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Abstract. We introduce a notion of left-symmetric Rinehart algebras, which is a
generalization of the notion of left-symmetric algebras. The left multiplication gives
rise to a representation of the corresponding sub-adjacent Lie-Rinehart algebra. We
construct left-symmetric Rinehart algebras from O-operators on Lie-Rinehart alge-
bras. We extensively investigate representations of left-symmetric Rinehart algebras.
Moreover, we construct a graded Lie algebra on the space of multi-derivations whose
Maurer—Cartan elements characterize left-symmetric Rinehart algebras and study
deformations of left-symmetric Rinehart algebras, which are controlled by the sec-
ond cohomology class in the deformation cohomology. We also give the relationships
between O-operators and Nijenhuis operators on left-symmetric Rinehart algebras.

Contents
1 Introduction 128
2 Preliminaries 129

MSC 2020: 17E05 (primary); 53D17, 17B70, 14B12, 06B15 (secondary)
Keywords: left-symmetric Rinehart algebra, representation, graded Lie algebra, Maurer-Cartan ele-
ment, cohomology, deformation, Nijenhuis operator.
Contact information:
A. Ben Hassine:
Affiliation: Department of Mathematics, University of Bisha, Saudi Arabia.
Email: Benhassine@Qub.edu.sa
T. Chtioui:
Affiliation: Faculty of Sciences, Gabes University, Tunisia.
Email: chtioui.taoufik@yahoo.fr
M. Elhamdadi:
Affiliation: Department of Mathematics, University of South Florida, U.S.A..
Email: emohamed@math.usf.edu
S. Mabrouk:
Affiliation: Faculty of Sciences, University of Gafsa, Tunisia.
Email: sami.mabrouk@fsgf.u-gafsa.tn, mabrouksami0OO@yahoo.fr


http://arxiv.org/abs/2010.00335v5

128 Abdelkader Ben Hassine, Taoufik Chtioui, Mohamed Elhamdadi and Sami Mabrouk

3 Some basic properties of a left-symmetric Rinehart algebras 131
4 Representations of left-symmetric Rinehart algebras 134

5 The Matsushima-Nijenhuis bracket for left-symmetric Rinehart algebras136

6 Deformation of left-symmetric Rinehart algebra 139
6.1 Formal deformations . . . . . .. ... ... ... ... 140
6.2 Obstructions to the extension theory of deformations . . . . . . .. .. .. 142
6.3 Trivial deformation . . . . . . . . ... 143

7 (O-operators and Nijenhuis operators 146
7.1 Relationships between O-operators and Nijenhuis operators . . . . . . . .. 146
7.2 Compatible O-operators and Nijenhuis operators . . . . ... ... .. .. 148

1 Introduction

Left-symmetric algebras are algebras for which the associator

(r,9,2) = (x-y)-z2—x-(y-2)

satisfies the identity (z,y,z) = (y,z,z). These algebras appeared as early as 1896 in
the work of Cayley [8] as rooted tree algebras. In the 1960s, they also arose from the
study of several topics in geometry and algebra, such as convex homogenous cones [30],
affine manifolds and affine structures on Lie groups [19,27] and deformations of associative
algebras [14]. In 2006, Burde [6] wrote an interesting survey showing the importance of
left-symmetric algebras in many areas, such as vector fields, rooted tree algebras, vertex
algebras, operad theory, deformation complexes of algebras, convex homogeneous cones,
affine manifolds and left-invariant affine structures on Lie groups [6].

Left symmetric algebras are the underlying algebraic structures of non-abelian phase
spaces of Lie algebras [1,21], leading to a bialgebra theory of left-symmetric algebras
[3]. They can also be seen as the algebraic structures behind the classical Yang-Baxter
equations. Precisely, they provide a construction of solutions of the classical Yang-Baxter
equations in certain semidirect product Lie algebra structures (that is, over the double
spaces) induced by left-symmetric algebras [2,22].

The notion of Lie-Rinehart algebras was introduced by J. Herz in [15] and further
developed in [28,29]. A a notion of (Poincaré) duality for this class of algebras was
introduced in [16,17]. Lie-Rinehart structures have been the subject of extensive studies,
in relations to symplectic geometry, Poisson structures, Lie groupoids and algebroids and
other kinds of quantizations (see [18,20,23,24,25,26]). For further details and a history of
the notion of Lie-Rinehart algebra, we refer the reader to [18]. Lie-Rinehart algebras have
been investigated furthermore in [4,7,11,12].

A left-symmetric algebroid is a geometric generalization of a left-symmetric algebra.
See [23,24,25] for more details and applications. The notion of a Nijenhuis operator on a
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left-symmetric algebroid was introduced in [24], which could generate a trivial deformation.
More details on deformations of left-symmetric algebras can be found in [31].

In this paper, we introduce a notion of left-symmetric Rinehart algebras, which is a
generalization of a left-symmetric algebra and an algebraic version of left symmetric alge-
broids. The following diagram shows how left-symmetric Rinehart algebras fit in relation
to Lie algebras, left-symmetric algebras and Lie-Rinehart algebras.

generalization

Lie-Rinehart algebra

|

Left-symmetric Rinehart

Lie algebra

|

. eneralization
Left-symmetric algebra &

The paper is organized as follows. In Section 2, we recall some definitions concerning
left-symmetric algebras and Lie-Rinehart algebra. In Section 3, we introduce the notion
of left-symmetric Rinehart algebra and give some of its properties. As in the case of a
left-symmetric algebras, one can obtain the sub-adjacent Lie-Rinehart algebra from a left-
symmetric Rinehart algebra by using the commutator. The left multiplication gives rise
to a representation of the sub-adjacent Lie-Rinehart algebra. We construct left-symmetric
Rinehart algebras using O-operators. Section 4 is devoted to the study of representations
and cohomology of left-symmetric Rinehart algebra. In Section 5, we construct a graded
Lie algebra whose Maurer-Cartan elements are left-symmetric Rinehart algebras which
give rise to a coboundary operator. Section 6 is devoted to introduce the deformation
cohomology associated to a left-symmetric Rinehart algebra, which controls the deforma-
tions. In Section 7, we introduce the notion of a Nijenhuis operator, which could generate
a trivial deformation. In addition, we investigate some connection between O-operators
and Nijenhuis operators.

Throughout this paper all vector spaces are over a field K of characteristic zero.

2 Preliminaries

In this section, we briefly recall some basics of left-symmetric algebras and Lie-Rinehart
algebras [6].

Definition 2.1. A left-symmetric algebra is a vector space L endowed with a linear map
- L ® L — L such that for any x,y,z € L,

(x,y,Z)Z(y,x,Z), or eqU-ivalentIY> (Z’y)Z-ZE’(yZ):(yZ')Z—y(Z'Z),

where the associator (z,y,2) = (z-y)-z—x-(y- 2).

Let ad” (resp. ad®) be the left multiplication operator (resp. right multiplication
operator) on L that is, i.e. ad”(z)y = z -y (resp. ad®(z)y =y - 2), for any z,y € L. The
following lemma is given in [6].
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Lemma 2.2. Let (L,-) be a left-symmetric algebra. The commutator [z,y| =z -y—y-x
defines a Lie algebra L, which is called the sub-adjacent Lie algebra of L. The algebra L
1s also called a compatible left-symmetric algebra on the Lie algebra L. Furthermore, the
map ad” : L — gl(L) with x — L, gives a representation of the Lie algebra (L, |-, "]).

Definition 2.3. Let (L, -) be a left-symmetric algebra and M a vector space. A represen-
tation of L on M consists of a pair (p, 1), where p: L — gl(M) is a representation of the
sub-adjacent Lie algebra L on M and u: L — gl(M) is a linear map satisfying:

p(x) o pu(y) — p(y) o p(z) = p(x - y) — p(y) o p(x), Vum,ye€ L. (1)

The map p is called a left representation and p is a right representation. Usually, we
denote a representation by (M;p, 1r). Then (L;ad”, ad®) is a representation of (L, -) which
is called adjoint representation.

The cohomology complex for a left-symmetric algebra (L,-) with a representation
(M; p, ) is given as follows. The set of (n + 1)-cochains is given by

C"tN L, M) = Hom(A\"L® L, M), V¥n>0. (2)

For all w € C"(L, M), the coboundary operator ¢ : C"(L, M) —s C™"(L, M) is given by

n

dw(x, To, .. Tpg1) = Z(_l)iﬂp(%)w(l’h o Ty Tpg)

i=1

+Z D) (@ )w(2, o By T, )

z+1 o
—E W(T1, ooy Tiy e ooy Ty T+ Tppy1)
Z+ ~ ~
+ E To([Ti, 5], @1, - Ty oo oy Ty ey Tgd)
1<z<]<n

We then have the following lemma whose proof comes from a direct computation using
identity (1).

Lemma 2.4 (See [5]). The map § satisfies 6* = 0.

Definition 2.5. A Lie-Rinehart algebra L over an associative commutative algebra A is a
Lie algebra over K with an A-module structure and a linear map p : L — Der(A), such
that the following conditions hold:

1. Foralla € A and z,y € L

p([z,y]) = p(x)p(y) — p(x)p(y) and p(ax) = ap(z).
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2. The compatibility condition:

[z, ay] = p(x)ay + a[z,y], Vae€ A, x,y e L. (3)

Let (L, A, [, ]z, p) and (L', A", [-,-]1,p") be two Lie-Rinehart algebras, then a Lie-
Rinehart algebra homomorphism is defined as a pair of maps (g, f), where the maps
f:L— L and g: A — A" are two algebra homomorphisms such that:

(1) flaz) =g(a)f(x) for all z € L and a € A,
(2) g(p(x)a) = p'(f(z))g(a) for all x € L and a € A.

Now, we recall the definition of module over a Lie-Rinehart algebra (for more details
see [10]).

Definition 2.6. Let M be an A-module. Then M is a module over a Lie-Rinehart algebra
(L, A, [, ], p) if there exists a map 6 : L ® M — M such that:

1. 0 is a representation of the Lie algebra (L, [-,-]) on M.
2. O(ax,m) =ab(x,m) foralla € A,z € Lym € M.
3. O(x,am) = ab(x,m) + p(x)am for all z € L,a € A,m € M.

We have the following lemma giving a characterization of of the 6 which are represen-
tations.

Lemma 2.7. The map 0 is representation if and only if L & M is Lie-Rinehart algebra
over A, where |-, |pam and Opan are given by

(1 +m1, 20 +Malpen = [21, 22] + p(x1)me — p(a2)ma,

Orenv(z1 +my) = 6(zq)

for all x1,x9 € L and my,my € M.

3 Some basic properties of a left-symmetric Rinehart algebras

In this section, we introduce a notion of left-symmetric Rinehart algebras illustrated
by some examples. As in the case of a left-symmetric algebra, we obtain the sub-adjacent
Lie-Rinehart algebra from a left-symmetric Rinehart algebra using the commutator. In
addition, we construct left-symmetric Rinehart algebras using O-operators.

Definition 3.1. A left-symmetric Rinehart algebra is a quadruple (L, A, -, ¢) where (L, )
is a left-symmetric algebra, A is an associative commutative algebra and ¢ : L — Der(A)
a linear map such that the following conditions hold:
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1. L is an A-module.

2. Foralla € Aand z,y € L
lx-y—y-x)=Lx)(y)—l(x)l(y) and {(ax)= al(z).

3. The compatibility conditions: for all a € A and z,y € L

z - (ay) =L(r)ay + a(z - y), (4)
(ax) -y =a(z - y). (5)

Example 3.2. It is clear that any left-symmetric algebra is a left-symmetric Rinehart
algebra.

Example 3.3. A Novikov Poisson algebra is a left-symmetric Rinehart algebra (see [32]).

Example 3.4. Let (L, A,-,{) be a left-symmetric Rinehart algebra and let L @ Abe the
direct sum of L and A. Then (L ® A, A, rga,lraa) is a left-symmetric Rinehart algebra,
where the 144 is defined by the following expression, for all x1, x5 € L, a1, a2 € A;

(x1 4+ a1) Lo (T2 + a2) = @1 - T2 + L(21)(a2);

and lrga : L@ A — Der(A) is defined by {1ga(a; + x1) = ¢(x1). Indeed, it obvious that
(LBA, [aa) is a left-symmetric algebra, {144 is a representation of left-symmetric algebra
L& Aand (s € Der(A).

By direct calculation, we have (rg4(b(x1 + a1)) = blpga(xy + a1) for all b,a; € A and
x1 € L. On the other hand, letting x1, 25 € L and b,a;,as € A, we have

(1 + a1) ‘Lapa b(xs + as) :(a1 + 1) Laa (bra + bas)
1 (bxg) 4+ £(z1)(bas)
b(:cl x9) + L(x1)b(x2) + (1) (b)as + bl(x1)(az)
=b(z1 - 22 + l(21)(az)) + (z1)b(x2) + L(z1)(b)as
=b((z1 + a1) ‘Lea (T2 + a2)) + Lraa(z1 + a1)b(z2 + as).

Moreover,

b(x1 + a1) ‘rea (T2 + ag) =(bxy + bay) e (T2 + az)
=(bxy) - w9 + L(bz1)(ag)
=b(z1 - x2) + bl(x1)(az)
:b(atl - Xg + f(xl)ag)
=b((z1 + a1) ‘Lo (22 + a2)).

Now we have the following theorem.
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Theorem 3.5. Let (L, A, - () be a left-symmetric Rinehart algebra. Then, (L, A,[-,-],¥)
is a Lie-Rinehart algebra, denoted by LC, called the sub-adjacent Lie-Rinehart algebra of
(L> Aa 5 E)

Proof. Since (L, -) is a left-symmetric algebra, we have that (L, [-,-]) is a Lie algebra. For
any a € A, by direct computations, we have
[z, ay] = x-(ay) = (ay) -z = alz - y) + L(z)ay — a(y - 7)
= alz,y] + {(z)(a)y,

which implies that (L, A, [-, -], ¢) is a Lie-Rinehart algebra.

To see that the linear map ¢ : L — Der(A) is a representation, we only need to show
that €|, = [z, {y] per(a), Which follows directly from the fact that (L, -) is a left-symmetric
algebra. This ends the proof. O

Definition 3.6. Let (L1, Ay,-1,¢1) and (Lg, Ay, -2, 05) be two left-symmetric Rinehart al-
gebras. A homomorphism of left-symmetric Rinehart algebras is a pair of two algebra
homomorphisms (f, g) where f: Ly — Ly and g : Ay — A, such that:

flaz) = g(a)f(x), g(ti(z)a) = b(f(x))g(a), Va,y € Li,a€ A
The following proposition is immediate.
Proposition 3.7. Let (f,g) be a homomorphism of left-symmetric Rinehart algebras from

(L1, Ay, 1,01) to (Lo, Ag, 2, 03). Then (f,g) is also a Lie-Rinehart algebra homomorphism
of the corresponding sub-adjacent Lie-Rinehart algebras.

Now we give the definition of an O-operator.

Definition 3.8. Let (L, A, [, ], p) be a Lie-Rinehart algebra and 6 : L — End(M) be
a representation over M. A linear map T : M — L is called an O-operator if for all
u,v € M and a € A we have

T(au) = aT(u), (6)

[7(u), T(v)] = T(0(T (u))(v) — O(T (v)) (u)). (7)
Remark 3.9. Consider the semidirect product Lie-Rinehart algebra
(L g M, A, [, | Lxgrs PLrgh),
where pry,nm(x 4+ u) := p(z)(u) and the bracket |-, -|p«,n is given by
[+ w,y + v]wen = [, y] +60(2)(v) = 0(y)(u).

0T

00 ) on the Lie-

Any O-operator T : M —> L gives a Nijenhuis operator T = (
Rinehart algebra L x4 M. More precisely, we have

[T($+u)vf(y+v)]Lb<9M = T([T($+U),y+U]L[><9M—|—[!E+U,T(y—|—v)]L><9M—T[:E—|—u,y+U]L><9M>-
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Fore more details on Nijenhuis operators and their applications the reader should con-
sult [13].

Let T': M — L be an O-operator. Define the multiplication -7 on M by
u-rv==0(T(u))(v), Yu,v € M.
We then have the following proposition.

Proposition 3.10. With the above notations, (M, A, -p, by = € o T) is a left-symmetric
Rinehart algebra, and the map T is Lie-Rinehart algebra homomorphism from (M, [-,-]) to

(L> [’])

Proof. 1t is easy to see that (M,-r) is a left-symmetric algebra. For any a € A, using
Definition 3.1 and equation (6) we have

Cy(au) = (T (auw)) = al(T(u)) = aly(u),
Similarly, using Definition 2.6 we obtain

(au) -rv = O(T(au))(v) = aT (u))(v) = ab(T'(u))(v),
wr (av) = 0(T(u))(av) = ad(T(u))(v) + £ o T(u)(a)v.

Thus, (M, A, -7, €y) is a left-symmetric Rinehart algebra. Let [, -] be the sub-adjacent Lie
bracket on M. Then we have

Tlu,v] =T(u-rv—v-ru)=TEOT(u)(v) - 0(T())(u) = [T(u),T()]

So T is a homomorphism of Lie algebras. O

4 Representations of left-symmetric Rinehart algebras

In this section, we develop the notion of representations of a left-symmetric Rinehart
algebra and give a cohomology theory with coefficients in a representation.

Definition 4.1. Let (L, A,-,¢) be a left-symmetric Rinehart algebra and M be an A-
module. A representation of A on M consists of a pair (p, i), where p is a representation
of the sub-adjacent Lie-Rinehart algebra (L, A, [-,-],¢) and p : L — End(M) is a linear
map, such that for all z,y € L and m € M, we have

p(x)(am)

plaz)m = ap(z)m =
p(x)uy) — p(y)p(x) = p(x - y) — ply)u(r). (8)

We will denote this representation by (M; p, u).
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For a left-symmetric Rinehart algebra (L, A, -, ¢) and a representation (M; p, i), the fol-
lowing proposition gives a construction of a left-symmetric Rinehart algebra called semidi-
rect product and denoted by L x,,, M.

Proposition 4.2. Let (L, A, -, 0) be a left-symmetric Rinehart algebra and (M;p, ) a rep-
resentation. Then, (L ® M, A, reom, lrem) s a left-symmetric Rinehart algebra, where
‘Lom and Lran are given by

(x1 4+ m1) ‘Lom (T2 +m2) = 122+ p(a1)mo + p(z2)ma, 9)
Cram(zr +my) = l(xq), (10)
for all x1,x9 € L and mq,my € M.

Proof. Let (M; p, 1) be a representation. It is straightforward to see that (L® M, A, -ranm)
is a left-symmetric algebra. For any z1, x5 € L and my, my € M, we have

(1 +m1) Lem (a(xe +me)) = x1- (axe) + p(z1)ams + plaze)my

= a(xy - x2) + l(x1)(axs) + ap(xz1)ms

+0(x1)(ama) + ap(za)my

= a((x1+m1) Lem (T2 +m2)) + Cranm(z1)(a)(z2 + mo).

On the other hand, we have
(a(z1 +m1)) Lom (T2 +me) = (axy) - 22 + plaxy)mg + p(xe)(amy)
= a((z1 + 1) Lem (T2 +my)).

Therefore, (L & M, A, ranm, lran) is a left-symmetric Rinehart algebra. O

Let (L, A, -, ) be a left-symmetric Rinehart algebra and (M; p, 1) be a representation.
Let p* : L M* — M* and p* : M* ® L — M* be defined by

(p"(x)€,m) = L(x){§, m) — (p(x)m, &) and (u*(2)§, m) = —(§ p(z)m),
where M* = Homu(M, A). Then, we have the following proposition.

Proposition 4.3. With the above notations, we obtain that
(i) (M, p—p) is a representation of the sub-adjacent Lie-Rinehart algebra (L, A, [-, -], £).
(ii) (M*, p*—p*, —p*) is a representation be a left-symmetric Rinehart algebra (L, A, -, ().

Proof. Since (M;p, ) is a representation of the left-symmetric algebra (L, A, -, £), using
Proposition 4.2 we have that (L@® M, A, ram, ren) is a left-symmetric Rinehart algebra.
Consider its sub-adjacent Lie-Rinehart algebra (L & M, A, ‘1o, [ | ranms Cren). We have

[(x1 +m1), (22 +Mm2)]em = (T1+m1) -Lam (T2 +ma) — (2 +M2) -Lem (1 +m1)
= x1- 22+ plx1)ma + p(ze)my
—T2 - T1 — P(ﬁz)ml - M(I1)m2
(21, 22] + (p = ) (1) (m2) + (p — ) (w2) (ma).
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From Lemma 2.7 we deduce that (M, p — ) is a representation of Lie-Rinehart algebra L
on M. This finishes the proof of (i).

For item (ii), it is clear that p* — u* is just the dual representation of the representation
6 = p — p of the sub-adjacent Lie-Rinehart algebra of L. We can directly check that
—p*(ax)é = —ap*(2)€ = —p*(z)(a&). For any z,y € L, £ € M* and m € M we have

)
—((p* = ) (@) (y)€, m) + (W (Y)(p™ — p*) (@))€, m)
= =" (@) ()&, m) + (' (@)p* ()€, m) + (W (y)p" (2)€, m) — (" (y)p* ()€, m)
= £(2) (&, uly)m) — (&, p(y)p(z)m) + (& u(y)p(x)m)
)

—L(@) (&, nly)m) + (& p(x)u(y)m) — (&, p(x)p(y)m)
= (& (- y)m) — (&, ply)p(z)m) + (& ply)ulx)m) — (&, p(@)uly)m)
= ((=p"(z - y) — p ()" (x))§, m).
Therefore (M*, p* — u*, —p*) is a representation of L. O

Corollary 4.4. With the above notations, we have

(i) The left-symmetric Rinehart algebras L %, , M and L X,_,, 0 M have the same sub-
adjacent Lie-Rinehart algebra L x,_, M.

(ii) The left-symmetric Rinehart algebras L X ,» o M* and L X px_,« _,» M* have the same
sub-adjacent Lie-Rinehart algebra L x . M*.

Let (M;p, ) be a representation of a left-symmetric Rinehart algebra (L, A, -, ¢). In
general, (M*, p*, 1*) is not a representation. But we have the following proposition.
Proposition 4.5. Let (L, A, -, 0) be a left-symmetric Rinehart algebra and (M;p, ) be a
representation. Then the following conditions are equivalent:

(1) (M;p— pu,—p) is a representation of (L, A, -, ().
(2) (M=, p*, u*) is a representation of (L, A, -, /).

(3) w(@)p(y) = u(y)u(zx) for all z,y € L.

5 The Matsushima-Nijenhuis bracket for left-symmetric Rinehart al-
gebras

In this section we construct a graded Lie algebra whose Maurer-Cartan elements are
left-symmetric Rinehart algebras which give rise to a coboundary operator.

Let (L, A,-,¢) be a left-symmetric Rinehart algebras. A multiderivation of degree n
is a multilinear map P € Hom(A"L ® L, L) such that, for every a € A, z; € L and
i€{l,2,...,n+ 1}, we have

P(Ilfl,...,CLIL’Z',...,I'”,I‘”+1) = aP(xl,...,xi,...,xn,xnﬂ), (11)

P(xla sty Ty, a$n+1) = &P(Z'l, sty Ty, xn-i—l) + Ep(xl, e axn)(a)$n+la (12)
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where Zp : L®" — Der(A) is called the symbol map. The space of all multiderivations
of degree n will be denoted by D"(L). Set D*(L) = ®,>_19D"(L) with D1(L) = L, the
space of multiderivations on L.

A permutation ¢ € S, is called an (i,n — i)-unshuffle if o(1) <o < o(i) and
oi+ 1) < -+ < o(n). Ifi=0and i = n, we assume ¢ = Id. The set of all
(4,n — i)-unshuffles will be denoted by S(; ,—;). The notion of an (i1, - - -, i)-unshuffle and
the set S, ... ;) are defined similarly.

Let P € ®™(L) and Q € ©"(L). We define the Matsushima-Nijenhuis bracket
[N 2 @™(L) x D™(L) — @™*"(L) by

[P,Q]MN :POQ— (—1)an<>P,

where
Po Q(x17x27 o 7xm+n+1>
= Z (_I)JP(Q(xJ(l)a U 7I0(m+1))a LTo(m+2), """ s Lo(m+n)s xm—i—n—i—l)
UES(m,l,nfl)
+(_1)mn Z (_l)ap(za(lb 5y To(n), Q(za(n+l)> To(n+2)s "y Lo(m+n), $m+n+l))'
UES(n,m)

Theorem 5.1. With the above notations, we have
(i) The pair (D*(L),[-,|mn) is a graded Lie algebra.

(i) There is a one-to-one correspondence between the set of Maurer-Cartan elements of
the graded Lie algebra (D*(L), [, |mn) and left-symmetric Rinehart algebra struc-
tures on L.

Proof. (i) We begin by check that the Matsushima-Nijenhuis bracket is well defined. For
Pe®™(L) and @ € ®"(L), by a direct calculation, we have

[P7 Q]MN(axlaa;Qa Tt 7xm+n+l)
=aPoQ(r1,22, , Tmgng1) — (—1)™""aQ o P(x1, 72, , Tmint1)
+ Z (_1)UEQ(‘TJ(2)7 T 7‘T0'(m+l))(a)P(xl7 Lo(m42)s """ 7‘T0'(m+n)7xm+n+l)

UES(mfl,l,nfl)

+(_1)mn Z (_1)UEP(330(2)7 e 7xa(n+l))(a)Q(x17 Lo(n+2)) """ 7xa(m+n)7xm+n+1)

UES(nfl,l,mfl)

_(_1)mn Z (_1)UEP(330(2)7 T 7xo(n+1))(a)Q(x17 Lo(n+2)) """ 7xo(m+n)7xm+n+1)

UES(nfl,l,mfl)
- Z (_1)UEQ(‘TU(2)7 T ,xg(m+1))(a)P($1, Lo(m+2)s """ 7‘Tcr(m+n)7xm+n+1)
UES(mfl,l,nfl)

= a[P7 Q]MN(':Ulv':UQa e 733m+n+1)7
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which implies that

[P, Q]MN(affl, Lo, ,Im+n+1) = CL[P, Q]MN(Z'l,ZEz, te ,fl?m+n+1)-

It is straightforward to check that [P, Q]yn is skew-symmetric with respect to its first
m + n arguments. Thus [P, @]y is A-linear with respect to its first m + n arguments.
On the other hand, following a straightforward calculation, we have

[P, Q]MN(I1,1'2, te ,aZEm+n+1) = G[P, Q]MN(ZEl,ZEz, T ,Im+n+1)

+E[P7Q]N1N(xl’ 2 PR xm-i—n)(a)xm—i-n—i-la

where the symbol map Zpg),,, is given by

E[PvQ]]\/IN(x:L? $2? T ):I:m—‘,-n)(a;)
= Z (_1)UEP(Q($J(1), . ,l'a(m+1)), za(m+2), . >$U(m+n)))(&)

UES(m,l,nfl)

+ Z (=1)7ZQ(P(zo(1)s " "+ s To(nt1))s Tont2), " ** » To(mtn)) (@)
UES(n,l,mfl)

D™ S (S ER o s o) Enminys s Touem)) ()

UES(m,n)

+ Z (=172 @01y s Tom)) (EP(To(m1), =+ s To(mn)))(@)-

UES(m,n)

Thus [P, Q]MN S @m-ﬁ-n(L)

It was shown in [9] that the Matsushima-Nijenhuis bracket provides a graded Lie algebra
structure on the graded vector space @,>1 Hom(A" ' L& L, L). Therefore, (D*(L), [, |mn)
is a graded Lie algebra.

(ii) Let m € ©'(L), we have

7T(CLZL’1,LU2) = aﬂ'(Il,LUQ), 7T(.§L’1, CLZL’Q) = CL?T(ZL’l,LUQ) + Eﬂ(xl)(CL)xQ, i X1, To € L.
In addition, we can easily check that

[T, wlun (21, 20, 23) = 2(mw(w(xy, 22), x3) — w(w (22, 21), T3)

—7(z1, (22, 23)) + 7(22, (21, 23))).
Thus (L, A, 7,Z,) is a left-symmetric Rinehart algebra if and only if [, 7]y = 0. O

Remark 5.2. The cohomology of left-symmetric algebras first appeared in the unpublished
paper of Y. Matsushima. Then A. Nijenhuis constructed a graded Lie bracket, which
produces the cohomology theory for left-symmetric algebras. Thus the aforementioned
graded Lie bracket is usually called the Matsushima—Nijenhuis bracket.
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Let (L, A, 7, /) be a left-symmetric Rinehart algebra. According to Theorem 5.1, we
have [m,m|yny = 0. Using the graded Jacobi identity, we get a coboundary operator
§: D" YL) — D"(L), by putting

§(P) = (=1)"" Y, Plun, VP €D L) (13)
By straightforward computation, we obtain

Proposition 5.3. For any P € D" (L), we have

n

5P(‘T17‘T27"' 7x7l+1) = Z(—l)i+1ﬂ(xi,P($1,x2,"' 7"fi7'” 7‘7:n+1))

=1

+Z z—l—l .Z'l,Z'Q,“’ , Ly 7.Z'n,1'i)7wn+l) (14)

_Z H_1P 33'173327"' 7£i7"' ,:L'n,ﬂ'(!l?i,xn—l—l))

+ Z V)™M P(r(ws, m5) — w0y, @), 01, Fiye oo By Tpg)
1<i<j<n

forall x;e Lyi=1,2--- n+1 and Z5p is given by

n

Ep(ﬂj‘l, L2, ,ﬂi‘n) = Z(_l)l—i—l[gﬂ(xl)’ EP(:Eh Lo, - 7:ﬁi7 U 73:TL)]
=1
+ Z (_1)i+jEP(7T($i7$j) - 7T(:L'j7xi)7x17 o wfia T 73fj7 to 7$n)
1<i<j<n
n .
D (1) EL(P(ay, g, Fiye e T, 24)) (15)
=1

Definition 5.4. The cochain complex (D*(L) = @®,>00"(L),0) is called the deformation
complex of the left-symmetric Rinehart algebra L. The corresponding k-th cohomology
group, which we denote by H*(L), is called the k-th deformation cohomology group.

6 Deformation of left-symmetric Rinehart algebra

We investigate in this section a deformation theory of left-symmetric Rinehart algebras.
But first let us introduce some notation. For a left-symmetric Rinehart algebra (L, A, m, ()
we will denote the left-symmetric multiplication “-” by m in the sequel of the paper. Let
K[[t]] be the formal power series ring in one variable ¢ and coefficients in K. Let L][t]]
be the set of formal power series whose coeflicients are elements of L (note that L[[t]] is
obtained by extending the coefficients domain of K|[t]] from K to L). Thus, L[[t]] is a
K{[[¢t]]-module.
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6.1 Formal deformations

Definition 6.1. A deformation of a left-symmetric Rinehart algebra (L, A, m, ¢) is a K][[t]]-
bilinear map

my + L[] @ L{[7]] — L{[t]]

which is given by m;(z,y) = Z t'm;(x, y), where mg = m and the m; € D'(L) satisfy the
>0
condition [my, my|yy = 0.

Note that m; is a 1-degree multiderivation of A with symbol =, : L — Der(A) given

by
By = ) _t'En

i>0
Moreover, since [m;, m|pn = 0, it corresponds to a left symmetric Lie Rinehart algebra

structure. In particular, it yields a ¢t-parameterized family of products m; : L® L — L and
a family of maps ¢, : L — Der(A), which satisfy the following identities for all z,y € L:

my(z,y) =z -y + »_tm(z,y),
i>1

)+ 3 HE (2)

1>1

The t-parametrized family (L, A, my,¢;) is called a l-parameter formal deformation of
(L, A,m, () generated by my,--- ,m,, € D(L).
Let (L, A,my, ¢;) be a deformation of m. Then, for all a € A, x,y,z € L

m(my(2,y), 2) — my(z, m(y, 2)) = me(me(y, @), 2) — m(y, my(z, 2)). (16)
my(az,y) = amy(z,y), (17)
my(x, ay) = amy(z,y) + L(7)ay (18)

The identities (17)-(18), mean that m; € ®!(L). Comparing the coefficients of ¢" for n > 0
in equation (16), we get the following:

> mi(my(a,y),2) — my(e,my(y, 2)) — mi(m(y, @), 2) + mi(y, m(e,2) = 0. (19)

i+j=n
For n = 1, equation (19) implies

my (m(z,y), 2) + m(mi(z,y), 2) — (2, m(y, 2)) — m(z, mi(y, 2))
—my (m(y, x), z) —m(my(y, ), 2) + my(y, m(x, 2)) + m(y, my(z, 2)) = 0.

Or equivalently d(my) = [m,my|pyy = 0.

The 1-degree multiderivation m; is called the infinitesimal of the deformation m;. More
generally, if m; =0 for 1 <7 <n—1and m, is non zero 1-degree multiderivation then m,,
is called the n-infinitesimal of the deformation m;. By the above discussion, the following
proposition follows immediately.
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Proposition 6.2. The infinitesimal of the deformation wy is a 2-cocycle in D(L). More
generally, the n-infinitesimal is a 2-cocycle.

Now we give a notion of equivalence of two deformations. Let us denote a deformation
(L, A,my, ¢;) of (L, A,m, /) simply by L;. Let us consider two deformations L; and L} of
(L, A,m,?), generated by m; and m}, respectively, for i > 0.

Definition 6.3. Two deformations L; and L) are said to be equivalent if there exists a
formal automorphism

®, : L[[t] = LI[t] defined as &, = id, + » _t'¢;

i>1
where for each ¢ > 1, ¢; : L — L is a K-linear map such that
my(z,y) = O my (D), Po(y)) and G(Pe(x)) = ().

Definition 6.4. Any deformation that is equivalent to the deformation my = m is said to
be a trivial deformation.

Theorem 6.5. The cohomology class of the infinitesimal of a deformation m; is determined
by the equivalence class of my.

Proof. Let ®; be an equivalence of deformation between m; and m;. Then we get,
my(x,y) = églmt(étza Dry).
Comparing the coefficients of ¢ from both sides of the above equation we have

my (2, y) + P1(mo(z,y)) = mu(z,y) + mo(P1(w),y) +mo(x, P1(y)),

or equivalently,
m; —my = 5(051)-
This establishes the result. O

Definition 6.6. A left-symmetric Rinehart algebra is said to be rigid if and only if every
deformation of it is trivial.

Theorem 6.7. A non-trivial deformation of a left-symmetric Rinehart algebra is equivalent
to a deformation whose n-infinitesimal is not a coboundary for some n > 1.

Proof. Let m; be a deformation of left-symmetric Rinehart algebra with n-infinitesimal m,,
for some n > 1. Assume that there exists a 2-cochain ¢ € C'(L, L) with §(¢) = m,. Then
set

®, = idy, + ¢t" and define m, = &, om, o0 O, !
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Then by computing the expression and comparing coefficients of t", we get

So, m,, = 0. We can repeat the argument to kill off any infinitesimal, which is a coboundary.
]

Corollary 6.8. If H*(L,L) = 0, then all deformations of L are equivalent to a trivial
deformation.

6.2 Obstructions to the extension theory of deformations

Let (L, A, -, ¢) be a left-symmetric Rinehart algebra. Now we consider the problem of
extending a deformation of m of order n to a deformation of m of order (n 4 1). Let m,
and ¢; be a deformation of order n of m and ¢ respectively. That is

i=0 i=1 i=0 =1

where m; € ®(L) and ¢; : L — Der(A) a linear map for each 1 <4 < n such that

m;(my (2, y), 2) — my(z, my(y, 2)) = my(m;(y, z), 2) — mi(y, my(z, 2)), (20)
m;(azx,y) = amy(z,y), (21)
m;(z, ay) = amy(z,y) + {;(x)ay (22)

for all 1 <i,j < n. If there exists a 2-cochain m,,; € DY(L) and {,,1 : L — Der(A) such
that (L, A,my, ¢;) is a deformation of (L, A, m,¢) of order n + 1, where

My =my 4+ m, e t" and 0 = 0+l t"TL

Then we say that m; extends to a deformation of order (n + 1). In this case m; is called
extendable.

Definition 6.9. Let m; be a deformation of m of order n. Consider the cochain in C3(L, L)

defined as
Obsp(w,y.2) = > (milm(w,y),2) — mi(e, m;(y, 2))
i =nt1;
3,j>0 (23)

— mi(m; (y, @), 2) + mi(y, my (2, 2)),

for z,y,2 € L. The 3-cochain Obsy, is called an obstruction cochain for extending the
deformation of m of order n to a deformation of order n + 1.

A straightforward computation gives the following

Proposition 6.10. The obstructions are left-symmetric Rinehart algebra 3-cocycles.
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Theorem 6.11. Let my be a deformation of m of order n. Then wmy extends to a deformation
of order n+ 1 if and only if the cohomology class of Obsy, vanishes.

Proof. Suppose that a deformation m; of order n extends to a deformation of order n + 1.
Then

> (milmle,y),2) = mile,my(y, 2) - milmg(y, @), 2) +mily, m(z, 2))) ) =0,
i+j=n+1;
i,j>0
As a result, we get Obsy, = §(my41). So, the cohomology class of Obsy, vanishes.
Conversely, let Obsy, be a coboundary. Suppose that
ObSL = 5(mn+1)

for some 2-cochain m,, ;. Define a map m, : L[[t]] x L[[t]] — L[[t]] as follows

Iﬁt =m; + mn+1t"+1.

Then for any x,y, z € L, the map m, satisfies the following identity

> (mlmy(e,y),2) = e my(y, 2) = mlmy(y, ), 2) + g, my(, 2))) ) = 0.

i+j=n+1;
1,j20

This, in turn, implies that m; is a deformation of m extending m,. O

Corollary 6.12. If H3(L, L) = 0, then every 2-cocycle in C*(L, L) is the infinitesimal of
some deformation of m.
6.3 Trivial deformation

We study deformations of left-symmetric Rinehart algebras using the deformation coho-
mology. Let (L, A, -, £) be a left-symmetric Rinehart algebra, and m € C?(L, L). Consider
a t-parameterized family of multiplications m; : L[[t]] ® L[[t]] — L[[t]] and linear maps
¢, : L — Der(A) given by

my(z,y) = -y + tm(z,y), (24)
0 =0 + =, (25)

If L, = (L, A,my, ¢;) is a left-symmetric Rinehart algebra for all ¢, we say that m generates
a 1-parameter infinitesimal deformation of (L, A, -, /)
Since m is a 2-cochain, we have

m(az,y) = am(x,y), and m(z,ay) = any(z,y) + Zn(x)(a)y,

which implies that conditions (4) and (5) in Definition 3.1 are satisfied for m;. Then we
can deduce that (L, A,my, ¢;) is a deformation of (L, A, -, ¢) if and only if

r-my, z) —y -m(z,2) +m(y,z) -z —m(z,y) -2
:m(y,x-z)—m(x,y-z)—m([m,y],z), (26)
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and

m(m(z,y),2) —m(z,m(y, 2)) = mm(y,z),2) —my, m(z, 2)). (27)

Equation (26) means that m is a 2-cocycle, and equation (27) means that (L, A,m, =) is
a left-symmetric Rinehart algebra.

Recall that a deformation is said to be trivial if there exists a family of left-symmetric
Rinehart algebra isomorphisms Id +¢tN : L, — L.

By direct computations, L; is trivial if and only if

m(z,y) = x-N(y)+ N(z)-y—N(z-y), (28)
loN = ZEq. (30)
Again, equation (30) can be obtained from equation (28). It follows from (28) and (29)

that N must satisfy the following integrability condition
N(z)-N(y) =2~ N(y) = N(z) -y + N*(z - y) = 0. (31)
Now we give the following definition.
Definition 6.13. An A-linear map N : L — L is called a Nijenhuis operator on a left-

symmetric Rinehart algebra (L, A, -, ¢) if the Nijenhuis condition (31) holds.

Obviously, any Nijenhuis operator on a left-symmetric Rinehart algebra is also a Ni-
jenhuis operator on the corresponding sub-adjacent Lie-Rinehart algebra.

We have seen that a trivial deformation of a left-symmetric Rinehart algebra gives rise
to a Nijenhuis operator. In fact, the converse is also true as can be seen from the following
theorem.

Theorem 6.14. Let (L, A, -, 0) be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then a deformation of (L, A,-,£) can be obtained by putting

m(z,y) = ON(z,y).
Furthermore, this deformation is trivial.

Proof. Since m is a coboundary, then it is a cocycle, i.e. equation (26) holds. To see that
m generates a deformation, we only need to show that (27) holds, which follows from the
Nijenhuis condition (31). At the end, we can easily check that

(Id + tN)(z - y) = (Id + tN)(z) - (Id + tN)(y), Lo (Id+tN) =4,

which implies that the deformation is trivial. O

Theorem 6.15. Let (L, A, -, () be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then (L, A, -n,ln = {o N) is a left-symmetric Rinehart algebra, where

ryy=z-N(y)+ N(z)-y— N(z-y),Vo,y € L.
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Proof. 1t is obvious to show that (L,-y) is a left-symmetric algebra and ¢y is a represen-
tation of L on Der(A). Evidently, we have

In(az) = aly(x),Vx € L,a € A.
Furthermore, for any x,y € L and a € A we have

z -y (ay) =z - N(ay) + N(z) - (ay) — N(z - (ay))
=a(x - N(y)) + l(x)aN(y) + a(N(z) - y) + {(N(z))ay — aN(x - y) — N({(z)ay)
=a(x - N(y) + N(z) -y — N(z -y)) + {n(2x)ay + N(l(z)ay) — N(l(x)ay).
=a(z -y y) + {n(z)ay.

Moreover,
(az) vy =(ax) - N(y) + N(az) -y — N((az) - y)
=a(x - N(y)) +a(N(z) -y) —aN(z - y)
=a(z- N(y) + N(x) -y — N(z - y))
=a(z N Y).
Then, (L, A, N,y = €0 N) is a a left-symmetric Rinehart algebra. O

Immediately, we have the following result.

Lemma 6.16. Let (L, A, -, () be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then for arbitrary positive j, k € N, the following equation holds

N7 (z)- N*(y) = N*(N/(x) - y) — N’ (x- N¥(y)) + N"M(z-y) =0, Va,yeL (32

If N is invertible, this formula becomes valid for arbitrary j, k € Z.

By direct calculations, we have the following corollary.

Corollary 6.17. Let (L, A,-,0) be a left-symmetric Rinehart algebra and N a Nijenhuis
operator.

(i) Forallk € N, (L, A, Nk, {yx = £ 0o N¥) is a left-symmetric Rinehart algebra.

(ii) For all | € N, N' is a Nijenhuis operator on the left-symmetric Rinehart algebra
(L> Aa 'Nk>€Nk)'

(iii) The left-symmetric Rinehart algebras (L, A, (- yx)nt, Cnwrr) and (L, A, - yrre, Erst) are
the same.

(iv) N is a left-symmetric Rinehart algebra homomorphism from (L, A, -nk+t, {xkri) to
(L> Aa "Nk, ENk)
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Theorem 6.18. Let (L, A, -, () be a left-symmetric Rinehart algebra and N be a Nijenhuis
operator. Then the operator P(N) = Y"1, ¢;N" is a Nijenhuis operator. If N is invertible,
then Q(N) =>"" ;N is also a Nijenhuis operator.
Proof. According to Lemma 6.16, we obtain, Vz,y € L,

P(N)(z) - P(N)(y) = P(N)(P(N)(z) - y) — P(N)(z - P(N)(y)) + P*(N)(z - y)

n

= Y e (V@) Vo) = NV (@) - y) = N (- NH(y) + NG y)) =0,

i.j=0

which implies that P(NN) is a Nijenhuis operator. Similarly we can easy check the
second statement. O

7 O-operators and Nijenhuis operators

In this section, we highlight the relationships between O-operators and Nijenhuis op-
erators on left-symmetric Rinehart algebras. Moreover, we illustrate some connections
between Nijenhuis operators and compatible O-operators on left-symmetric Rinehart al-
gebras.

7.1 Relationships between O-operators and Nijenhuis operators

We first give the definitions of an O-operator and of Rota-Baxter operator.
Definition 7.1. An O-operator on a left-symmetric Rinehart algebra (L, A, -, £) associated
to a representation (M;p, p) is a linear map T : M — L satisfying

T(au) = aT(u), (33)
T(u)-T(v) = T(P(T(U))(U) + M(T(v))(U)>, Vu,v € M,a € A. (34)
Definition 7.2. Let (L, A, -, ) be a left-symmetric Rinehart algebra and R : ker(¢) — L
a linear operator. If R satisfies
R(ax) = aR(x), (35)
then R is called a Rota-Baxter operator of weight 0 on L.

Notice that a Rota-Baxter operator of weight zero on a left-symmetric Rinehart algebra
L is exactly an O-operator associated to the adjoint representation (L;ad”, ad®).

The following proposition gives connections between Nijenhuis operators and Rota-
Baxter operators.

Proposition 7.3. Let (L, A,-,{) be a left-symmetric Rinehart algebra and N : L — L a
linear operator.
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(i) If N* = 1d, then N is a Nijenhuis operator if and only if N £ 1d is a Rota-Baater
operator of weight F2 on (L, A, -, ().

(i) If N2 =0, then N is a Nijenhuis operator if and only if N is a Rota-Bazxter operator
of weight zero on (L, A, -, ().

(iii) If N> = N, then N is a Nijenhuis operator if and only if N is a Rota-Bazter operator
of weight —1 on (L, A, -, ().

Proof. For Item (i), for all x,y € L then we have

(N = Id)(x) - (N = Id)(y)
— (N —Id)(N —Id)(z) -y +x- (N — Id)( )) +2(N — Id)(z - y)
= N(z)- N(y (N(z)-y+z-N(y)) +
= N(z)- N(y (N(:c)-y+x-Ny)+N2x y).
So N is a Nijenhuis operator if and only if N — Id is a Rota-Baxter operator of weight
2 on L. Similarly, we obtain that N is a Nijenhuis operator if and only if N + Id is a
Rota-Baxter operator of weight —2 on L.

Items (ii) and (iii) are obvious from the definitions of Nijenhuis operators and Rota-
Baxter operator. O

)— N
)— N

Proposition 7.4. Let (L, A, -, 0) be a left-symmetric Rinehart algebra and (M;p, ) be a
representation on L. Let T : M — L be a linear map. For any A\, T is an O-operator on

L associated to (M;p, ) if and only if the linear map Ry = 8 —Z:Id s a Rota-

Bazter operator of weight A on the semidirect product left-symmetric Rinehart algebra
(L& M, ronm), where the multiplication -ran is given by (9).

Proof. 1t is easy to check the equation (35). Let x1, x5 € L and my,my € M,

Rra(@r +m1) Loy Rroa(xs +ma) = (T(my) — Ama) -pam (T'(me) — Amo)
=T(mq) - T(mga) — Ap(T'(m1)ms — Au(T(ms))my.
(37)

On the other hand,

R (Rra(zn +ma) pem (22 +ma) + (z1 + my) -Lam Rra(ze + ma))+
AR (21 +m1) Lam (22 + my))
:RT,A((T(ml) — Amy) crenm (T2 +m2) + (21 +ma) pem (T(ma) — )\mz))+
AR (21 - 2 + p(21)my + p(w2)my)
=Ry (T(mq) - x5 + p(T(my))my — Apu(a2)my (38)
+ 1 - T(my) — Ap(x1)ma + p(T(my))my)
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+ AT (p(x1)ms) + T(u(x2)ma) — Ap(w1)ma + p(wa)mi))
=T (p(T(m1))ma + u(T (ma))ma) — AT (p(w2)ma + p(x1)ms) (39)
= A(p(T(ma))ma + (T (ma))ma ) + X2 (pu(wa)ms + plar)ms)
+ AT (p(w1)ma) + T(u(z2)m)) — N (p(x1)my + p(w2)ma))
=T (p(T(ma))ma + (T (ma))ma) — Ap(T(ma))mg — Apu(T () )ma. (40)
According to equations (37) and (40), Ry, is a Rota-Baxter operator of weight A on

the semidirect product left-symmetric Rinehart algebra (L & M, -1 4) if and only if T is
an O-operator on (L, A, -, ) associated to (M; p, u). O

Proposition 7.5. Let (L, A, -, () be a left-symmetric Rinehart algebra and let (M;p, 1) be
a representation on L. Let T : M — L be a linear map. Then the following statements
are equivalent.

(i) T is an O-operator on the left-symmetric Rinehart algebra (L, A, -, ().

(i) Np = 8 11(; 1s a Nigenhuis operator on the left-symmetric Rinehart algebra
(L& M, rom)-

(iii) Np := 8 0 ) is a Nijenhuis operator on the left-symmetric Rinehart algebra
(L& M, rom)-

Proof. Note that N = Ry and (N7)? = N, thus N is a Nijenhuis operator on the
left-symmetric Rinehart algebra (L & M, g ), using (iii) in Proposition 7.3.

Similarly Ny = Ry and (N7)?> = 0, then N is a Nijenhuis operator on the left-
symmetric Rinehart algebra (L & M, -1ayr), according to (ii) in Proposition 7.3. O
7.2 Compatible O-operators and Nijenhuis operators

In this subsection we study compatibility of O-operators and Nijenhuis operators. First
we start with the following definition.

Definition 7.6. Let (L, A, -, ¢) be a left-symmetric Rinehart algebra and let (M;p, ) be a
representation. Let 71,75 : M — L be two O-operators associated to (M; p, ). Then T}
and Ty are called compatible if T} + T5 is an O-operator associated to (M; p, p).

Let T1,T, : M — L be two O-operators on a left-symmetric Rinehart algebra
(L, A, -, 0) associated to a representation (M; p, u) such that

Ti(w) - Ty(v) + Ty(u) - Ti(v) = 1 (p(Ts(w))(0) + p(Ta(0)) ()

+ T (T3 () (0) + (T3 (0)) () ). (41)

for all u,v € M.
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Lemma 7.7. Two operators Ty and Ty are compatible if and only if the equation (41) holds.
Proof. For all u,v € M, a € A, we have
(Ty + T3)(au) = Ty (au) + Ta(au)

= aTy(u) + aTr(u)
= a(T1 + TQ)(U)

Furthermore,

(T3 + To) () - (T3 + To)(v) = (T3 + To) (p((T; + To)()(v) + (T + To)(0)) ()
=Ti(u) - Th(v) +Ti(u) - To(v) + To(u) - T (v) + To(u) - To(v)

— (T3 + o) (T3 () (0) + p(Ta(w))(v) + (T3 (0)) () + p(Ta(v)) (1))
=Ti(u) - Th(v) +T1(u) - Tz(v)+T2( ) - Th(v) + Ta(u) - To(v)

— T4 (p(T1 () (v) + Ty (0) (1)) — T (p(To () (0) + (Ta(v)) (w))

— Ty (p(T (w)) (v) + ﬂw w)) = To (p(Ta(w))(v) + p(To(v))(w))
=Ti(u) - To(v) + To(u) - T1(v)

Ty
= 13 (p(Ta(w)(0) + p(To(0)(w) ) = T (p(T3 () (v) + (T3 () (w) )

Then T; +T5 is an O-operator associated to (M p, p) if and only if equation (41) holds. O
Remark 7.8. Equation (41) implies that for any &y, ks the linear combination kT + ko1
is an O-operator.

There is a close relationship between a Nijenhuis operator and a pair of compatible

O-operators as can be seen from the following proposition.

Proposition 7.9. Let T1,T5 : M — L be two O-operators on a left-symmetric Rinehart
algebra (L, A, -, 0) associated to a representation (M; p, ). Suppose that Ty is invertible. If

Ty and Ty are compatible, then N = T o Ty ' is a Nijenhuis operator on the left-symmetric
Rinehart algebra (L, A, -, ().

Proof. For all z,y € L, since T is invertible, there exist u,v € M such that Ty(u) = =,
Ty(v) = y. Hence N = Ty 0T, " is a Nijenhuis operator if and only if the following equation
holds:

NTy(u) - NTy(v) = N(NTy(u) - Ty (v) + To(u) - NTo(v)) — N*(Ty(u) - To(v)). (42)
Since T} = N o T3 is an O-operator, the left-hand side of the above equation is

NTo(p(NTa(u))(v) + p(NT3(v))(u))-
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Using the fact that T and T} = N o T, are two compatible O-operators, we get

T2 u) . TQ(U) + Tg(u) : NTQ('U)

N
Ta(p(NT3(u))(v) + p(NT2(v))(u)) + NTa(p(To(u))(0) + p(T2(v))(u))
To(p(NT5(u))(v) + p(NT2(v))(u)) + N(T(u) - To(v)).

Hence, equation (42) holds by acting N on both sides of the last equality. O

Using an O-operator and a Nijenhuis operator, we can construct a pair of compatible
O-operators.

Proposition 7.10. Let T : M — L be an O-operator on a left-symmetric Rinehart algebra
(L, A, -, 0) associated to a representation (M;p,p) and let N be a Nijenhuis operator on
(L, A, -, ). Then NoT is an O-operator on the left-symmetric Rinehart algebra (L, A, -, ()
associated to (M; p, ) if and only if for all u,v € M, the following equation holds:

N(NT(u) T() + T(u) - NT(v))
N (T(p(NT(W)(®) + p(NT@)(w) + NT(pT@)() + pTE)w)).  (43)

If in addition N s invertible, then T and NT are compatible. More explicitly, for any
O-operator T, if there exists an invertible Nijenhuis operator N such that NT is also an
O-operator, then T and NT are compatible.

Proof. Let u,v € M and a € A, we have
NT(au) = N(T(au)) = N(aT(u)) = aNT (u).
In addition, since N is a Nijenhuis operator and 7' is an O-operator we have
NT(u)- NT(v) = N(NT(u) T(v) + T(w) - NT(U)) ~ N2(T(u) - T(v))
= NT(p(NT(w))(v) + s(NT(0)) ()

if and only if (43) holds.
If NT is an O-operator and N is invertible, then we have

T(u)-T(v)+T(u)- NT(v)
=T (p(NT(u))(v) + W(NT(v))(w)) + NT(p(T (u))(v) + (T (v)) (w)),
which is exactly the condition that NT and T' are compatible. O

The following result is an immediate consequence of the last two propositions.

Corollary 7.11. Let T\, T : M — L be two O-operators on a left-symmetric Rinheart
algebra (L, A, -, ) associated to a representation (M;p,p). Suppose that Ty and Ty are
invertible. Then T, and Ty are compatible if and only if N = Ty o Ty' is a Nijenhuis
operator.
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