Now we give the definition of an O-operator.

Definition 3.8. Let (L,A, [·, ·], ρ) be a Lie-Rinehart algebra and θ : L −→ End(M) be
a representation over M . A linear map T : M −→ L is called an O-operator if for all
u, v ∈ M and a ∈ A we have

T (au) = aT (u), (6)

[T (u), T (v)] = T
(
θ(T (u))(v)− θ(T (v))(u)

)
. (7)

Remark 3.9. Consider the semidirect product Lie-Rinehart algebra

(L⋉θ M,A, [·, ·]L⋉θM , ρL⋉θM),

where ρL⋉θM(x+ u) := ρ(x)(u) and the bracket [·, ·]L⋉θM is given by

[x+ u, y + v]L⋉θM = [x, y] + θ(x)(v)− θ(y)(u).

Any O-operator T : M −→ L gives a Nijenhuis operator T̃ =

(
0 T

0 0

)
on the Lie-

Rinehart algebra L⋉θ M . More precisely, we have

[T̃ (x+u), T̃ (y+v)]L⋉θM = T̃
(
[T̃ (x+u), y+v]L⋉θM+[x+u, T̃ (y+v)]L⋉θM− T̃ [x+u, y+v]L⋉θM

)
.
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Fore more details on Nijenhuis operators and their applications the reader should con-
sult [13].

Let T : M −→ L be an O-operator. Define the multiplication ·T on M by

u ·T v = θ(T (u))(v), ∀u, v ∈ M.

We then have the following proposition.

Proposition 3.10. With the above notations, (M,A, ·T , ℓT = ℓ ◦ T ) is a left-symmetric
Rinehart algebra, and the map T is Lie-Rinehart algebra homomorphism from (M, [·, ·]) to
(L, [·, ·]).

Proof. It is easy to see that (M, ·T ) is a left-symmetric algebra. For any a ∈ A, using
Definition 3.1 and equation (6) we have

ℓM(au) = ℓ(T (au)) = aℓ(T (u)) = aℓM (u),

Similarly, using Definition 2.6 we obtain

(au) ·T v = θ(T (au))(v) = θaT (u))(v) = aθ(T (u))(v),

u ·T (av) = θ(T (u))(av) = aθ(T (u))(v) + ℓ ◦ T (u)(a)v.

Thus, (M,A, ·T , ℓM) is a left-symmetric Rinehart algebra. Let [·, ·] be the sub-adjacent Lie
bracket on M . Then we have

T [u, v] = T (u ·T v − v ·T u) = T (θ(T (u))(v)− θ(T (v))(u)) = [T (u), T (v)].

So T is a homomorphism of Lie algebras.

4 Representations of left-symmetric Rinehart algebras

In this section, we develop the notion of representations of a left-symmetric Rinehart
algebra and give a cohomology theory with coefficients in a representation.

Definition 4.1. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and M be an A-
module. A representation of A on M consists of a pair (ρ, µ), where ρ is a representation
of the sub-adjacent Lie-Rinehart algebra (L,A, [·, ·]C, ℓ) and µ : L → End(M) is a linear
map, such that for all x, y ∈ L and m ∈ M , we have

µ(ax)m = aµ(x)m = µ(x)(am)

ρ(x)µ(y)− µ(y)ρ(x) = µ(x · y)− µ(y)µ(x). (8)

We will denote this representation by (M ; ρ, µ).
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For a left-symmetric Rinehart algebra (L,A, ·, ℓ) and a representation (M ; ρ, µ), the fol-
lowing proposition gives a construction of a left-symmetric Rinehart algebra called semidi-
rect product and denoted by L⋉ρ,µ M .

Proposition 4.2. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and (M ; ρ, µ) a rep-
resentation. Then, (L ⊕ M,A, ·L⊕M , ℓL⊕M) is a left-symmetric Rinehart algebra, where
·L⊕M and ℓL⊕M are given by

(x1 +m1) ·L⊕M (x2 +m2) = x1 · x2 + ρ(x1)m2 + µ(x2)m1, (9)

ℓL⊕M(x1 +m1) = ℓ(x1), (10)

for all x1, x2 ∈ L and m1, m2 ∈ M .

Proof. Let (M ; ρ, µ) be a representation. It is straightforward to see that (L⊕M,A, ·L⊕M)
is a left-symmetric algebra. For any x1, x2 ∈ L and m1, m2 ∈ M , we have

(x1 +m1) ·L⊕M (a(x2 +m2)) = x1 · (ax2) + ρ(x1)am2 + µ(ax2)m1

= a(x1 · x2) + ℓ(x1)(ax2) + aρ(x1)m2

+ℓ(x1)(am2) + aµ(x2)m1

= a((x1 +m1) ·L⊕M (x2 +m2)) + ℓL⊕M(x1)(a)(x2 +m2).

On the other hand, we have

(a(x1 +m1)) ·L⊕M (x2 +m2) = (ax1) · x2 + ρ(ax1)m2 + µ(x2)(am1)

= a((x1 +m1) ·L⊕M (x2 +m2)).

Therefore, (L⊕M,A, ·L⊕M , ℓL⊕M) is a left-symmetric Rinehart algebra.

Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and (M ; ρ, µ) be a representation.
Let ρ∗ : L⊗M∗ → M∗ and µ∗ : M∗ ⊗ L −→ M∗ be defined by

〈ρ∗(x)ξ,m〉 = ℓ(x)〈ξ,m〉 − 〈ρ(x)m, ξ〉 and 〈µ∗(x)ξ,m〉 = −〈ξ, µ(x)m〉,

where M∗ = HomA(M,A). Then, we have the following proposition.

Proposition 4.3. With the above notations, we obtain that

(i) (M, ρ−µ) is a representation of the sub-adjacent Lie-Rinehart algebra (L,A, [·, ·], ℓ).

(ii) (M∗, ρ∗−µ∗,−µ∗) is a representation be a left-symmetric Rinehart algebra (L,A, ·, ℓ).

Proof. Since (M ; ρ, µ) is a representation of the left-symmetric algebra (L,A, ·, ℓ), using
Proposition 4.2 we have that (L⊕M,A, ·L⊕M , ℓL⊕M) is a left-symmetric Rinehart algebra.
Consider its sub-adjacent Lie-Rinehart algebra (L⊕M,A, ·L⊕M , [·, ·]L⊕M , ℓL⊕M). We have

[(x1 +m1), (x2 +m2)]L⊕M = (x1 +m1) ·L⊕M (x2 +m2)− (x2 +m2) ·L⊕M (x1 +m1)

= x1 · x2 + ρ(x1)m2 + µ(x2)m1

−x2 · x1 − ρ(x2)m1 − µ(x1)m2

= [x1, x2]
C + (ρ− µ)(x1)(m2) + (ρ− µ)(x2)(m1).
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From Lemma 2.7 we deduce that (M, ρ− µ) is a representation of Lie-Rinehart algebra L

on M . This finishes the proof of (i).
For item (ii), it is clear that ρ∗−µ∗ is just the dual representation of the representation

θ = ρ − µ of the sub-adjacent Lie-Rinehart algebra of L. We can directly check that
−µ∗(ax)ξ = −aµ∗(x)ξ = −µ∗(x)(aξ). For any x, y ∈ L, ξ ∈ M∗ and m ∈ M we have

−〈(ρ∗ − µ∗)(x)µ∗(y)ξ,m〉+ 〈µ∗(y)(ρ∗ − µ∗)(x)ξ,m〉

= −〈ρ∗(x)µ∗(y)ξ,m〉+ 〈µ∗(x)µ∗(y)ξ,m〉+ 〈µ∗(y)ρ∗(x)ξ,m〉 − 〈µ∗(y)µ∗(x)ξ,m〉

= ℓ(x)〈ξ, µ(y)m〉 − 〈ξ, µ(y)ρ(x)m〉 + 〈ξ, µ(y)µ(x)m〉

−ℓ(x)〈ξ, µ(y)m〉+ 〈ξ, ρ(x)µ(y)m〉 − 〈ξ, µ(x)µ(y)m〉

= 〈ξ, µ(x · y)m〉 − 〈ξ, µ(y)µ(x)m〉+ 〈ξ, µ(y)µ(x)m〉 − 〈ξ, µ(x)µ(y)m〉

= 〈(−µ∗(x · y)− µ∗(y)µ∗(x))ξ,m〉.

Therefore (M∗, ρ∗ − µ∗,−µ∗) is a representation of L.

Corollary 4.4. With the above notations, we have

(i) The left-symmetric Rinehart algebras L⋉ρ,µ M and L⋉ρ−µ,0 M have the same sub-
adjacent Lie-Rinehart algebra L⋉ρ−µ M.

(ii) The left-symmetric Rinehart algebras L⋉ρ∗,0M
∗ and L⋉ρ∗−µ∗,−µ∗ M∗ have the same

sub-adjacent Lie-Rinehart algebra L⋉ρ∗ M
∗.

Let (M ; ρ, µ) be a representation of a left-symmetric Rinehart algebra (L,A, ·, ℓ). In
general, (M∗, ρ∗, µ∗) is not a representation. But we have the following proposition.

Proposition 4.5. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and (M ; ρ, µ) be a
representation. Then the following conditions are equivalent:

(1) (M ; ρ− µ,−µ) is a representation of (L,A, ·, ℓ).

(2) (M∗, ρ∗, µ∗) is a representation of (L,A, ·, ℓ).

(3) µ(x)µ(y) = µ(y)µ(x) for all x, y ∈ L.

5 The Matsushima-Nijenhuis bracket for left-symmetric Rinehart al-

gebras

In this section we construct a graded Lie algebra whose Maurer-Cartan elements are
left-symmetric Rinehart algebras which give rise to a coboundary operator.

Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebras. A multiderivation of degree n

is a multilinear map P ∈ Hom(ΛnL ⊗ L, L) such that, for every a ∈ A, xi ∈ L and
i ∈ {1, 2, . . . , n+ 1}, we have

P (x1, . . . , axi, . . . , xn, xn+1) = aP (x1, . . . , xi, . . . , xn, xn+1), (11)

P (x1, · · · , xn, axn+1) = aP (x1, · · · , xn, xn+1) + ΞP (x1, · · · , xn)(a)xn+1, (12)
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where ΞP : L⊗n → Der(A) is called the symbol map. The space of all multiderivations
of degree n will be denoted by Dn(L). Set D∗(L) = ⊕n≥−1D

n(L) with D−1(L) = L, the
space of multiderivations on L.

A permutation σ ∈ Sn is called an (i, n − i)-unshuffle if σ(1) < · · · < σ(i) and
σ(i + 1) < · · · < σ(n). If i = 0 and i = n, we assume σ = Id. The set of all
(i, n− i)-unshuffles will be denoted by S(i,n−i). The notion of an (i1, · · · , ik)-unshuffle and
the set S(i1,··· ,ik) are defined similarly.

Let P ∈ Dm(L) and Q ∈ Dn(L). We define the Matsushima–Nijenhuis bracket
[·, ·]MN : Dm(L)×Dn(L) → Dm+n(L) by

[P,Q]MN = P ⋄Q− (−1)mnQ ⋄ P,

where

P ⋄Q(x1, x2, · · · , xm+n+1)

=
∑

σ∈S(m,1,n−1)

(−1)σP (Q(xσ(1), · · · , xσ(m+1)), xσ(m+2), · · · , xσ(m+n), xm+n+1)

+(−1)mn
∑

σ∈S(n,m)

(−1)σP (xσ(1), · · · , xσ(n), Q(xσ(n+1), xσ(n+2), · · · , xσ(m+n), xm+n+1)).

Theorem 5.1. With the above notations, we have

(i) The pair (D∗(L), [·, ·]MN) is a graded Lie algebra.

(ii) There is a one-to-one correspondence between the set of Maurer-Cartan elements of
the graded Lie algebra (D∗(L), [·, ·]MN) and left-symmetric Rinehart algebra struc-
tures on L.

Proof. (i) We begin by check that the Matsushima-Nijenhuis bracket is well defined. For
P ∈ Dm(L) and Q ∈ Dn(L), by a direct calculation, we have

[P,Q]MN (ax1, x2, · · · , xm+n+1)

= aP ⋄Q(x1, x2, · · · , xm+n+1)− (−1)mnaQ ⋄ P (x1, x2, · · · , xm+n+1)

+
∑

σ∈S(m−1,1,n−1)

(−1)σΞQ(xσ(2), · · · , xσ(m+1))(a)P (x1, xσ(m+2), · · · , xσ(m+n), xm+n+1)

+(−1)mn
∑

σ∈S(n−1,1,m−1)

(−1)σΞP (xσ(2), · · · , xσ(n+1))(a)Q(x1, xσ(n+2), · · · , xσ(m+n), xm+n+1)

−(−1)mn
∑

σ∈S(n−1,1,m−1)

(−1)σΞP (xσ(2), · · · , xσ(n+1))(a)Q(x1, xσ(n+2), · · · , xσ(m+n), xm+n+1)

−
∑

σ∈S(m−1,1,n−1)

(−1)σΞQ(xσ(2), · · · , xσ(m+1))(a)P (x1, xσ(m+2), · · · , xσ(m+n), xm+n+1)

= a[P,Q]MN (x1, x2, · · · , xm+n+1),
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which implies that

[P,Q]MN(ax1, x2, · · · , xm+n+1) = a[P,Q]MN(x1, x2, · · · , xm+n+1).

It is straightforward to check that [P,Q]MN is skew-symmetric with respect to its first
m+ n arguments. Thus [P,Q]MN is A-linear with respect to its first m+ n arguments.

On the other hand, following a straightforward calculation, we have

[P,Q]MN(x1, x2, · · · , axm+n+1) = a[P,Q]MN(x1, x2, · · · , xm+n+1)

+Ξ[P,Q]MN
(x1, x2, · · · , xm+n)(a)xm+n+1,

where the symbol map Ξ[P,Q]MN
is given by

Ξ[P,Q]MN
(x1, x2, · · · , xm+n)(a)

=
∑

σ∈S(m,1,n−1)

(−1)σΞP (Q(xσ(1), · · · , xσ(m+1)), xσ(m+2), · · · , xσ(m+n)))(a)

+
∑

σ∈S(n,1,m−1)

(−1)σΞQ(P (xσ(1), · · · , xσ(n+1)), xσ(n+2), · · · , xσ(m+n))(a)

+ (−1)mn
∑

σ∈S(m,n)

(−1)σΞP (xσ(1), · · · , xσ(n))(ΞQ(xσ(n+1), · · · , xσ(n+m)))(a)

+
∑

σ∈S(m,n)

(−1)σΞQ(xσ(1), · · · , xσ(m))(ΞP (xσ(m+1), · · · , xσ(m+n)))(a).

Thus [P,Q]MN ∈ Dm+n(L).
It was shown in [9] that the Matsushima-Nijenhuis bracket provides a graded Lie algebra

structure on the graded vector space ⊕n≥1Hom(Λn−1L⊗L, L). Therefore, (D∗(L), [·, ·]MN)
is a graded Lie algebra.

(ii) Let π ∈ D1(L), we have

π(ax1, x2) = aπ(x1, x2), π(x1, ax2) = aπ(x1, x2) + Ξπ(x1)(a)x2, ∀ x1, x2 ∈ L.

In addition, we can easily check that

[π, π]MN(x1, x2, x3) = 2(π(π(x1, x2), x3)− π(π(x2, x1), x3)

−π(x1, π(x2, x3)) + π(x2, (x1, x3))).

Thus (L,A, π,Ξπ) is a left-symmetric Rinehart algebra if and only if [π, π]MN = 0.

Remark 5.2. The cohomology of left-symmetric algebras first appeared in the unpublished
paper of Y. Matsushima. Then A. Nijenhuis constructed a graded Lie bracket, which
produces the cohomology theory for left-symmetric algebras. Thus the aforementioned
graded Lie bracket is usually called the Matsushima–Nijenhuis bracket.
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Let (L,A, π, ℓ) be a left-symmetric Rinehart algebra. According to Theorem 5.1, we
have [π, π]MN = 0. Using the graded Jacobi identity, we get a coboundary operator
δ : Dn−1(L) → Dn(L), by putting

δ(P ) = (−1)n−1[π, P ]MN , ∀P ∈ Dn−1(L). (13)

By straightforward computation, we obtain

Proposition 5.3. For any P ∈ Dn−1(L), we have

δP (x1, x2, · · · , xn+1) =

n∑

i=1

(−1)i+1π(xi, P (x1, x2, · · · , x̂i, · · · , xn+1))

+
n∑

i=1

(−1)i+1π(P (x1, x2, · · · , x̂i, · · · , xn, xi), xn+1) (14)

−
n∑

i=1

(−1)i+1P (x1, x2, · · · , x̂i, · · · , xn, π(xi, xn+1))

+
∑

1≤i<j≤n

(−1)i+jP (π(xi, xj)− π(xj , xi), x1, · · · , x̂i, · · · , x̂j , · · · , xn+1)

for all xi ∈ L, i = 1, 2 · · · , n+ 1 and ΞδP is given by

ΞP (x1, x2, · · · , xn) =

n∑

i=1

(−1)i+1[Ξπ(xi),ΞP (x1, x2, · · · , x̂i, · · · , xn)]

+
∑

1≤i<j≤n

(−1)i+jΞP (π(xi, xj)− π(xj , xi), x1, · · · , x̂i, · · · , x̂j , · · · , xn)

+

n∑

i=1

(−1)i+1Ξπ(P (x1, x2, · · · , x̂i, · · · , xn, xi)). (15)

Definition 5.4. The cochain complex (D∗(L) = ⊕n≥0D
n(L), δ) is called the deformation

complex of the left-symmetric Rinehart algebra L. The corresponding k-th cohomology
group, which we denote by Hk(L), is called the k-th deformation cohomology group.

6 Deformation of left-symmetric Rinehart algebra

We investigate in this section a deformation theory of left-symmetric Rinehart algebras.
But first let us introduce some notation. For a left-symmetric Rinehart algebra (L,A,m, ℓ)
we will denote the left-symmetric multiplication “ · ” by m in the sequel of the paper. Let
K[[t]] be the formal power series ring in one variable t and coefficients in K. Let L[[t]]
be the set of formal power series whose coefficients are elements of L (note that L[[t]] is
obtained by extending the coefficients domain of K[[t]] from K to L). Thus, L[[t]] is a
K[[t]]-module.
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6.1 Formal deformations

Definition 6.1. A deformation of a left-symmetric Rinehart algebra (L,A,m, ℓ) is a K[[t]]-
bilinear map

mt : L[[t]]⊗ L[[t]] → L[[t]]

which is given by mt(x, y) =
∑

i≥0

timi(x, y), where m0 = m and the mi ∈ D1(L) satisfy the

condition [mt,mt]MN = 0.

Note that mt is a 1-degree multiderivation of A with symbol Ξmt
: L → Der(A) given

by

Ξmt
=

∑

i≥0

tiΞmi
.

Moreover, since [mt,mt]MN = 0, it corresponds to a left symmetric Lie Rinehart algebra
structure. In particular, it yields a t-parameterized family of products mt : L⊗L → L and
a family of maps ℓt : L → Der(A), which satisfy the following identities for all x, y ∈ L:

mt(x, y) =x · y +
∑

i≥1

timi(x, y),

ℓt(x) =ℓ(x) +
∑

i≥1

tiΞmi
(x).

The t-parametrized family (L,A,mt, ℓt) is called a 1-parameter formal deformation of
(L,A,m, ℓ) generated by m1, · · · ,mm ∈ D1(L).

Let (L,A,mt, ℓt) be a deformation of m. Then, for all a ∈ A, x, y, z ∈ L

mt(mt(x, y), z)−mt(x,mt(y, z)) = mt(mt(y, x), z)−mt(y,mt(x, z)). (16)

mt(ax, y) = amt(x, y), (17)

mt(x, ay) = amt(x, y) + ℓt(x)ay (18)

The identities (17)–(18), mean that mi ∈ D1(L). Comparing the coefficients of tn for n ≥ 0
in equation (16), we get the following:

∑

i+j=n

mi(mj(x, y), z)−mi(x,mj(y, z))−mi(mj(y, x), z) +mi(y,mj(x, z)) = 0. (19)

For n = 1, equation (19) implies

m1(m(x, y), z) +m(m1(x, y), z)−m1(x,m(y, z))−m(x,m1(y, z))

−m1(m(y, x), z)−m(m1(y, x), z) +m1(y,m(x, z)) +m(y,m1(x, z)) = 0.

Or equivalently δ(m1) = [m,m1]MN = 0.
The 1-degree multiderivation m1 is called the infinitesimal of the deformation mt. More

generally, if mi = 0 for 1 ≤ i ≤ n− 1 and mn is non zero 1-degree multiderivation then mn

is called the n-infinitesimal of the deformation mt. By the above discussion, the following
proposition follows immediately.
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Proposition 6.2. The infinitesimal of the deformation mt is a 2-cocycle in D1(L). More
generally, the n-infinitesimal is a 2-cocycle.

Now we give a notion of equivalence of two deformations. Let us denote a deformation
(L,A,mt, ℓt) of (L,A,m, ℓ) simply by Lt. Let us consider two deformations Lt and L′

t of
(L,A,m, ℓ), generated by mi and m′

i, respectively, for i ≥ 0.

Definition 6.3. Two deformations Lt and L′
t are said to be equivalent if there exists a

formal automorphism

Φt : L[[t]] → L[[t]] defined as Φt = idL +
∑

i≥1

tiφi

where for each i ≥ 1, φi : L → L is a K-linear map such that

m′
t(x, y) = Φ−1

t mt(Φt(x),Φt(y)) and ℓ′t(Φt(x)) = ℓt(x).

Definition 6.4. Any deformation that is equivalent to the deformation m0 = m is said to
be a trivial deformation.

Theorem 6.5. The cohomology class of the infinitesimal of a deformation mt is determined
by the equivalence class of mt.

Proof. Let Φt be an equivalence of deformation between mt and m̃t. Then we get,

m̃t(x, y) = Φ−1
t mt(Φtx,Φty).

Comparing the coefficients of t from both sides of the above equation we have

m̃1(x, y) + Φ1(m0(x, y)) = m1(x, y) +m0(Φ1(x), y) +m0(x,Φ1(y)),

or equivalently,
m1 − m̃1 = δ(φ1).

This establishes the result.

Definition 6.6. A left-symmetric Rinehart algebra is said to be rigid if and only if every
deformation of it is trivial.

Theorem 6.7. A non-trivial deformation of a left-symmetric Rinehart algebra is equivalent
to a deformation whose n-infinitesimal is not a coboundary for some n ≥ 1.

Proof. Let mt be a deformation of left-symmetric Rinehart algebra with n-infinitesimal mn

for some n ≥ 1. Assume that there exists a 2-cochain φ ∈ C1(L, L) with δ(φ) = mn. Then
set

Φt = idL + φtn and define m̄t = Φt ◦mt ◦ Φ
−1
t .
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Then by computing the expression and comparing coefficients of tn, we get

m̄n −mn = −δ(φ).

So, m̄n = 0. We can repeat the argument to kill off any infinitesimal, which is a coboundary.

Corollary 6.8. If H2(L, L) = 0, then all deformations of L are equivalent to a trivial
deformation.

6.2 Obstructions to the extension theory of deformations

Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra. Now we consider the problem of
extending a deformation of m of order n to a deformation of m of order (n + 1). Let mt

and ℓt be a deformation of order n of m and ℓ respectively. That is

mt =

n∑

i=0

mit
i = m+

n∑

i=1

mit
i and ℓt =

n∑

i=0

ℓit
i = ℓ+

n∑

i=1

ℓit
i,

where mi ∈ D1(L) and ℓi : L → Der(A) a linear map for each 1 ≤ i ≤ n such that

mi(mj(x, y), z)−mi(x,mj(y, z)) = mi(mj(y, x), z)−mi(y,mj(x, z)), (20)

mi(ax, y) = ami(x, y), (21)

mi(x, ay) = ami(x, y) + ℓi(x)ay (22)

for all 1 ≤ i, j ≤ n. If there exists a 2-cochain mn+1 ∈ D1(L) and ℓn+1 : L → Der(A) such
that (L,A, m̃t, ℓ̃t) is a deformation of (L,A,m, ℓ) of order n + 1, where

m̃t = mt +mn+1t
n+1 and ℓ̃t = ℓt + ℓn+1t

n+1.

Then we say that mt extends to a deformation of order (n + 1). In this case mt is called
extendable.

Definition 6.9. Let mt be a deformation of m of order n. Consider the cochain in C3(L, L)
defined as

ObsL(x, y, z) =
∑

i+j=n+1;
i,j>0

(
mi(mj(x, y), z) −mi(x,mj(y, z))

−mi(mj(y, x), z) +mi(y,mj(x, z)))
)
,

(23)

for x, y, z ∈ L. The 3-cochain ObsL is called an obstruction cochain for extending the
deformation of m of order n to a deformation of order n + 1.

A straightforward computation gives the following

Proposition 6.10. The obstructions are left-symmetric Rinehart algebra 3-cocycles.
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Theorem 6.11. Let mt be a deformation of m of order n. Then mt extends to a deformation
of order n+ 1 if and only if the cohomology class of ObsL vanishes.

Proof. Suppose that a deformation mt of order n extends to a deformation of order n+ 1.
Then

∑

i+j=n+1;
i,j≥0

(
mi(mj(x, y), z)−mi(x,mj(y, z))−mi(mj(y, x), z) +mi(y,mj(x, z)))

)
= 0.

As a result, we get ObsL = δ(mn+1). So, the cohomology class of ObsL vanishes.
Conversely, let ObsL be a coboundary. Suppose that

ObsL = δ(mn+1)

for some 2-cochain mn+1. Define a map m̃t : L[[t]]× L[[t]] → L[[t]] as follows

m̃t = mt +mn+1t
n+1.

Then for any x, y, z ∈ L, the map m̃t satisfies the following identity
∑

i+j=n+1;
i,j≥0

(
mi(mj(x, y), z)−mi(x,mj(y, z))−mi(mj(y, x), z) +mi(y,mj(x, z)))

)
= 0.

This, in turn, implies that m̃t is a deformation of m extending mt.

Corollary 6.12. If H3(L, L) = 0, then every 2-cocycle in C2(L, L) is the infinitesimal of
some deformation of m.

6.3 Trivial deformation

We study deformations of left-symmetric Rinehart algebras using the deformation coho-
mology. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra, and m ∈ C2(L, L). Consider
a t-parameterized family of multiplications mt : L[[t]] ⊗ L[[t]] → L[[t]] and linear maps
ℓt : L → Der(A) given by

mt(x, y) =x · y + tm(x, y), (24)

ℓt =ℓ+ tΞm. (25)

If Lt = (L,A,mt, ℓt) is a left-symmetric Rinehart algebra for all t, we say that m generates
a 1-parameter infinitesimal deformation of (L,A, ·, ℓ)

Since m is a 2-cochain, we have

m(ax, y) = am(x, y), and m(x, ay) = amt(x, y) + Ξm(x)(a)y,

which implies that conditions (4) and (5) in Definition 3.1 are satisfied for mt. Then we
can deduce that (L,A,mt, ℓt) is a deformation of (L,A, ·, ℓ) if and only if

x ·m(y, z)− y ·m(x, z) +m(y, x) · z −m(x, y) · z

= m(y, x · z)−m(x, y · z)−m([x, y], z), (26)
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and

m(m(x, y), z)−m(x,m(y, z)) = m(m(y, x), z)−m(y,m(x, z)). (27)

Equation (26) means that m is a 2-cocycle, and equation (27) means that (L,A,m,Ξm) is
a left-symmetric Rinehart algebra.

Recall that a deformation is said to be trivial if there exists a family of left-symmetric
Rinehart algebra isomorphisms Id + tN : Lt −→ L.

By direct computations, Lt is trivial if and only if

m(x, y) = x ·N(y) +N(x) · y −N(x · y), (28)

Nm(x, y) = N(x) ·N(y), (29)

ℓ ◦N = Ξm. (30)

Again, equation (30) can be obtained from equation (28). It follows from (28) and (29)
that N must satisfy the following integrability condition

N(x) ·N(y)− x ·N(y)−N(x) · y +N2(x · y) = 0. (31)

Now we give the following definition.

Definition 6.13. An A-linear map N : L −→ L is called a Nijenhuis operator on a left-
symmetric Rinehart algebra (L,A, ·, ℓ) if the Nijenhuis condition (31) holds.

Obviously, any Nijenhuis operator on a left-symmetric Rinehart algebra is also a Ni-
jenhuis operator on the corresponding sub-adjacent Lie-Rinehart algebra.

We have seen that a trivial deformation of a left-symmetric Rinehart algebra gives rise
to a Nijenhuis operator. In fact, the converse is also true as can be seen from the following
theorem.

Theorem 6.14. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then a deformation of (L,A, ·, ℓ) can be obtained by putting

m(x, y) = δN(x, y).

Furthermore, this deformation is trivial.

Proof. Since m is a coboundary, then it is a cocycle, i.e. equation (26) holds. To see that
m generates a deformation, we only need to show that (27) holds, which follows from the
Nijenhuis condition (31). At the end, we can easily check that

(Id + tN)(x ·t y) = (Id + tN)(x) · (Id + tN)(y), ℓ ◦ (Id + tN) = ℓt,

which implies that the deformation is trivial.

Theorem 6.15. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then (L,A, ·N , ℓN = ℓ ◦N) is a left-symmetric Rinehart algebra, where

x ·N y = x ·N(y) +N(x) · y −N(x · y), ∀x, y ∈ L.
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Proof. It is obvious to show that (L, ·N) is a left-symmetric algebra and ℓN is a represen-
tation of L on Der(A). Evidently, we have

ℓN(ax) = aℓN(x), ∀x ∈ L, a ∈ A.

Furthermore, for any x, y ∈ L and a ∈ A we have

x ·N (ay) =x ·N(ay) +N(x) · (ay)−N(x · (ay))

=a(x ·N(y)) + ℓ(x)aN(y) + a(N(x) · y) + ℓ(N(x))ay − aN(x · y)−N(ℓ(x)ay)

=a(x ·N(y) +N(x) · y −N(x · y)) + ℓN(x)ay +N(ℓ(x)ay)−N(ℓ(x)ay).

=a(x ·N y) + ℓN(x)ay.

Moreover,

(ax) ·N y =(ax) ·N(y) +N(ax) · y −N((ax) · y)

=a(x ·N(y)) + a(N(x) · y)− aN(x · y)

=a(x ·N(y) +N(x) · y −N(x · y))

=a(x ·N y).

Then, (L,A, ·N , ℓN = ℓ ◦N) is a a left-symmetric Rinehart algebra.

Immediately, we have the following result.

Lemma 6.16. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then for arbitrary positive j, k ∈ N, the following equation holds

N j(x) ·Nk(y)−Nk(N j(x) · y)−N j(x ·Nk(y)) +N j+k(x · y) = 0, ∀ x, y ∈ L. (32)

If N is invertible, this formula becomes valid for arbitrary j, k ∈ Z.

By direct calculations, we have the following corollary.

Corollary 6.17. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and N a Nijenhuis
operator.

(i) For all k ∈ N, (L,A, ·Nk , ℓNk = ℓ ◦Nk) is a left-symmetric Rinehart algebra.

(ii) For all l ∈ N, N l is a Nijenhuis operator on the left-symmetric Rinehart algebra
(L,A, ·Nk , ℓNk).

(iii) The left-symmetric Rinehart algebras (L,A, (·Nk)N l, ℓNk+l) and (L,A, ·Nk+l, ℓNk+l) are
the same.

(iv) N l is a left-symmetric Rinehart algebra homomorphism from (L,A, ·Nk+l, ℓNk+l) to
(L,A, ·Nk , ℓNk).
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Theorem 6.18. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then the operator P (N) =

∑n
i=0 ciN

i is a Nijenhuis operator. If N is invertible,
then Q(N) =

∑n
i=−m ciN

i is also a Nijenhuis operator.

Proof. According to Lemma 6.16, we obtain, ∀x, y ∈ L,

P (N)(x) · P (N)(y)− P (N)(P (N)(x) · y)− P (N)(x · P (N)(y)) + P 2(N)(x · y)

=
n∑

i,j=0

cjck

(
N j(x) ·Nk(y)−Nk(N j(x) · y)−N j(x ·Nk(y)) +N j+k(x · y)

)
= 0,

which implies that P (N) is a Nijenhuis operator. Similarly we can easy check the
second statement.

7 O-operators and Nijenhuis operators

In this section, we highlight the relationships between O-operators and Nijenhuis op-
erators on left-symmetric Rinehart algebras. Moreover, we illustrate some connections
between Nijenhuis operators and compatible O-operators on left-symmetric Rinehart al-
gebras.

7.1 Relationships between O-operators and Nijenhuis operators

We first give the definitions of an O-operator and of Rota-Baxter operator.

Definition 7.1. An O-operator on a left-symmetric Rinehart algebra (L,A, ·, ℓ) associated
to a representation (M ; ρ, µ) is a linear map T : M −→ L satisfying

T (au) = aT (u), (33)

T (u) · T (v) = T
(
ρ(T (u))(v) + µ(T (v))(u)

)
, ∀u, v ∈ M, a ∈ A. (34)

Definition 7.2. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and R : ker(ℓ) −→ L

a linear operator. If R satisfies

R(ax) = aR(x), (35)

R(x) · R(y) = R(R(x) · y + x · R(y)), ∀x, y ∈ L, a ∈ A, (36)

then R is called a Rota-Baxter operator of weight 0 on L.

Notice that a Rota-Baxter operator of weight zero on a left-symmetric Rinehart algebra
L is exactly an O-operator associated to the adjoint representation (L; adL, adR).

The following proposition gives connections between Nijenhuis operators and Rota-
Baxter operators.

Proposition 7.3. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and N : L −→ L a
linear operator.
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(i) If N2 = Id, then N is a Nijenhuis operator if and only if N ± Id is a Rota-Baxter
operator of weight ∓2 on (L,A, ·, ℓ).

(ii) If N2 = 0, then N is a Nijenhuis operator if and only if N is a Rota-Baxter operator
of weight zero on (L,A, ·, ℓ).

(iii) If N2 = N , then N is a Nijenhuis operator if and only if N is a Rota-Baxter operator
of weight −1 on (L,A, ·, ℓ).

Proof. For Item (i), for all x, y ∈ L then we have

(N − Id)(x) · (N − Id)(y)

− (N − Id)
(
(N − Id)(x) · y + x · (N − Id)(y)

)
+ 2(N − Id)(x · y)

= N(x) ·N(y)−N
(
N(x) · y + x ·N(y)

)
+ x · y

= N(x) ·N(y)−N
(
N(x) · y + x ·N(y)

)
+N2(x · y).

So N is a Nijenhuis operator if and only if N − Id is a Rota-Baxter operator of weight
2 on L. Similarly, we obtain that N is a Nijenhuis operator if and only if N + Id is a
Rota-Baxter operator of weight −2 on L.

Items (ii) and (iii) are obvious from the definitions of Nijenhuis operators and Rota-
Baxter operator.

Proposition 7.4. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and (M ; ρ, µ) be a
representation on L. Let T : M → L be a linear map. For any λ, T is an O-operator on

L associated to (M ; ρ, µ) if and only if the linear map RT,λ :=

(
0 T

0 −λId

)
is a Rota-

Baxter operator of weight λ on the semidirect product left-symmetric Rinehart algebra
(L⊕M, ·L⊕M), where the multiplication ·L⊕M is given by (9).

Proof. It is easy to check the equation (35). Let x1, x2 ∈ L and m1, m2 ∈ M ,

RT,λ(x1 +m1) ·L⊕M RT,λ(x2 +m2) = (T (m1)− λm1) ·L⊕M (T (m2)− λm2)

= T (m1) · T (m2)− λρ(T (m1)m2 − λµ(T (m2))m1.

(37)

On the other hand,

RT,λ

(
RT,λ(x1 +m1) ·L⊕M (x2 +m2) + (x1 +m1) ·L⊕M RT,λ(x2 +m2)

)
+

λRT,λ((x1 +m1) ·L⊕M (x2 +m2))

=RT,λ

(
(T (m1)− λm1) ·L⊕M (x2 +m2) + (x1 +m1) ·L⊕M (T (m2)− λm2)

)
+

λRT,λ(x1 · x2 + ρ(x1)m2 + µ(x2)m1)

=RT,λ

(
T (m1) · x2 + ρ(T (m1))m2 − λµ(x2)m1 (38)

+ x1 · T (m2)− λρ(x1)m2 + µ(T (m2))m1

)
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+ λ
(
T (ρ(x1)m2) + T (µ(x2)m1)− λ(ρ(x1)m2 + µ(x2)m1)

)

=T
(
ρ(T (m1))m2 + µ(T (m2))m1

)
− λT

(
µ(x2)m1 + ρ(x1)m2

)
(39)

− λ
(
ρ(T (m1))m2 + µ(T (m2))m1

)
+ λ2

(
µ(x2)m1 + ρ(x1)m2

)

+ λ
(
T (ρ(x1)m2) + T (µ(x2)m1)

)
− λ2

(
ρ(x1)m2 + µ(x2)m1)

)

=T
(
ρ(T (m1))m2 + µ(T (m2))m1

)
− λρ(T (m1))m2 − λµ(T (m2))m1. (40)

According to equations (37) and (40), RT,λ is a Rota-Baxter operator of weight λ on
the semidirect product left-symmetric Rinehart algebra (L⊕M, ·L⊕M) if and only if T is
an O-operator on (L,A, ·, ℓ) associated to (M ; ρ, µ).

Proposition 7.5. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and let (M ; ρ, µ) be
a representation on L. Let T : M → L be a linear map. Then the following statements
are equivalent.

(i) T is an O-operator on the left-symmetric Rinehart algebra (L,A, ·, ℓ).

(ii) NT :=

(
0 T

0 Id

)
is a Nijenhuis operator on the left-symmetric Rinehart algebra

(L⊕M, ·L⊕M).

(iii) NT :=

(
0 T

0 0

)
is a Nijenhuis operator on the left-symmetric Rinehart algebra

(L⊕M, ·L⊕M).

Proof. Note that NT = RT,−1 and (NT )
2 = NT , thus NT is a Nijenhuis operator on the

left-symmetric Rinehart algebra (L⊕M, ·L⊕M), using (iii) in Proposition 7.3.
Similarly NT = RT,0 and (NT )

2 = 0, then NT is a Nijenhuis operator on the left-
symmetric Rinehart algebra (L⊕M, ·L⊕M), according to (ii) in Proposition 7.3.

7.2 Compatible O-operators and Nijenhuis operators

In this subsection we study compatibility of O-operators and Nijenhuis operators. First
we start with the following definition.

Definition 7.6. Let (L,A, ·, ℓ) be a left-symmetric Rinehart algebra and let (M ; ρ, µ) be a
representation. Let T1, T2 : M −→ L be two O-operators associated to (M ; ρ, µ). Then T1

and T2 are called compatible if T1 + T2 is an O-operator associated to (M ; ρ, µ).

Let T1, T2 : M −→ L be two O-operators on a left-symmetric Rinehart algebra
(L,A, ·, ℓ) associated to a representation (M ; ρ, µ) such that

T1(u) · T2(v) + T2(u) · T1(v) = T1

(
ρ(T2(u))(v) + µ(T2(v))(u)

)

+ T2

(
ρ(T1(u))(v) + µ(T1(v))(u)

)
, (41)

for all u, v ∈ M.
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Lemma 7.7. Two operators T1 and T2 are compatible if and only if the equation (41) holds.

Proof. For all u, v ∈ M , a ∈ A, we have

(T1 + T2)(au) = T1(au) + T2(au)

= aT1(u) + aT2(u)

= a(T1 + T2)(u).

Furthermore,

(T1 + T2)(u) · (T1 + T2)(v)− (T1 + T2)
(
ρ((T1 + T2)(u))(v) + µ((T1 + T2)(v))(u)

)

= T1(u) · T1(v) + T1(u) · T2(v) + T2(u) · T1(v) + T2(u) · T2(v)

− (T1 + T2)
(
ρ(T1(u))(v) + ρ(T2(u))(v) + µ(T1(v))(u) + µ(T2(v))(u)

)

= T1(u) · T1(v) + T1(u) · T2(v) + T2(u) · T1(v) + T2(u) · T2(v)

− T1

(
ρ(T1(u))(v) + µ(T1(v))(u)

)
− T1

(
ρ(T2(u))(v) + µ(T2(v))(u)

)

− T2

(
ρ(T1(u))(v) + µ(T1(v))(u)

)
− T2

(
ρ(T2(u))(v) + µ(T2(v))(u)

)

= T1(u) · T2(v) + T2(u) · T1(v)

− T1

(
ρ(T2(u))(v) + µ(T2(v))(u)

)
− T2

(
ρ(T1(u))(v) + µ(T1(v))(u)

)

Then T1+T2 is an O-operator associated to (M ; ρ, µ) if and only if equation (41) holds.

Remark 7.8. Equation (41) implies that for any k1, k2 the linear combination k1T1 + k2T2

is an O-operator.

There is a close relationship between a Nijenhuis operator and a pair of compatible
O-operators as can be seen from the following proposition.

Proposition 7.9. Let T1, T2 : M −→ L be two O-operators on a left-symmetric Rinehart
algebra (L,A, ·, ℓ) associated to a representation (M ; ρ, µ). Suppose that T2 is invertible. If
T1 and T2 are compatible, then N = T1 ◦T

−1
2 is a Nijenhuis operator on the left-symmetric

Rinehart algebra (L,A, ·, ℓ).

Proof. For all x, y ∈ L, since T2 is invertible, there exist u, v ∈ M such that T2(u) = x,

T2(v) = y. Hence N = T1 ◦T
−1
2 is a Nijenhuis operator if and only if the following equation

holds:

NT2(u) ·NT2(v) = N(NT2(u) · T2(v) + T2(u) ·NT2(v))−N2(T2(u) · T2(v)). (42)

Since T1 = N ◦ T2 is an O-operator, the left-hand side of the above equation is

NT2(ρ(NT2(u))(v) + µ(NT2(v))(u)).



150 Abdelkader Ben Hassine, Taoufik Chtioui, Mohamed Elhamdadi and Sami Mabrouk

Using the fact that T2 and T1 = N ◦ T2 are two compatible O-operators, we get

NT2(u) · T2(v) + T2(u) ·NT2(v)

= T2(ρ(NT2(u))(v) + µ(NT2(v))(u)) +NT2(ρ(T2(u))(v) + µ(T2(v))(u))

= T2(ρ(NT2(u))(v) + µ(NT2(v))(u)) +N(T2(u) · T2(v)).

Hence, equation (42) holds by acting N on both sides of the last equality.

Using an O-operator and a Nijenhuis operator, we can construct a pair of compatible
O-operators.

Proposition 7.10. Let T : M −→ L be an O-operator on a left-symmetric Rinehart algebra
(L,A, ·, ℓ) associated to a representation (M ; ρ, µ) and let N be a Nijenhuis operator on
(L,A, ·, ℓ). Then N ◦T is an O-operator on the left-symmetric Rinehart algebra (L,A, ·, ℓ)
associated to (M ; ρ, µ) if and only if for all u, v ∈ M , the following equation holds:

N
(
NT (u) · T (v) + T (u) ·NT (v)

)

=N
(
T
(
ρ(NT (u))(v) + µ(NT (v))(u)

)
+NT

(
ρ(T (u))(v) + µ(T (v))(u)

))
. (43)

If in addition N is invertible, then T and NT are compatible. More explicitly, for any
O-operator T , if there exists an invertible Nijenhuis operator N such that NT is also an
O-operator, then T and NT are compatible.

Proof. Let u, v ∈ M and a ∈ A, we have

NT (au) = N(T (au)) = N(aT (u)) = aNT (u).

In addition, since N is a Nijenhuis operator and T is an O-operator we have

NT (u) ·NT (v) = N
(
NT (u) · T (v) + T (u) ·NT (v)

)
−N2(T (u) · T (v))

= NT
(
ρ(NT (u))(v) + µ(NT (v))(u)

)

if and only if (43) holds.
If NT is an O-operator and N is invertible, then we have

T (u) · T (v) + T (u) ·NT (v)

= T
(
ρ(NT (u))(v) + µ(NT (v))(u)

)
+NT

(
ρ(T (u))(v) + µ(T (v))(u)

)
,

which is exactly the condition that NT and T are compatible.

The following result is an immediate consequence of the last two propositions.

Corollary 7.11. Let T1, T2 : M −→ L be two O-operators on a left-symmetric Rinheart
algebra (L,A, ·, ℓ) associated to a representation (M ; ρ, µ). Suppose that T1 and T2 are
invertible. Then T1 and T2 are compatible if and only if N = T1 ◦ T−1

2 is a Nijenhuis
operator.
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[19] J. L. Koszul. Domaines bornés homogènes et orbites de groupes de transformations affines.
Bull. Soc. Math. France, 89:515—533, 1961.

[20] U. Krahmer and A. Rovi. A Lie-Rinehart algebra with no antipode. Comm. Algebra,
43(10):4049–4053, 2015.

[21] B. A. Kupershmidt. Non-abelian phase spaces. J. Phys. A, 27:2801–2809, 1994.

[22] B. A. Kupershmidt. What a classical r-matrix really is. J. Nonlinear Math. Phys, 6(4):448–
488, 1999.

[23] J. Liu, Y. Sheng, and C. Bai. Left-symmetric bialgebroids and their corresponding manin
triples. Diff. Geom. Appl, 59:91–111, 2018.

[24] J. Liu, Y. Sheng, and C. Bai. Pre-symplectic algebroids and their applications. Lett. Math.

Phys, 108(3):779–804, 2018.

[25] J. Liu, Y. Sheng, C. Bai, and Z. Chen. Left-symmetric algebroids. Math. Nach, 289(14–
15):1893–1908, 2016.

[26] K. Mackenzie. Lie groupoids and Lie algebroids in differential geometry. London Mathemat-

ical Society Lecture Note Series, 124, 1987.

[27] Y. Matsushima. Affine structures on complex mainfolds. Osaka J. Math, 5:215–222, 1968.

[28] R. Palais. The cohomology of Lie rings. Amer. Math. Soc., Providence, R. I., Proc. Symp.

Pure Math, pages 130–137, 1961.

[29] G. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc,
108:195–222, 1963.

[30] E. B. Vinberg. Convex homogeneous cones. Transl. Moscow Math. Soc, 12:340–403, 1963.

[31] Q. Wang, C. Bai, J. Liu, and Y. Sheng. Nijenhuis operators on pre-Lie algebras. Commun.

Contemp. Math, 21(7):1850050, 2019.

[32] X. Xu. On simple novikov algebras and their irreducible modules. J. Algebra, 185(3):905–934,
1996.

Received: December 6, 2023
Accepted for publication: February 29, 2024
Communicated by: Adam Chapman and Ivan Kaygorodov


	Introduction
	Preliminaries
	Some basic properties of a left-symmetric Rinehart algebras
	Representations of left-symmetric Rinehart algebras
	The Matsushima-Nijenhuis bracket for left-symmetric Rinehart algebras
	Deformation of left-symmetric Rinehart algebra
	Formal deformations
	Obstructions to the extension theory of deformations
	Trivial deformation

	O-operators and Nijenhuis operators
	Relationships between O-operators and Nijenhuis operators
	Compatible O-operators and Nijenhuis operators


