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Abstract. Fractions p
q ∈ [0, 1) with prime denominator q written in decimal have

a curious property described by Midy’s Theorem, namely that two halves of their
period (if it is of even length 2n) sum up to 10n − 1. A number of results generalise
Midy’s theorem to expansions of p

q in different integer bases, considering non-prime
denominators, or dividing the period into more than two parts. We show that a
similar phenomena can be studied even in the context of numeration systems with
non-integer bases, as introduced by Rényi. First we define the Midy property for
a general real base β > 1 and derive a necessary condition for validity of the Midy
property. For β = 1

2(1 +
√
5) we characterize prime denominators q, which satisfy

the property.
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1 Introduction

The number 3
7
in decimal system has a purely periodic expansion, namely 0.(428571)ω.

Note that the first half of the period 428 and the second half 571 sum up to 999. Similar
behaviour appears with the fraction 18

19
= 0.(947368421052631578)ω. The sum of the two

halves of the period is 947368421 + 052631578 = 999999999. Here we always consider the
period of minimal length.

According to Dickson [3], this phenomenon for fractions of the form 1
q
with prime

denominator was observed experimentally already by Goodwyn in 1802 [5].
The first proof of this fact was probably given in 1836 by a French college mathematics

professor Étienne Midy in his privately published treatise on the properties of numbers and
periodic decimal fractions [12]. Nowadays, under the name Midy’s theorem, one usually
finds the following result, although in Midy’s text, one can actually find methods to show
stronger properties of decimal fractions.

Theorem 1.1. Let q > 5 be a prime number. If a rational number p
q
∈ (0, 1) has the

minimal period of even length then the sum of the first and the second half of the period is
a number whose expansion in the decimal system uses only the digit 9.

One can hardly cherish expectations of some theoretical consequences of this theorem,
yet alone a down to earth application. Nevertheless, this result can serve for the general
public as an illustration that mathematics can simply be fun. Proofs and generalisations
of this theorem have been for decades a source of amusement of many, both mathematical
amateurs and professionals. A historical survey can be found in [18] and later [15].

A nice presentation of Midy’s theorem using group-theoretical proofs is given by Leav-
itt [9], who calls the phenomenon the nines-property and gives a criterion to decide about
the parity of the period-length of the fraction p

q
in the decimal system in terms of quadratic

residues. Leavitt also shows a sufficient condition for a fraction with non-prime denomi-
nator to have the nines-property.

A number of authors have focused on generalisations of Midy’s theorem to considering
fractions with non-prime denominators, cutting the period of the fraction into more than
two blocks of equal length, and translating the problem into non-decimal number systems
with integer base b ∈ N, see e.g. [4, 6, 10, 11].

The aim of this contribution is to give a first glimpse to similar phenomena that ap-
pear when looking at fractions in numeration systems with non-integer base. In 1957
A. Rényi [16] introduced positional systems where the role of base is played by any real
β > 1. A representation of a given positive number x in the form x =

∑N
k=−∞ xkβ

k,
with xk ∈ N, is found by the greedy algorithm and is called the β-expansion of x. The
greedy algorithm produces digits in the set D = {0, 1, . . . , ⌈β⌉ − 1}. In case that the base
β is not an integer, some combinations of digits do not appear in the β-expansion of any
positive number x. One can characterize the strings of digits admissible for β-expansions
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using lexicographic comparison with the so-called quasigreedy β-expansion of the number
1, usually denoted by d∗β(1) = t∗1t

∗
2t

∗
3 · · · , see [13]. The string d∗β(1) is composed of digits

over the set D, and it is the lexicographically largest string with infinitely many non-zero
digits such that 1 =

∑+∞
k=1 t

∗
kβ

−k. For example, if β = 10, then d∗β(1) = 9ω.
Our special attention is given to the numeration system with the golden ratio base

τ = 1+
√
5

2
≈ 1.618. The digits in this system are only 0 and 1 and the base satisfies

τ 2 = τ + 1. Consequently, the quasigreedy τ -expansion of 1 is d∗τ (1) = (10)ω.
It is known [17] that every rational number p

q
∈ (0, 1) has a purely periodic τ -expansion.

For example, 3
7
has the τ -expansion 0.(0100001001010010)ω, whose period-length is equal

to 16. The first half of the period 01000010 represents the number x1 = τ 6 + τ , whereas
the second half 01010010 gives x2 = τ 6 + τ 4 + τ . Using τk+2 = τk+1 + τk, we easily derive
that x1 + x2 = τ 7 + τ 5 + τ 3 + τ = τ 8 − 1 and hence, the τ -expansion of the sum is equal
to 10101010. Note that this string is a prefix of the quasigreedy expansion d∗τ (1). In case
of the classical decimal system, the sum of the two halves of the period is a prefix of the
string 9ω, which is the quasigreedy expansion of unity for the decimal base.

In both the presented examples for the bases β = 10 and β = τ it holds that if a period
of a fraction is of even length, say 2n, then the sum of the two halves has the value βn−1.

This observation suggests how the ‘nines-property’ given for the decimal system can
be extended to systems with arbitrary real base β > 1, see Definition 2.2. In Section 3
we show necessary condition so that a fraction with denominator q has the Midy property
in a base β > 1. In Section 4 we study sufficient conditions for the golden ratio base
τ . With the use of divisibility properties of Fibonacci numbers, we characterize the prime
denominators q ∈ N, for which an analogy of Midy’s theorem holds in base τ , see Section 5.

2 Preliminaries

Given a real number β > 1, one can obtain the β-expansion of a positive real number
x by the greedy algorithm: Find k such that βk ≤ x < βk+1, rk = x, and for i ≤ k repeat:
xi := ⌊ri/βi⌋, ri−1 := x− xiβ

i. Then

x =
∑

i≤k

xiβ
i, xj ∈ D := {k ∈ N : k < β},

and for every j ≤ k, we have
∑

i≤j xiβ
i < βj+1. For the β-expansion of x, we write

(x)β =

{

xkxk−1 · · ·x0.x−1x−2 · · · if k ≥ 0,

0.0−k−1xkxk−1 · · · if k < 0.

In case x ∈ (0, 1), the β-expansion of x can be defined by the β-transformation given by
Tβ : [0, 1] → [0, 1), Tβ(x) = βx−⌊βx⌋, setting (x)β = 0.x1x2x3 · · · where xi = ⌊βT i−1(x)⌋.
Note that for every n ∈ N, we have

T n(x) = 0.xn+1xn+2xn+3 · · · =
(
x−

n∑

k=1

xkβ
−k
)
βn.

3
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In general, not all combinations of digits in D appear in a β-expansion. The sequences of
digits which are admissible as β-expansions are described by the lexicographic condition,
using the so-called quasigreedy expansion of 1, denoted d∗β(1) = t∗1t

∗
2t

∗
3 · · · , defined by

limx→1−(x)β = 0.t∗1t
∗
2t

∗
3 · · · , where the limit is considered in the product topology. The

theorem by Parry [13] then says that 0.x1x2x3 · · · with xi ∈ N, is a β-expansion of some
x ∈ (0, 1) if and only if for every i ≥ 1, we have xixi+1xi+2 · · · ≺ d∗β(1), where � stands for
standard lexicographic order on strings.

The so-called β-integers are real numbers whose β-expansion has no non-zero digits to
the right of the fractional point,

Zβ = {x ∈ R :
(
|x|

)

β
= xnxn−1 · · ·x1x0.0

ω}.

Example 2.1. Let τ = 1
2
(1 +

√
5) ≈ 1.618 be the golden ratio. By the greedy algorithm,

we can calculate the τ -expansion of 2. We have τ 1 ≤ 2 < τ 2, thus k = 1,

r1 = 2, x1 = ⌊2/τ 1⌋ = 1,

r0 = 2− τ, x0 = ⌊(2− τ)/τ 0⌋ = 0,

r−1 = 2− τ, x−1 = ⌊(2− τ)/τ−1⌋ = 0,

r−2 = 2− τ, x−2 = ⌊(2− τ)/τ−2⌋ = 1.

Since r−3 = 2 − τ − τ−2 = 0, we have xi = 0 for every i ≤ −3 and (2)τ = 10.010ω, where
by 0ω we mean infinite repetition of the digit 0. As usual in the decimal system, we can
omit the suffix 0ω.

Let us now compute the τ -expansion of 1/2 using the τ -transformation. We have

x1 = ⌊ τ
2
⌋ = 0, Tτ (1/2) =

τ
2
− ⌊ τ

2
⌋ = τ

2
,

x1 = ⌊ τ2

2
⌋ = 1, T 2

τ (1/2) =
τ2

2
− ⌊ τ2

2
⌋ = 1

2τ
,

x2 = ⌊1
2
⌋ = 0, T 3

τ (1/2) =
1
2
.

Since T 3
τ (1/2) = T 0

τ (1/2), we have T n+3
τ (1/2) = T n

τ (1/2), and thus (1/2)τ = 0.(010)ω.
Similarly, one can obtain the purely periodic τ -expansion of 3

7
as it was mentioned in the

introduction, (3/7)τ = 0.(0100001001010010)ω.
Note that for all (2)τ , (1/2)τ , and (3/7)τ , the string of digits does not contain two

consecutive digits equal to 1. This is not a coincidence. For, the quasigreedy expansion of
1 satisfies d∗τ (1) = (10)ω. The Parry lexicographic condition says that a β-expansion has
only digits in the set {0, 1}, does not contain the string 11 and does not end with the tail
(01)ω.

With this in hand, we can find the first few non-negative τ -integers. Their τ -expansions
are

0, 1, 10, 100, 101, 1000, 1001, 1010, 10000, . . .

They have values

0, 1, τ, τ 2, τ 2 + 1, τ 3, τ 3 + 1, τ 3 + τ, τ 4, . . . .

4
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Definition 2.2. Let β > 1. We say that q ∈ N has the Midy property in base β, if there
exists a positive integer p < q coprime with q such that
• the β-expansion of p

q
is purely periodic

(
p
q

)

β
= 0.(c1c2 · · · c2n)ω where 2n is the length of

the shortest period; and
• x + y = βn − 1, where x, y are β-integers with β-expansions (x)β = c1c2 · · · cn and
(y)β = cn+1cn+2 · · · c2n, respectively.
The number p is then said to testify to the Midy property of q in base β.

From the above given examples, we see that in base τ the number q = 7 has the Midy
property whereas the number q = 2 has not. For, the only fraction p

q
in the interval (0, 1)

with denominator q = 2 is 1
2
with the τ -expansion (1

2
)τ = 0.(010)ω of odd length.

Remark 2.3. Note that directly from the definition it follows that if an integer q has the
Midy property in base β, then the base is an algebraic integer. Indeed, we have

βn − 1 = x+ y where x =

n∑

i=1

ciβ
n−i and y =

n∑

i=1

cn+iβ
n−i ,

which shows that β is a root of a monic polynomial with integer coefficients.

Our aim is to search for bases in which infinitely many fractions p
q
satisfy the Midy

property. The crucial point is to have infinitely many positive fractions p
q
< 1, with

purely periodic expansion. Pure periodicity in non-integer bases was studied already by
Schmidt [17], later by Hama and Imahashi [8], Akiyama [2], Adamczewski et al. [1] and
others. Let us summarize the results.

Denote γ(β) supremum of real numbers γ such that every x ∈ [0, γ) ∩ Q has a purely
periodic β-expansion. Based on the results of Schmidt [17], Akiyama [2] has shown that if
γ(β) > 0, then β is a Pisot unit. Recall that an algebraic integer β = β(1) > 1 is a Pisot
number of degree d, if its minimal polynomial f ∈ Z[X ] is of degree d, and the other roots
β(i), i = 2, . . . , d of f , called the algebraic conjugates of β, are in modulus smaller than 1.
The number β is an algebraic unit, if its norm, N(β) =

∏d
i=1 β

(i) is equal to ±1. There
are two classes of quadratic Pisot units, namely the roots β > 1 of the polynomials

X2 −mX − 1, m ≥ 1, (1)

X2 −mX + 1, m ≥ 3. (2)

From Schmidt [17], it follows that if β is a root of (1), then γ(β) = 1, i.e. every fraction
in the interval (0, 1) has a purely periodic β-expansion. On the other hand, for roots of (2),
it is shown in [8] that no fraction has a purely periodic β-expansion, and hence γ(β) = 0.

Let f(X) = Xd − cd−1X
d−1 − cd−2X

d−2 − · · · − c1X − c0 ∈ Z[X ] be the minimal

5
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polynomial of β, the companion matrix of β is defined as

C =










0 0 · · · 0 c0
1 0 · · · 0 c1
...

. . .
...

0 0 · · · 0 cd−2

0 0 · · · 1 cd−1










The spectrum of C is formed by the roots of f , in particular, the determinant of C is
equal to the norm of β, detC = N(β). Denote v = (1, β, β2, . . . , βd−1)T . Then v is a left
eigenvector of C corresponding to the eigenvalue β,

vTC = βvT .

Example 2.4. The minimal polynomial of the golden ratio τ = 1
2
(1 +

√
5) is given by

f(X) = X2 −X − 1, the companion matrix of τ is C = ( 0 1
1 1 ). The algebraic conjugate of

τ is τ ′ = 1
2
(1−

√
5) = − 1

τ
∼ −0.618, and thus τ is a Pisot number.

3 Necessary condition

Lemma 3.1. Let q ∈ N, q > 2 and β > 1. Then q satisfies the Midy property for β if and
only if there exists p ∈ N, 0 < p < q, p coprime with q and N ∈ N such that

TN(p
q
) = q−p

q
and TN( q−p

q
) = p

q
. (3)

Proof. Suppose that a number z ∈ (0, 1) has purely periodic expansion with period of even
length 2n, say

(
z
)

β
= 0.(c1c2 · · · c2n)ω, i.e.

(
T n(z)

)

β
= 0.(cn+1cn+2 · · · c2nc1c2 · · · cn)ω and T 2n(z) = z,

This can be written using the β-integers x := c1β
n−1 + c2β

n−2 + · · · + cn−1β + cn and
y := cn+1β

n−1 + cn+2β
n−2 + · · ·+ c2n−1β + c2n, as

z =
xβn + y

β2n − 1
and T n(z) =

yβn + x

β2n − 1
.

We derive

z + T n(z) =
(x+ y)(βn + 1)

β2n − 1
=

x+ y

βn − 1
. (4)

Let q satisfy the Midy property in base β. This means that we have (4) for some z = p
q

where p is coprime with q, and, moreover, x+y = βn−1. Equation (4) gives p
q
+T n(p

q
) = 1.

Hence, T n(p
q
) = q−p

q
and T n( q−p

q
) = T 2n(p

q
) = p

q
. It suffices to set N = n.

For the opposite implication, assume that Equation (3) is satisfied for some N ∈ N and
p ∈ {1, 2, . . . , q − 1} coprime with q. Denote d the shortest period of the β-expansion of

6
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p
q
. Obviously, d divides 2N . If d divides N , then p

q
= TN(p

q
) = q−p

q
, which happens only

for p
q
= 1

2
. Since q > 2 and p is coprime with q, this is not possible.

Thus 2N = kd for some odd k, i.e. the minimal period-length d is even. We have
N = kd/2 = (k − 1)d+ d/2. Substituting into (3), we obtain

q−p
q

= TN
(
p
q

)
= T d/2

(

T (k−1)d
(
p
q

))

= T d/2
(
p
q

)
,

and consequently also

T d/2
(
q−p
q

)
= T d/2

(

T d/2
(
p
q

))

= T d
(
p
q

)
= p

q
.

Therefore (3) is satisfied also for N = d/2.
Therefore the β-expansion of z = p

q
is purely periodic of length d. Thus (4) is satisfied

with n = d/2. Combining with (4), we derive z+T n(z) = 1 = x+y
βn−1

, whence x+y = βn−1.
This concludes the proof.

Theorem 3.2. Let C ∈ Zd×d be the companion matrix of an algebraic integer β > 1 of
degree d. If q ∈ N, q > 2, has the Midy property in base β, then there exists a positive
integer N such that CN ≡ −I mod q.

Proof. Denote v = (1, β, β2, . . . , βd−1)T . If x ∈ 1
q
Z[β], then there exists a unique integer

vector a(x) = (a0, a1, . . . , ad−1)
T ∈ Zd such that

x = 1
q
vTa(x).

Let d = ⌊βx⌋ be the first digit in the β-expansion of x. Then

T (x) = βx− d = 1
q

(
vTCa(x)− qd

)
= 1

q
vT

(
Ca(x)− qde1

)
∈ 1

q
Z[β], (5)

where by ei ∈ R we mean the ith column of the identity matrix I ∈ Rd×d, in other words,
ei denotes the ith vector of the canonical base of the vector space Rd.

From (5), we see that the set 1
q
Z[β] ∩ [0, 1) is closed under the transformation T .

Equation (5) implies that

a(T (x)) = Ca(x)− qde1 ≡ Ca(x) mod q. (6)

Clearly, a(p
q
) = pe1 and a( q−p

q
) = (q − p)e1. Applying (6) to Equation (3) we obtain

a
(

TN
(
p
q

))

≡ CNa
(
p
q

)
≡ CNpe1 ≡ −pe1 mod q.

Since p and q are coprime, we have derived CNe1 ≡ −e1 mod q. In order to finish the
proof, we need to verify that CNei ≡ −ei mod q holds for all vectors ei, i = 2, 3, . . . , d.
For this purpose, we show by induction the following claim:

For any n ∈ N and any i = 2, . . . , d one has Cnei = Cn+1ei−1.

7
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Indeed, if n = 0, then the claim can be checked directly from the definition of the
companion matrix C. Assume that the statement is valid for n ∈ N. Then with the use
of the induction hypothesis, we have Cn+1ei = CCnei = CCn+1ei−1 = Cn+2ei−1, i.e. the
statement is valid for n+ 1, as well.

Combining the claim with the relation CNe1 ≡ −e1 mod q we obtain

CNe2 ≡ CN+1e1 ≡ CCNe1 ≡ C(−e1) ≡ −e2 mod q.

We proceed analogously to show CNei ≡ −ei mod q, for all i. This proves that CN ≡ −I
mod q.

Remark 3.3. If β > 1 is an algebraic number of an odd degree d and β has norm N(β) = 1,
then no integer q satisfies the Midy property in base β. For, N(β) = 1 = detC = detCN

and det(−I) = (−1)d = −1, the equality CN ≡ −I mod q cannot hold true. In particular,
no q > 2 satisfies the Midy property in the Tribonacci base β - the positive root of the
polynomial X3 −X2 −X − 1.

Remark 3.4. Let us mention that the necessary condition given in Theorem 3.2 is not
sufficient. As counterexample consider β > 1, the quadratic Pisot number with minimal
polynomial X2 − 3X + 1. The companion matrix C = ( 0 −1

1 3 ) satisfies for q = 5 that
C5 ≡ −I mod q. Nevertheless, it is known that no rational number in (0, 1) has a purely
periodic β-expansion, and thus q = 5 does not satisfy the Midy property.

4 Sufficient condition for the base τ = 1+
√

5

2

Our aim is to show that the necessary condition derived in Theorem 3.2 for an integer
q to satisfy the Midy property in base β > 1 is also sufficient in case of β being the golden
ratio τ . Powers of the companion matrix C of the golden ratio can be expressed using the
well known Fibonacci sequence (Fn)n∈N, defined by

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for n ∈ N.

It can be easily computed that for any positive exponent N ∈ N, we have

CN =
(

FN−1 FN

FN FN+1

)

.

Theorem 4.1. Let C be the companion matrix of the golden ratio τ , let q, N ∈ N, q > 2
and N > 1. If CN ≡ −I mod q, then q has the Midy property in base τ . Every p ∈ N,
0 < p < q, testifies to the Midy property of q.

Proof. First we show that for any fraction x ∈ Q∩ (0, 1) with denominator q it holds that
TN(x) = 1−x. Then also TN(1−x) = 1− (1−x) = x, hence T 2N(x) = x. By Lemma 3.1,
this implies the statement.

8



Midy’s Theorem in non-integer bases and divisibility of Fibonacci numbers

Let c1, c2, . . . , cN be the digits of the τ -expansion of x = p
q
obtained by first N iterations

of the transformation T . Then

(0, 1) ∋ TN(p
q
) =

(
p

q
− c1

τ
− c2

τ 2
− · · · − cN

τN

)

τN =
1

q

(

pτN − q

N−1∑

k=0

cN−kτ
k
)

. (7)

By induction, one can easily verify the following formula connecting Fibonacci numbers
and the golden mean,

τk =
(
τ + 1

τ

)
Fk +

(−1
τ

)k
, for k ≥ 0. (8)

Substituting into (7), one has

TN(p
q
) = 1

q

((
τ + 1

τ

)(
pFN − q

N−1∑

k=0

cN−kFk

︸ ︷︷ ︸
=:A

)
+ p

(−1
τ

)N − q
N−1∑

k=0

cN−k

(−1
τ

)k

︸ ︷︷ ︸
=:B

)

The assumption CN ≡ −I mod q implies that FN ≡ 0 mod q and FN−1 ≡ −1 mod q.
Therefore A ∈ Z can be written in the form

A = pFN − q
N−1∑

k=0

cN−kFk = ℓq for some ℓ ∈ Z.

Consequently, we have the following estimate,

TN(p
q
) = |TN(p

q
)| >

(
τ + 1

τ

)
|ℓ| − 1

τN
− |B|. (9)

Recall that in the sequence of digits c1, c2, . . . , cN , there are never two consecutive digits

equal to 1. Therefore we have the estimate on B =
∑N−1

k=0 cN−k

(−1
τ

)k
,

|B| ≤







∑∞
k=0

1
τ2k

− 1
τN+1

∑∞
k=0

1
τ2k

= τ − 1
τN

, if cN = 1,

∑∞
k=0

1
τ2k+1 = 1, if cN = 0.

We will now show that A = ℓq = 0. Assume that the opposite is true, i.e. |ℓ| ≥ 1.
In case cN = 0, estimate (9) gives TN(p

q
) >

(
τ + 1

τ

)
− 1

τN
− 1 = 2

τ
− 1

τN
> 1, which is a

contradiction.
If cN = 1, then the digit cN+1 = 0, and thus TN+1(p

q
) = τTN(p

q
) < 1, i.e. TN(p

q
) < 1

τ
.

If ℓ 6= 0, we obtain TN(p
q
) >

(
τ + 1

τ

)
− 1

τN
− τ + 1

τN
= 1

τ
, which is again a contradiction.

Thus we have derived that A = 0.
Now we use another expression for the powers of the golden ratio using Fibonacci

numbers, namely
τk = Fkτ + Fk−1, (10)

9
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which holds for k ≥ 0 defining F−1 = 1. We substitute for τk into (7), to obtain

TN(p
q
) = 1

q

(

τ
(
pFN − q

N−1∑

k=0

cN−kFk

︸ ︷︷ ︸
=A

)
+ pFN−1 − q

N−1∑

k=0

cN−kFk−1

︸ ︷︷ ︸
∈Z

)

.

Since A = 0 and FN−1 = −1 mod q, there exists n ∈ Z such that

TN(p
q
) = 1

q

(
−p+ nq

)
= n− p

q

Since both TN(p
q
) ∈ (0, 1) and p

q
∈ (0, 1), necessarily n = 1 and thus TN(p

q
) = q−p

p
as we

wanted to show.

Remark 4.2. Let p, q ∈ N, 1 ≤ p < q, p coprime with q. If p testifies to the Midy
property of q in base τ , then the minimal period d of the τ -expansion of p

q
is even and the

equation CN ≡ −I mod q, is satisfied also for N = d
2
, see the proof of Lemma 3.1. In

particular, detCd/2 = (−1)d/2 ≡ det(−I) ≡ 1 mod q. Hence d
2
is even, i.e. the minimal

period d is divisible by 4. The sum of the two halves of the τ -expansion of p
q
is equal to

τd/2−1 =
∑d/4

k=1 τ
2k−1 and thus its τ -expansion is (10)d/4, which is a prefix of d∗τ (1) = (10)ω.

Example 4.3. The number q = 3 satisfies the Midy property in base τ , as

C4 =
(
F3 F4

F4 F5

)
= ( 2 3

3 5 ) ≡ −I mod 3.

Indeed,
(
1
3

)

τ
= 0.(00101000)ω. The first half of the period 0010 represents the number τ ,

the second half 1000 represents the number τ 3. Their sum is

τ 3 + τ = (τ 3 + τ + 1)− 1 = (τ 3 + τ 2)− 1 = τ 4 − 1.

The τ -expansion of the sum is the string 1010 and it is a prefix of d∗τ (1) = (10)ω.
Similarly, q = 5 satisfies Midy property in base τ , as

C10 =
(

F9 F10

F10 F11

)
= ( 34 55

55 89 ) ≡ −I mod 5.

Indeed,
(
1
5

)

τ
= 0.(00010010101001001000)ω. The first half of the period 0001001010 repre-

sents the number τ 6+τ 3+τ , the second half 1001001000 represents the number τ 9+τ 6+τ 3.
Their sum is τ 9 + 2τ 6 + 2τ 3 + τ = τ 10 − 1. The τ -expansion of the sum is the string
1010101010 and it is a prefix of d∗τ(1) = (10)ω.

Corollary 4.4. Let q satisfy the Midy property in base τ . If d ∈ N, d > 2, is a divisor of q,
then d has the Midy property in τ as well.

Proof. By Theorem 3.2, there exists a positive integer N such that CN ≡ −I mod q. As
d is divisor of q, necessarily CN ≡ −I mod d. By Theorem 4.1, d has the Midy property
in base τ .

10
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Corollary 4.5. Let q ∈ N, q > 2.

1. If q is a divisor of F2n−1 for some n ∈ N, n ≥ 3, then q has the Midy property in base
τ .

2. If q is a multiple of F2n for some n ∈ N, n ≥ 3, then q does not have the Midy
property in base τ .

Proof. In view of Corollary 4.4 it suffices to show that q = Fn, n ≥ 5 satisfies the Midy
property if and only if n is odd.

Note that detC = −1 and thus detCk = Fk−1Fk+1 − F 2
k = (−1)k. This fact together

with the recurrence for the Fibonacci sequence implies that

F 2
k+1 ≡ (−1)k mod Fk and Fk+1 ≡ Fk−1 mod Fk. (11)

Thus
Ck =

(
Fk−1 Fk

Fk Fk+1

)

≡
(

Fk+1 0
0 Fk+1

)

mod Fk. (12)

1. Let q = F2n−1. Put N = 2(2n− 1). Using (11) and (12) we deduce

CN = C2n−1C2n−1 ≡
(

F 2
2n 0

0 F 2
2n

)

≡ −I mod F2n−1 .

By Theorem 4.1, the number q = F2n−1 satisfies the Midy property.

2. Let q = F2n. Assume for contradiction that F2n has the Midy property, i.e. by
Theorem 3.2 there exists N ∈ N, N > 0 such that

CN =
(

FN−1 FN

FN FN+1

)

≡ −I mod F2n. (13)

In particular, FN ≡ 0 mod F2n, i.e. F2n is a divisor of FN . From the well known
fact that Fm divides Fr if and only if m divides r we derive that N = 2nℓ for some
ℓ ∈ N. Using (11) and (12) we obtain that

C2n ≡
(

F2n−1 0
0 F2n−1

)

mod q and C4n ≡
(

F 2
2n−1 0

0 F 2
2n−1

)

≡ I mod q

Thus CN = C2nℓ ≡ I for ℓ even and CN ≡ C2n for ℓ odd. Therefore (13) implies
that

CN = C2n ≡
(

F2n−1 0
0 F2n−1

)

≡ −I mod q,

in particular, F2n−1 ≡ −1 mod F2n.

From the assumption, we have that n ≥ 3, therefore 2 ≤ F2n−1 ≤ F2n − 2, and
hence F2n−1 6≡ ±1 mod F2n. Consequently, C2n 6≡ −I mod q. In summary, for
every exponent N we have CN 6≡ −I mod q. Thus F2n does not satisfy the Midy
property.

11
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In view of the sufficient condition given in Theorem 4.1, the knowledge of divisibility
of Fibonacci numbers will be crucial. For a positive given m ∈ N denote a(m) the smallest
positive integer such thatm divides Fa(m). The sequence (a(m))m≥0 is registered in Sloane’s
On-Line Encyclopedia of Integer Sequences under the code A001177.

It can be shown (e.g. [7]) that m divides Fn if and only if a(m) divides n. By Item (1)
of Corollary 4.5, this directly implies the following.

Corollary 4.6. Let q > 2 be an integer such that a(q) is odd. Then q satisfies the Midy
property in base τ .

According to our knowledge, the description of odd values in the sequence (a(m))m≥0

is not known. Among the first 70 members of the sequence (a(m))m≥0 the following are
odd,

a(5) = 5, a(10) = 15, a(13) = 7, a(17) = 9, a(25) = 25, a(26) = 21,

a(34) = 9, a(37) = 19, a(50) = 75, a(53) = 27, a(61) = 15, a(65) = 35.

In the following section, we inspect the Midy property in base τ for all prime denomi-
nators q. We will see that the necessary condition given in Corollary 4.6 is not sufficient,
since for example a(7) = 8 and still 7 has the Midy property (cf. Theorem 5.3).

On the other hand, Corollary 4.6 decides about the Midy property of some non-primes,
such as 10, 25, 26, 34, 50, 65.

5 The Midy property of prime numbers

In order to give characterisation of primes satisfying the Midy property for the golden
ratio base, we will need to work in the finite field Zq. Let us recall some facts from finite
fields. We say that a is a quadratic residue mod q, if there exist b ∈ Zq such that a ≡ b2

mod q. The Legendre symbol is a multiplicative function defined as

(a

q

)

=







1 if a is a quadratic residue mod q and a 6≡ 0 mod q
−1 if a is a quadratic non-residue mod q,
0 if a ≡ 0 mod q.

We also use the quadratic reciprocity law. For distinct odd primes q1, q2, we have
(q1
q2

)

·
(q2
q1

)

= (−1)
q1−1

2

q2−1

2 .

In particular, we derive that 5 is a quadratic residue mod q if and only if q = 5 or q is a
quadratic residue mod 5, which happens exactly for q ≡ ±1 mod 5.

Halton [7] derived the following result about the value a(q) for prime q: If q is an odd

prime, then a(q) divides q −
(

5
q

)

. By the above knowledge of quadratic residues, this

amounts to saying that

a(q) divides q − 1 if q ≡ ±1 mod 5,

a(q) divides q + 1 if q ≡ ±2 mod 5.
(14)

12
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Lemma 5.1. Let F be a field and let A ∈ F2×2 be a matrix such that A2 = I. Then

(i) either detA = 1 and A = ±I

(ii) or detA = −1 and the matrix A is similar to D = ( 1 0
0 −1 ), i.e. A = R−1DR for some

non-singular matrix R ∈ F2×2.

Proof. Since A2 − I = (A− I)(A+ I) = Θ,

(i) either one of the matrices A− I and A+ I is the zero matrix Θ, i.e. A = ±I, and in
this case detA = 1,

(ii) or none of the matrices is the zero matrix. In that case both A − I and A + I
are singular, equivalently, have 0 as an eigenvalue. This implies that the matrix A
has two different eigenvalues, 1 and −1, and thus is diagonalisable. As detA is the
product of eigenvalues, we have detA = −1.

Below, we will work both in the real numbers and in the finite field Zq. Equality of
elements a and b in R will be denoted a = b, whereas equality in Zq we write a ≡ b mod q.
Obviously a = b implies a ≡ b mod q and not vice versa.

Lemma 5.2. Let q ∈ N be a prime, q 6= 5, and let C = ( 0 1
1 1 ) be the companion matrix of

the polynomial X2 −X − 1. If C2ℓ ≡ I mod q for some odd ℓ ∈ N, then 5 is a quadratic
residue mod q and consequently q ≡ ±1 mod 5.

Proof. We use the fact that for an odd integer ℓ, we have detCℓ ≡ −1 and we verify

easily that Cℓ =
(

Fℓ−1 Fℓ

Fℓ Fℓ+1

)

has the inverse C−ℓ =
(

−Fℓ−1 Fℓ

Fℓ −Fℓ+1

)

. From C2ℓ ≡ I mod q

we obtain Cℓ ≡ C−ℓ mod q. Denoting a := Fℓ+1 ≡ −Fℓ−1 mod q, we thus derive that
Fℓ ≡ Fℓ+1 − Fℓ−1 ≡ 2a mod q. With this, we have

Cℓ ≡ (−a 2a
2a a ) ≡ a ( −1 2

2 1 ) mod q and thus C2ℓ ≡ a2 ( 5 0
0 5 ) ≡ I mod q.

Necessarily 5 ≡ (a−1)2 mod q. In other words, 5 is a quadratic residue mod q. By the
quadratic reciprocity law, we have for the Legendre symbol (5

q
) = ( q

5
) = 1, and thus q is a

quadratic residue mod 5. Since q is a prime, necessarily q ≡ ±1 mod 5.

Theorem 5.3. Let q > 2 be a prime, q = 5 or q ≡ ±2 mod 5. Then q has the Midy
property in the golden ratio base.

Proof. We have shown in Example 4.3 that 5 satisfies the Midy property.
Suppose that q ≡ ±2 mod 5. For such primes, we have from (14) that a(q) divides

q + 1, and thus Fq+1 ≡ 0 mod q. Therefore a := Fq+2 ≡ Fq mod q. As q + 1 is even,
detCq+1 ≡ Fq+2Fq ≡ 1 ≡ a2 mod q. Equality a2 ≡ 1 mod q implies a ≡ ±1 mod q.
Thus Cq+1 ≡ ±I mod q and in both cases detCq+1 ≡ 1 mod q.

If Cq+1 ≡ −I mod q, the proof is finished. Let us discuss the case Cq+1 ≡ I mod q.
Denote by r the minimal positive integer such that Cr = I. Since C2r = I and q ≡ ±2

13
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mod 5, Lemma 5.2 implies that r is even, say r = 2r′. As Cr = C2r′ = I, the same
Lemma 5.2 forces r′ = 2r′′. Consider the matrix A = Cr′ = C2r′′ with determinant
detA = (detC)2r

′′

= 1. By Lemma 5.1, we have that A = Cr′ = ±I. Since r′ < r,
necessarily Cr′ = −I. Using the sufficient condition in Theorem 4.1, we conclude that q
has the Midy property for the golden ratio.

Theorem 5.4. Let q ∈ N be a prime, q ≡ ±1 mod 5. Write q − 1 = 2kℓ for k ∈ N and
odd ℓ ∈ N. Then q has the Midy property in the golden ratio base if and only if the list of
matrices C2ℓ, C4ℓ, . . . , C2k−1ℓ contains a matrix which equals −I mod q.

Proof. Since q ≡ ±1 mod 5, by quadratic reciprocity, 5 is a quadratic residue mod q, i.e.
there exists b ∈ Zq such that b2 ≡ 5 mod q. Denote λ1 = 2−1(1 + b) and λ2 = 2−1(1− b).
Then λ1 + λ2 ≡ 1 mod q and λ1λ2 = 2−2(1 − b2) ≡ −1 mod q and thus λ1, λ2 are the
roots of the characteristic polynomial

(X − λ1)(X − λ2) = X2 −X − 1

of the matrix C. Obviously, b 6≡ ±1, 0 mod q. This implies λ1 6≡ λ2 and both λ1 and
λ2 belong to the multiplicative group Zq \ {0}. The order of the elements of this group
divides q − 1, and therefore λq−1

1 ≡ λq−1
2 ≡ 1 mod q. Hence there exists a non-singular

matrix R ∈ Z2×2
q such that

C ≡ R−1
(
λ1 0
0 λ2

)
R mod q and Cq−1 ≡ I mod q.

In order to prove the theorem, we show two implications.
The implication (⇐) follows by Theorem 4.1. For the opposite direction (⇒) we proceed

by contradiction. Assume that q satisfies the Midy property, i.e. by Theorem 3.2, there
exists N ∈ N such that CN ≡ −I mod q. In particular, for both eigenvalues λ1, λ2 of C
it holds that λN

1 ≡ λN
2 ≡ −1 mod q.

In the same time, suppose that no matrix in the list C2ℓ, . . . , C2kℓ is equal to −I
mod q. Since all matrices in the list are powers of C2, their determinant is equal to 1
mod q. Moreover, C2kℓ = Cq−1 ≡ I mod q. Lemma 5.1 implies that all matrices in the
list are equal to I mod q. As C2ℓ ≡ I mod q with ℓ odd and detCℓ ≡ −1, Lemma 5.1
forces that Cℓ is similar to the matrix ( 1 0

0 −1 ). In particular, for one of the eigenvalues of
the matrix C, say λ1, it holds that

λℓ
1 ≡ 1 mod q and λN

1 ≡ −1 mod q.

Let r be the order of λ1 in the multiplicative group of the field Zq. Necessarily r divides
ℓ, in particular, r is odd. On the other hand λ2N

1 ≡ 1 mod q, and thus r divides 2N ,
too. The fact detC = −1 and det(−I) = 1 forces N to be even. Thus the odd number

r divides N/2. We derive that λ
N/2
1 ≡ 1 mod q and λN

1 ≡ 1 mod q, as well. This is a
contradiction.

If q−1
2

is odd, then the list of matrices in the previous theorem is empty, and it cannot
contain −I. By Theorem 5.3 we obtain the following Corollary.
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Corollary 5.5. Let q ∈ N be a prime such that q ≡ −1 mod 20 or q ≡ 11 mod 20. Then
q does not have the Midy property. Consequently, no Fibonacci number F2n−1 with n ≥ 3
is divisible by such a prime q.

Remark 5.6. If q is prime, q ≡ ±1 mod 5, and q−1
2

is even, then necessarily q ≡ 1 mod 20
or q ≡ 9 mod 20. Among such primes some have the Midy property in base τ and some
do not have. For example,

• 41 ≡ 101 ≡ 1 mod 20. The prime 41 has the Midy property, whereas 101 has not.

• 109 ≡ 29 ≡ 9 mod 20. While 109 has the Midy property in base τ , the prime 29
has not.

Remark 5.7. Mersenne primes are defined as primes of the form q = 2s − 1, which forces
the exponent s to be also prime. Of course, not all numbers of the form 2s − 1 are prime
even if s is prime. Suppose that q = 2s − 1 is a Mersenne prime. We can derive the
following conclusions about the Midy property of q in base τ :

• if s ≡ 3 mod 4, then q = 24k+3 − 1 = 8(24)k − 1 ≡ 2 mod 5, and by Theorem 5.3,
the Mersenne prime q = 2s − 1 has the Midy property in base τ .

• if s ≡ 1 mod 4, then q = 24k+1 − 1 = 2(24)k − 1 ≡ 1 mod 5, and q = −1 mod 4.
This forces q = −1 mod 20, and by Corollary 5.5 the Mersenne prime q = 2s − 1
does not have the Midy property in base τ .

Today (April 2024), 51 Mersenne primes are known. Precisely 19 of them satisfy the Midy
property in base τ .

Fermat primes are primes of the form fn = 22
n

+ 1, where n ∈ N.

• f0 = 3 and f1 = 5 = F5 have the Midy property by Example 4.3.

• If n ≥ 2, then fn = (24)2
n−2

+ 1 ≡ 2 mod 5, and by Theorem 5.3, the Fermat prime
fn has the Midy property.

Thus every Fermat primes satisfies the Midy property in base τ . Unfortunately, as of
today, only 5 Fermat primes are known, namely fn, for n = 0, 1, 2, 3, 4.

6 Comments

Let us discuss possible generalizations of our result to other bases.

• Theorem 4.1 is stated for the golden ratio base. It is likely that one can generalize
it for all bases β which are quadratic Pisot units with norm equal to −1, i.e. roots
of polynomials f(X) = X2 −mX − 1, m ≥ 1. However, much less is known about
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divisibility properties of sequences defined by the linear recurrence with characteristic
polynomial f . Some results of this kind can be found in [14].

On the other hand, no q can satisfy the Midy property in base β which is a quadratic
Pisot unit with norm equal to +1. For, it is known [8] that no rational number in
the interval (0, 1) has purely periodic β-expansion.

• The original Midy’s theorem considers integer bases, which are naturally not alge-
braic units. One can observe q ∈ N with the Midy property even in non-integer bases
β > 1 that are non-units. According to Akiyama [2], if the base β is chosen to be the
quadratic Pisot number with minimal polynomial X2 −mX − n, m ≥ n, then every
reduced fraction whose denominator is coprime to N(β) = n has a purely periodic
β-expansion. For example, let β = 1 +

√
3, i.e. β is a root of X2 − 2X − 2. Then

(4
5
)β = 0.(201100100121011021112000)ω.

For the two halves of the period, we have

201100100121 + 011021112000 = 212121212121

which is a prefix of d∗β(1) = (21)ω.

• As it was already mentioned in Remark 3.3, in the Tribonacci base, i.e., when β > 1
is a root of X3−X2−X−1, no denominator q has the Midy property. On the other
hand, we have tested fractions in base β > 1 which is a root of X4−X3−X2−X−1
and we have found fractions p

q
such that

TN(p
q
) = q−p

q
and TN( q−p

q
) = p

q
,

which by Lemma 3.1 implies the Midy property. For instance, for p
q
= 1

5
the previous

equalities are satisfied with N = 156; for p
q
= 1

10
and p

q
= 1

25
with N = 780, for

p
q
= 1

17
with N = 2456.
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