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Weighted norm inequalities for integral transforms with

splitting kernels

Alberto Debernardi Pinos

Abstract. We obtain necessary and sufficient conditions on weights for a wide class
of integral transforms to be bounded between weighted Lp−Lq spaces, with 1 ≤ p ≤
q ≤ ∞. The kernels K(x, y) of such transforms are only assumed to satisfy upper
bounds given by products of two functions, one in each variable.

The obtained results are applicable to several transforms, some of which are in-
cluded here as particular examples. Some of the new results derived here are the
characterization of weights for the boundedness of the Hα (or Struve) transform
in the case α > 1

2 , or the characterization of power weights for which the Laplace
transform is bounded in the limiting cases p = 1 or q = ∞.
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1 Introduction

Given a linear operator T , studying its boundedness between different pairs of function
spaces is an important problem in analysis. If furthermore T is an integral operator, often
necessary and sufficient conditions for the boundedness of such an operator between two
spaces may be expressed in terms of the finiteness of appropriate integral expressions.

In this paper, we study integral transforms of the type

Tf(y) =

∫ ∞

0

f(x)K(x, y) dx, y ∈ R+ := (0,∞), (1)

with the kernel K satisfying an upper estimate of the form

|K(x, y)| ≤
{
C1s1(x)w1(y), x ∈ (0, ϕ(y)),

C2s2(x)w2(y), x ∈ (ϕ(y),∞),
(2)

where Cj > 0, ϕ : (0,∞) → (0,∞) is a bijective function of class C1, and s1, s2, w1, w2 are
nonnegative functions. In this case we call T an integral transform with splitting kernel,
motivated by the fact that the upper estimate (2) splits into a product of a function of x
and a function of y (we emphasize that the kernel need not split this way, but only the
required upper estimate).

Our goal is to study the boundedness of integral transforms with splitting kernels
between pairs of weighted Lebesgue spaces. More specifically, we aim to obtain necessary
and sufficient conditions on the weights (positive locally integrable functions) u and v for
the weighted norm inequality

‖Tf‖Lu
q
≤ CT,p,q,u,v‖f‖Lv

p
(3)

to hold with 1 ≤ p ≤ q ≤ ∞, where ‖ · ‖Lv
p
denotes the weighted Lebesgue norm given by

‖f‖Lv
p
=

(∫ ∞

0

v(x)p|f(x)|p dx
) 1

p

,

with the obvious modification for p = ∞. We emphasize that we also consider the cases
p = 1 and q = ∞, which are often excluded in such problems. If v ≡ 1, we simply write
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‖f‖Lv
p
= ‖f‖Lp

. In some cases, we have to consider the Lp (or L
v
p) norm of a function over

a measurable subset E ⊂ R+, for which we denote

‖f‖Lv
p(E) :=

(∫

E

v(x)p|f(x)|p dx
) 1

p

,

and similarly for ‖f‖Lp(E). Finally, a function f is said to be locally integrable (f ∈ Lloc
1 )

if ‖f‖L1(E) <∞ for every compact set E ⊂ R+.
In the sequel we will assume that the function f in the transform (1) is such that

f(x)K(x, y) ∈ Lloc
1 for every y > 0, and that the corresponding integral transform exists

pointwise as an improper integral, i.e., for all y > 0, the limit

lim
N→∞

∫ N

0

f(x)K(x, y) dx

exists and is finite.
Different types of integral transforms require different techniques for obtaining sharp

weighted norm inequalities between Lebesgue spaces. We begin by mentioning weighted
Hardy-type inequalities, see, e.g., [6, 16, 20, 22]. These inequalities usually serve as a ba-
sis for deriving corresponding weighted norm inequalities for other integral operators (in
particular, the Hardy-type inequalities in Subsection 3.2 below are the main tool we use
in this paper).

Another related example is the Riemann-Liouville fractional integral, which is a direct
generalization of the Hardy operator. In [15], weighted norm inequalities are characterized
in terms of the weights (which resemble those conditions in Hardy’s inequalities) for the
Riemann-Liouville integral of order larger than one. For slightly more general operators
that include the Riemann-Liouville integral of any order, the full characterization of such
inequalities was obtained slightly later in [5].

We also refer to the recent paper [14], where necessary and sufficient conditions for
weighted inequalities (with power weights) for Hausdorff operators are studied. The pro-
totype of Hausdorff operator is precisely the Hardy operator. However, Hausdorff operators
are rather general and include several well-known examples, as for instance, the aforemen-
tioned Riemann-Liouville integrals [5, 15].

In relation to integral transforms of Fourier type, sharp inequalities can be obtained
through an approach based on rearrangement inequalities, which, in essence, have an
underlying interpolation argument. Such inequalities are not intrinsic to the particular
characteristics of the Fourier transform, but to the more general operators of type (2, 2)
and (1,∞) (i.e., so that they are bounded in L2, and also from L1 to L∞). Fourier-type
transforms, as for instance, the sine, cosine, or Hankel transforms, and many others such
as the Laplace transform satisfy this kind of estimates.

Necessary and sufficient conditions for such inequalities were first obtained in [12] for
the cosine transform, and ultimately for the Fourier transform. We also mention the
paper [17], where sufficient conditions for inequalities with power weights are derived for
certain Hankel-type transforms, the paper [7], where inequalities with power weights were
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characterized for the Hankel transform (i.e., the Fourier transform of radial functions), and
the recent work [11], where a unified approach for Fourier-type transforms was developed,
and sharp conditions for sine transform inequalities involving power weights were obtained
for the first time (surprisingly enough, given the considerable amount of literature in the
topic). In the last reference, necessary and sufficient conditions involving general weights
were also derived.

The case of the Laplace transform, although being of types (2, 2) and (1,∞) as the
Fourier transform, needs different treatment if one desires to obtain sharp conditions for
norm inequalities. This is because, as we discuss in more detail in Subsection 5.4, the
aforementioned interpolation type estimates are based on decreasing rearrangements of
the weights. However, given the fast decay of the kernel K(x, y) = e−xy of the Laplace
transform, direct estimates are sometimes unavoidable, especially in the case where the
involved weights have a decreasing rearrangement that is identically infinity. This is il-
lustrated in the two main results of [4], which derives norm inequalities for the Laplace
transform using these two approaches (see also [19]; it is worth noting that direct estimates
are based on the self-adjointness of the operator defined by the Laplace transform).

In the sequel we use an approach for deriving inequalities of the form (3) based on direct
estimates combined with Hardy-type inequalities. More precisely, we will see in Section 4
that an estimate of the type (2) allows a rather direct application of Hardy’s inequalities,
which in turn yields sufficient conditions for (3) to hold in terms of the weights and of the
functions sj, wj, j = 1, 2, that appear in (2).

On the other hand, for deriving necessary conditions for (3) to hold we require that the
kernel K(x, y) is positive, since necessary conditions are usually based on lower estimates
for K(x, y) similar to (2). In particular, if a reverse estimate of the form

K(x, y) ≥
{
c1s1(x)w1(y), x ∈ (0, ϕ(y)),

c2s2(x)w2(y), x ∈ (ϕ(y),∞),

holds for some c1, c2 > 0, the necessary and sufficient conditions for (3) coincide (see
Corollary 4.3).

Applying the obtained results to the Hα transform (cf. Subsection 3.1 below), we are
able to characterize the inequality ‖Hαf‖Lu

q
≤ Cp,q,α,u,v‖f‖Lv

p
by the condition

sup
t>0

(∫ ∞

0

(
xα+

3
2

t−2 + x2

)q

u(x)q dx

)(∫ ∞

0

(
xα+

3
2

t2 + x2

)p′

v(x)−p
′

dx

)
<∞,

for 1 < p ≤ q < ∞ and α > 1
2
in Theorem 5.2. We also characterize the corresponding

inequality for the cases p = 1 or q = ∞ in Theorem 5.1.
We can also characterize inequalities involving the Laplace transform (which we denote

by L) in the particular case where the weights are power functions. More precisely, we
show that for 1 ≤ p ≤ q ≤ ∞, with (p, q) 6= (1,∞), the inequality ‖x−βLf‖Lq

. ‖xγf‖Lp

holds if and only if

β <
1

q
, and β = γ +

1

q
− 1

p′
,
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see Corollary 5.6. Furthermore, we also show that the inequality ‖x−βLf‖L∞
. ‖xγf‖L1

holds if and only if β = γ = 0. Such necessary and sufficient conditions were obtained
in [17, 19] in the case 1 < p ≤ q < ∞. It is worth emphasizing that, although the kernel
K(x, y) = e−xy of the Laplace transform does not satisfy a sharp estimate of the form (2),
it is still possible to characterize the inequalities involving power functions (in fact, our
results do not allow for such a characterization with general weights).

The outline of the paper is as follows. In Section 2 we list several operators that fall into
the class of integral transforms with splitting kernel, providing explicit estimates of the
form (2). In Section 3 we discuss some properties of the Hα transform, and we also obtain
Hardy-type inequalities adapted to integral transforms with splitting kernel. Section 4 is
devoted to obtaining necessary and sufficient conditions for inequalities of the form (1)
to hold. We also give corresponding “gluing lemmas”, which allow to write Hardy-type
conditions jointly in some particular cases. Finally, all these results are applied to specific
transforms in Section 5, along with further discussion.

2 Examples of integral transforms with splitting kernels

Let us give examples of integral transforms of the form (1), whose kernel satisfies an
estimate of the type (2). For each of these transforms, we give explicit expressions for the
functions sj, wj, j = 1, 2, and ϕ.

It is important to emphasize that we are not requiring the estimate (2) to be sharp. This
means that several classical integral operators fall under the scope of our work, although
some estimates may be rather rough. As we will see in Section 4, the sharpness of the
obtained results will be directly related to the sharpness of the estimate (2), allowing
characterizations of the weights u and v in (3) whenever the estimate (2) is actually an
equivalence.

Before proceeding further, we introduce some notation. By A . B (resp. A & B) we
mean that there exists a constant C > 0 not depending on essential quantities such that
A ≤ CB (resp. A ≥ CB). If A . B and A & B simultaneously, we write A ≍ B.

Some examples of integral transforms with splitting kernels are the following.

Examples. • The Hardy operator

Hf(y) =

∫ y

0

f(x) dx

is of the form (1) with ϕ(y) = y, s1 = w1 ≡ 1 and s2 = w2 ≡ 0.

• The Bellman operator

Bf(y) =

∫ ∞

y

f(x)
dx

x

is of the form (1) with ϕ(y) = y, s1 = w1 ≡ 0, w2 ≡ 1 and s2(x) = 1/x.
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• The Riemann-Liouville integral

Iαf(y) =

∫ y

0

f(x)(y − x)α−1 dx, α ∈ (0, 1).

In this case, K(x, y) = (y − x)α−1χ(0,y)(x), and

(y − x)α−1χ(0,y)(x) ≤
{
yα−1, if x < y,

0, if x > y,

i.e., ϕ(y) = y, s1(t) = 1, w1(t) = tα−1, and s2 = w2 ≡ 0. Of course, this estimate is
far from being sharp. Nevertheless, this illustrates the mildness of the requirement of
satisfying an estimate of the form (2).

• The sine transform

f̂sin(y) =

∫ ∞

0

f(x) sin(xy) dx.

Since | sin xy| ≤ min{xy, 1} for x, y > 0, in this case ϕ(y) = 1/y, s1(t) = w1(t) = t, and
s2 = w2 ≡ 1. Note, however, that the estimate | sin xy| ≤ 1 is rather rough. This will
translate into results that are not sharp.

• The Hα (or Struve) transform [17,21]

Hα(y) =

∫ ∞

0

(xy)
1
2f(x)Hα(xy) dx, α > −1

2
,

where Hα is the Struve function of order α, cf. [9, 23]. The definition and further
properties of Hα and Hα are given in Subsection 3.1 below. We will see in (11) that the
kernel of the Hα transform satisfies

(xy)
1
2 |Hα(xy)| .

{
(xy)

3
2
+α, if x < 1

y
,

1, if x > 1
y
,

for − 1

2
< α <

1

2
, (4)

and

(xy)
1
2Hα(xy) .

{
(xy)

3
2
+α, if x < 1

y
,

(xy)−
1
2
+α, if x > 1

y
,

for α ≥ 1

2
, (5)

(for α ≥ 1
2
, Hα is nonnegative). Hence, Hα satisfies the estimate (2) with ϕ(y) = 1

y
,

s1(t) = w1(t) = t
3
2
+α and s2 = w2 ≡ 1 for −1

2
< α < 1

2
, or s2(t) = w2(t) = t−

1
2
+α for

α ≥ 1
2
.

• The (generalized) Stieltjes transform

Sλf(y) =

∫ ∞

0

f(x)

(x+ y)λ
dx, λ > 0.
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Since
1

(x+ y)λ
≍

{
y−λ, if x < y,

x−λ, if x > y,
(6)

(2) holds with ϕ(y) = y, s1(t) = w2(t) = 1, and w1(t) = s2(t) = t−λ. As we will
note, the fact that such an estimate is sharp (it is indeed an equivalence) translates
into sharp conditions on the weights that guarantee corresponding norm inequalities (cf.
Subsection 5.2 below).

• The Laplace transform

Lf(y) =
∫ ∞

0

f(x)e−xy dx.

Note that for any n ∈ N, one has the estimate

e−xy ≤
{
1, if x < 1

y
,

n!(xy)−n, if x > 1
y
.

(7)

Thus, for the Laplace transform, the estimate (2) holds with ϕ(y) = 1
y
, s1 = w1 ≡ 1,

and s2(t) = w2(t) = t−n for any choice of n.

There are many other examples of integral transforms of the form (1) whose kernel
satisfies (2), as for instance the Meijer (or Macdonald) transform [24, Ch. 23] (with

K(x, y) = (xy)
1
2Kν(xy), where Kν is the Bessel function of the second kind), or the

general integral transforms whose kernel a Fox H-function (called H-transforms; see [13]
for a comprehensive description of the theory). In fact, the authors from [3] use a similar
approach as the one we consider here in order to derive weighted norm inequalities for
H-transforms.

An example of an integral transform of the type (1) whose kernel does not satisfy an
estimate of the form (2) is the Mellin transform, with K(x, y) = xy−1.

3 Preliminaries

3.1 The Struve function and the Hα transform

The Struve function Hα is defined by the series

Hα(x) =

(
x

2

)α+1 ∞∑

k=0

(−1)k(x/2)2k

Γ(k + 3/2)Γ(k + α + 3/2)
, (8)

see, e.g., [9, §7.5.4] or [23, §10.4]. It is a continuous function and it is related to the
Bessel function Jα in the following way: Hα is the solution of the non-homogeneous Bessel
differential equation

x2
d2f

dx2
+ x

df

dx
+ (x2 − α2)f =

4(x/2)α+1

√
πΓ(α + 1/2)

, (9)
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with the terms corresponding to the solution of the homogeneous equation equal to zero.
On the other hand, Jα is the solution of the homogeneous differential equation correspond-
ing to (9) that is bounded at the origin for nonnegative α.

For α > −1
2
, the equivalence

Hα(x) ≍ xα+1, x ≤ 1,

holds. Indeed, in view of (8), we only need to show that for x ≤ 1,

∞∑

k=0

(−1)k(x/2)2k

Γ(k + 3/2)Γ(k + α+ 3/2)
≍ 1.

On the one hand, the latter series is absolutely convergent for x ≤ 1, and thus bounded
from above. On the other hand,

∞∑

k=0

(−1)k(x/2)2k

Γ(k + 3/2)Γ(k + α + 3/2)
≥ 1

Γ(3/2)Γ(α+ 3/2)

(
1− x2

10(α+ 5/2)

)
≍ 1, x ≤ 1.

For large x, we have the following asymptotic expansion [23, p. 332],

Hα(x) =

(
πx

2

)− 1
2

sin
(
x− απ

2
− π

4

)
+

(x/2)α−1

Γ(α+ 1/2)Γ(1/2)
(1 +O(x−2)), (10)

from which we can deduce

|Hα(x)| . x−
1
2 + xα−1 ≍ xmax{− 1

2
, α−1} =

{
x−

1
2 , if α < 1

2
,

xα−1, if α ≥ 1
2
,

x ≥ 1.

Combining these estimates, we obtain

|Hα(x)| .
{
min{xα+1, x−

1
2}, α < 1

2
,

min{xα+1, xα−1}, α ≥ 1
2
,

(11)

which obviously implies (4) and (5).

Remark 3.1. For α ≥ 1
2
and x > 0, Hα(x) is nonnegative [23, p. 337]. Moreover, it follows

from (10) that if α > 1
2
, then there is x0 > 1 such that

Hα(x) ≍ xα−1, x > x0.

Thus,

Hα(x) ≍ min{xα+1, xα−1}, for α >
1

2
.
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3.2 Hardy’s inequalities

The main tools we use in order to obtain sufficient conditions for (3) are Hardy’s
inequalities [6, 16]. Let us introduce the following notation before. For a measurable
function g defined on R+ and a measurable set E ⊂ R+, we put

IE(g) =

∫

E

|g(x)| dx.

Also, for 1 ≤ p ≤ ∞, we define p′ to be the Hölder conjugate of p, i.e., so that 1
p
+ 1

p′
= 1

holds.

Lemma 3.2. [6] Let 1 ≤ p ≤ q ≤ ∞. For a pair of weights u and v, there exists B > 0
such that the inequality

‖I(0,·)(g)‖Lu
q
≤ B‖g‖Lv

p

holds for every measurable g if and only if

sup
r>0

‖u‖Lq(r,∞)‖v−1‖Lp′ (0,r)
<∞.

Also, there exists B > 0 such that the inequality

‖I(·,∞)(g)‖Lu
q
≤ B‖g‖Lv

p

holds for every measurable g if and only if

sup
r>0

‖u‖Lq(0,r)‖v−1‖Lp′(r,∞) <∞.

We will need generalized forms of Hardy’s inequalities that involve changes of variables.
More precisely, instead of considering integrals of the form

I(0,y)(g), I(y,∞)(g),

we consider integrals of the form

I(0,ϕ(y))(g), I(ϕ(y),∞)(g).

For a set E ⊂ R+ and a function ψ : R+ → R+, denote by ψ(E) the image of E under ψ.

Lemma 3.3. Let 1 ≤ p ≤ q ≤ ∞, and let ϕ : R+ → R+ be a C1 bijective function. For a
pair of weights u and v, there exists B > 0 such that the inequality

‖I(0,ϕ(·))(g)‖Lu
q
≤ B‖g‖Lv

p
(12)

holds for any measurable g if and only if

sup
r>0

‖u‖Lq(ϕ−1(r,∞))‖v−1‖Lp′ (0,r)
<∞.
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Also, there exists B > 0 such that the inequality

‖I(ϕ(·),∞)(g)‖Lu
q
≤ B‖g‖Lv

p
(13)

holds for any measurable g if and only if

sup
r>0

‖u‖Lq(ϕ−1(0,r))‖v−1‖Lp′(0,r)
<∞.

Proof. We only prove the first part (the one corresponding to (12)), since the second one
is analogous. We distinguish between the cases q < ∞ and q = ∞. For the case q < ∞,
applying the change of variables y = ϕ−1(s) on the left hand side of (12), we get

‖I(0,ϕ(·))(g)‖Lu
q
=

(∫ ∞

0

u(ϕ−1(s))q

ϕ′(ϕ−1(s))
I(0,s)(g)

qds

) 1
q

,

and by the classical Hardy’s inequality (Lemma 3.2), we have

(∫ ∞

0

u(ϕ−1(s))q

ϕ′(ϕ−1(s))
I(0,s)(g)

qds

) 1
q

≤ B‖g‖Lv
p

if and only if

sup
r>0

(∫ ∞

r

u(ϕ−1(s))q

ϕ′(ϕ−1(s))
ds

)1
q

‖v−1‖Lp′(0,r)
<∞.

The substitution x = ϕ−1(s) shows that the last condition is equivalent to

sup
r>0

(∫

x∈ϕ−1(r,∞)

u(x)q dx

) 1
q

‖v−1‖Lp′ (0,r)
= sup

r>0
‖u‖Lq(ϕ−1(r,∞))‖v−1‖Lp′(0,r)

<∞.

Let us now prove the case q = ∞. It is clear that

‖I(0,ϕ(·))(g)‖Lu
∞
= sup

y∈R+

u(y)

∫ ϕ(y)

0

|g(x)| dx = sup
y∈R+

u(ϕ−1(y))

∫ y

0

|g(x)| dx

= ‖u(ϕ−1(·))I(0,·)(g)‖L∞
.

By the classical Hardy’s inequality, we have that

‖u(ϕ−1(·))I(0,·)(g)‖L∞
≤ B‖g‖Lv

p

if and only if
sup
r>0

‖u(ϕ−1(·))‖L∞(r,∞)‖v−1‖Lp′(0,r)
<∞,

or equivalently, if and only if

sup
r>0

‖u‖L∞(ϕ−1(r,∞))‖v−1‖Lp′(0,r)
<∞.

Note that the classical Hardy’s inequalities (Lemma 3.2) correspond to Lemma 3.3 with
ϕ(r) = r.
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4 Weighted norm inequalities: necessary and sufficient conditions

In this section we give necessary and sufficient conditions that guarantee that the
inequality ‖Tf‖Lu

q
. ‖f‖Lv

p
holds. We will also give two “gluing lemmas”, aimed at

writing jointly Hardy-type conditions.

4.1 Sufficient conditions

A rather straightforward application of Lemma 3.3 yields sufficient conditions on the
weights u and v for the inequality ‖Tf‖Lu

q
. ‖f‖Lv

p
to hold, where T is an integral transform

with splitting kernel.

Theorem 4.1. Let T be an integral transform with splitting kernel, whose kernel satisfies
(2). Let 1 ≤ p ≤ q ≤ ∞ and let the weights u, v be such that

sup
r>0

‖w1u‖Lq(ϕ−1(r,∞))‖s1v−1‖Lp′ (0,r)
<∞, (14)

sup
r>0

‖w2u‖Lq(ϕ−1(0,r))‖s2v−1‖Lp′(r,∞) <∞. (15)

Then the inequality ‖Tf‖Lu
q
. ‖f‖Lv

p
holds for every measurable f .

Proof. First, it follows from (2) that

‖Tf‖Lu
q
.

(∫ ∞

0

(
u(y)w1(y)I(0,ϕ(y))(s1f)

)q
dy

)1/q

+

(∫ ∞

0

(
u(y)w2(y)I(ϕ(y),∞)(s2f)

)q
dy

)1/q

:= I1 + I2.

Now it suffices to apply Lemma 3.3 to deduce that

I1 . ‖f‖Lv
p

holds, provided that (14) is satisfied, and in a similar manner,

I2 . ‖f‖Lv
p
,

provided that (15) holds.

4.2 Necessary conditions

We now obtain necessary conditions for (3). These are based in lower estimates for the
kernel K similar to (2), i.e., of the form

K(x, y) &

{
s1(x)w1(y), x ∈ (0, ϕ(y)),

s2(x)w2(y), x ∈ (ϕ(y),∞).
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However, in contrast with sufficient conditions, the kernel K may satisfy only one of these
estimates, which will lead to partial necessary conditions. As it was already mentioned
before, when K satisfies both of these estimates, the necessary and sufficient conditions
coincide (cf. Corollary 4.3 below).

We assume some technical conditions on the integrability (or boundedness) of the
involved weights. More precisely, given a weighted Lebesgue space of the type Lvp, with
1 ≤ p ≤ ∞, we will assume that

s1v
−1 ∈ Lp′(0, r), for every r > 0, (16)

and
s2v

−1 ∈ Lp′(r,∞), for every r > 0. (17)

It is worth mentioning that (16) implies that s1v
−1 ∈ Lloc

1 .
The necessity result reads as follows.

Theorem 4.2. Let 1 ≤ p, q ≤ ∞, and consider the integral transform given by

Tf(y) =

∫ ∞

0

f(x)K(x, y) dx.

Let ϕ : R+ → R+ be a C1 bijective function. Assume that the weighted norm inequality
‖Tf‖Lu

q
. ‖f‖Lv

p
holds for every f ∈ Lvp.

1. If the kernel K(x, y) satisfies the estimate

K(x, y) & s1(x)w1(y), x ∈ (0, ϕ(y)), (18)

with s1 and v satisfying (16), then (14) holds.

2. If the kernel K(x, y) satisfies the estimate

K(x, y) & s2(x)w2(y), x ∈ (ϕ(y),∞), (19)

with s2 and v satisfying (17), then (15) holds.

Proof. We first prove the following claim:

if r > 0 and x ∈ (0, r), then x ∈ (0, ϕ(y)) for every y ∈ ϕ−1(r,∞). (20)

We consider two different cases, according to whether ϕ is decreasing or increasing. Firstly,
if ϕ is decreasing, then for y ∈ ϕ−1(r,∞) = (0, ϕ−1(r)), we have

y ≤ ϕ−1(r), or equivalently, r ≤ ϕ(y),

i.e., (0, r) ⊂ (0, ϕ(y)) for every y ∈ ϕ−1(r,∞). Secondly, if ϕ is increasing, then we have

y ≥ ϕ−1(r), or equivalently, ϕ(y) ≥ r,
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for all y ∈ ϕ−1(r,∞) = (ϕ−1(r),∞). This implies (0, r) ⊂ (0, ϕ(y)) for all y ∈ ϕ−1(r,∞),
which proves the claim. Similarly, one has that

if r > 0 and x ∈ (r,∞), then x ∈ (ϕ(y),∞) for every y ∈ ϕ−1(0, r). (21)

We omit the details, which are analogous.
We now subdivide the rest of the proof into three cases, namely, the case 1 < p < ∞,

the case p = ∞, and the case p = 1, which requires a slightly modified argument.

• Case 1 < p <∞.

Let us prove the first part. We define, for r > 0,

fr(x) = s1(x)
p′−1v(x)−p

′

χ(0,r)(x).

On the one hand,

‖fr‖Lv
p
=

(∫ r

0

s1(x)
p′v(x)p(1−p

′) dx

) 1
p

= ‖s1v−1‖
p′

p

Lp′(0,r)
,

which is finite, by (16). On the other hand, by (18) and (20),

Tfr(y) =

∫ r

0

s1(x)
p′−1v(x)−p

′

K(x, y) dx & w1(y)‖s1v−1‖p′Lp′(0,r)
, y ∈ ϕ−1(r,∞).

Therefore,

‖s1v−1‖
p′

p

Lp′(0,r)
= ‖fr‖Lv

p
& ‖Tfr‖Lu

q
≥ ‖Tfr‖Lu

q (ϕ
−1(r,∞))

& ‖w1u‖Lq(ϕ−1(r,∞))‖s1v−1‖p′Lp′(0,r)
,

i.e.,
‖w1u‖Lq(ϕ−1(r,∞))‖s1v−1‖Lp′ (0,r)

. 1.

Taking the supremum on r yields the desired result.
The second part is analogous, and the details are omitted. In this case, it suffices to

consider the function
gr(x) = s2(x)

p′−1v(x)−p
′

χ(r,∞)(x),

in place of fr, and use a similar argument with (19) and (21) in place of (18) and (20),
respectively.

• Case p = ∞.

This case follows the same lines as the case 1 < p <∞, with the difference that, in the
first part, one should consider the function

fr(x) = v(x)−1χ(0,r)(x),
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so that, similarly as above, since Tfr(y) & w1(y)‖s1v−1‖L1(0,r) for y ∈ ϕ−1(r,∞), we get

1 = ‖fr‖Lv
∞
& ‖Tfr‖Lu

q (ϕ
−1(r,∞)) & ‖w1u‖Lq(ϕ−1(r,∞))‖s1v−1‖L1(0,r),

and the result follows by taking the supremum on r (the last term is finite, by (16)). For
the second part, we omit the details. It suffices to consider the function

gr(x) = v(x)−1χ(r,∞)(x),

and proceed similarly.

• Case p = 1.

Let, for r > 0,
fr(x) = v(x)−1h(x)χ(0,r)(x),

where h ∈ L1(0, r) is nonnegative and different from the identically zero function. It is
clear that ‖vfr‖L1(R+) = ‖h‖L1(0,r). Further,

Tfr(y) =

∫ r

0

v(x)−1h(x)K(x, y) dx,

for y > 0. Hence,

‖h‖L1(0,r) = ‖vfr‖L1(R+) & ‖uTfr‖Lq(R+) ≥ ‖uTfr‖Lq(ϕ−1(r,∞)).

Now, by (18), (20), and the fact that h is nonnnegative, we have

‖uTfr‖Lq(ϕ−1(r,∞)) & ‖w1u‖Lq(ϕ−1(r,∞))‖s1v−1h‖L1(0,r),

where the last term is finite, by (16) and the fact that h ∈ L1(0, r). Putting all estimates
together, we obtain

1 & ‖w1u‖Lq(ϕ−1(r,∞))‖s1v−1h‖L1(0,r)‖h‖−1
L1(0,r)

,

and replacing h by h̃ = h/‖h‖L1(0,r), we get

1 & ‖w1u‖Lq(ϕ−1(r,∞)) sup
‖h̃‖L1(0,r)

=1

‖s1v−1h̃‖L1(0,r).

Since s1 and v are nonnegative, the last supremum is equal to ‖s1v−1‖L∞(0,r) (see, e.g., [2]).
Therefore, taking the supremum on r, we get

1 & sup
r>0

‖w1u‖Lq(ϕ−1(r,∞))‖s1v−1‖L∞(0,r),

which completes the proof of the first part.
The proof of the second part is omitted, as it is analogous. In this case, one should

consider
gr(x) = v(x)−1h(x)χ(r,∞)(x)

in place of fr and proceed similarly.
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Theorems 4.1 and 4.2 allow us to characterize the weights u and v for which (3) holds,
provided that the involved kernel satisfies an asymptotic equivalence.

Corollary 4.3. Let 1 < p ≤ q ≤ ∞, and let the transform (1) be such that

K(x, y) ≍
{
s1(x)w1(y), if x ∈ (0, ϕ(y)),

s2(x)w2(y), if x ∈ (ϕ(y),∞),

where ϕ is as in Theorem 4.1, and v and sj, j = 1, 2, are such that (16) and (17) hold.
Then, the weighted norm inequality ‖Tf‖Lu

q
. ‖f‖Lv

p
is equivalent to the joint fulfillment

of (14) and (15).

As examples of integral transforms whose kernel satisfies the hypotheses of Corollary 4.3
we can consider the Stieltjes transform, or the Hα transform with α > −1

2
(see Section 5

below).

4.3 A gluing lemma

It is interesting to note that under some assumptions on the functions s1, s2, w1 and
w2, both conditions (14) and (15) (which, in essence, relate to Hardy-type inequalities)
can be equivalently written as a single one. This is achieved through a so-called “gluing
lemma” (cf. [1, 10], where corresponding versions involving power weights were given in
the case of classical Hardy inequalities). Here we present a full generalization, namely for
Hardy inequalities involving changes of variables (i.e., Lemma 3.3), and also with general
weights.

We have two versions of the gluing lemma, depending on whether the function ψ = ϕ−1

in conditions (14) and (15) is increasing or decreasing. We start with the case where ψ
increasing.

Lemma 4.4. Let f, g, sj, and wj, j = 1, 2, be positive functions and 0 < p, q < ∞. Let
ψ : R+ → R+ be an increasing bijective function. Assume that s2/s1 is nonincreasing,
w1(ψ(t)) ≍ s2(t), and w2(ψ(t)) ≍ s1(t). Then, the conditions

sup
t>0

(∫ ∞

ψ(t)

w1(x)
qf(x)q dx

) 1
q
(∫ t

0

s1(x)
pg(x)p dx

) 1
p

<∞ (22)

and

sup
t>0

(∫ ψ(t)

0

w2(x)
qf(x)q dx

) 1
q
(∫ ∞

t

s2(x)
pg(x)p dx

) 1
p

<∞ (23)

hold simultaneously if and only if

sup
t>0

(
w1(ψ(t))

q

∫ ψ(t)

0

w2(x)
qf(x)q dx+ w2(ψ(t))

q

∫ ∞

ψ(t)

w1(x)
qf(x)q dx

) 1
q

×
(

1

s1(t)p

∫ t

0

s1(x)
pg(x)p dx+

1

s2(t)p

∫ ∞

t

s2(x)
pg(x)p dx

) 1
p

<∞. (24)
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Proof of Lemma 4.4. Since w1(ψ(t)) ≍ s2(t) and w2(ψ(t)) ≍ s1(t), it is clear that (24) is
equivalent to

sup
t>0

[
w1(ψ(t))

s1(t)

(∫ ψ(t)

0

w2(x)
qf(x)q dx

) 1
q
(∫ t

0

s1(x)
pg(x)p dx

) 1
p

+

(∫ ψ(t)

0

w2(x)
qf(x)q dx

) 1
q
(∫ ∞

t

s2(x)
pg(x)p dx

) 1
p

+

(∫ ∞

ψ(t)

w1(x)
qf(x)q dx

) 1
q
(∫ t

0

s1(x)
pg(x)p dx

) 1
p

+
w2(ψ(t))

s2(t)

(∫ ∞

ψ(t)

w1(x)
qf(x)q dx

) 1
q
(∫ ∞

t

s2(x)
pg(x)p dx

) 1
p
]
<∞. (25)

Thus, trivially, (24) implies (22) and (23). In order to prove the converse, we only have to
show that the first and fourth terms of (25) are finite whenever (22) and (23) hold. We
begin with the first term of (25). For t > 0, let b(t) ∈ (0, t) be the number such that

∫ b(t)

0

s1(x)
pg(x)p dx =

∫ t

b(t)

s1(x)
pg(x)p dx,

which is well defined, given that all the involved functions are positive. Further, since
w1(ψ(t)) ≍ s2(t), w2(ψ(t)) ≍ s1(t), s2/s1 is nonincreasing, and ψ is increasing, then w1/w2

is almost decreasing, i.e., there exists a constant C > 0 such that

w1(t)

w2(t)
≥ C

w1(t
′)

w2(t′)
, t′ ≥ t.

Indeed, for t′ ≥ t, since ψ is bijective and ψ−1 is increasing,

w1(t)

w2(t)
≍ s2(ψ

−1(t))

s1(ψ−1(t))
≥ s2(ψ

−1(t′))

s1(ψ−1(t′))
≍ w1(t

′)

w2(t′)
.
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Thus,

w1(ψ(t))

s1(t)

(∫ ψ(t)

0

w2(x)
qf(x)q dx

) 1
q
(∫ t

0

s1(x)
pg(x)p dx

) 1
p

≍ w1(ψ(t))

s1(t)

((∫ ψ(b(t))

0

w2(x)
qf(x)q dx

) 1
q
(∫ t

0

s1(x)
pg(x)p dx

) 1
p

+

(∫ ψ(t)

ψ(b(t))

w2(x)
qf(x)q dx

) 1
q
(∫ t

0

s1(x)
pg(x)p dx

) 1
p
)

≍ s2(t)

s1(t)

(∫ ψ(b(t))

0

w2(x)
qf(x)q dx

) 1
q
(∫ t

b(t)

s1(x)
pg(x)p dx

) 1
p

+
w1(ψ(t))

w2(ψ(t))

(∫ ψ(t)

ψ(b(t))

w2(x)
qf(x)q dx

) 1
q
(∫ b(t)

0

s1(x)
pg(x)p dx

) 1
p

.

(∫ ψ(b(t))

0

w2(x)
qf(x)q dx

) 1
q
(∫ t

b(t)

s2(x)
pg(x)p dx

) 1
p

+

(∫ ψ(t)

ψ(b(t))

w1(x)
qf(x)q dx

) 1
q
(∫ b(t)

0

s1(x)
pg(x)p dx

) 1
p

.

The last expression is uniformly bounded in t, by (22) and (23). We omit the estimate
of the fourth term of (25), since it essentially follows the same steps as above. The only
difference is that in place of b(t), we choose the function c(t) ∈ (t,∞) so that

∫ ψ(c(t))

ψ(t)

w2(x)
qf(x)q dx =

∫ ∞

ψ(c(t))

w2(x)
qf(x)q dx, t > 0.

A version of the gluing lemma for decreasing ψ is stated without a proof, since it follows
the same lines as that of Lemma 4.4. In this case, the corresponding Hardy-type conditions
differ from (22) and (23), in the sense that both integrals are taken in a neighbourhood of
zero or of infinity, respectively (contrary to (22) and (23), where, in each of the conditions,
one integral is taken in a neighbourhood of zero, and the other one in a neighbourhood of
infinity).

Lemma 4.5. Let f, g, sj, and wj, j = 1, 2, be positive functions and 0 < p, q < ∞. Let
ψ : R+ → R+ be a decreasing bijective function. Assume that s2/s1 is nonincreasing, and
wj(ψ(t)) ≍ sj(t)

−1, j = 1, 2. Then, the conditions

sup
t>0

(∫ ψ(t)

0

w1(x)
qf(x)q dx

) 1
q
(∫ t

0

s1(x)
pg(x)p dx

) 1
p

<∞

and

sup
t>0

(∫ ∞

ψ(t)

w2(x)
qf(x)q dx

) 1
q
(∫ ∞

t

s2(x)
pg(x)p dx

) 1
p

<∞
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hold simultaneously if and only if

sup
t>0

(
1

w1(ψ(t))q

∫ ψ(t)

0

w1(x)
qf(x)q dx+

1

w2(ψ(t))q

∫ ∞

ψ(t)

w2(x)
qf(x)q dx

) 1
q

×
(

1

s1(t)p

∫ t

0

s1(x)
pg(x)p dx+

1

s2(t)p

∫ ∞

t

s2(x)
pg(x)p dx

) 1
p

<∞.

5 Examples and comparison with known results

5.1 The sine transform

Here we restrict our attention to the case of power weights. As it was mentioned before,
for the sine transform, the sufficient conditions from Theorem 4.1 are not sharp.

Let us compare the sharp range for β in the inequality ‖x−β f̂sin‖Lq
. ‖xγf‖Lp

with the
range we obtain from Theorem 4.1. It was recently proved in [11] that the inequality

‖x−β f̂sin‖Lq
. ‖xγf‖Lp

(26)

holds if and only if

max

{
0,

1

q
− 1

p′

}
≤ β < 1 +

1

q
, β = γ +

1

q
− 1

p′
.

In our case, we can only deduce from Theorem 4.1 together with the estimate | sinxy| ≤
min{xy, 1} that (26) holds if

1

q
< β < 1 +

1

q
, β = γ +

1

q
− 1

p′
.

The fact that the sufficiency result does not yield a sharp range for β comes from the fact
that the estimate | sin xy| ≤ 1 is not optimal at all.

In the necessity part, we can deduce from Theorem 4.2 that (26) implies β = γ+ 1
q
− 1

p′

and β < 1 + 1
q
, which follows from the equivalence sin(xy) ≍ xy for x ∈ (0, 1

y
). In the

interval ( 1
y
,∞) we cannot obtain any useful lower bound for sin(xy) that may be applicable

in Theorem 4.2.

5.2 The Stieltjes transform

For the Stieltjes transform, Andersen proved in [1] that the inequality ‖Sλf‖Lu
q
. ‖f‖Lv

p

holds if and only if

sup
t>0

tλ
(∫ ∞

0

u(x)q

(x+ t)λq
dx

) 1
q
(∫ ∞

0

v(x)−p
′

(x+ t)λp′
dx

) 1
p′

<∞.

We arrive to the same conclusion by applying Corollary 4.3 together with the equivalence
(6) and the gluing lemma (Lemma 4.4). This result was also obtained in [10, Proposi-
tion 4.6] using the gluing lemma and the equivalence (6).

It is worth mentioning that Sinnamon characterized the inequality ‖Sλf‖Lu
q
. ‖f‖Lv

p

for the case 1 ≤ q < p ≤ ∞ in [18].
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5.3 The Hα transform

For the Hα transform and 1 < p ≤ q < ∞, Rooney [17] found sufficient conditions on
β, γ, so that the inequality

‖x−βHαf‖Lq
. ‖xγf‖Lp

(27)

holds, namely β = γ + 1
q
− 1

p′
and

β ≥ max

{
0,

1

q
− 1

p′

}
and

1

q
+ α− 1

2
< β <

1

q
+ α+

3

2
, if − 1

2
≤ α <

1

2
,

1

q
+ α− 1

2
< β <

1

q
+ α+

3

2
, if α ≥ 1

2
. (28)

On the other hand, it was shown in [8] that (28) is also necessary for (27) to hold in the
case α > 1

2
.

Similarly as in the case of the sine transform, since the function Hα is oscillating at
infinity for α ≤ 1

2
(cf. (10)), we can only get sufficient conditions for (27) that are not

sharp by applying Theorem 4.1. These read as β = γ + 1
q
− 1

p′
, and

1

q
< β <

1

q
+ α +

3

2
.

In contrast, since for α > 1
2
we have the asymptotic equivalence

(xy)
1
2Hα(xy) ≍

{
(xy)α+

3
2 , if x ∈ (0, 1

y
),

(xy)α−
1
2 , if x ∈ ( 1

y
,∞),

(29)

(cf. Remark 3.1), we can characterize the weights u and v for which the inequality
‖Hαf‖Lu

q
. ‖f‖Lv

p
holds.

Theorem 5.1. Let α > 1
2
and 1 ≤ p ≤ q ≤ ∞. Then, the inequality ‖Hαf‖Lu

q
. ‖f‖Lv

p

holds if and only if the conditions

sup
t>0

(∫ 1
t

0

x(α+
3
2
)qu(x)q dx

) 1
q
(∫ t

0

x(α+
3
2
)p′v(x)−p

′

dx

) 1
p′

<∞, (30)

sup
t>0

(∫ ∞

1
t

x(α−
1
2
)qu(x)q dx

) 1
q
(∫ ∞

t

x(α−
1
2
)p′v(x)−p

′

dx

) 1
p′

<∞, (31)

hold simultaneously.

Proof. This follows by a direct application of Corollary 4.3 and the equivalence (29).

Theorem 5.1 improves the results from [17] in two directions, namely by considering
general weights (thus also improving the results from [8] in this respect) and by also giving
necessary conditions for the corresponding inequality.
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We furthermore observe that we can use Lemma 4.5 to rewrite both conditions (30)
and (31) as a single one in the case 1 < p ≤ q <∞. Indeed, in this case ψ(t) = ϕ−1(t) = 1

t
,

w1(t) = s1(t) = tα+
3
2 , and w2(t) = s2(t) = tα−

1
2 . Thus, by Lemma 4.5 (with p′ in place of p,

u(x) in place of f(x), and v(x)−1 in place of g(x)), conditions (30) and (31) are equivalent
to the boundedness of

sup
t>0

(
1

t(−α−
3
2
)q

∫ 1
t

0

x(α+
3
2
)qu(x)q dx+

1

t(−α+
1
2
)q

∫ ∞

1
t

x(α−
1
2
)qu(x)q dx

) 1
q

×
(

1

t(α+
3
2
)p′

∫ t

0

x(α+
3
2
)p′v(x)−p

′

dx+
1

t(α−
1
2
)p′

∫ ∞

t

x(α−
1
2
)p′v(x)−p

′

dx

) 1
p′

= sup
t>0

tα−
1
2

(∫ 1
t

0

t2qx(α+
3
2
)qu(x)q dx+

∫ ∞

1
t

x(α−
1
2
)qu(x)q dx

) 1
q

× t−α+
1
2

(∫ t

0

t−2p′x(α+
3
2
)p′v(x)−p

′

dx+

∫ ∞

t

x(α−
1
2
)p′v(x)−p

′

dx

) 1
p′

= sup
t>0

(∫ 1
t

0

(xt)2qx(α−
1
2
)qu(x)q dx+

∫ ∞

1
t

x(α−
1
2
)qu(x)q dx

) 1
q

×
(∫ t

0

(x
t

)2p′

x(α−
1
2
)p′v(x)−p

′

dx+

∫ ∞

t

x(α−
1
2
)p′v(x)−p

′

dx

) 1
p′

= sup
t>0

(∫ ∞

0

min
{
(xt)2, 1

}q
x(α−

1
2
)qu(x)q dx

) 1
q

×
(∫ ∞

0

min
{(x

t

)2

, 1
}p′

x(α−
1
2
)p′v(x)−p

′

dx

) 1
p′

.

Taking into account that for t, x > 0,

min
{
(xt)2, 1

}
≍ (xt)2

1 + (xt)2
=

x2

t−2 + x2
, and min

{(x
t

)2

, 1
}
≍

(
x
t

)2

1 +
(
x
t

)2 =
x2

t2 + x2
,

we may rewrite Theorem 5.1 for the case 1 < p ≤ q <∞ as follows.

Theorem 5.2. For 1 < p ≤ q < ∞ and α > 1
2
, the inequality ‖Hαf‖Lu

q
. ‖f‖Lv

p
holds if

and only if

sup
t>0

(∫ ∞

0

(
xα+

3
2

t−2 + x2

)q

u(x)q dx

) 1
q
(∫ ∞

0

(
xα+

3
2

t2 + x2

)p′

v(x)−p
′

dx

) 1
p′

<∞.
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5.4 The Laplace transform

5.4.1 General weights

Weighted norm inequalities for the Laplace transform were first studied in [4]. It was
shown there that if

sup
t>0

(∫ t

0

u(x)q dx

) 1
q
(∫ 1

t

0

(
1

v

)∗

(x)p
′

dx

) 1
p′

<∞, (32)

then the inequality
‖Lf‖Lu

q
. ‖f‖Lv

p
, 1 < p ≤ q <∞, (33)

holds (here
(
1
v

)∗
denotes the decreasing rearrangement of 1

v
, cf. [2]). As for necessary

conditions, it was proved that if (32) holds, then

sup
t>0

(∫ t

0

u(x)q dx

) 1
q
(∫ 1

t

0

v(x)−p
′

dx

) 1
p′

<∞. (34)

We note that in view of Theorem 4.2, such a condition is necessary for any integral trans-
form whose kernel K(x, y) satisfies an estimate of the form K(x, y) & 1, for x ∈ (0, 1

y
).

Whenever the weight v is increasing, conditions (32) and (34) coincide. On the other
hand, if v(x) = xγ with γ < 0, condition (32) does not hold, since

(
1
v

)∗ ≡ ∞. For
this reason, sufficient conditions not involving decreasing rearrangements were also given
in [4, Theorem 2]. In particular, the condition

sup
t>0

(∫ ∞

0

e−xtqu(x)q dx

) 1
q
(∫ t

0

v(x)−p
′

dx

) 1
p′

<∞, (35)

is sufficient for (33) to hold, whilst

sup
t>0

(∫ ∞

0

e−xtu(x)q dx

) 1
q
(∫ t

0

v(x)−p
′

dx

) 1
p′

<∞, (36)

is necessary, and these conditions were shown to be equivalent whenever
∫ 2y

0

u(x)q dx .

∫ y

0

u(x)q dx for y > 0.

Under this last assumption, condition (35) (or (36)) was shown to characterize the bound-
edness of integral operators that generalize the Laplace transform in [19, Theorem 3].
Corresponding results were obtained for the case 1 < q < p < ∞ both in [4] and [19],
which we do not discuss here.

Although conditions (32) and (34) are close (and in fact equivalent if v is nondecreas-
ing), we observe that condition (32) has a downside in the particular case of the Laplace
transform. The kernel of the transform K(x, y) = e−xy decreases rapidly as xy → ∞,
which suggests that inequality (33) could be satisfied with some power weight v(x) = xγ ,
where γ < 0, in which case (1/v)∗(x) = ∞ for x > 0, and obviously (32) does not hold. In
fact, this is reflected in (35). We can also overcome this problem using Theorem 4.1.
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Corollary 5.3. Let 1 ≤ p ≤ q ≤ ∞. The conditions

sup
t>0

‖u‖Lq(0,t)‖v−1‖Lp′(0,
1
t
) <∞, (37)

sup
t>0

‖x−nu‖Lq(t,∞)‖x−nv−1‖Lp′(
1
t
,∞) <∞, for some n ∈ N. (38)

are sufficient for the inequality ‖Lf‖Lu
q
. ‖f‖Lv

p
to hold.

Proof. It is enough use the estimate (7) for the kernel of the Laplace transform and apply
Theorem 4.1 with s1 = w1 = 1, s2(t) = w2(t) = t−n (cf. (7)), and ϕ(y) = 1

y
.

Remark 5.4. We note that for the case 1 < p ≤ q < ∞, Corollary 5.3 is weaker than
the sufficient condition (35) given in [4, 19]. More precisely, we can see that under the
assumption 1 < p ≤ q < ∞, conditions (37) and (38) imply the sufficient condition (35).
To see this, it suffices to use a similar argument as that of Corollary 5.2 to write conditions
(37) and (38) jointly.

Indeed, applying Lemma 4.5 together with the estimate (7) yields that the joint fulfill-
ment of (37) and (38) is equivalent to

sup
t>0

(∫ ∞

0

min
{
1, (xt)−nq

}
u(x)q dx

) 1
q
(∫ ∞

0

min
{
1,
( t
x

)np′}
v(x)−p

′

dx

) 1
p′

≍ sup
t>0

(∫ ∞

0

( xn

t−n + xn

)q
u(x)q dx

) 1
q
(∫ ∞

0

( xn

tn + xn

)p′
v(x)−p

′

dx

) 1
p′

<∞,

for some n ∈ N. The estimate e−xtq . min
{
1, (xt)−n

}q
and the boundedness of the last

supremum implies (35).

5.4.2 Power weights

Although Corollary 5.3 does not improve the sufficient condition given by (35) in general,
it still allows to characterize inequalities in the important case of power weights. We first
prove an auxiliary lemma.

Lemma 5.5. Let u(x) = x−β and v(x) = xγ. For 1 ≤ p ≤ q ≤ ∞, condition (37) implies
(38).

Proof. We subdivide the proof in several cases.

• Case 1 < p ≤ q <∞. We note that if (37) holds, then β < 1
q
and γ < 1

p′
. Now,

‖x−β‖Lq(0,t)‖x−γ‖Lp′(0,
1
t
) ≍ t

−β+ 1
q
+γ− 1

p′ ,

and the latter is uniformly bounded if and only if β = γ + 1
q
− 1

p′
. On the other hand,

for n large enough, the norms in (38) are finite, and moreover

sup
t>0

‖x−n−β‖Lq(t,∞)‖x−n−γ‖Lp′(
1
t
,∞) ≍ sup

t>0
t
−β+ 1

q
+γ− 1

p′ <∞.
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• Case 1 = p ≤ q <∞. In this case, if (37) holds, then β < 1
q
and γ ≤ 0. Further,

‖x−β‖Lq(0,t)‖x−γ‖L∞(0, 1
t
) ≍ t−β+

1
q
+γ ,

which is uniformly bounded if and only if β = γ + 1
q
(note that this condition combined

with β < 1
q
restricts γ < 0 rather than γ ≤ 0). As for (38), if n is large enough we get

sup
t>0

‖x−n−β‖Lq(t,∞)‖x−n−γ‖L∞( 1
t
,∞) ≍ sup

t>0
t−β+

1
q
+γ <∞.

• Case 1 < p ≤ q = ∞. The details are similar to the previous case and are omitted. We
observe that if (37) holds, then necessarily β ≤ 0, γ < 1

p′
, and β = γ − 1

p′
, which in turn

implies that β < 0.

• Case p = 1, q = ∞. If (37) holds, then β ≤ 0 and β = γ. Furthermore, (38) clearly
holds.

Corollary 5.6. Let 1 ≤ p ≤ q ≤ ∞, (p, q) 6= (1,∞). For β, γ ∈ R, the inequality
‖x−βLf‖Lq

. ‖xγf‖Lp
holds if and only if

β <
1

q
, and β = γ +

1

q
− 1

p′
, or equivalently, γ <

1

p′
and γ = β − 1

q
+

1

p′
.

The inequality ‖x−βLf‖L∞
. ‖xγf‖L1 holds if and only if β = γ and β ≤ 0.

Proof. By Corollary 5.3 and Lemma 5.5, condition (37) is sufficient for the desired inequal-
ity to hold. On the other hand, by Theorem 4.2 and the estimate K(x, y) = e−xy ≍ 1 for
x < 1

y
, (37) is also necessary. Rewriting this condition in terms of the powers β and γ as

in the proof of Lemma 5.5 yields the conclusion.

Note that in the case 1 < p ≤ q < ∞, Corollary 5.6 was obtained in [4, Theorem 3.1]
(it also follows from [19, Theorem 3]). We also stress that in the case of power weights,
Corollary 5.6 substantially improves the sufficient condition given by (32), which only
allows to obtain a similar conclusion for the range 0 ≤ γ < 1

p′
.
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