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Elementary fractal geometry.
4. Automata-generated topological spaces

Christoph Bandt

Abstract. Finite automata were used to determine multiple addresses in number
systems and to find topological properties of self-affine tiles and finite type fractals.
We join these two lines of research by axiomatically defining automata that gener-
ate topological spaces. Simple examples show the potential of the concept. Spaces
generated by automata are topologically self-similar. Two basic algorithms are out-
lined. The first one determines automata for all k-tuples of equivalent addresses
from the automaton for double addresses. The second one constructs finite topologi-
cal spaces which approximate the generated space. Finally, we discuss the realization
of automata-generated spaces as self-similar sets.
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1 Overview

The basic principle of number systems is to assign addresses to points. We have an
address map φ : S → X from a symbolic space S to a set X of points. The simplest
symbolic space is the space of sequences s = i1i2 . . . from the digit setD = {0, 1, . . . ,m−1}.
Two symbol sequences s, t are called equivalent if they address the same point: φ(s) = φ(t).
This paper studies algorithms that describe multiple addresses. If the set of pairs (s, t)
of equivalent addresses is generated by a finite automaton, the address map φ is called
automatic, and the topological quotient space X = S/φ is automata-generated.

Gilbert [20,21] started work in this direction in 1982. He constructed automata which
determine double and triple expansions in number systems with complex bases −n+ i, for
n = 1, 2, . . . Thurston emphasized the connection between number systems, self-similar
tilings and automata in his influential lecture notes [48]. This work was extended in
numerous papers on canonical number systems (cf. [2] and [19, Section 2.4]) and on the
topology of self-affine tiles in the plane [1,14,29–32,44] and in space [49]. Roughly speaking,
self-affine tiles are the unit intervals of canonical number systems. Their vertices, which
are interesting from a geometrical viewpoint, have three or more addresses.

Symbolic dynamics is a related field where addressing plays a central part. Milnor and
Thurston [39] characterized unimodal maps on the interval by their kneading sequence
which represents the double address of the critical point. There are special parameters
where this address is preperiodic. For complex rational functions, Thurston discussed the
symbolic description of Julia sets in the post-critically finite (p.c.f.) case [47]. They were
considered topologically self-similar sets by Kameyama [25]. In fractal geometry, p.c.f.
sets have been frequently studied because of their simple structure. Brownian motion and
differential equations can be defined on such spaces [26, 27, 45, 46]. All p.c.f. fractals are
generated by automata, as shown in [41] and in Section 5.

Both p.c.f. fractals and self-affine tilings belong to the class of finite type self-similar
setsX which can be described by an automaton, termed neighbor graph in [10]. Its original
purpose was to check a separation condition [5]. It turned out that the automaton provides
much information on the topology ofX, as well as the Hausdorff dimension of the boundary
and local dimensions [22]. Implemented in the IFStile package of Mekhontsev [37, 38],
millions of fractals could be screened and interesting examples selected [6, 8].

However, self-similar sets generated by similitudes are mainly studied in the plane. In
three dimensions, similitudes seem to be too special. Several authors used a combinatorial
approach to study fractal topology, putting aside metric features like similarity and Haus-
dorff dimension [3,7,23,25,40,46]. Zhu and Rao [52] defined topology automata for fractal
squares. We follow this line of research.
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The new point is that we do not derive the automaton from a number system, tile or
fractal. We take the automaton as a starting point: as a tool to construct a topological
space. In Section 2 we axiomatically introduce the class of automata which accepts the
double addresses in an address map. We give many simple examples and illustrations in
Sections 3 and 5. Graphs were drawn by MATLAB, fractals by IFStile [38]. In Section 4
we prove that automata-generated spaces are topologically self-similar, even in a more
general setting.

Two basic algorithms are described. In Section 6 we derive automata for the triple and
k-tuple addresses from the original automaton for double addresses. For an automaton
with three states and three digits, we find all points in X with 4, 6, and 12 addresses. In
Section 7 we construct the topological space X from finite space approximations, unfolding
the edge structure of the automaton. Since the automaton is finite, topological properties
of the limit should be computable on a certain finite level. This is a work in progress. In the
final Section 9 we discuss the realization of an automata-generated space as a self-similar
set in the complex plane. Many open questions appear in the last part of the paper. A long-
term target is to establish databases of recursively defined topological objects, maintained
and developed by computer.

The automata discussed in this paper are quite similar to those studied by Frougny
and Sakarovitch [19], but they are used for a more geometric purpose.

2 The concept of a topology-generating automaton

Throughout, D = {0, 1, . . . ,m − 1} is our alphabet, the set of digits for numeration,
denoted by i, j, ik, uk, sk. Words i1 . . . in ∈ Dn will be denoted by u, v, w and sequences
i1i2 . . . by s, t, or u = uuu . . . for periodic sequences. The set of words is D∗ =

⋃∞
n=0D

n.
The set of sequences is our symbolic space S, the full one-sided shift over D with the usual
product topology. Elements of S are called addresses.

S = DN = {s = s1s2 . . . | sk ∈ D}.

An address map is a function φ : S → X from S to any set X. This map induces the
quotient topology on X which transforms X into a compact space. When we start from
a compact topological space X, we require that φ is the quotient map. Two addresses s, t
are said to be equivalent if φ(s) = φ(t). As usual, we identify the equivalence relation with
the set

Lφ = {(s, t) | s, t ∈ S, φ(s) = φ(t)} ⊆ S × S.

We call the address map φ automatic and the topology of X automata-generated if there
exists a finite automaton G which accepts Lφ. In this paper, the automaton is the starting
point, and the equivalence relation and the topology of X will be derived from it. We
begin with a basic example.

Example 2.1 (Binary numbers). Let D = {0, 1}, X = [0, 1] and φ(i1i2 . . . ) =
∑∞

k=1 ik · 2−k.
Then φ(s) = φ(t) if and only if either s = t or there is an integer n ≥ 0 and i1, . . . , in ∈ D
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Figure 1: The automaton for double addresses of binary numbers.

such that s = i1 . . . in01 and t = i1 . . . in10, or conversely. The corresponding automaton
G is drawn in Figure 1. The initial state is o, and the input alphabet is the set D2 of
pairs of symbols. A pair of words or sequences (u, v) is accepted if there is a directed path
of edges with labels (u1, v1), (u2, v2), . . . in G which starts in o. For u = v this path will
consist of loops from o to itself. When u is lexicographically smaller than v, the edge with
label (0, 1) will lead to the state right, and all following labels must be (1, 0). In this way,
the automaton defines the equivalence of binary addresses and thus the topology of the
interval.

Before we formally define our automata, we note how the equivalence of addresses is
expressed on the level of words of length n. For a word u = u1 . . . un the corresponding
cylinder set in the symbolic space is defined as

Su = {u1u2 . . . unsn+1sn+2 . . . | sk ∈ D} ⊆ S.

Proposition 2.2. For any map φ : S → X and any s, t ∈ S we have

φ(s) = φ(t) if and only if φ(Ss1...sn) ∩ φ(St1...tn) ̸= ∅ for n = 1, 2, . . .

Proof. If x = φ(s) = φ(t) then x belongs to all intersections on the right-hand side. On
the other hand,

⋂
n St1...tn = {t}, and the Mn = φ(Ss1...sn) ∩ φ(St1...tn) form a decreasing

sequence of closed sets. If they are all nonempty, M =
⋂

nMn is nonempty by compactness,
and must coincide with {φ(t)} as well as with {φ(s)}.

The sets Xt1...tn = φ(St1...tn) will be called the pieces of level n for the address map
φ. The proposition says that two sequences address the same point if and only if the
corresponding pieces of level n = 1, 2, . . . intersect each other. In example 2.1, pieces
of level n are binary intervals [x, x + 2−n] with x = φ(t1 . . . tn0). For n = 1 we have
X0 = [0, 1

2
] and X1 = [1

2
, 1] with one common endpoint. If we start with the edge with

label (i, j) = (0, 1) then Xj is on the right of Xi which explains the name of the state in
Figure 1. For n = 2, only Xi1 and Xj0 intersect, where the latter remains on the right. In
this way, the automaton is constructed. A state can be interpreted as a relative position
of the two pieces.
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Definition 2.3 (Topology-generating automaton). A topology-generating automaton, de-
noted by G = (V,D2, E, o), consists of a finite directed graph (V,E) where vertices rep-
resent states and edges represent transitions labelled by the input alphabet D2, and o
denotes the initial state. The graph can contain loops and multiple edges which can be
drawn as single edges with multiple labels. The following properties are required.

1. Each vertex c has an outgoing edge and can be reached by a directed path from o.

2. A vertex c must not admit two outgoing edges with the same label (i, j).

3. To each state c there is an ‘inverse’ state c− such that for every edge between vertices
b and c labelled with (i, j), there is an edge labelled with (j, i) between b− and c−.
The conditions o− = o and (c−)− = c for c ∈ V are fulfilled.

4. The initial state o has loops with label (i, i) for each i ∈ D.

We use the convention that an input (i, j) is accepted at state c ∈ V if there is
an edge with label (i, j) starting in c. A pair of words (i1 . . . in, j1 . . . jn) or sequences
(i1i2 . . . , j1j2 . . . ) is accepted if there is a directed path of edges starting in o with labels
(i1, j1), (i2, j2), . . . . The language of accepted pairs of words and the set of accepted pairs
of sequences are denoted by L(G) ⊆ (D2)∗ and L∞(G) ⊆ S2, respectively.

We used common terminology as in [13, 17]. While automata for number systems as
treated by Frougny and Sakarovitch [19] use the input alphabet D, we need D2 = D ×D
to process pairs of symbol sequences. The absence of a set of final states was explained by
Thurston as follows: “The language L(G) is prefix-closed if every prefix of a word in L(G)
is also in L(G), or in other words, if every non-accept state has arrows only to other non-
accept states. In such a case, we may collapse all non-accept states in a single fail state,
with all arrows leading back to itself. It is convenient to omit the fail state and all roads
leading to it. Whenever an input gives you directions where there is no corresponding
arrow, you immediately fail with no chance for reinstatement.” [48, p. 31].

According to Proposition 2.2 we want to describe the relation φ(Su) ∩ φ(Sv) ̸= ∅ for
words u, v on D2. This relation is prefix-closed since Su′ ⊇ Su for any prefix u′ of u. So
Thurston’s convention applies here. Moreover, if the relation is fulfilled for (u, v) then it
must also be fulfilled by (ui, vj) for some (i, j) ∈ D2, since Su =

⋃
i∈D Sui. This explains

the outgoing edges in property 1. These edges guarantee that each directed path of edges
can be extended indefinitely, in a finite graph through directed cycles. Each vertex should
have an incoming edge and should be reached from o because otherwise it is obsolete.

Property 2 is quite natural. It says that an accepted pair of addresses (s, t) determines
a unique directed path in the graph. Property 3 expresses the symmetry of the relation
φ(Su) ∩ φ(Sv) ̸= ∅. If (u, v) is accepted at a state c then (v, u) must also be accepted at
a state which we call π(c). Then if (ui, vj) is also accepted, the same is true for (vj, ui).
As discussed in Section 4, property 4 can be replaced by a weaker condition. It is needed
to accept pairs of equal sequences (s, s), and is equivalent to a self-similarity condition.
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Given an automaton with these properties, we formally define the quotient space X as
the set of all equivalence classes xs of addresses s. The address map φ will assign to each
address s ∈ S its equivalence class.

φ(s) = {t ∈ S | (s, t) is accepted by G} = xs.

One way to define the quotient topology on X is to say that a sequence (xsn)n=1,2,... with
sn ∈ S converges to xs in X if and only if sn converges to s in S. However, there can be
t with xs = xt and tn with xsn = xtn . We show that the convergence does not depend on
the choice of representatives.

Proposition 2.4. The following holds for any topological automaton G.

(i) Let (sn)n=1,2,... and (tn)n=1,2,... be convergent sequences of addresses with limit se-
quences s and t in S. If (sn, tn) is accepted by G for n = 1, 2, . . . . then (s, t) is also
accepted by G.

(ii) The quotient space X generated by G is a compact Hausdorff space. It is metrizable.

Proof. (i) In S we have coordinatewise convergence. Thus the first k digits of sn must
agree with the digits s1s2 · · · sk of the limit sequence s for all n greater than some
n(k). Similarly, tn starts with t1t2 · · · tk for large enough n. Since (sn, tn) is accepted
by G for all n, this implies φ(Ss1···sk) ∩ φ(St1···tk) ̸= ∅. This holds for all k, so (s, t)
is accepted by G.

(ii) By definition of the quotient topology, φ is continuous. The space S is compact,
and a continuous image of a compact space is always compact. A space is Hausdorff
if limits are uniquely determined. This is what we proved in (i) for the quotient
topology of X. Since S has a countable base, this holds for X and implies that X is
metrizable.

In section 7 we shall give a more concrete construction of the space X. First we
present small examples of topological automata. In the whole paper we confine ourselves
to equivalence relations with finite equivalence classes, with size smaller than a constant
C. Thus we shall exclude identifications of periodic addresses:

Proposition 2.5. Let all equivalence classes of addresses be finite, and let (s, t) be a pair
of different sequences accepted by the automaton G. Then s is not a periodic sequence and
cannot be written as s = ut for a word u ∈ D∗.

Proof. If a periodic sequence s = w is identified with t, then s = ws is identified with
wt by property 4. By induction s is also identified with wkt for k = 2, 3, . . . . Thus the
resulting equivalence class is infinite.
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If t is identified with ut then by property 4 ut is identified with u2t and u2t with u3t and
so on. Again we have an infinity of equivalent addresses ukt, k = 0, 1, 2, . . . , and u will also
belong to this class because the equivalence relation is closed according to Proposition 2.4.
So we have the same conclusion as above.

A particular case appears when there is a path from o to o starting with labels i1 ̸= j1. If
u, v are the words addressing this path, then not only u and v are identified. Every sequence
in {u, v}∞ will belong to the equivalence class which therefore has the cardinality of the
continuum. There are important number systems like β-numeration with a golden mean
base which have this property. They are also interesting from the topological viewpoint
but require methods that are not studied here. For that reason, we assume that the loops
of property 4 are the only incoming edges to o.

3 Automata with two states

Figure 1 showed a topological automaton with two states - the initial state will not be
counted. It can be easily modified to describe the decimal numbers with D = {0, 1, . . . , 9}:
the edge from o to right will have labels (0, 1), (1, 2), (2, 3), . . . , (8, 9), and the loop at state
right gets the label (9, 0). Similarly we can describe the number system with respect to
any positive integer base.

Let us go back to D = {0, 1} and look for modifications of Figure 1. Because of
properties 3 and 4, the labels cannot be changed, except for one label of a loop, say at
right. If we replace (1, 0) by (0, 1) or (0, 0), however, the infinite path from o to right and
then traversing the loop will determine the sequences s, t with s = 0. This contradicts
Proposition 2.5. If we take (1, 1) for that label, we would have t = 1. The conclusion is
that for the graph of Figure 1 no other labeling defines a topological automaton.

a b c

Figure 2: Topological automata for two number systems. a: base -2, b: symbolic dynamics
of the tent map. c: The order of second-level pieces in the interval X for Figure 1, a, and b.

So we have to change the graph: we replace the loops by arrows to the inverse state,
as shown in Figure 2a. The label (i, j) for the arrow from c to b can be chosen, the other
must be (j, i). If we take (0, 0) or (1, 1), we shall again have sequences s, t with s = 0
or t = 1. The label (1, 0) would give s = 01. The only possible label for the edge (c, b)

7
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is (0, 1). This automaton describes the number system with base −2, with address map
φ(i1i2 . . . ) =

∑∞
k=1 ik · (−2)−k and X = [−2

3
, 1
3
]. The ‘identification formula’ is 001 ∼ 110

while it was 01 ∼ 10 for binary numbers.
The third graph has two self-inverse states b, c. Without loss of generality there is

a double arrow from o to b which must have labels (0, 1) and (1, 0), because of properties
2-4. There must be an arrow from b to c. Arrows between self-inverse states can only have
labels of the form (i, i). Let us take the label (1, 1) for the edge (b, c). By property 1 there
is an arrow starting in c. If it leads back to b, we obtain a contradiction with periodic s.
So this edge must be a loop, with label (0, 0) to avoid periodicity. See Figure 2b. The
identification formula is 010 ∼ 110. This automaton represents the symbolic dynamics of
the tent map T : [0, 1] → [0, 1], T (x) = 2x for x ≤ 1

2
and T (x) = 2(1− x) for x ≥ 1

2
. We

have φ−1(x) = j0j1j2 . . . with jk = 0 if T k(x) ≤ 1
2
and jk = 1 if T k(x) ≥ 1

2
. The critical

point x = 1
2
has two addresses. The tent map is conjugate to the quadratic function

g(x) = x2 − 2 on its Julia set [−2, 2] so X could be called a Julia set in this case. An
equivalent automaton is obtained by exchanging (0, 0) and (1, 1) for which we have to put
the tent map upside down. We thus extended an old result of Hata [23, p. 399] and Bandt
and Keller [7, Proposition 4] to automata-generated spaces.

Proposition 3.1. There are three different topological automata with two states (not count-
ing o) and a two-digit alphabet. They describe binary numbers, the number system with
base −2 and the symbolic dynamics of the tent map. In all cases, the generated space is
an interval. □

Figure 3: Adding digit 2 to the automaton of binary numbers we generate a disconnected
space.

Now let us take alphabets with more than two digits. When we add a digit 2 in Figure 1
without adding any labels with 2, except for the mandatory loop (2, 2) at o, we obtain
a space X where X2 is disconnected from X0∪X1, and X02 is disconnected from X00∪X01

etc. One metric realization is sketched in Figure 3. The space consists of countably many
intervals and a continuum of isolated points since it has a Hausdorff dimension greater than
1. In this way, any connected space can be transformed into an archipelago by adding one
more digit. For this reason, we focus our study on connected spaces. Disconnected spaces

8
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described by two-state automata and their Lipschitz equivalence were studied by Zhu and
Yang [53].

When we use digit 2 and add the label (0, 2) on the edge (o, right) (and (2, 0) on (o, left)
because of property 3) then we get a dendroid, a Hata tree, as indicated in Figure 4. The
formula for double addresses would be 01 ∼ 10, 01 ∼ 20. However, the automaton in
Figure 1 is not complete. It does not describe the equivalence 10 ∼ 20 which must hold
by transitivity. The complete automaton with three states is shown in Figure 4. Since
our automata accept pairs of addresses, incompleteness is possible for triple and multiple
addresses. In the context of Figure 1 with added digits and edge labels, this will always
happen when two labels at the same edge share a digit, like (i1, j), (i2, j).

Figure 4: Left: A Hata tree is generated from the automaton in Figure 1 by adding digit
2 and two edge labels. Right: The triple address at the branching point in the middle
requires one more state for completeness.

Proposition 3.2. Let G be a topological automaton with m digits and two states that are
inverse to each other. Suppose that G completely describes the equivalence of addresses
and that X is connected. Then X is an interval, and G defines the double addresses of
a number system, either with base m or with −m.

Proof. We consider only the case of Figure 1. The case of Figure 2a is similar. Consider an
undirected graph H with vertex set D and with edges i, j for all labels (i, j) or (j, i) of the
edge from o to right. A label (i, i) is not possible since then the state right would be self-
inverse. Since X is connected, the graph H is connected and thus has at least m−1 edges.
Since G is complete, the first and second coordinates of the labels must be different, as
noted above. That implies that H has exactly m−1 edges which form an undirected path.
By renaming the digits we can assume that the labels are (0, 1), (1, 2), . . . , (m− 2,m− 1).
Then the loop at state right can have only label (m− 1, 0) because of the Proposition 2.5.
This gives the number system with base m, with identifications km− 1 ∼ (k + 1)0 for
k = 0, . . . ,m− 2.
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The case of automata with two self-inverse states is more interesting. Generalizing
the tent map example, we find for every m automata generating the symbolic dynamics
of zigzag functions on [0, 1]. For even m > 2, an edge from o to c has to be added to
Figure 2b while the automaton for odd m looks like Figure 1. Moreover, quite different
connected spaces X can be generated.

Example 3.3 (An exotic space). Figure 5 shows an automaton with two self-inverse states
beside o and symbols 0, 1, 2. All multiple addresses come as triplets. When we cancel the
label (2, 2) at c, then X will be the dendroid at the top right in Figure 4. The label (2, 2)
makes the space more complicated since X0 ∩X1 ∩X2 is a Cantor set, given by all triple
addresses 01s ∼ 11s ∼ 21s with s ∈ {0, 2}∞. Actually, X is not homeomorphic to a subset
of the plane, as we shall prove in Proposition 8.1. Figure 5 shows graph approximations
of X where the vertex set is Dn and two vertices u, v are connected by an edge if (u, v) is
accepted by the automaton. Such approximations will be discussed in Section 7.

Figure 5: A complete automaton with 2 self-inverse states and 3 digits. Top right: Without
label (2, 2) at c, a dendrite X is generated, sketched here on level 5. Bottom: The full
space X cannot be embedded into the plane. Graph approximations on levels 3 and 4 are
shown.

10
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4 Topological self-similarity of automata-generated spaces

In the definition of a topology-generating automaton, property 4 required that for each
i ∈ D there is a loop with label (i, i) at the initial state o.

Proposition 4.1. Property 4 implies that all pairs (s, s) of equal sequences are accepted.
Moreover,

for each i ∈ D, a pair of addresses (s, t) is accepted if and only if (is, it) is accepted. (1)

In other words, the equivalence of addresses is invariant to shifting in a fixed symbol i or
word u, and to cancelling an initial symbol or word when it is the same in both addresses.

This implies that there are homeomorphisms hi : X → Xi such that hi ·φ = φ · τi where
τi : S → S is defined by τi(s1s2 . . . ) = is1s2 . . . for all i ∈ D. They fulfil the self-similarity
equation

X = h0(X) ∪ · · · ∪ hm−1(X). (2)

Proof. The first assertion concerns the infinite paths through loops at o. Now fix i ∈ D.
Any path of edges starting in o can be augmented by putting the loop (i, i) in front of
the path. On the other hand, if the path starts with the label (i, i), then this must be
the loop at o by property 2, and we get another path by cancelling this loop. Thus each
equivalence class of addresses is mapped by τi onto another equivalence class. Now hi is
just this mapping τi but acting on equivalence classes instead of single addresses. It is the
morphism of the quotient space X induced by τi, formally written as hi(x) = φτiφ

−1(x)
for x ∈ X.

The topological self-similarity is obvious for the symbolic space S and can be written
as equation S = τ0(S) ∪ · · · ∪ τm−1(S) which describes a disjoint union. For the quotient
space X this implies (2) where the intersections of the Xi = hi(X) are usually not empty.
They are subject to the rules of the automaton, however.

Note that the self-similarity of number systems is just a matter of convenience. We
treat all cylinders Su of S in the same way, identifying associated pairs of addresses and
performing the same operations. It would be much more work to have specific rules for
each cylinder. Here we have assumed property 4 which implies (2). However, it turns out
that some weaker type of self-similarity directly follows from the generation of X by an
automaton.

Theorem 4.2 (Self-similarity of automata-generated spaces). Suppose that in Definition 2.3
we replace the property 4 by the requirement that G accepts all pairs (u, u) of equal words.
Then the generated space X and its pieces satisfy some graph-directed topological self-
similarity equations.

Proof. Let V0 be the set of all states c for which there is a path of edges starting in o
with labels (i1, i1), (i2, i2), . . . , (in, in). By property 2, this path will be the only way to
accept the pair (u, u) for u = i1 . . . in. Since we assume also (ui, ui) to be accepted for
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i ∈ D, each such state c must have outgoing edges with label (i, i) for each digit i ∈ D.
Since we do not require loops, this means that each c ∈ V0 can be taken as the initial
state of the automaton and will then generate a topological space Xc and an address map
φc : S → Xc. The edges of V0 will determine how these spaces and maps depend on each
other.

Figure 6: Graph-directed topological self-similarity for an automaton without property 4.
When we start in state c, we obtain an interval. When we start in o, the space X consists
of a sequence of intervals X1, X01, X001, . . . and a limit point with address 0. The spiral
arrangement of intervals was chosen for good visibility.

Example 4.3. Figure 6 shows a very simple example with V0 = {o, c}. The outgoing edges
from c are as in Figure 1 so that with initial state c we get the interval Xc = [0, 1] and
φc : S → Xc identifies the addresses of binary numbers. Proposition 4.1 holds because of
the two loops at c. So we have two homeomorphisms hc

i : X
c → Xc

i . Equation (2) becomes
Xc = hc

0(X
c) ∪ hc

1(X
c).

At the initial state o we have no outgoing edges labelled (i, j) with i ̸= j so that our
Definition 2.3 with loop (1, 1) at o would yield no identifications and φ : S → X = Xo

would be the identity map. Indeed X0 and X1 are disjoint. However, the edge with label
(1, 1) from o goes to c. It says that there are identifications in X1 exactly as in Xc. Thus
X1 is an interval, and so is X0k1 for k = 1, 2, . . . , as seen in Figure 6. Actually, X has
almost the same identifications as Xc. Only the links 0k01 ∼ 0k10 between successive
intervals are missing for k = 0, 1, 2, . . . .

Since identifications in Xc are the same as in the piece X1, there is a natural homeo-
morphism h1 : Xc → X1 ⊆ X which can be written as h1(y) = φτiφ

−1
c (y) for y ∈ Xc.

Note that h1 corresponds to the edge from o to c and maps into the opposite direction.
Moreover, identifications in the piece X0 are the same as in X, so as in Proposition 4.1
we have the homeomorphism h0 from X onto X0. Summarizing we get a system of set
equations

X = h0(X) ∪ h1(X
c) , Xc = hc

0(X
c) ∪ hc

1(X
c)

12
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which by definition expresses the topological graph-directed self-similarity [36] of the two
spaces X,Xc. One realization is shown in Figure 6 where h0 includes a rotation for better
visibility.

In the general case there is one quotient space Xc for each possible initial state c ∈ V0.
And we said that for each c and each digit i ∈ D we have a unique edge e(c, i) starting in c
with label (i, i), with a uniquely determined endpoint d(c, i) ∈ V0. Thus starting in c with
digit i, we will make the same identifications as in Xd(c,i). Thus there is a homeomorphism
hc
i : X

d(c,i) → Xc
i onto the piece Xc

i of Xc. This yields the equations

Xc =
⋃
i∈D

Xc
i =

⋃
i∈D

hc
i(X

d(c,i)) for c ∈ V0. (3)

This system of equations expresses the graph-directed self-similarity as introduced by
Mauldin and Williams [36] and other authors [4,12,16,21] for contractive similitudes hc

i in
metric spaces. Contractive maps are needed to prove that there is a solution consisting of
compact sets Xc, c ∈ V0. In our case, the solution is constructed by the automaton. So we
can consider the more general case of homeomorphisms.

In this note, we assumed the stronger property 4 because we think that the graph self-
similarity should be better discussed in a more comprehensive setting where the symbolic
space is a sofic subshift instead of a full shift. This chapter has shown that the topology
of our spaces always comes together with coverings by pieces on different levels. This is
part of their structure and a consequence of their generation by automata.

This raises mathematical questions which we only mention. What is the appropriate
isomorphism concept for automata-generated spaces? Homeomorphy is to wide, Lipschitz
equivalence [34, 42, 52, 53] seems too narrow. What about quasiconformal maps? Or shall
we better speak about spaces with a graded block structure?

5 More examples

The previous section shows that self-similar fractals are typical examples of automata-
generated spaces. Now we shall see that most examples from fractal geometry have a simple
automatic structure. Self-affine tiles will not be mentioned since their automata are well
described in [1, 14,29–32,44,49].

Sierpiński gasket and tetrahedron. The digits are 0, 1, . . . , n for the n-dimensional ver-
sion. For n = 1 we have Example 2.1. There are states ij for all pairs of digits i ̸= j. Thus
in the plane we have 6 states and in n dimensions we have n(n+ 1). There are only edges
from o to all other states and loops, exactly as in Example 2.1. See Figure 7.
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Figure 7: Sierpiński tetrahedron and its automaton, 0 ≤ i < j ≤ 3.

Figure 8: The complete automaton for the 2 × 2 square. With more labels, the graph of
this automaton applies to the k × k square, and also to fractal squares.

The square. The 2×2 square is the basis of commonly used ‘quadtree’ methods for image
coding and processing. We use digits 0, 1, 2, 3 as indicated in Figure 8. There are four
states N,E, S,W for the four sides of the square and four states NE,SE, SW,NW for the
vertices. This can be considered as a product of Example 2.1 with itself. A k × k square
has k2 digits, but the same states and edges. Cubes are also easy to construct.

Fractal squares and triangles. This class of examples is obtained from the k × k square
by taking less than k2 digits. The classical example is the Sierpiński carpet, with a hole in
the middle of a 3 × 3 square. There are a lot of recent papers on fractal squares, mainly
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Figure 9: A fractal square which does not admit states NW and SE, and a fractal triangle
representable with 13 digits and only 3 states.

by Chinese authors. See [15, 24, 34, 42, 43, 50–52] and their references. The automaton for
fractal squares is the same as for the corresponding square, with fewer edge labels. Some
states can disappear, as in Figure 9. The case of only two states was studied by Zhu and
Yang [53] with automata similar to ours.

Figure 9 also shows an example of a ‘fractal triangle’. Every second triangle is put
upside down together with its sides. The automaton for this example needs three states
associated with the three sides of a triangle, and has two loops at each state. Related
examples will need six states when triangles meet at their vertices.

Post-critically finite sets [7, 25,26,47]. Consider an address map φ : S → X with

φ(s) = φ(t)⇐⇒ φ(is) = φ(it) for each digit i. (4)

This is the automata-free formulation of self-similarity. In the setting of Proposition 4.1, it
implies the equation (2) for the homeomorphisms hj(x) = φ−1τjφ(x), j = 0, . . . ,m−1 from
X into X. The address map and space X are called post-critically finite if there are finitely
many double addresses (s, t) with s1 ̸= t1, and all these sequences are preperiodic. This
holds for Figures 1–4 and the Sierpiński tetrahedron, but not for the square, Example 3.3
and Figure 9. The following result is related to [10, Proposition 6] and [41].

Proposition 5.1. For a map φ : S → X with (4), the following conditions are equivalent.

(i) φ is post-critically finite,

(ii) There is an automaton G = (V,D2, E, o) accepting the double addresses of φ, where
there is no directed path between two directed cycles of the graph (V,E).
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Proof. If φ is postcritically finite, each double address (s, t) with s1 ̸= t1 can be written
as s = s1 . . . snu and t = t1 . . . tnv with a common n and words u = u1 . . . uk, v = v1 . . . vk
of equal length. Consider a path of directed edges ej, j = 1 . . . n+ k with labels (sj, tj) for
j = 1, . . . , n and (ui, vi) for j = n+ i, i = 1, . . . , k. Let the terminal point of the last edge
be the initial point of en+1. Doing this for all double addresses with s1 ̸= t1 and joining
the paths at their initial point which we call o, we get the automaton.

Now assume the automaton is given and there is no path between two directed cycles.
In particular, cycles are disjoint. Then from o to any cycle there are only finitely many
paths of edges. Thus each cycle accepts only finitely many pairs of preperiodic addresses.
Since each infinite path from o must go through a cycle, this implies that φ is postcritically
finite.

6 Automata for multiple addresses

Definition 2.3 does not require that all pairs of addresses (s, t) of one point x in X
are accepted by the automaton. Such pairs can also come from the transitivity of the
equivalence relation, say when (s, s′) and (t, s′) are accepted by the automaton for some
sequence s′. In Figure 4 we added one more state and edge for completeness. However,
this was not necessary. The incomplete automaton provides the correct quotient space X.

The point here is that the binary relation defined by a topology-generating automaton
on words of length n need not be transitive: φ(Su) ∩ φ(Su′) ̸= ∅ plus φ(Sv) ∩ φ(Su′) ̸= ∅
does not imply φ(Su) ∩ φ(Sv) ̸= ∅. However, for n → ∞ the pieces Su shrink down to
a point, and so do their images. So for sequences, the transitivity of the automata relation
is included in the definition: φ(s) = φ(s′) plus φ(t) = φ(s′) implies φ(s) = φ(t).

Figure 10: In Figures 4 and 5 we have only triple addresses and no proper double addresses.
Here are the automata G3 for the triple addresses which can be constructed by the method
in Section 6. Label iii is abbreviated as i.

Usually, incomplete automata are much simpler than the complete version, as shown
by Figure 13 below compared to Figure 8 above. And given an automaton, we do not know
whether it is complete or incomplete. We now describe an abstract algorithm that deter-
mines automata for triple and multiple addresses from a given automaton G. It decides
the completeness of G and also finds cases where we have no proper double addresses, only
multiple addresses, as in Figure 10. In some way, we unfold the automaton G, generalizing
Gilbert’s work on triple addresses of complex number systems with base −n+ i [20].
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Theorem 6.1 (Automata for triple and multiple addresses). Let G = G2 be a topology-
generating automaton with finite equivalence classes, with size smaller than a constant
C. Let φ : S → X be the corresponding address map. All multiple addresses of points
in X can be determined by automata G3, G4, . . . derived from G, without any geometric
knowledge of X. The automaton Gk will accept all k-tuples of equivalent addresses that
are not contained in a (k + 1)-tuple of equivalent addresses.

Proof. For triple addresses, we have a product construction: G3 will be a subset of
G2 × G2 = (V 2, D3, E3, oo) where the states are denoted bc with b, c ∈ V . There is
an edge (bc, b′c′) ∈ E3 with label ijk if (b, b′) and (c, c′) are edges in G2 with labels (i, j)
and (j, k), respectively. Two linked pairs of digits are coupled at their common item, which
for paths will then realize the transitivity of the equivalence relation. To obtain G3, we
omit all vertices from G2 ×G2 without outgoing edge and those components of the graph
on which there are no edge paths with three different addresses. This leads from Figures 4
and 5 to Figure 10, for instance.

Now we describe the construction of G4, G5, etc. The algorithm for extending Gn to
Gn+1 is based on taking products Gn×G2. That is, we join states c of G2 to (n−1)-tuples
b = b1 · · ·n−1 which describe states of Gn. We draw edges when the last coordinate j of the
label between b and b′ agrees with the first coordinate of the label (j, k) between c and c′.
In this way, we extend the n digits at certain edges of Gn by another digit. If this works
for an infinite path of edges, we have extended the number of addresses from n to n + 1.
If no further address can be joined to an equivalence class, it is complete and belongs to
Gn. If we can add an address, we get a class which belongs to Gn+1. Since the size of
equivalence classes is assumed to be bounded, the algorithm stops after finite time.

Two problems must be mentioned. On the one hand, the new address which we find
may often coincide with a previous address. The cleaning of the graph needs lexicographic
ordering and recursive procedures which we do not discuss. On the other hand, it is not
enough to take only the last entry of the labels of Gn as j. For the examples below, a new
address has sometimes to be appended at the first entry. In general, we cannot assume
that transitivity is realized in a chain. We must check the product with G2 for each fixed
coupling coordinate j between 1 and n, and then take the union of the n graphs with their
initial states identified. This is possible since in any instance we add at most one new
address. In the general case, there is no meaning in writing the states of Gn as tuples of
states in G2. We can take any other names. There is another simplification in extending
Gn at each coordinate j. We need only one permutation of each set of addresses in Gn,
because G2 satisfies property 3 in Definition 2.3. Thus the graphs Gk with k ≥ 3 are
represented in asymmetric form, simpler than G2, as can be seen in Figure 10. Only when
a sequence of edges leads back to a state with a permutation of the addresses, we have to
replicate the state.

Any address that is equivalent to one address in an n-tuple of addresses in Gn will
be found in this way. And if such a new address does not exist, the n-tuple is confirmed
as being complete and belonging to Gn. Every incomplete address will be extended and
eventually be completed since n is bounded by assumption. This concludes the proof.
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The method must be augmented by ordering and graph cleaning procedures for efficient
programming. In the present form, it works well for small examples, as in Figure 13 below
and Example 9.4 in Section 9. We now discuss a more complicated case.

Example 6.2 (An incomplete automaton generating a triangle). Figure 11 shows an automa-
ton with three states and three digits. The corresponding space X is a well-known triangle.
It is a self-similar set and the fundamental domain of the Coxeter group G̃2 generated by
the reflections at the three sides of the triangle. The neighbor graph mentioned in Section 9
is a complete automaton describing all pairs of equivalent addresses. For this example it
has 16 states and 42 arrows which explains why we prefer the incomplete automaton.d
Some multiple addresses can be determined by eyesight from the geometry of triangle
pieces. Note that two vertices of the triangle have addresses 0 and 2 and all multiple
addresses will end with one of these suffixes. There are points with 4, 6, and even 12
addresses which correspond to the vertices of the corresponding crystallographic tiling.

Figure 11: An incomplete automaton generating a self-similar triangle. The states of the
automaton correspond to the three sides a, b, c. In the small triangle 0c is identified with
1c and 1a with 2a. The big triangle shows third-level pieces around points with 4, 6, and
12 addresses.

We construct G3 for Example 6.2 by taking G2 × G2. The states ac and ca have no
outgoing edges. Moreover, the states oo, aa, bb, cc are connected by edges with the first
label equal to the third. Since aa, bb, cc do not lead to other states, they can be omitted.
Thus from 16 states, we are left with oo and 10 other states of G3. Because of symmetry,
we do not show the states oa, ob, oc in Figure 12. Labels iii are abbreviated i.

We have paths of two edges from oo to bc and ba which directly yield triple addresses.
Paths through ao yield 102 ∼ 202 ∼ 212 and 202 ∼ 102 ∼ 112 for the two labels of
the edge (oo, ao). Similarly, the paths from oo over co to bc yield 012 ∼ 112 ∼ 102 and
112 ∼ 012 ∼ 002. For the paths to ba two pairs of labels can be combined: 010 ∼ 110 ∼ 120
and 020 ∼ 120 ∼ 110 and 110 ∼ 010 ∼ 020 and finally 120 ∼ 020 ∼ 010. In Figure 11,
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these triples correspond to three consecutive gray third-level pieces at the point marked
between pieces 0 and 1. The other four triple addresses correspond to consecutive blue
triangles around the marked point on the basic line. We see that the triples are not
complete: the paths to ba correspond to a quadruple and the paths to bc to a 6-tuple of
addresses. Thus we do not need G3, but G4 and G6.

G3 G4

Figure 12: Automata G3 and G4 for example 6.2. Ignoring loops at oo and paths through
bo, there are eight triple addresses that correspond to the common endpoints of three con-
secutive third-level triangles in Figure 11. These triples can all be extended to quadruples.
The quadruple addresses leading to aba in G4 are complete, those leading to cbc can be
further extended.

We construct G4 starting with the edge from oo to a0 in G3. For 122 a new item can
be appended in front, but not at the end. However, 211 can be extended to both sides,
yielding edges from ooo to aoc and oao. The first edge determines a single path while the
second one determines the labeling of the rest of the network, as shown on the right of
Figure 12. All other couplings of addresses, for instance appending to 122 or taking the
other label of edges to and from c0 in G3, will lead to repetitions, up to permutation of
the addresses.

All triple addresses have been extended, so G3 is now irrelevant. In G4 in Figure 12 the
paths leading to aba describe quadruples that are complete. There are two possible digits
for the starting edge at ooo and two possible digits for the final edge at aba, so there can
be only four addresses. When we try to append another address, it will be a repetition.
Thus the part of G4 which leads to aba, comprising six vertices, is the graph of complete
quadruple addresses.

The three paths leading to bcb and cbc have still incomplete labels. On the upper path,
we can append on both sides. On the path in the middle, we can append two digits on the
right of 2211. In both cases we get the six-tuple path

G6 : ooooo
221100−−−−→ oaoco

100110−−−−→ cbcbc
2←→ bcbcb .

This path describes the six addresses of the marked point on the basic line, and, together
with the loops at the initial state, all points in X with six and more addresses. Thus this
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is already the graph G6. The points that lie on the sides of the triangle X have exactly six
addresses, the other have twelve. The sides of type b on the boundary are b, 0b, 1b, 2b. We
have the self-similarity equation b = 00b ∪ 21b ∪ 22b. So the boundary has an automatic
structure, with address language {00, 21, 22}∗{λ, 0, 1, 2} where λ is the empty word. Thus
we can replace ooooo in G6 by a small automaton with five states to describe exactly
the complete six-tuple addresses of points on the boundary. This is not contained in our
general method which also produces a larger version of G6.

To determine the twelve-tuple addresses, we really need the states with several o as in
Figure 12. We have to amalgamate two six-tuple addresses along the line 1a = 2a (marked
point in Figure 11) or along 0c = 1c (two points on both sides of the marked point). Here is
one version of the automaton, with notation vn = vv . . . v. All twelve tuples are complete.

G12 : o
11 1626−−−→ o5ao5

0←→ o5bo5
(221100)2−−−−−−→ oaocoaocoao

(1001)3−−−−→ cbcbcbcbcbc
2←→ bcbcbcbcbcb .

0616 ↘ o5co5 2↙↗ 1,2

This completes the discussion of Example 6.2. The simpler case of the square is illus-
trated in Figure 13. Example 9.4 with Figure 14 leads to G3, G4, and G6.

7 Construction of the topological space

Given an automaton G, the definition of the space X as quotient space does not provide
much insight. We now present a meaningful construction of X by approximation from the
edge paths in G. The approximating spaces look very much like graphs, as in Figure 5.
They are finite topological spaces. A topology on a finite set is defined by assigning to
each point x a minimal open neighborhood Ux [11, p. 2].

Neglected for decades, finite topological spaces have gathered a lot of attention in recent
years, due to applications in image processing [28] and topological data analysis. Some
parts of algebraic topology can be simplified by their use [11, 18]. In our context, they
form the proper tool to understand automata-generated spaces.

Definition 7.1 (Approximations of automata-generated spaces). Let G denote a topology-
generating automaton with finite equivalence classes, with size smaller than a constant C,
and X the generated topological space. Let Gk, k ∈ K, be the automata of complete k-
tuple addresses, as constructed in Section 6. For k ∈ K and each level n = 1, 2, . . . let En

k

denote the set of directed paths of n edges in Gk starting in o. Each y ∈ En
k corresponds to

a set Wy ⊂ Dn of k words of length n which form the labels of the path and are accepted
at the endpoint of y. Let

En =
⋃
k∈K

En
k and Xn = Dn ∪ En

with the following topology. Each point x ∈ Dn is open. For a path y ∈ En
k the minimal

neighborhood of y must contain y, all x ∈ Wy and all z ∈ En
ℓ with ℓ < k for which

Wz ⊂ Wy. The space Xn is called the n-th level approximation of the space X.
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Figure 13: Top: a simple incomplete automaton for the 2×2 square and the corresponding
automaton of 4-tuple addresses. Bottom: the finite topological spaces X1 and X2 approx-
imating the square X. Gray circles are open points corresponding to D and D2. Black
circles are closed points representing the 4-tuple addresses, and line segments correspond
to double addresses. The automata organize this pattern [28] in a hierarchical way.

We explain the notation and show that this is the natural definition. It is very similar
to the geometry of polyhedra with faces, edges, and vertices. The index set K contains
those k for which complete k-tuples exist. For the square we had K = {2, 4}, for Figures 4
and 5 we had K = {3}, for Example 6.2 we had K = {2, 4, 6, 12}. On the level n, we
consider the words w of length n, the corresponding disjoint cylinders Sw in the symbolic
space S, and the pieces Xw = φ(Sw) of the topological space X which are not disjoint.
The pieces Xw with w ∈ Dn form a cover of X. We turn this cover into a partition by
taking all possible intersections of sets Xw. These sets, the atoms of the partition, are
considered as points of Xn. They are given by the topology which is inherited from the
partition sets.

For the 2 × 2 square, the Xw are 4n closed squares for n = 1, 2, . . . . Two neighboring
squares will intersect in an edge, and four mutually neighboring squares have one common
vertex point. The partition, shown in Figure 13, will consist of vertex points, edges without
vertices, and open squares. The open squares correspond to Dn and are open as points in
Xn. The minimal neighborhood Ux of the edges contains the two neighboring open squares
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but no vertices. And the vertices are closed and their Ux contains all four adjoining edges
and four adjoining open squares.

For n = 1, 2, . . . . we get a sequence of finer and finer partitions with smaller and
smaller sets which in the limit coincides with the space X. The accurate concept is the
inverse limit of the Xn. There is a natural projection πn+1,n : Xn+1 → Xn which assigns
to (w1, . . . , wn+1) ∈ Dn+1 the word (w1, . . . , wn) in Dn, and to each path y ∈ En+1

k the
path of its first n edges which belongs to En

k . This projection is continuous, that is, for
each open set in Xn the corresponding refined set in Xn+1 is also open.

The inverse limit X∞ of X1 π2,1←−− X2 π3,2←−− X3 . . . is the set of all sequences

x = (x1, x2, . . . ) with xn ∈ Xn and πn+1,n(x
n+1) = xn.

In our case, the xn ∈ Dn extend to sequences x ∈ D∞ = S, and the edge paths xn ∈ En
k

extend to infinite edge paths x. Let E∞
k denote the set of infinite edge paths in Gk starting

in o, and

E∞ =
⋃
k∈K

E∞
k and X∞ = D∞ ∪ E∞.

The projection πn : X∞ → Xn assigns to each infinite sequence or path the finite part
of the first n elements. The topology on X∞ is obtained by saying that for x ∈ X∞,
a base of open neighborhoods is given by Un(x) = π−1

n (U(xn)) where U(xn) is the minimal
neighhborhood of xn in Xn. For x ∈ D∞ = S these are the basic cylinder sets in the
product topology. For x ∈ E∞ it is just the n-th approximation of x together with all its
neighbors in En.

Theorem 7.2 (Quotient space as inverse limit). Let G be a topology-generating automaton
with finite equivalence classes, with size smaller than a constant C. Let φ : S → X denote
the address map, and Xn the finite spaces constructed above. Then X is the compact
Hausdorff space associated with the inverse limit X∞.

Proof. This statement mainly says that our construction of the approximations Xn is
mathematically correct. We explain how the elements of E∞ will disappear in the limit.
A finite topological space can never be Hausdorff unless all sets are open. However, for
an infinite space one usually requires that the intersection of all neighborhoods of some
point x is the point itself. In X∞ this holds for the points of D∞ but not for x ∈ E∞.
Such an x represents an infinite edge path with k address sequences s1, . . . , sk ∈ S ⊂ X∞.
Each basic neighborhood of x includes some finite part of these sequences in Xn and thus
includes s1, . . . , sk in X∞. In order to obtain a Hausdorff space, we must identify x with
s1, . . . , sk. One way to define this identification is to say that x ≡ y if f(x) = f(y) for
every continuous function on the space. This identification gets rid of x and at the same
time identifies the points s1, . . . , sk ∈ S. Thus we get exactly the quotient space X as
associated compact Hausdorff space of X∞. To prove the homeomorphism, we state that
all basic neighborhoods in X∞ obviously correspond to open sets in X. On the other
hand, given a neighborhood V of x ∈ X as a finite union of cylinder sets in S, it is easy
to determine an n so that the minimal neighborhood U(xn) leads to a subset of V .
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Formally, the theorem remains true even if we would define the approximations Xn

only with the graph G2, without multiple addresses. In that case the identification on X∞

would work because of the transitivity of the relation φ(x) = φ(y). On the finite stage,
however, the identification could not be anticipated. For the square, for instance, we would
have a hole in the center of X1 and (4n − 1)/3 holes in Xn but no holes in the limit.

8 Topological properties

The approximations Xn are meaningful. The interval is characterized already by X2.
Any open point is replaced by two open points and a closed centre point on the next level.
Figure 13 shows a similar situation for the square. Each open point is replaced by X1 in
the next level, and each line segment splits into two line segments with a middle point.
The closed points do not split further.

It seems that topological properties of X can be determined from Xn on certain finite
level n. When we get into the cyclic part of G, the changes of the Xn will repeat those
changes which were made for Xk with k < n. The structure of the approximations will not
further change, it will only be refined. However, the critical n depends on the topological
property as well as on the automaton and can be difficult to determine. We briefly comment
on some known results, open problems and work in progress.

Connectedness. A classical result of Hata [23] says that X is connected if and only if
X1 is connected. In the case of two digits, X is connected if there is at least one dou-
ble address [12]. A connected automata-generated space is locally connected and path
connected, cf. [7, Section 3]. There seem to be no results on k-connectedness. A space
is k-connected if for any two points x, y there are k connecting paths which are disjoint,
except for the endpoints.

Disconnectedness. For more than two digits, there is no algorithm to decide whether
X is totally disconnected. Even for particular self-similar sets in space, or even in the
plane, this is hard to decide [8]. Luo and Xiong [33] have recently shown that X is totally
disconnected if and only if the cardinality of connected subsets in the Xn is uniformly
bounded by a constant. It remains to determine the critical n. If X is neither connected
nor totally disconnected, there is the question to describe the connected components of X.
Can this be done by automata? A special case was studied in [51].

Cutpoints. For a connected X, a point x is a cutpoint if X \ {x} is disconnected. If x
has a connected neighborhood U , it is a local cutpoint if U \ {x} is disconnected. Isolated
loops in the automaton G lead to local cutpoints, see Proposition 5.1. However, there are
other cutpoints of a global nature, for instance the point with address 1 in Figure 5. The
critical level for their detection could be n = 3. For tiles, the question was studied [1, 29]
and for fractal squares in [43].

23



Christoph Bandt

Topological dimension and embedding dimension. There is a theory of topological di-
mension which can be applied also to finite spaces. Is it possible to determine the dimension
of X on finite level n? We can also ask for the smallest n for which X is embeddable in Rn.
For graphs H, there is a classical theorem of Kuratowski which says that H is embeddable
in the plane if and only if it has neither the complete graph K5 nor the complete bipartite
graph K3,3 as homeomorphic subset. This fits well with finite spaces. We apply the simple
part of this theorem to Example 3.3.

Proposition 8.1. Suppose some Xn contains a discrete version of K5 or K3,3, where the
edges are closed discrete arcs containing at least one point of Dn, and the vertices are
projections of connected sets in X. Then X is not embeddable in the plane. In particular,
Example 3.3 is not embeddable in the plane.

Proof. An ordered set x1, . . . , xn is a discrete arc if for k = 1, . . . , n − 1 either xk is
contained in the minimal neighborhood Uxk+1

or xk+1 is in Uxk
. These are the images of

[0, 1] under continuous mappings, and path connectedness in finite spaces is the same as
connectedness [11]. If a graph K is contained with discrete arcs in Xn, we of course require
that different arcs do not meet except at their endpoints. We made strong assumptions
concerning the lift of K to X by the projection π : X → Xn. For each edge e of K, the
set π−1(e) is a connected compact subset of X which contains a piece Xw of X since e
contains a point of Dn. For each vertex c of K, the set π−1(c) is connected. We can choose
a point from each π−1(c) and connect them by arcs in each π−1(e) to get a subset of X
which topologically realizes the graph K with proper arcs. Thus X cannot be a subset of
the plane.

In Example 3.3, the equivalence relation is given only by triple addresses, indicated
as triangles in Figure 5. Three pieces of X corresponding to words v0w, v1w, v2w will
intersect, according to Figure 10. Here v can be any word, and w can be empty, 1, or 1u
with u ∈ {0, 2}∗. On level n, the pieces are represented by open points in Dn, and their
intersection is represented as a closed point in Xn which we denote vY w since it is in the
closure of v0w, of v1w, and of v2w. Note that the closed points do not further split in
Xm,m > n. They directly correspond to points in X.

We construct K3,3 in X4. Let 012Y, 112Y, 212Y be the red vertices (with empty w) and
Y 120, Y 122 and 110Y the blue vertices. We have to define an arc from each red vertex to
each blue vertex. For the first two blue vertices, this arc consists of just one open point
between the two endpoints. Namely, 012Y connects to Y 120 via 0120, and to Y 122 via
0122. Similar for 112Y and 212Y . The connections to 110Y are a bit longer:

012Y − 0121− 01Y 1− 0101− 010Y − 0102− Y 102− 1102− 110Y,

112Y − 1121− 11Y 1− 1101− 110Y and

212Y − 2121− 21Y 1− 2101− 210Y − 2100− Y 100− 1100− 110Y.

Since each open point has only two adjacent closed points, and beside the vertices no
point appears twice in our list, the edges are closed sets in X4 which meet only at their
endpoints.
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Homotopy and homology. In algebraic topology, finite spaces have become a convenient
tool [11, 18]. On the other hand, various attempts were made to determine algebraic
invariants like the Euler characteristic for fractal spaces. However, the difference from
a doughnut is that holes in fractals come in infinite families. So we must ask for charac-
teristic exponents rather than absolute invariants. A first step would be to characterize
contractible spaces which include trees [15] and disk-like tiles [1, 29,32,49].

9 Realizing automata as neighbor graphs of IFS

We now consider metric realizations of our spaces X which already appeared in the
Figures 3, 4, 7, 9, and 11. A finite set of one-to-one contractive maps f0, . . . , fm−1 on Rd is
called an iterated function system (IFS) [12]. There is a unique compact set X ⊂ Rd which
fulfils X = f0(X) ∪ · · · ∪ fm−1(X). This is the self-similarity equation (2) with prescribed
homeomorphisms. Usually, the fk are assumed to be linear maps or even similitudes. As
in [6, 8, 9] we assume that the fk are similitudes with the same similarity ratio r < 1.
Compositions of the fk are expressed by words u ∈ Dn as fu = fu1 · · · · · fun .

In this case [8, 10, 37], as well as in the case of self-affine tilings [1, 14, 29–32, 44, 49],
a topology-generating automaton can be determined directly from the IFS. It was termed
neighbor map in [10] since the states are neighbor maps of the form h = f−1

u fv. They can
be determined recursively, starting with h = f−1

i fj for i, j ∈ D and repeatedly applying
the formula

h′ = f−1
i hfj (5)

to the previously determined maps h. We consider these maps as vertices of a graph and
put an edge with the label (i, j) from h to h′. The initial state is the identity map id, and
since f−1

j fj = id, we have loops from id to itself for every j ∈ D.
As described in Frougny and Sakarovich [19], there is a trim part of the graph, since

by contractivity, maps h with |h(0)| > C for some constant C will fulfil |h′(0)| > |h(0)|
in (5) for all i, j ∈ D. Such maps h′ are neglected, as well as all vertices h which lead
only to such maps. If the maps are defined in a discrete setting, for instance a canonical
number system [19] or an algebraic number field generated by a Pisot number [6], the trim
part of the automaton will be finite, and the resulting automaton will fulfil the conditions
of definition 2.3. In this case we shall say that the given IFS f0, . . . , fm−1 is a linear or
similitude representation of the automaton G.

Questions. Given a topology-generating automaton, does it have linear representa-
tions? How can we find them? Are they unique?

We provide no clear answers, but some methodology and examples. Let us start with
the basic Example 2.1. The state right in Figure 1 is now called h = f−1

0 f1, since the edge
with label (0, 1) from o = id leads to this state. We are looking for the unknown mappings
f0, f1. The loop with label (1, 0) at this state now turns into an equation h′ = h in (5):

f−1
1 hf0 = h or hf0 = f1h. (6)

25



Christoph Bandt

Such commutativity relations are typical conditions in our representation problem. We
now change the notation. Let g be an expanding linear map with factor R > 1, and let
fk = g−1hk for k ∈ D. Then f−1

k = h−1
k g, and hk is an isometry. Taking g = f−1

0 and
shifting the origin of our coordinate system we can assume that g is a linear map and
h0 = id (cf. [6, Section 1]). Moreover, f−1

i fj = h−1
i gg−1hj = h−1

i hj.
In our case, h = h1 and (6) turns into h1g

−1 = g−1h1h1. In other words,

gh1g
−1 = h2

1. (7)

This is a nice generating relation. Now let us assume g is an orientation-preserving simil-
itude in the complex plane: g(z) = λz with λ ∈ C, |λ| = R. For the isometry h1 we can
write h1(z) = az+b with a, b ∈ C, |a| = 1. Here b ̸= 0 since otherwise X = 0. Equation (7)
now turns into

λ(a
z

λ
+ b) = a(az + b) + b or az + λb = a2z + (a+ 1)b.

This equation has the unique solution a = 1, λ = 2. Thus we arrive at the binary number
system g(z) = 2z, h1(z) = z+1. The number b is still a degree of freedom in the choice of
the unit point of the coordinate system.

As a second example, we try the method for Figure 2a with the same assumptions on
g, h0, h1. We have b = h−1

1 and c = h1. The edge from c to b reads f−1
0 cf1 = b, that is,

gh1g
−1 = h−2

1 instead of (7). Inserting λ, a, b we get a3 = 1, λ = −(a2 + a). Since λ ̸= 1,
we again get a unique solution: a = 1, λ = −2.

The case of Figure 2b is a bit different. At state b, we have h1 = h−1
1 which implies

h1(z) = −z + 1 where the number b was standardized. Now c = f−1
1 h1f1 = h1gh1g

−1h1

and c(z) = −z + 2− λ. The loop at state c reads gcg−1 = c which leads to the quadratic
equation λ2 − 3λ+ 2 = 0 and λ = 2, c(z) = −z. For X = [0, 1

2
], the two neighbor maps h1

and c are the point reflections at the endpoints of the interval. We proved a supplement
to Proposition 3.1.

Proposition 9.1. For the automata in Figures 1 and 2, the only representations by complex
linear maps are the IFS which belong to the number systems with base 2 and -2, and to the
tent map. □

The representation remained unique although we went from dimension one to two.
However, the uniqueness is lost if we allow for orientation-reversing maps g(z) = λz.
Besides the binary interval, we then get Koch curves generated by two reflective maps.

For Example 6.2 it will now be shown that the whole algebra of the reflection group as
well as the action of g is contained in the automaton in Figure 11.

Proposition 9.2. For the three-state automaton in Figure 11, there is a unique orientation-
preserving similitude g and neighbor maps a, b, c which represent this automaton. They
satisfy

a2 = b2 = c2 = id ab = ba (ac)3 = id (cb)6 = id and
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gcg−1 = b gag−1 = cbc gbg−1 = cac = aca.

Proof. We work in an abstract setting not restricted to C. It is crucial to set h1 = id
because h0 = id would not lead to an orientation-preserving g. The edges from o = id
then imply c = h0 = h−1

0 and a = h2 = h−1
2 . This shows a2 = c2 = id. Now consider the

two edges from c to b and the basic recursion (5) where (i, j) are the edge labels.

b = f−1
1 cf1 = gcg−1 b = f−1

2 cf2 = h2gcg
−1h2 = aba.

The first relation and c2 = id yields b2 = gcg−1gcg−1 = id. The second relation gives
ab = ba, which is also self-inverse so that we could conclude (ab)2 = id. The edge from a
to b is evaluated as

b = f−1
0 af0 = cgag−1c or cbc = gag−1.

The edge from b to a gives

a = f−1
0 bf0 = cgbg−1c or cac = gbg−1

and the edge from b to c gives aca = gbg−1. Multiplying the last two equations we get
(ac)3 = gb2g−1 = id. To finish the proof, we determine

cbcb = (cbc)b = gag−1gcg−1 = g(ac)g−1.

Taking the third power, we obtain (cb)6 = id. It is now clear that ab, ac, and bc are rotations
and a, b, c must be reflections. The first line in the proposition shows the well-known
Coxeter relations for the reflection group generated by a, b, c. The second line expresses
the action of g as an automorphism on that group, similar to a substitution. They do
determine g. If X is the triangle formed by the reflection lines of a, b, c, then the reflection
lines of cbc, cac, and b determine another triangle which is g(X) = a(X) ∪X ∪ c(X).

Conjecture 9.3. For any self-similar crystallographic or self-affine tile, the combinatorial
structure of the neighbor automaton uniquely determines the IFS.

The next example shows that we probably can extend this conjecture to fractals which
are doubly connected, that is, there are two disjoint paths between any pair of points.
In [9] we studied a connected self-similar set X with Cantor sets fi(X) ∩ fj(X) for which
the IFS was not unique. For disconnected sets like Figure 3 or trees like Figure 4 it is clear
that there are many different representations by similitudes.

Example 9.4 (The dog carpet with five-state automaton). The self-similar set X in Fig-
ure 14 is generated by an IFS with five maps and data from the algebraic number field
Q(
√
−15). We call it dog carpet because the holes look like a pet. In [9, Figure 10] we

found a symmetric version of this fractal with five IFS maps and 12 neighbor maps. This X
has an incomplete neighbor automaton with only five states. The curious point is that the
maps involve rotations around irrational angles so that the pieces have an infinite number
of orientations when we extend the construction over the plane. Examples of this type
have not been considered in the literature, and no tiling of this type is expected to exist.
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Figure 14: Top: a self-similar set X and its neighbor automaton. Bottom: a magnifi-
cation which shows the fractal tiling structure. The IFS maps fk are determined by the
automaton. This seems curious since the neighbor maps involve an irrational angle.

Proposition 9.5. The automaton in Figure 14 has a unique representation by orientation-
preserving similitudes in the plane.

Proof. Let g(z) = λz and fk = g−1hk with orientation-preserving isometries hk for k =
1, . . . , 5. We determine the data of this IFS from the automaton. We choose the origin
and unit point so that

h3 = id and h1(z) = az + 1 with |a| = 1.
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On the edge from id to p we have p = f−1
3 f1 = f−1

4 f3 which implies h1 = h−1
4 . Thus

h4 = h−1
1 = a(z − 1) and p = h1.

The edge from id to h has labels 45 and 54, so h must be self-inverse, h(z) = −z+ v. One
loop at h has label 33 which means f−1

3 hf3 = h or hf3 = f3h. Thus h must have the same
fixed point as f3 = g−1, that is, the origin. Thus

h(z) = −z , and h5 = h4h = −a(z + 1)

because h = f−1
4 f5 = h−1

4 h5. The loop with label 12 at state h says f−1
1 hf2 = h, or

f2 = hf1h. Here g−1 cancels out and we get

h2 = az − 1.

Only two unknowns remain: a and λ. The loop with label 12 at state p = h1 gives

a

λ
(az − 1) + 1 = h1f2 = f1h1 =

1

λ
(a2 + a+ 1)

which results in λ = 2a+ 1.

Finally, we consider the path from state p = h1 to the inverse state p− = h−1
1 via q. The

corresponding equation is f−1
2 f−1

4 h1f
2
5 = h−1

1 = h4. Hence

a

λ2
(z + 1)− 1

λ
+ 1 = h1f

2
5 = f4f2(a(z − 1)) =

a

λ2
(z − 2)− a

λ
.

The resulting equation λ2 + λ(a− 1) + 3a = 0 is multiplied with a since aa = 1. Then we
substitute a = (λ − 1)/2. We get the cubic equation λ3 − 2λ2 + 3λ + 6 = 0. Dividing by
λ+ 1, we arrive at the quadratic equation

λ2 − 3λ+ 6 = 0 with solution λ =
1

2
(3 + i

√
15) a =

1

4
(1 + i

√
15).

Note that a describes the rotation between pieces X3 and X1 in Figure 14. Since 2a is
a quadratic integer, a is not a root of unity, and the rotation angle is irrational.

This proof shows once more how much information can be encoded in a small automa-
ton.

10 Conclusion

This paper is by no means complete. It is a starting point for further investigation.
Open problems were listed in Sections 8 and 9. In Section 4 we pointed out that topology-
generating automata should be considered in the broader context of finite type symbolic
spaces and graph self-similarity. Our assumption of finite equivalence classes should be
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canceled and the decision on the size of equivalence classes included into the algorithm of
Section 6. Most importantly, our two algorithms for automata of multiple addresses and
finite approximation spaces must be programmed efficiently so that they can be applied to
larger automata G. Then new spaces can be generated from automata, and complicated
self-similar sets as in [6,8] can be properly analyzed. Today’s computers provide a chance
to realize the vision of Mandelbrot [35] and Barnsley [12] expressed 50 years ago: to model
natural geometric phenomena like dust, soil, foam, snow, smoke, clouds. Perhaps automata
can also help classify tilings and fractal spaces. On the theoretical side, the isomorphism
problems indicated at the end of Section 4 seem most important.
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[18] D. Fernández Ternero, E. Maćıas Virgos, D. Mosquera Lois, N. Scoville, and
J. Vilches Alarcón. Fundamental theorems of Morse theory on posets. AIMS Math.,
7:14922–14945, 2022.

[19] C. Frougny and J. Sakarovitch. Number representation and finite automata. In
Combinatorics, automata and number theory, pages 34–107. Cambridge University
Press, 2010.

[20] W. Gilbert. Complex numbers with three radix expansions. Can. J. Math.,
34(6):1335–1348, 1982.

[21] W. Gilbert. Complex bases and fractal similarity. Ann. Sci. Math. Québec, 11:65–77,
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