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Summing the sum of digits

Jean-Paul Allouche and Manon Stipulanti

Abstract. We revisit and generalize inequalities for the summatory function of the
sum of digits in a given integer base. We prove that several known results can be de-
duced from a theorem in a 2023 paper by Mohanty, Greenbury, Sarkany, Narayanan,
Dingle, Ahnert, and Louis, whose primary scope is the maximum mutational robust-
ness in genotype-phenotype maps.

We dedicate this work to Christiane Frougny
on the occasion of her 75th birthday.
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1 Introduction

Looking at the sum of digits of integers in a given base has been the subject of numerous
papers. In particular, the summatory function of the sum of digits, i.e., the sum of all
digits of all integers up to some integer, has received much attention. Such “sums of sums”
can be viewed through several prisms, two of them being to obtain (optimal) inequalities
on the one hand and asymptotic formulas on the other. For the latter approach we only
cite the study par excellence, namely the 1975 paper of Delange [7]. The results about
these sums sometimes occur in unexpected domains. The most prominent of them is the
link with fractal functions, in particular with the Takagi function (a continuous function
that is nowhere differentiable [22]) and the blancmange curve — see the nice surveys of
Lagarias [14] and Allaart and Kawamura [3].

The present paper will concentrate on inequalities satisfied by these sums of sums.
Knowing the inspiring paper of Graham (see [9,12] and also [4,17]), we first found the
2011 paper of Allaart [1]. Then, we came across the paper [18] (of course, many other
papers would deserve to be cited, for instance [8,15], as well as [11] where the authors
have an unexpected use of a lemma of Graham in [9]). In [18], the authors speak about
the maximum mutational robustness in genotype—phenotype maps: that paper drew our
attention because it contains the expressions “blancmange-like curve”, “Takagi function”,
and “sums of digits”. In particular, the authors of [18] prove the following theorem (they
indicate that this generalizes the case b = 2 addressed in Graham’s paper [9]).

Theorem 1.1 (in [18, Thm 5.1, pp. 12-13]). Let b be an integer > 2. For all integers
n >0, let sp(n) denote the sum of digits in the base-b expansion of the integer n and define
Sp(n) := Zl<j<n_1 sp(7). Let nqy,na, ..., ny be integers such that 0 < ng < ng < -+ < ny,.
Then the following inequality holds:

b b—1 b
Z Sp(ns) + Z(b —i)n; < 5, (Z n) . (1)

The 2011 paper by Allaart [1] somehow goes in a similar direction. Namely, Allaart
proves the following (see [1, Ineq. 4]).

Theorem 1.2 (in [1]). Let p be a real number. For all integers n, let its binary expansion
be n = ;;000 d;2" where d; € {0,1} for alli > 0 and d; = 0 for all large enough i and
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define wy(n) = > % 2P'd; and its summatory function by W,(n) := Z:;lo wy(m). Then,

for all p € [0,1] and all integers ¢ € [0,m], the following inequality holds:
W,(m + ) + W,(m — £) — 210,(m) < #H (2)

When reading the literature on the subject we have noted that the most recent pa-
pers do not always cite more ancient ones, confirming a remark of Stolarsky [21, p. 719]:
Whatever its mathematical virtues, the literature on sums of digital sums reflects a lack
of communication between researchers. As one might add, reasons for this could be that
there are a very large number of papers dealing with sums of digits, and many of them are
not directly interested in these sums per se, but because they occur in seemingly unrelated
questions.

In this paper, we will first answer a question of Allaart about the case p = 0 in [1]; see
Theorem 1.2 above. Then, in Section 4 we will give a corollary and two generalizations of
the result in [18] (Theorem 1.1 above): we will prove that several results that we found in
the literature can be actually deduced from this corollary and these two generalizations.
Finally, we will ask a few questions about possible sequels to this work.

2 A quick lemma that will be used several times

In this short section we give an easy useful lemma (the first equality can be found,

e.g., as [2, Lem. 7, p. 683], or as [5, Ex. 3.11.5, p. 112]; the other equalities are immediate
consequences of the first one).

Lemma 2.1. (i) For all integers b > 2 and n > 1, we have

b(b— 1)
2

Sb(bn) = bSb(n) + n.

(ii) For all integers b> 2, n > 1, and x > 0, we have

b—1 b—1

Sp(b"n) = b" Sp(n) + xb"n and Sp(b") = 5

z b*.

3 Graham'’s result implies the case p = 0 of Allaart’s result

As mentioned above, the result in the paper of Graham [9] (also see [12] and [17], and
a less elegant but possibly more natural proof in [4]) corresponds to the case b = 2 of
Theorem 1.1, namely (with the usual convention on empty sums):

Theorem 3.1 (in [9]). For all integers ny, ny with 0 < ny < ng, we have

So(n1) + S2(n2) +ny < Sa(ny + na). (3)
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The author of [1] writes (middle of page 690) about Inequality (2): “It seems that for
0 < p < 1 the inequality may be new. In fact, even for the case p = 0 the author has not
been able to find a reference”. In this section we indicate that the case p = 0 appears, in
a slightly disguised form, in the 1970 paper of Graham.

Proof. First, we note that, taking b = 2 in Lemma 2.1 (i) above, we obtain,
So(2t) = 255(t) +t (4)

for all positive integers t. Now let m, £ be two integers with 0 < ¢ < m. Define n; :=m—1/{
and nyg = m 4+ £. Then 0 < ny < ny. Graham’s theorem and Equality (4) yield

52(m — E) + Sg(m + f) +m — 14 S 52(2771) = QSg(m) +m,
and hence
Sg(m — f) + Sg(m + f) — QSg(m) S f,
as desired. ]

Remark 3.2. Having shown that Graham’s inequality implies the case p = 0 in Allaart’s
inequality, one can ask whether Allaart’s inequality for p = 0 gives back Graham’s. For
two integers ny,ne with 0 < n; < ny, we want to prove that Inequality (3) holds. If n
and no have the same parity, then we can define m and ¢ by

__n1+n2 E__ng—nl.
2 ' 2
Then Allaart’s inequality applied to m, ¢ gives

SQ(HQ) —+ 52(n1) — 252 <TL1 + n2) < N2 nl.

2 2

. . . . . . . n +n .
Now, this inequality after applying Equality (4) with ¢ = ™22 can be written as

ny+n Ny —n
1+ 2§ 2 1’
2 2

S(n2) + S2(n1) — Sa(ny +ng) +

and hence
52(712) + 52(711) +n < Sg(nl + ng).

It seems that Allaart’s inequality for p = 0, in which both m + ¢ and m — ¢ (necessarily of
the same parity) occur, does not immediately imply Graham’s, where n; and ny, may have
opposite parities. This suggests the possible existence of a “Graham-Allaart” inequality.

4 A variation on Theorem 1.1 and two generalizations

In this section we state and prove three results inspired by Theorem 1.1, from which,
together with Theorem 1.1 itself, most of the results that we found in the literature can
be deduced (except Allaart’s in [1], i.e., Theorem 1.2, for p # 0, and a sharp inequality
due to Allaart [2], see Remark 5.3).
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4.1 A variation on Theorem 1.1
We begin with a variation of [18, Thm 5.1, pp. 12-13] (stated as Theorem 1.1 above).

Theorem 4.1. Let b be an integer > 2. Let ky < ky < --- < ky, be nonnegative integers.

Then - -
Sylky + ka+ -+ k) + Y Sp(ky — kj) — b Sy(ky) < Z
j=1 i=1

Proof. Define the integers n; by n; := ky, — ky_;, for all i € [1,b — 1], and n, := E1gigb k;.
Since 0 < ny <ng < --- < ny_; < ny we can apply Inequality (1). Thus we obtain

(=

b—1 -1
Sylky + ka4 + k) + Y Sylky — kyy) + > (b= i) (ky — ko) < Sy(bks).
j=1

i=1

But Sy(bky) = b Sy(ks) + b(b—Q_l) kp (see [2] or see Lemma 2.1 above). Hence

b—1 b—1
Sp(k1+ ko + -+ k) + Z Sp(ky — kp—j) — bSp(ks) < Y (b—1) kp—;
=1 i=1
ie.,
b—1 b—
Sylky + ko + -+ k) + Y Sp(ky — ;) — b Sp(ky) < Z
i=1 i=1
This finishes the proof. O

4.2 Generalizations of Theorems 1.1 and 4.1

In [18, Thm 5.1] (see Theorem 1.1 above) we can drop the hypothesis that the number
of n; is equal to the base b and replace it with the assumption that the number of n; is at
most equal to the base b.

Theorem 4.2. Let b be an integer > 2. For all integers n > 0, let sy(n) denote the sum
of digits in the base-b expansion of the integer n, and define Sp(n) := 3 <<, 1 5p(j). Let
r be an integer in [1,b]. Let nq,na, ..., n, be integers such that 0 < ny < ng < --- < n,.
Then the following equality holds:

r r—1
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and hence, with the change of indices b — r 4+ j = 7, we get

r r—1 r
Z Sp(np—rj) + Z(T — J)Np—ry; < Sp (Z nb—r—l—j) :
= =1 =

Now, define m; := ny_,4; for all j € [1,7]. Then 0 <m; <my <--- <m, and

r r—1
ZSb(mj)+Zr—j i < Sp <Zm]>.
j=1 j=1
This ends the proof. O

In the same spirit one can extend Theorem 4.1.

Theorem 4.3. Let b be an integer > 2 and let v be an integer in [1,b]. Let my < --- <m,
be non-negative integers. Then

r—1 r—1
Sp(ma+may+ -+ m) + Y Sy(my —my) —rSy(m,) < (b—r+j)m;.  (6)
j=1 j=1
Proof. Let kq, ko, ...,k be integers such that k; = ky = --- = k;_,. := 0 and also satisfying
0<ky i1 <kpypio<---<ky Applying Theorem 4.1 yields
b—1 b—1
Sylkpmrsr -+ k) + (b =7)Sy(ky) + Y Sp(ky— k) —=bSy(ka) < > jky.
j=b—r+1 jo—r+1
Changing the indices in the last two sums gives
r—1 r—1
Sp(kp—ry1 + -+ k) + (b—7)Sp(kp) + Z Sp(ky — kp—rj) —0Sp(ky) < ¥ (b—14+ j)kp—ris,
j=1 j=1
and hence, by grouping the terms in Sy(k,) and letting m; := kp—,4;,
r—1 r—1
Sp(my + -+ - +m,) —er(m,,)jLZSb(mr—mj) <» (b—r+jm
j=1 j=1
as desired. ]

4.3 (Non-)Optimality in the theorems of this section

One can ask, e.g., whether Theorem 4.2 can be further generalized by taking an integer
r > b. The answer is no: one can show that Theorem 4.2 is optimal in the sense that for
any integer r > b there do not exist constants o; > 1 such that for all integers ny, no, ..., n,
one has the inequality

r r—1 r
S Syl + 5 s < 5, (Z n> |
=1 i=1 i=1

Namely, we prove the following theorem.
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Theorem 4.4. Let b be an integer > 2 and let r be an integer > b+ 1. Then there exist

integers ny,na, ..., n,. with 0 < ny < --- < n, such that
S S+ Y s (z n> |
i=1 i=1 i=1
Proof. Takeny =ng=---=n,_4p_1 =0, npp =Np_pyy = --- =n,_1 := 1, and n, = b°

where x is an integer > 2. Then, on the one hand,

> S+ ni= Y Sy(ni)+b+b"
=1 =1

i=r—>b

= bSp(1) + Sp(b”) + b+ b° = Sp(b°) + b+ b"

and on the other,

()5 () oo

i=r—b

= Sb(bx) + Sb(bx) + Sb(bx + 1) +--+ Sb(bx + b— 1)

=S(b") +14+24+---+0

b(b+1)
2

= Sp(b°) + < Sp(b°) + b+ 0",

where we use the fact that x > 2. This finishes up the proof. O

Remark 4.5. The right-hand term of Inequality (6) in Theorem 4.3 is not optimal: e.g.,
take b > 4, r = 2, and see Remark 5.3 below.

5 Graham'’s inequality and its first generalizations by Allaart and
Cooper are consequences of Theorem 1.1

Graham’s theorem was given above as Theorem 3.1. The following generalization for
any base b > 2 and two integers ny, ny, was proved by Allaart in [2] and again quite recently
by Cooper [6].

Theorem 5.1 (in [2]). Let b > 2 be an integer. For all integers nq,ny with 0 < ny < no,
we have
Sb(nl) + Sb(ng) + 1 S Sb(nl + ng). (7)

It is immediate that this statement is implied by Theorem 4.2 by taking » = 2. Hence
so is Graham’s result by taking b = r = 2.
Another result is proved in [2], namely:
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Theorem 5.2 (in [2]). For any integers k., and m with 0 < ¢ < k < m, we have
Ss(m +k +£) 4+ Ss(m — k) + Ss(m — ) — 3S3(m) < 2k + {. (8)

This theorem is an easy consequence of our Theorem 4.1 (and hence of [18, Thm. 5.1],
see Theorem 1.1 above): indeed, take b = 3.

Remark 5.3. On [2, p. 680], Allaart notes that, by taking ¢ = 0, Inequality (8) gives: for
all integers k, m with 0 < k£ < m, one obtains

Then, Allaart proves the following (sharp) inequality in [2, Thm. 3, p. 681] :

Theorem 5.4 (in [2]). Let b be an integer > 2. For all integers k,m with 0 < k < m, we

have

Sy(m + k) + Sy(m — k) — 2Sy(m) < VHTlJ k. ()

For b > 4 this inequality is stronger than Inequality (6) for » = 2, which only gives
Sb(m + ]f) + Sb(m — ]{7) — QSb(m) < (b — 1)]{2

We did not succeed in deducing Inequality (9) from the result of [18] or variations thereof.

6 A binomial digression

An easy inequality mentioned on [2, p. 682] reads: for any nonnegative integers n, k
we have sy(n + b*) < s,(n) + 1. A more general, probably well-known, inequality, is
that for any nonnegative integers n, m, we have sy(n +m) < sp(n) + sp(m) (see, e.g., [10,
Prop. 2.1]). A way of proving this inequality when b is prime, is to use a result of Legendre:
vp(n!) = %bf”), where 1,(k) is the b-adic valuation of the positive integer k (see [16,
pp. 10-12]). This implies easily s,(m)+sy(n) —sy(n+m) = v,(("7™)). Since v,(("T™)) > 0,
we are done. This inequality raises the question of whether something similar (at least
when b is prime) could be done for, say, Theorem 1.1 and/or Theorem 1.2 above. For the
second one, we note that it might be necessary to introduce a kind of generalized binomial
coefficient.

7 How to generalize Allaart’s Theorem 1.27?

It is tempting to try to generalize Theorem 1.2. A reasonable idea seems to replace the
sequence (2');>o with a sequence (););>o that is well chosen. This leads to the following
definition.
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Definition 7.1. Let ()\;);>0 be a sequence of positive real numbers. For all integers n > 0,
if we let (d;);>0 be the binary digits of n, we define w(,)(n) = ;;000 Aid; and its summatory

function W (n) = S wy(m).
Example 7.2. If \; := 2, with p € [0, 1], then w(,) and ), are exactly the quantities w,
and ¥, in Theorem 1.2 above.

In our quest for finding other sequences (\;);>o for which an analog of Theorem 1.2
would hold, we first tried to impose conditions like: (\;);>o is non-decreasing, but not “too
much”. For instance, we tried to impose: \; < A1 < C)\; for some constant C' > 2 and
for all . However, this does not work. Namely, take \; := 3%, then

+o0o
Z 32d Z 2log2(3 Z 2qzd
=0

with ¢ = log,(3) > 1. The remark below shows that Allaart’s Inequality (2) in Theorem 1.2
is not true for this sequence (\;)i>0 = (3");>0-

Remark 7.3. In the hypotheses of Theorem 1.2, let us replace p € [0, 1] with some p > 1
(e.g., p =logy(3)), and take ¢ = 1. If Allaart’s inequality were true, we would have

W,(m+1)+W,(m—1)—2W,(m) <1
which is equivalent to saying that
wp(m) —wy(m —1) < 1. (10)

Now, let m be a power of 2, say 2¥ with k large. The binary expansion of m is 10* and
that of (m — 1) is 1% (where, for a € {0, 1}, a* means that the digit a is repeated k times).
Therefore

k—1

wp(m) —wy(m—1) =2 . 1= 20 1 =
=0

oPk(2P — 1) — 2Pk -1
2r — 1 ’

which behaves like % 2(31)1 D — 97k when k goes to infinity (recall that p > 1, and hence

2P — 1 > 1). This contradicts Inequality (10).

8 Questions and expectations
We propose the following questions or/and expectations.

* Generalize Theorem 1.2: is there a generalized Inequality (2) and/or a generalized
Inequality (1)7 In doing so, recall Section 7 above.

* Give a proof of Inequality (1) or even of Inequality (5) using the method of [4].

9



Jean-Paul Allouche and Manon Stipulanti

* Is there a “Graham-Allaart inequality”? See the end of Section 3.

* To what extent is it possible to address inequalities mentioned in this paper, through
the use of (generalized) binomial coefficients? See the end of Section 6.

* Are there similar inequalities if the sum of digits is replaced with another “block
counting-function” (e.g., the number of 11 in the binary expansion of the integer n)?
It is possible that the papers [13,19,20] yield some hints in this direction.
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