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Geometric spectral theory of quantum graphs

James Kennedy

Abstract. These are lecture notes from a course given at the summer school “Heat
kernels and spectral geometry: from manifolds to graphs” in Bregenz, Austria, 2022.
They are designed to be accessible to doctoral level students, and include background
chapters on Laplacians on domains and quantum graphs before moving on to spe-
cialised topics involving the dependence and optimisation of operator eigenvalues on
a metric graph in function of the graph geometry, drawn in part from the recent
literature.

1 Introduction

These lecture notes are a moderately edited version of course notes written for an
eponymous short course I gave at a summer school entitled “Heat kernels and spectral
geometry: from manifolds to graphs”, which drew around 50 mathematicians, mostly
doctoral students and postdocs, to Bregenz, Austria, for a week in August/September
2022. The original version of these notes, distributed to all summer school participants,
covered exactly the same material as the lectures, but provided more detail and background
in a number of places (as well as references and exercises); it may be accessed online at [1].
An evolved version of the original notes, quite similar to the current version but without
the exercises, was also submitted in the scope of my Portuguese agregação (habilitation)
exams.

These notes centre around how the spectrum of a quantum graph (i.e. a Schrödinger-
type differential operator defined on a metric graph) depends on the geometric and topo-
logical properties of the graph. However, the notes are aimed at non-specialists with no
prior exposure to quantum graphs; in principle no more than a solid grounding in analysis
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and functional analysis is needed, although some exposure to the modern theory of (linear)
partial differential equations is highly advantageous.

As such, the first two chapters are introductory in nature, covering the basics of weak
solution theory and the spectral theorem for the Laplacian (as one might see in an advanced
master’s course) and a construction of metric graphs and differential operators on them,
respectively. As such, few to no citations have been included on the understanding that
this material is standard/well known/folklore, although no claim is made to originality or
authorship of any part (the particular organisation and presentation of the topics is my
own, but unlikely original). Much of Chapter 2 is likely similar in content to parts of [16],
which was suggested background reading for the participants, although [5] is probably
closer to my own way of thinking. Likewise, Chapter 3 was (with a few, marked, exceptions)
not written following any particular source, but was likely influenced by a number of works
(including ones partly due to me). Possible influences include, but are by no means limited
to, [6, 11, 12, 13, 15, 30, 41].

The core of the matter is Chapter 4, which covers the evolution of eigenvalue estimates
for quantum graph Laplacians over the last 35 years (including a brief apology for the
study of geometric spectral theory in Section 4.1, as well as references to related topics
such as Weyl asymptotics or the study of nodal domains and nodal counts). This draws far
more heavily on recent literature and contains no new research, but I believe the synthesis
as such is original. For the current state of the art, see, for example, [13, 14].

An attempt has been made to give a balanced overview of the history and main theo-
rems in the quite specific area of estimates for Laplacian eigenvalues based on the geometry
of the graph; however, the choice of topics, in particular the focus on eigenvalue bounds
and “surgery”-type methods for examining the relation between the spectrum and the
graph, is somewhat idiosyncratic and reflects my own interests, and is arguably weighted
towards my own contributions precisely because of that.

There are a few deliberate changes from the original version to improve readability
and usefulness as a standalone reference, roughly in keeping with the changes introduced
for the agregação version; in particular, a few previously “staccato” passages of text and
motivations have been filled out, and a bit more historical context is given in several places.
More significantly, I have also introduced a few more recent and advanced results in whose
creation I was involved, which will inevitably be in more of a “survey article” style than a
“lecture notes” style. To quarantine any effect on the balance and flow of the lecture notes
these are collected in a new final Section 4.4 not present in the original version. On the
other hand, the exercises originally included for the benefit of the participants have been
kept, and are in an appendix to this version.

The summer school was organised by Delio Mugnolo (Hagen) and Pavel Kurasov (Stock-
holm) within the framework of Action CA18232 Mathematical models for interacting dy-
namics of networks of the COST Association (European Cooperation in Science and Tech-
nology), see https://mat-dyn-net.eu/, focused, as the title suggests, on various aspects
of difference and differential equations on graphs and networks. Each of the three courses

https://mat-dyn-net.eu/
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(including, of course, the one which gave rise to these lecture notes) consisted of four 90-
minute lectures given in the mornings; there was free time in the afternoons to work on
the exercises.

My thanks go, naturally, to the two organisers who are also collaborators on and around
the topic of these notes, their organisational assistant Anna Liza Schonlau, the summer
school participants themselves for their constructive feedback, comments and suggestions,
as well as many other past and present co-authors and colleagues, including but not lim-
ited to Gregory Berkolaiko, Marco Düfel, Matthias Hofmann, Corentin Lena, Gabriela
Malenová, Marvin Plümer, Jonathan Rohleder, Andrea Serio and Matthias Täufer.

Funding for the summer school was provided by the European Union via the COST
Association, as well as the University of Hagen, Germany. My own work in this area
over the last six or so years was also supported by the Portuguese Science Foundation
(Fundação para a Ciência e a Tecnologia) via the grants IF/01461/2015, PTDC/MAT-
CAL/4334/2014, PTDC/MAT-PUR/1788/2020 and UIDB/00208/2020, and before that
by the Alexander von Humboldt Foundation, Germany.

2 Laplacians on domains

2.1 From forms to operators

We start by recalling the form approach to unbounded linear operators and the spectral
theorem.

Assumption 2.1. V and H are separable Hilbert spaces such that V is compactly and
densely embedded in H. (That is, there is a compact injective mapping i : V → H such
that i(V ) is dense in H.)

We let a : V × V → C be a Hermitian form (symmetric sesquilinear form), that is,

a(αu+ βv, w) = αa(u, w) + βa(v, w) for all u, v, w ∈ V, α, β ∈ C,

a(u, v) = a(v, u) for all u, v ∈ V,

(in particular, a(u, u) ∈ R for all u ∈ V ), and say that a is:

• bounded if there exists M > 0 such that

|a(u, v)| ≤M‖u‖V ‖v‖V for all u, v ∈ V ;

• H-elliptic if there exist ξ ≥ 0 and ω > 0 such that

a(u, u) + ξ‖u‖2H ≥ ω‖u‖2V for all u ∈ V ;

if we can take ξ = 0, then we say a is coercive.
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If a has these properties, then
√
a(u, u) + ξ‖u‖2H defines an equivalent norm on V .

Example 2.2. If V = H = C
d and A ∈ C

d×d is any Hermitian matrix (i.e. AT = A), then

a(u, v) := uTAv, u, v ∈ C
d,

defines a (trivially bounded) Hermitian form on C
d × C

d; in fact, there is a one-to-one
correspondence between (Hermitian) forms a and matrices A.

Definition 2.3. Let a : V × V → C be a bounded Hermitian form. The operator A :
D(A) ⊂ H → H associated with a is defined by:

D(A) := {u ∈ V : there exists f ∈ H such that a(u, v) = 〈f, v〉H for all v ∈ V },
Au := f.

That is, A is given by the rule 〈Au, v〉H = a(u, v) for all v ∈ V , where u ∈ D(A) iff
there exists a vector Au ∈ H with this property.

Theorem 2.4 (Spectral theorem). Let a be a bounded, H-elliptic Hermitian form. Then A
is a self-adjoint operator, D(A) is dense in H, and A has compact resolvent. (That is, for
any λ ∈ C such that A− λI is invertible, (A− λI)−1 is compact, and its resolvent set, the
set of all such λ ∈ C, is nonempty.) In particular, its spectrum σ(A) ⊂ C is a discrete set
of real eigenvalues of finite (algebraic = geometric) multiplicity of the form

−ξ ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . .→ ∞.

The corresponding eigenvectors uk ∼ λk can be chosen real, and to form an orthonormal
basis of H; the pair (λk, uk) satisfies both the strong eigenvalue equation

Auk = λkuk

and the weak form of the equation

a(uk, v) = λk〈uk, v〉H for all v ∈ V.

In particular, A can be diagonalised: if

v =
∞∑

k=1

〈v, uk〉Huk,

then v ∈ D(A) iff
∑∞

k=1 λ
2
k〈v, uk〉2H <∞, and in this case

Av =

∞∑

k=1

λk〈v, uk〉Huk.
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Theorem 2.5 (Courant–Fischer/min-max and max-min characterisation of the eigenvalues).
Under the assumptions of Theorem 2.4,

λ1 = min
06=u∈V

a(u, u)

‖u‖2H
= min

06=u∈D(A)

〈Au, u〉H
‖u‖2H

(1a)

λk = min
u⊥u1,...,uk−1

a(u, u)

‖u‖2H
= min

U⊂V subspace
dimU=k

max
06=u∈U

a(u, u)

‖u‖2H
(1b)

= max
W⊂V subspace
codimW=k−1

max
06=u∈W⊥

a(u, u)

‖u‖2H
. (1c)

Equality is attained in equation (1b) if U = span{u1, . . . , uk} and in equation (1c) if
W = (span{u1, . . . , uk−1})⊥.

We call the quotient a(u,u)
‖u‖2

H

the Rayleigh quotient of u ∈ V .

2.2 The spectral theorem for the Laplacian

Here we suppose Ω ⊂ Rd, d ≥ 1 is a bounded domain (connected open set) with
sufficiently smooth boundary ∂Ω, and write x = (x1, . . . , xd) ∈ Rd, as well as ν(x) ∈ Sd−1

for the outward-pointing unit normal to Ω at x ∈ ∂Ω. (Throughout most of this section Ω
may be replaced by a more general smooth Riemannian manifold with no essential changes
to the main results.) For a (twice differentiable) function u : Ω → C, we write

∆u(x) :=

d∑

j=1

∂2u

∂x2j
(x) = trD2u(x) (2)

for the Laplacian of u at x ∈ Ω. We also need the following spaces of functions (here and
throughout all integrals are understood as Lebesgue integrals, and the measure is always
taken to be d-dimensional Lebesgue measure):

C∞
c (Ω) = {u ∈ C∞(Ω) : supp u ⋐ Ω}

is the set of smooth functions whose support supp u = {x ∈ Ω : u(x) 6= 0} is a compact
subset of Ω. Equipped with the norm

‖u‖Lp(Ω) ≡ ‖u‖p :=
{(∫

Ω
|u|p dx

)1/p
, 1 ≤ p <∞,

ess supx∈Ω |u(x)|, p = ∞,

the space
Lp(Ω) = {u : Ω → C measurable : ‖u‖p <∞}

is a Banach space for all 1 ≤ p ≤ ∞, and a Hilbert space for p = 2 with respect to the
corresponding inner product

〈f, g〉 =
∫

Ω

fg dx,
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which will play the role of the space H from Section 2.1.
To define our V , we need to introduce Sobolev spaces, i.e. spaces of weakly differ-

entiable functions. (At an intuitive level it is often sufficient to imagine these functions
as being piecewise-smooth functions, which may have “kinks”, and to know that (1) all
basic theorems from vector calculus continue to hold for them, and (2) that they form a
complete space with respect to the natural norm of the space. In particular, we can apply
the spectral theorem to suitable operators defined on them.)

Definition 2.6. The locally integrable function gj : Ω → C is a weak (or distributional)
partial derivative of the locally integrable function u if it satisfies the integration by parts
formula ∫

Ω

gjφ dx = −
∫

Ω

u
∂φ

∂xj
dx (3)

for all φ ∈ C∞
c (Ω). In this case we write ∂u

∂xj
:= gj, and

∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xd

)T

if all weak partial derivatives ∂u
∂xj

exist, j = 1, . . . , d.

One can show that weak derivatives, if they exist, are unique up to a set of measure
zero.

Higher order weak partial derivatives are defined accordingly: for any multi-index
α = (α1, . . . , αd) ∈ N

d
0, of order |α| = α1 + . . . + αd,

∂αu
∂xα

= ∂|α|u
∂x

α1
1 ...∂x

αd
d

is defined to

be the locally integrable function gα, if one exists, such that
∫

Ω

gαφ dx = (−1)|α|
∫

Ω

u
∂αφ

∂xα
dx

for all φ ∈ C∞
c (Ω). In particular, we may define the Laplacian (2) of a function u in the

weak sense, as a sum of weak second-order derivatives.

Definition 2.7 (Sobolev spaces). For k ≥ 0 and 1 ≤ p ≤ ∞, we define

W k,p(Ω) = {u ∈ Lp(Ω) : all weak derivatives of u up to order k exist and are in Lp(Ω)}
as well as the corresponding norm

‖u‖W k,p(Ω) :=


‖u‖pp +

∑

1≤|α|≤k

∥∥∥∥
∂αu

∂xα

∥∥∥∥
p

p




1/p

=



∫

Ω

|u|p dx+
∑

1≤|α|≤k

∫

Ω

∣∣∣∣
∂αu

∂xα

∣∣∣∣
p

dx




1/p

.

Finally, we set

W k,p
0 (Ω) := C∞

c (Ω)
‖·‖

Wk,p(Ω)

to be the subspace of W k,p(Ω) consisting of all functions which can be approximated in
the W k,p-norm by smooth functions of compact support. When p = 2, we write Hk(Ω) in
place of W k,2(Ω), and Hk

0 (Ω) in place of W k,2
0 (Ω).
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(When k = 0, we recover W 0,p(Ω) = W 0,p
0 (Ω) = Lp(Ω).) We regard W k,p

0 (Ω) as the set
of W k,p-functions which vanish up to order k − 1 on ∂Ω (this may be made more precise
using the notion of trace operators, see below).

Theorem 2.8. Let Ω ⊂ Rd be a bounded domain with sufficiently smooth boundary. For
all k ≥ 0 and 1 ≤ p ≤ ∞, W k,p(Ω) is a Banach space, and C∞(Ω) is dense in W k,p(Ω).
Moreover, W k,p

0 (Ω) is a closed subspace (and thus also a Banach space). When k = 2,
Hk(Ω) and Hk

0 (Ω) are Hilbert spaces with respect to the canonical inner product

〈u, v〉Hk(Ω) = 〈u, v〉L2(Ω) +
∑

1≤|α|≤k

〈
∂αu

∂xα
,
∂αv

∂xα

〉

L2(Ω)

for u, v ∈ Hk(Ω) or Hk
0 (Ω), as appropriate.

Our V will be either H1(Ω) or H1
0 (Ω); for future reference and comparison, we state

explicitly what the inner product is:

〈u, v〉H1(Ω) =

∫

Ω

u v dx+

∫

Ω

∇u · ∇v dx (4)

for all u, v ∈ H1(Ω) (or H1
0 (Ω)). Note that in the case of H1

0 (Ω), the alternative expression∫
Ω
∇u · ∇v dx already defines an inner product, as follows from Friedrichs’ inequality. We

will not need this.
If u ∈ H1(Ω), even though u is a priori only defined almost everywhere, we can still

give meaning to u|∂Ω ∈ L2(∂Ω) via the trace theorem: there exists a unique continuous
linear operator tr : H1(Ω) → L2(∂Ω) such that if u ∈ H1(Ω) ∩ C(Ω), then tr u = u|∂Ω is
just the restriction u|∂Ω of u to ∂Ω. Since this operator is bounded, we have the following
trace inequality : there exists a constant C = C(Ω) > 0 such that

‖ tru‖L2(∂Ω) ≤ C‖u‖H1(Ω) (5)

for all u ∈ H1(Ω). If Ω has sufficiently smooth boundary, then the function u is in H1
0 (Ω)

if and only if u ∈ H1(Ω) and tr u = 0 in L2(∂Ω). Loosely, the trace allows us to act as if
u had well-defined values on ∂Ω even though ∂Ω has measure zero; for this reason, often
we just write u in place of tr u.

Definition 2.9. Let u ∈ H1(Ω). We say that u admits a Laplacian ∆u in the weak sense if
all weak first-order partial derivatives of u exist, and if there exists a measurable function
f =: ∆u such that the following Green’s identity holds:

∫

Ω

fφ dx = −
∫

Ω

∇u · ∇φ dx
(
=

∫

Ω

u∆φ dx

)
(6)

for all φ ∈ C∞
c (Ω) (and hence all φ ∈ H1

0(Ω), by density). In this case we always write ∆u
in place of f .
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Observe that if u is a smooth function, then, by the divergence theorem,
∫

Ω

∆uφ+∇u · ∇φ dx =

∫

Ω

div(φ∇u) dx = 0

for all φ ∈ C∞
c (Ω), since φ = 0 in a neighbourhood of the boundary. This identity

motivates our definition: the Laplacian is the function f , if one exists, such that (6) holds.
Our definition is also consistent with (3) since it can be obtained by applying (3) to each
of the functions ∂u

∂xj
in place of u, and summing over j.

If u ∈ H1(Ω) admits a Laplacian ∆u in the weak sense and ∆u ∈ L2(Ω), then we can
also give meaning to the outer normal derivative ∂u

∂ν
via a weak version of the divergence

theorem.

Definition 2.10. Let u ∈ H1(Ω) such that ∆u ∈ L2(Ω). We say that f ∈ L2(∂Ω) is a (in
fact, the) outer normal derivative of u at ∂Ω, and write f = ∂u

∂ν
, if

∫

Ω

∇u · ∇v + v∆u dx =

∫

∂Ω

fv ds (7)

for all v ∈ H1(Ω), where in the boundary integrand v is really the trace tr v of v ∈ H1(Ω).

Note that if u ∈ C2(Ω), then (7) is an immediate consequence of the divergence theorem,
since ∫

Ω

∇u · ∇v + v∆u dx =

∫

Ω

div(v∇u) dx;

for less regular u, (7) is taken as a definition.

Theorem 2.11 (Embedding theorems, small selection). Let Ω ⊂ R
d be a bounded domain

with sufficiently smooth boundary, and let 0 ≤ j ≤ k and 1 ≤ q ≤ p ≤ ∞. Then W k,p(Ω)
embeds continuously and densely inW j,q(Ω), andW k,p

0 (Ω) embeds continuously and densely
in W j,q

0 (Ω). The embeddings are compact if k > j or if p > q.
In particular, H1(Ω) and H1

0 (Ω) are compactly and densely embedded in L2(Ω).

To define Laplace-type operators on Ω (plus suitable boundary conditions on ∂Ω), we
use the form approach of Section 2.1: we define a form

a(u, v) =

∫

Ω

∇u · ∇v dx, (8)

which makes sense whenever u, v ∈ H1(Ω).

Lemma 2.12. Let Ω ⊂ Rd be a bounded Lipschitz domain. The form a is a bounded
Hermitian form which is L2-elliptic on H1(Ω)×H1(Ω), and coercive on H1

0 (Ω)×H1
0 (Ω).

We denote by −∆N : D(−∆N ) ⊂ L2(Ω) → L2(Ω) the operator associated with a
on H1(Ω), which we call the Neumann Laplacian (or Laplacian with Neumann boundary
conditions), and by −∆D : D(−∆D) ⊂ L2(Ω) → L2(Ω) the operator associated with a
on H1

0 (Ω), which we call the Dirichlet Laplacian (or Laplacian with Dirichlet boundary
conditions).
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Theorem 2.13. (a) The operator −∆D is given by

D(−∆D) =
{
u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω) (as a weak derivative)
}
.

−∆Du = −∆u.

(b) The operator −∆N is given by

D(−∆N ) =

{
u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω),
∂u

∂ν
∈ L2(∂Ω) (as weak derivatives)

}
.

−∆Nu = −∆u.

The proof involves combining the definition of the associated operator with the proper-
ties of H1(Ω)-functions listed above. See Exercises 1.4 and 1.5. The spectral properties of
−∆D and −∆N – the foundational properties of most interest to us – follow immediately
from Lemma 2.12, Theorem 2.11 and Theorem 2.4 (the spectral theorem).

Theorem 2.14 (Spectral theorem for the Dirichlet and Neumann Laplacians). Let Ω ⊂ Rd be
a bounded Lipschitz domain. The operators −∆D and −∆N are densely defined self-adjoint
operators with compact resolvent. In particular, their respective spectra take the form

−∆D : λ1 ≤ λ2 ≤ λ3 ≤ . . .→ ∞,

−∆N : µ1 ≤ µ2 ≤ µ3 ≤ . . .→ ∞.

The corresponding eigenfunctions ψk ∼ λk and ϕk ∼ µk may, respectively, be chosen to
form a real orthonormal basis of L2(Ω). The eigenvalues admit the min-max and max-min
characterisations of Theorem 2.5, with Rayleigh quotient

a(u, u)

‖u‖22
=

∫
Ω
|∇u|2 dx∫
Ω
|u|2 dx .

In particular, since the eigenvalues are real and the eigenfunctions may be chosen real,
we can, and will, restrict ourselves to real-valued functions and real spaces throughout.

Actually, one can say more: in each case the first eigenvalue is simple, λ1 < λ2 and
µ1 < µ2, and ψ1 and ϕ1 may be chosen strictly positive everywhere in Ω. (This is a
consequence of a more general theory, Perron–Frobenius theory.) It is a consequence of
Friedrichs’ inequality (equivalently, the coercivity of a on H1

0 (Ω)) that λ1 > 0, while µ1 = 0
with the corresponding eigenfunctions, the solutions of

−∆u = 0 · u in Ω,

∂u

∂ν
= 0 on ∂Ω,

being just the constant functions.
When d = 1 and Ω = (0, 1),

λk = π2k2 with ψk(x) = c sin(πkx),

c 6= 0, and similarly

µk = π2(k − 1)2, ϕk(x) = c cos(π(k − 1)x).



402 James Kennedy

2.3 Application: the heat equation

Let f ∈ L2(Ω) be an initial condition, representing an initial distribution of heat, or
some chemical concentration, or a population distribution, or some other quantity whose
evolution will be governed by a diffusion process in a homogeneous medium, at time t = 0.
Denote by u = u(t, x) the corresponding concentration of heat/the chemical/population
etc. at x ∈ Ω at time t > 0, then u will be a solution of the heat equation

∂u

∂t
= ∆u in (0,∞)× Ω,

u = 0 (or ∂u
∂ν

= 0) on (0,∞)× ∂Ω,

u(0, x) = f

(where the Laplacian ∆u =
∑d

j=1
∂2u
∂x2

is taken with respect to the spatial variables). For-
mally, the solution is given by an abstract Fourier series: since ψk, ϕk form orthonormal
bases of L2(Ω), we may write

f(x) =

∞∑

k=1

〈f, ψk〉L2(Ω)ψk(x)

=
∞∑

k=1

〈f, ϕk〉L2(Ω)ϕk(x)

almost everywhere in Ω. In the Dirichlet case the solution u is given by the series

u(t, x) = e∆
D

f(x) =
∞∑

k=1

e−λkt〈f, ψk〉L2(Ω)ψk(x),

and in the Neumann case by

u(t, x) = e∆
N

f(x) =
∞∑

k=1

e−µkt〈f, ϕk〉L2(Ω)ϕk(x).

In either case, the solution may alternatively be represented using the respective heat
kernel ; for example, in the Dirichlet case, this reads

kt(x, y) =

∞∑

k=1

e−λktψk(x)ψk(y),

and in this case

u(t, x) =

∫

Ω

kt(x, y)f(y) dy = kt(x, ·) ∗ f.

Loosely, λ1 and µ2 determine the rate of convergence/heat loss from Ω. In the Dirichlet
case, where there is “perfect cooling” at the boundary, since λ1 > 0,

‖ut‖2 ≤ e−λ1t‖f‖2 → 0
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exponentially as t → ∞, with exponent (at least) λ1. In the Neumann case, which repre-
sents perfect insulation, i.e. no heat loss through the boundary, since µ1 = 0 and µ2 > 0,

∞∑

k=1

e−µkt〈f, ϕk〉 → 〈f, ϕ1〉ϕ1 =
1

|Ω|

∫

Ω

f dx :

the equilibrium profile is the constant function, i.e. a uniform distribution of heat, and
the rate of convergence is essentially determined by µ2.

Only for very few domains Ω can the eigenvalues and eigenfunctions be computed
explicitly; and if we introduce more complicated operators such as Schrödinger operators
of the form −∆ + q, where q is a suitable function on Ω, or more involved boundary
conditions such as Robin boundary conditions, then there may be no domains Ω at all for
which the eigenvalues are explicitly known. See Exercises 1.4 and 1.5.

Goals:

• Construct analogues of these operators on metric graphs (“quantum graphs”);

• Obtain a spectral theorem for them;

• Study how the spectrum is related to the geometry of the graph.

3 Quantum graphs

3.1 Metric graphs

Idea: a graph Γ = (V,E) consists of:

1. A vertex set V of points, usually assumed countable, V = {v1, v2, . . .};

2. An edge set E, also generally taken countable, E = {e1, e2, . . .}.

Each edge is e associated (incident) with two vertices v1, v2; we will write e ∼ v1v2. Two
vertices are adjacent if there is an edge incident with both. The degree of a vertex is the
number of edges incident with it.1 Here we will always assume:

Assumption 3.1. V and E are finite sets: there exist m,n ∈ N such that #V = n,
#E = m.

There are various different “kinds” of graphs depending on the nature of the edges.
Most notable is the distinction between discrete graphs and metric graphs. We will almost
always only consider metric graphs.

Discrete graphs: E constitutes a set of adjacency (binary) relations between vertices:
v1 ∼ v2 if there exists an edge e such that e ∼ v1v2. The edges have no meaning beyond

1Technical note: if e is a loop at v, e ∼ vv, which in general we permit, then e counts twice to the
degree of v.
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this. We define functions (really vectors) f : V → C, thus there is only one function space,
isomorphic to Cn (where the kth row/column corresponds to the kth vertex).

Operators on these function spaces correspond to matrices; for example, the adjacency
matrix A ∈ Cn×n is defined by Aij = 1 if there is an edge running from vi to vj , and 0
otherwise. There are also (at least) two commonly studied matrices known as (discrete)
Laplacians; perhaps the most common is defined as L = D−A, where A is the adjacency
matrix and D is the diagonal matrix whose (i, i)-entry equal to the degree of vertex vi (see
Definition 3.3 and note that for discrete graphs this definition is the same).

Discrete graphs, and their Laplacians, have, in general, been studied far more inten-
sively over the years than metric graphs; many of the topics of these notes have much
more well-developed pendants on discrete graphs. One of the best known references, and
a natural starting point, is the book [18].

Metric graphs: Each edge is identified with an interval, which are “glued together”
at their endpoints in accordance with the incidence relations.

Assumption 3.2. All edges have finite length: each edge e may be identified with a compact
interval [0, ℓe] for some ℓe > 0.

We can also distinguish between directed and undirected graphs. Roughly, Γ is directed
if the edge has an orientation, that is, the order of the vertices in the incidence relation is
important: e ∼ v1v2 is different from e ∼ v2v1. It is undirected if there is no distinction
and edges impose a symmetric relation on the vertices.

This distinction is more directly visible in the world of discrete graphs; for example, the
adjacency matrix of the graph is symmetric if the graph is undirected and not generally
symmetric if it is directed. (Another example: X, formerly Twitter, with its network of
followers, defines a directed discrete graph whose vertices are the users; Facebook, with
its network of “friends”, defines an undirected discrete graph.) Our metric graphs will be
undirected; in other words, the choice of the orientation of the intervals will not matter.

Formally: (Roughly following [41].) For k = 1, . . . , m, take positive real numbers
ℓ1, . . . , ℓk > 0 (which will be the edge lengths), and for each k take an interval of length
ℓk, Ik := [xk, yk], so that yk − xk = ℓk. Set

G :=

m⊔

k=1

Ik

to be their (formal) disjoint union, as well as S := {xk, yk}mk=1 to be the endpoint set,
treated as a set with 2m elements even if some elements coincide as real numbers. Define
a partition P = {V1, . . . , Vn} of S:

Vj 6= ∅, Vi ∩ Vj = ∅ for i 6= j,
n⋃

j=1

Vj = S.
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Impose an equivalence relation on G: given x, y ∈ G,

x ∼ y iff

{
x, y ∈ Ik for some k and x = y in Ik, or

x, y ∈ Vj ⊂ S for some j = 1, . . . , n.

Definition 3.3. We define the edge set E = {e1, . . . , em} by

ek := Ik/∼ = {[x] : [x] has a representative belonging to Ik}, k = 1, . . . , m,

and the vertex set V = {v1, . . . , vn} by

vj := Vj/∼, j = 1, . . . , n.

We call Γ = (V,E) a metric graph. We say ek is incident with vj if there exists x ∈ Vj ∩Ik,
and we say vi and vj are adjacent if there exists k such that, for Ik = [xk, yk], either xk ∈ Vi
and yk ∈ Vj, or xk ∈ Vj and yk ∈ Vi.

2 The degree of the vertex vk, deg vk, is the cardinality
of Vk.

In practice we identify Γ with G/∼ and treat it as a set of points. In particular, given
an edge ek = Ik/∼ with incident vertices vk,1 and vk,2, we may, and usually will, introduce
canonical “local coordinates” of the form ek ≃ [0, ℓk], and either (0 ∼ vk,1 and ℓk ∼ vk,2),
or (0 ∼ vk,2 and ℓk ∼ vk,1). We will not distinguish between x ∈ ek, x ∈ Γ, x ∈ Ik, and
x ∈ [0, ℓk], except where strictly notationally necessary.

We may alternatively think of the local coordinates on each edge as a “chart” and the
collection of charts as an “atlas”, akin to how we describe manifolds. Indeed, it is sometimes
useful to think of a metric graph as a one-dimensional manifold with singularities, the
vertices.

Example 3.4. For m = 3, take Ik = [0k, 1k], k = 1, 2, 3, then S = {01, 02, 03, 11, 12, 13}.

01 11 02 12 03 13

I1 I2 I3

If we set V1 = {01}, V2 = {02}, V3 = {11}, V4 = {11, 12, 03}, then we generate a star
graph on three edges: see Figure 1.

2This assumption formally guarantees that the graph is undirected. Also, the case where the edge ek
loop is covered by the possibility that Vi = Vj and thus vi = vj .
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01

11

02

12
03

13

e1 e2

e3

01

11

02

12
13

03

e1 e2

e3

Figure 1: The 3-star graph of Example 3.4 with the first-mentioned choice of coordinates
(left) and the alternative coordinates (right).

Choosing, for example, V1 = {01}, V2 = {02}, V3 = {01}, V4 = {11, 12, 13} would lead
to the same graph, but the orientation of e3 in the chosen “local coordinates” would be
reversed.

We can define a metric on Γ in the obvious way: choosing, for each edge ek ∈ E, a
coordinate representation, we define the natural topology on Γ induced by the Euclidean
metric on each edge:

Definition 3.5. A set Ω ⊂ Γ is open iff Ω∩ ek is relatively open in ek for all k = 1, . . . , m.

In particular, if some vertex v ∈ Ω and e ∼ v, where e has local coordinates [0, ℓ] with
0 ∼ v, then, since 0 ∈ Ω, there must exist some relatively open interval [0, a), a ∈ (0, ℓ],
contained in Ω ∩ e.

It is a very elementary but rather tedious exercise to show that this topology is inde-
pendent of the choice of local coordinates on each edge (including the orientation of the
edges), as well as of the labelling of the edges.

This topology is canonically metrisable.

Definition 3.6. Let Γ be a metric graph.

(a) A path P in Γ is (the image in Γ of) a map φ : [0, 1] → Γ which is injective on [0, 1) and
continuous with respect to the topology induced by the open sets of Definition 3.5.
If φ(0) = x and φ(1) = y, then we say P is a path from x to y.

(b) The path P is a closed path if φ(0) = φ(1).

In general, if φ(0) = x, φ(1) = y, then there exists a (possibly empty) sequence of
distinct vertices v1, v2, . . . , vk lying on P such that v1 ∼ v2 ∼ . . . ∼ vk, x is on an edge ex
incident with v1, and y is on an edge ey incident with vk. We will write ej for the edge
∼ vjvj+1.
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x
v1

v2

v3

y
ex

ey

e1

e2

Definition 3.7. Let Γ be a metric graph.

(a) The length of an edge e ≃ [0, ℓ] is ℓ, we will also write |e| := ℓ.

(b) The local or edgewise distance function on an edge e ≃ [0, ℓ] is defined by

diste(x, y) = |x− y| in the interval [0, ℓ], if x, y ∈ e.

(c) The length of a path P in Γ, with the notation described above, is

|P | := distex(x, v1) +

k−1∑

j=1

|ej |+ distey(vk, y).

(d) The distance between x, y ∈ Γ is defined as

dist(x, y) ≡ distΓ(x, y) = inf{|P | : P is a path from x to y} ∈ [0,∞].

(e) Γ is connected if dist(x, y) <∞ for all x, y ∈ Γ.

Theorem 3.8. The above definitions, in particular the edge lengths and the distance func-
tion, do not depend on the choice of local coordinates, nor the labelling of the edges. In
particular, dist does define a metric on Γ, which induces the same topology as in Defi-
nition 3.5. For this topology, Γ is a complete metric space, which is compact under our
assumption that E is finite and each edge has finite length.

Proof. Tedious exercise.

A metric graph Γ consisting of finitely many edges of finite length is thus generally called
a compact metric graph in the literature, cf. [15, Definition 1.3.4]. Finally, we emphasise
that we will generally treat Γ as a metric space of points x ∈ Γ rather than the pair (V,E)
of a vertex set and an edge set (although whenever convenient we will identify the two).
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3.2 Function spaces

Denote by µ Lebesgue measure on R, which induces a measure on each edge of a metric
graph Γ via any choice of local coordinates. Define Lebesgue measure µ on Γ as a direct
sum of Lebesgue measure on the intervals: Ω ⊂ Γ is measurable iff Ω ∩ ek is measurable
for all k = 1, . . . , m, and in this case

µ(Ω) =

m∑

k=1

µ(Ω ∩ ek).

It is another easy exercise to check that every path is measurable, and its length cor-
responds with its Lebesgue measure. Equipped with dist and µ, Γ is a metric measure
space.

We can introduce integrable functions accordingly: for f : Γ → R,

∫

Γ

f dµ ≡
∫

Γ

f(x) dx =

m∑

k=1

∫

ek

f(x) dx ≃
m∑

k=1

∫ ℓk

0

f(x) dx (9)

in local coordinates; in particular, we identify Lp(ek) with Lp([0, ℓk]). We also write f |e
for the restriction of a function f : Γ → R to e.

Definition 3.9. For 1 ≤ p ≤ ∞, we set

Lp(Γ) := {f : Γ → C : f |ek ∈ Lp(ek), k = 1, . . . , m} ≃
m⊕

k=1

Lp([0, ℓk]).

(If #E = ∞, this definition would have to be modified.)

Theorem 3.10. The quantity

‖f‖p =





(∑m
k=1

∫
ek
|f(x)|p dx

)1/p
, 1 ≤ p <∞,

maxk=1,...,m ‖f |ek‖L∞(ek) = ess supx∈Γ |f(x)|, p = ∞,
(10)

defines a norm on Lp(Γ); equipped with this norm Lp(Γ) is a Banach space. When p = 2
it is a Hilbert space for

〈f, g〉 =
∫

Γ

fg dx ≡
m∑

k=1

∫

ek

f(x)g(x) dx.

Lp-spaces do not “see” the topology of the graph: for that we need continuous functions.

Definition 3.11. We set

C(Γ) := {f : Γ → C : f |ek ∈ C(ek) for all k = 1, . . . , m and

whenever x, y ∈ Vj for some vertex vj , we have f(x) = f(y)}.
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In particular: f has a well-defined value f(vj) at each vertex vj ∈ V , j = 1, . . . , n.
Moreover:

Lemma 3.12. f ∈ C(Γ) iff f is continuous with respect to the metric/topology of Sec-
tion 3.1; in particular, if v ∼ e and xn ∈ e with xn → v in Γ, then f(xn) → f(v).

Theorem 3.13. Under our assumptions on Γ (i.e. for Γ a compact metric graph), the
quantity

‖f‖∞ = max
x∈Γ

|f(x)|

defines a norm on Γ with respect to which C(Γ) is a Banach space.

To define differential operators on Γ, we need Sobolev spaces. Here we can mostly
make do with first-order Sobolev spaces in R: we recall that, for an interval I ⊂ R and
1 ≤ p ≤ ∞,

W 1,p(I) = {f ∈ Lp(I) : f has a weak derivative f ′ ∈ Lp(I)}.
The main challenge in introducing analogous Sobolev spaces on Γ is determining what to
do at the vertices.

Lemma 3.14 (Embedding theorem). Let I ⊂ R be a bounded interval, 1 ≤ p ≤ ∞. Then
there exists a continuous injection

W 1,p(I) →֒ C(I).

We may thus characterise W 1,p-functions as continuous functions (up to the choice of
the correct representative) which have a weak derivative in Lp; in particular,W 1,p-functions
have well-defined values at all points. This is a one-dimensional equivalent of the trace
operator introduced in Section 2.2.

Definition 3.15. Under our assumptions on Γ, for 1 ≤ p ≤ ∞ we define

W 1,p(Γ) = {f ∈ C(Γ) : f |ek ∈ W 1,p(ek), k = 1, . . . , m}.
Theorem 3.16. W 1,p(Γ) is a Banach space for the canonical norm, which for 1 ≤ p < ∞
is given by

‖f‖W 1,p =

(
m∑

k=1

∫

ek

|f ′(x)|p + |f(x)|p dx
)1/p

.

When p = 2, H1(Γ) := W 1,2(Γ) is a Hilbert space with respect to the canonical inner
product

〈f, g〉 =
∫

Γ

f ′g′ + fg dx ≡
m∑

k=1

∫

ek

f ′(x)g′(x) + f(x)g(x) dx.

Remark 3.17. Up to isometric isomorphism, the spaces Lp(Γ), C(Γ) and W 1,p(Γ) are
independent of the choice of local coordinates and relabelling of the edges.
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Remark 3.18 (Dummy vertices). We call v ∈ V a dummy vertex if deg v = 2 and an
essential vertex otherwise. Suppose deg v = 2, with v ∼ e1, e2.

v

e1 e2
Γ

Create a new graph Γ̃ by replacing e1 and e2 with a single edge e of length |e1|+ |e2|,
preserving all other incidence and adjacency relations. This “deletes” the dummy vertex
v.

e
Γ̃

This process is reversible: we may replace any x ∈ e with a dummy vertex, thus
“dividing” e into two edges. We speak of inserting a dummy vertex at x.

Theorem 3.19. There is an isometry between the graphs Γ and Γ̃, which induces an iso-
metric isomorphism between the spaces Lp(Γ) and Lp(Γ̃), C(Γ) and C(Γ̃), and W 1,p(Γ)

and W 1,p(Γ̃), 1 ≤ p ≤ ∞.

Inserting or deleting a dummy vertex does not “change” the graph at a metric or
measure theoretic level. Any point x ∈ Γ may thus be treated as a vertex if it is convenient
to do so.

Remark 3.20. It is easy to define higher order derivatives edgewise: for example, if
f ∈ W 1,p(Γ), and e ∈ E, we may write f |′′e ∈ Lp(e), and so f |e ∈ W 2,p(e), if there is
a function g ∈ Lp(e) (which we will call f |′′e) such that

∫

e

gφ dx = −
∫

e

f ′φ′ dx =

∫

e

fφ′′ dx

for all φ ∈ C∞
c (e), i.e. for all functions φ which are supported in the interior of the edge e.

(Compare with Definition 2.9.)
However, there is no canonical way to define W k,p(Γ) (nor Ck(Γ)) for k ≥ 2, since

a (non-canonical) choice needs to be made regarding the conditions to impose on the
derivatives of f at the vertices; continuity of the derivatives is not usually the most natural
condition (as we will see). Sometimes it is useful to consider

W̃ k,p(Γ) :=

m⊕

k=1

W k,p(ek), (11)

which de facto imposes no conditions at the vertices.
Depending on what choice we make, the insertion or deletion of dummy vertices may

affect the function spaces; for example, this is the case for W̃ k,p if k ≥ 1.
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Notationally, if f ∈ W̃ 2,p(Γ), so that f ′ is continuous on each edge, and e ∼ v, then we
will write

∂νf |e(v) (12)

for the (well-defined) value of the derivative of f on the edge e at its endpoint v, pointing
into v. This may be considered as an analogue of the outer normal derivative of a function
u : Ω → C on ∂Ω.

3.3 Laplacian and Schrödinger operators on metric graphs

Given a compact metric graph Γ = (V,E), how do we define operators like −∆ or
−∆ + q on Γ? On each edge e, −∆f should just be −f |′′e (defined in the distributional
sense), but what about the vertex conditions? Or, put differently, what should the operator
domain be?

Form approach: given a potential q ∈ L∞(Γ,R), define a form aq : H
1(Γ)×H1(Γ) → C

by

aq(f, g) =

∫

Γ

f ′(x)g′(x) + q(x)f(x)g(x) dx. (13)

Lemma 3.21. The form aq is a bounded Hermitian form which is L2-elliptic on the space
H1(Γ)×H1(Γ), that is, there exist ξ ∈ R and ω > 0 such that

aq(f, f) + ξ‖f‖2L2(Γ) ≥ ω‖f‖2H1(Γ)

for all f ∈ H1(Γ).

Proof. Exercise 2.2.

Proposition 3.22. The operator Aq : D(Aq) ⊂ L2(Γ) → L2(Γ) associated with aq is given
by

D(Aq) =

{
f ∈ H1(Γ) : f |′′e ∈ L2(e) ∀e ∈ E, and

∑

e∼v

∂νf |e(v) = 0 ∀v ∈ V

}
, (14)

and
(Aqf)|e = −f |′′e + q|ef |e in L2(e) for every edge e ∈ E.

Proof. Important exercise (Exercise 2.3).

If, on every edge e ∈ E, f |e admits a weak second derivative f |′′e ∈ L2(e) (in the sense
of Definition 2.6, with Ω = e), then we just write f ′′ ∈ L2(Γ) for the resulting edgewise
defined function. Thus Aqf(x) = −f ′′(x) + q(x)f(x) almost everywhere in Γ.

The characterisation (14) implies that at each vertex v ∈ V , two conditions are imposed
on functions f ∈ D(Aq):

1. f should be continuous at v (this is contained in the condition f ∈ H1(Γ) →֒ C(Γ));
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2. The sum of the (“outer normal”) derivatives of f at all edges pointing into v (cf. (12)),
should be 0.

Since D(Aq) ⊂ W̃ 2,2(Γ), these first-order derivatives are well defined by Lemma 3.14. (2)
is often called a Kirchhoff condition, from the principle of “current conservation” (“what
flows in, must flow out”).

Conditions (1) and (2) together are variously called standard, natural, Neumann–
Kirchhoff, and continuity–Kirchhoff vertex conditions, and there are probably other names
in use as well. (Observe that if deg v = 1, then they reduce to just a Neumann condition
at the endpoint of the edge.) When q = 0, A0 is often called the Laplacian with standard
vertex conditions, a.k.a. the standard or Kirchhoff Laplacian.

Remark 3.23. There are of course many alternative conditions that can be imposed at the
vertices, or a subset of the vertices. For example, imposing a Dirichlet condition at a vertex
v is easy; we simply require that f(v) = 0 there instead (see Exercise 2.4). The “standard”
conditions just introduced are the most common and are often considered “natural”, since
the vertices of a graph do not really play the same role as the boundary of a domain.
Correspondingly, there will be no heat loss from a graph equipped with only standard
conditions, as we will see below.

It can also be shown that inserting or deleting a dummy vertex (cf. Remark 3.18)
equipped with standard conditions does not alter Aq (up to unitary equivalence). This is
not generally true of other vertex conditions.

Theorem 3.24. Let Γ be a connected, compact metric graph, and let q ∈ L∞(Γ). The
operator Aq is self-adjoint and bounded from below on L2(Γ), and has compact resolvent.
In particular, its spectrum is real and takes the form

λ1 < λ2 ≤ λ3 ≤ . . .→ ∞,

where each eigenvalue has finite algebraic = geometric multiplicity. The associated eigen-
functions ψk ∼ λk, ψk ∈ D(Aq) ⊂ H1(Γ), may be chosen real, and may be chosen to form
an orthonormal basis of L2(Γ).

We will not deal with non-compact graphs here (that is, graphs with an infinite number
of edges and/or infinite total length), where different types of spectrum may be present
and quite a different set of issues and results emerges. These are explored comprehensively
in [21, 32, 33].

Remark 3.25. The pair (Γ, Aq), or, equivalently, the triple “metric graph Γ + self-adjoint
differential expression on the edges + suitable (“self-adjoint”) vertex conditions”, is often
called a quantum graph. The standard book on the subject is [15], although [6,11] may be
more suitable as introductory sources for the layperson. It is most commonly held [11] that
the name arose as a shortening of the title of a 25-year-old article of Kottos and Smilansky,
“Quantum chaos on graphs” [34], which studied (differential operators on) metric graphs
as a model of quantum chaos.



Geometric spectral theory of quantum graphs 413

However, the study of differential operators on metric graphs goes back much further;
there was a wave of activity in the 1980s, sometimes under the name c2-networks, as in the
seminal paper [9], which establishes a link between the spectrum of the standard Laplacian
on an equilateral compact metric graph (on which all edges have the same length) and the
spectrum of a difference operator Laplacian on a corresponding discrete graph.

Even before that, what we now call quantum graphs were studied in the middle of last
century with a view to applications in physics and chemistry, for example as a way to
model nanoscale systems [45].

3.4 First observations on the spectrum

We will keep the assumptions of Theorem 3.24. In light of that theorem, from now on
we may, and will, assume that all functions are real valued.

Remark 3.26. The eigenvalues λk may be characterised by the min-max and max-min
principles of Theorem 2.5; for example,

λ1 = min
06=f∈H1(Γ)

∫
Γ
|f ′(x)|2 + q(x)|f(x)|2 dx∫

Γ
|f(x)|2 dx . (15)

The quotient on the right-hand side of (15) is the Rayleigh quotient of f .

Remark 3.27. Since Γ is connected, it can be shown that λ1 is simple and its eigenfunction
ψ1 may be chosen strictly positive everywhere in Γ (Perron–Frobenius).

Remark 3.28. If q = 0, then all eigenvalues of the standard Laplacian A0 are nonnegative,
since a0(f, f) ≥ 0 for all f ∈ H1(Γ). In this case, the standard Laplacian recalls the
Neumann Laplacian; we recall that on a degree one vertex, the standard condition reduces
to Neumann. In this case, instead of λk, we will write

µ1 < µ2 ≤ µ3 ≤ . . .→ ∞

for the eigenvalues of A0. This is partly because it will be convenient to distinguish these
eigenvalues from other types of eigenvalues that will appear occasionally, and partly for
historical reasons due to the analogy with the Neumann Laplacian. The spectrum of
A0 resembles the one of the Neumann Laplacian: we have µ1 = 0, the constant func-
tions (which obviously satisfy both the continuity and the Kirchhoff conditions) being the
eigenfunctions, and in this case

0 < µ2 = min
06=f∈H1(Γ)∫

Γ
f dx=0

∫
Γ
|f ′|2 dx∫

Γ
|f |2 dx (16)

with equality if and only if f is an eigenfunction for µ2, the condition
∫
Γ
f dx = 0 being

the orthogonality condition, 〈f, ψ1〉 = 0.
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A notable difference between the eigenfunctions of graphs on the one hand, and eigen-
functions of domains or manifolds on the other, is that on graphs there is no global unique
continuation principle. Put differently, it is possible for an eigenfunction to be zero identi-
cally on an edge without being zero on the whole graph. A proper study of the eigenfunc-
tions of the star graph of Example 3.4 (or Example 3.29 just below) yields an example;
see also Exercise 3.1.

If Γ consists of just a single edge (interval) [0, ℓ], and q = 0, then the eigenvalues µk
are the real numbers λ for which the equation

cos(
√
λℓ) = 0

has a solution. A similar principle holds on all compact graphs: the eigenvalues are the
solutions of a transcendental equation known as the secular equation. However, even for
simple graphs these equations generally become unmanageably complicated, and their
solutions cannot generally be found explicitly:

For “most” quantum graphs it is generally impossible
to obtain a closed analytic expression for the individual
eigenvalues, even if we restrict to the Laplacian.

This is, however, far from being the whole story; this is still a far more explicit repre-
sentation of the eigenvalues than one has on general domains and manifolds, where there is
essentially no exact way to represent the eigenvalues at all; and there are, correspondingly,
various quite powerful tools and approaches on quantum graphs that allow one to say a
lot about the spectrum, and far more than using the corresponding approach on domains
or manifolds.

This principle is a partial motivation for much of what we will do in Chapter 4, which
is one such approach. There are, however, several others, often very well developed, and
although it would go beyond the scope of these notes to explore them here, it seems
appropriate to mention a few of what are arguably the most important, and give a few
references. This is however by no means a complete list, either in terms of the available
techniques or in terms of the literature; for that, we refer to some of the many good books
and surveys on the subject, including [11, 15, 37].

First, a systematic approach to the secular equation is offered by scattering matrices
and the secular determinant, see, e.g. [6, Section 1.4], [11, Section 5], or [15, Section 2.1].

Second, there are powerful, and often exact, trace formulae available for the spectrum
of the quantum graph as a whole, and typically based on the periodic orbits (or, put
differently, the set of closed paths on the graph), which results, for example, in exact
expressions for the spectral measure, or density of states, of the graph in terms of its
geometric and topological properties, or as an inverse formula for the Euler characteristic
in terms of the spectrum. There is an advanced body of literature studying such formulae,
which are often inspired by similar but generally not exact formulae on manifolds; in the
context of quantum graphs these probably go back to the seminal paper [35], see also,
e.g. [7] or, quite recently, [37, Chapters 8 and 9].
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Third, one can use M-functions (known in the literature under a variety of different
names, including Titchmarsh–Weyl M-functions and Dirichlet-to-Neumann operators) to
study the spectrum in dependence on the vertex coupling conditions (cf. Exercise 2.4),
which in turn can be used to analyse the spectrum of even just the standard Laplacian on
a graph, see [37, Chapters 17 and 18].

Example 3.29 (Secular equation of a star graph). Cf. [11, Example 2.3]. Consider the 3-star
graph of Example 3.4, but where now ek has length ℓk > 0, k = 1, 2, 3, and suppose q = 0.
We will find the (or, more precisely, a) secular equation for the eigenvalues of A0.

Choose local coordinates ek ≃ [0, ℓk], such that 0 ∼ vk, ℓk ∼ v4 (corresponding to the
orientation in Figure 1-right). On each edge, in local coordinates, an eigenfunction ψ for
some eigenvalue λ is just a solution of −ψ′′ = λψ and thus given by

ψ|ek(x) = Ak cos(
√
λx) +Bk sin(

√
λx), Ak, Bk ∈ R, k = 1, 2, 3.

(Here we have used that all eigenvalues are nonnegative, as noted in Remark 3.28.) For
what values of Ak, Bk, λ do these edgewise defined functions also satisfy the vertex condi-
tions?

At v1, v2, v3, the Kirchhoff condition reduces to ψ′ = 0: thus Bk = 0, k = 1, 2, 3.
Continuity at v4 implies

A1 cos(
√
λℓ1) = A2 cos(

√
λℓ2) = A3 cos(

√
λℓ3). (17)

The Kirchhoff condition at v4 implies

−
√
λA1 sin(

√
λℓ1)−

√
λA2 sin(

√
λℓ2)−

√
λA3 sin(

√
λℓ3) = 0.

As long as λ 6= 0 (that is, excluding µ1 = 0, which is not of interest), this is equivalent to

A1 sin(
√
λℓ1) + A2 sin(

√
λℓ2) + A3 sin(

√
λℓ3). (18)

As long as the common term in (17) is nonzero, we can eliminated the dependence on the
Ak by dividing (18) by this common value, to arrive at the secular equation characterising
the (nonzero) eigenvalues of Γ:

tan(
√
λℓ1) + tan(

√
λℓ2) + tan(

√
λℓ3) = 0. (19)

(The terms in (17) can be zero only under a very particular assumption on the edge lengths
of Γ. We leave it as an exercise to check that the secular equation may be written in the
following alternative form, which is also valid in this case.)

sin(
√
λℓ1) cos(

√
λℓ2) cos(

√
λℓ3)+

cos(
√
λℓ1) sin(

√
λℓ2) cos(

√
λℓ3)+

cos(
√
λℓ1) cos(

√
λℓ2) sin(

√
λℓ3) = 0.

(20)
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4 Geometric spectral theory of quantum graphs

4.1 On domains

Given a bounded domain Ω ⊂ Rd, d ≥ 2, with sufficiently smooth boundary, as in
Section 2.2 we denote by

0 < λ1 < λ2 ≤ λ3 ≤ . . .

the eigenvalues of the Dirichlet Laplacian −∆D on Ω, and by

0 = µ1 < µ2 ≤ µ3 ≤ . . .

the eigenvalues of the Neumann Laplacian −∆N on Ω.
How do the eigenvalues depend on Ω? Write λk = λk(Ω), µk = µk(Ω).
Example 1: The Weyl asymptotics (a.k.a. Weyl’s law) asserts that

λk(Ω), µk(Ω) = C(|Ω|)k2/d + o(k2/d)

as k → ∞, for a constant C(|Ω|) > 0 depending only on the volume of Ω and the di-
mension d, whose precise value does not interest us here. In the Dirichlet case, this was
originally proved by Hermann Weyl, a student of David Hilbert at Göttingen, around 1911,
in response to a conjecture formulated by leading physicists of the time, see [4].

Example 2: Based on a conjecture of Lord Rayleigh in the late 19th Century, the
following theorem was proved in the 1920s [22, 36].

Theorem 4.1 (Faber–Krahn). Let B ⊂ R
d be a ball of the same volume as Ω, |B| = |Ω|.

Then
λ1(Ω) ≥ λ1(B).

There is equality iff Ω = B up to rigid transformations.

Since λ1 governs the rate of decay of (the L2-norms of) solutions to the heat equation
(Section 2.3), this theorem says that, among all objects of given volume, if there is perfect
cooling at the boundary, the rate of heat loss (in this sense) is minimised when the object
is a ball.

Theorem 4.1 is a starting point of geometric spectral theory, or more specifically shape
optimisation in spectral theory, see [25] or [26], which also finds applications in nonlinear
PDEs (where the eigenvalues often play the role of a critical or threshold value; an example
of this happening on metric graphs is in [17, Section 3]) and related functional inequalities
(for example, Theorem 4.1 together with the variational characterisation of the eigenvalues
shows that λ1(B) is the smallest constant depending only on the volume of the domain
for which Friedrichs’ inequality is valid); these, in turn, are often needed in stability and
domain perturbation analysis (e.g. [20, 28]). Just like, or even more than, in the case of
quantum graphs, only in extremely special cases is it possible to determine the eigenvalues
exactly.

For the Neumann Laplacian, the baseline inequality is reversed.
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Theorem 4.2 (Szegő–Weinberger). Under the same assumptions as Theorem 4.1,

µ2(Ω) ≤ µ2(B),

with equality iff Ω is a ball.

That is, in the case of perfect insulation, the ball exhibits the “slowest L2-convergence”
among all objects of the same volume to the equilibrium = uniform distribution.

No corresponding upper bound is possible in Theorem 4.1; e.g. in dimension two, just
consider a sequence of increasingly long, thin rectangles. Likewise, no lower bound (other
than zero) is possible in Theorem 4.2; so-called dumbbell domains Ωε, two fixed equal balls
connected by a thin passage of width ε, satisfy µ2(Ωε) → 0 as ε→ 0.

The key ingredient in the proof of Theorem 4.1 is the isoperimetric inequality : if U ⊂ Rd

is open and B ⊂ R
d is a ball such that

|∂U | = |∂B|, then |U | ≤ |B|,
|U | = |B|, then |∂U | ≥ |∂B|

(with equality iff U = B up to rigid transformations and a negligible set).
The strategy involves symmetrisation (or rearrangement): starting from ψ1 ∈ H1

0 (Ω)
a positive eigenfunction for λ1(Ω), using tools from geometric measure theory (the coarea
formula and the isoperimetric inequality applied to the level sets of ψ1) we construct a
new function 0 < ψ∗

1 ∈ H1
0 (B), a symmetrisation of ψ1 such that

‖ψ∗
1‖L2(B) = ‖ψ1‖L2(Ω) but ‖∇ψ∗

1‖L2(B) ≤ ‖∇ψ1‖L2(Ω).

Based on the existence of such a function, Theorem 4.1 follows from the variational char-
acterisation:

λ1(Ω) =

∫
Ω
|∇ψ1|2 dx∫
Ω
|ψ1|2 dx

≥
∫
B
|∇ψ∗

1|2 dx∫
B
|ψ∗

1|2 dx
≥ inf

06=u∈H1
0 (B)

∫
B
|∇u|2 dx∫
B
|u|2 dx = λ1(B).

A finer analysis, using the characterisation of equality in the isoperimetric inequality and
the variational characterisation, shows that the inequality is an equality only if Ω is a ball.

4.2 On graphs: Nicaise’ inequality

We will take the following standing assumptions: Γ = (V,E) is a connected, compact
metric graph; in particular, V = {v1, . . . , vn} and E = {e1, . . . , em} are finite; each edge
ek has finite length |ek| > 0, and the total length |Γ| of Γ is fixed,

|Γ| =
m∑

k=1

|ek| = L > 0.

We also assume q = 0 and consider the standard Laplacian A0. To emphasise the poten-
tial dependence of the spectrum on the graph, we will use the following notation for its
eigenvalues:

0 = µ1(Γ) < µ2(Γ) ≤ µ3(Γ) ≤ . . .→ ∞.
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We wish to understand how these eigenvalues are related to the geometry (and topology,
and metric features) of Γ, akin to the examples sketched in Section 4.1. As discussed in
Section 3.4, in general it is essentially impossible to determine the µk explicitly (or even
to find a convenient representation of the generally extremely complicated transcendental
secular equation that characterises them).

Although the standard Laplacian is considered an analogue of the Neumann Laplacian,
there is no version of Theorem 4.2 for µ2(Γ): there exist graphs Γm such that |Γm| = L
for all m ∈ N but µ2(Γm) → ∞ as m → ∞ (Exercise 3.1). Instead, the fundamental
estimate for µ2 is a lower bound reminiscent of the Faber–Krahn inequality for the Dirichlet
Laplacian.

Theorem 4.3 (Nicaise’ inequality). Let I = [0, L] be an interval of length L. Then

µ2(Γ) ≥ µ2(I) =
π2

L2
,

with equality iff Γ is a path graph.

(A path graph is a graph consisting of a single edge upon removal of all dummy vertices,
cf. Remark 3.18, and is thus equivalent to an interval.)

This theorem was originally discovered and proved by Nicaise in 1987 [42], rediscovered
by Friedlander in 2005 (with a different proof) [24], and then rediscovered again by Kurasov
and Naboko in 2014 [39]. The interpretation in terms of diffusion is that, if the graphs
are perfectly insulated, so that no heat can escape, then, among all graphs of given total
length, the interval exhibits the slowest convergence (in the usual L2-sense) to equilibrium
= uniform heat distribution. Actually, there is a corresponding result for discrete graph
Laplacians which is even older, going back to the 1970s [23], see also [12, Section 2].

Nicaise also proved a variant of this inequality in the case where at least one vertex of
Γ is equipped with a Dirichlet vertex condition (see Exercise 2.4), and standard conditions
at all others; any such Dirichlet vertex is a “heat sink” with perfect cooling to zero. In
this case we will write

0 < λ1(Γ) < λ2(Γ) ≤ . . .

for the eigenvalues. (It is a short exercise to prove directly that the first eigenvalue is
strictly positive, something which also follows immediately from the following theorem.)3

Theorem 4.4 (Nicaise, Dirichlet case). Under our standing assumptions,

λ1(Γ) ≥ λND1 (I) =
π2

4L2
,

the first eigenvalue of an interval of length L with a Neumann condition at one endpoint
and a Dirichlet condition at the other.

3We should, however, point out that the eigenvalues depend not just on Γ as a metric graph but also
on exactly which vertex, or vertices, are being equipped with a Dirichlet vertex, a dependence which is
implicitly suppressed in the notation we are using.
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Proof 1: Symmetrisation (Friedlander’s strategy)
Denote by ψ1 an eigenfunction corresponding to λ1(Γ); it may be shown that ψ1 can

be chosen strictly positive except at the Dirichlet vertices.4 Construct a symmetrised (or
rearranged) function ψ∗

1 on I = [0, L] as follows.
We first define the upper level sets of ψ1 by

Ut := {x ∈ Γ : ψ1(x) > t}, t ≥ 0;

then t 7→ |Ut| (the total length of Ut) is a monotonically decreasing function from L at
t = 0 to 0 at t =M := maxx∈Γ ψ1(x). We will also denote by

St := {x ∈ Γ : ψ1(x) = t}, t ≥ 0,

the corresponding “level surfaces”, St = ∂Ut, which in reality will generally be finite sets
of points. (Indeed, since on each edge ψ1 is a solution of −ψ′′ = λψ and thus a linear
combination of sines and cosines, unless it is identically zero on an edge it only takes
on any value a finite number of times. Thus each St is indeed finite except possibly for
S0; what happens with S0 depends on the minor technical assumption mentioned in the
previous footnote.)

We define a function ψ∗
1 : [0, L] → [0,M ], the decreasing rearrangement of ψ1, by the

rule
ψ∗
1(x) := t iff x = |Ut|, x ∈ [0, L].

It is defined in such a way that its upper level sets have the same total length as the upper
level sets of ψ1:

|U∗
t | = |{y ∈ [0, L] : ψ∗

1(y) > t}| = x = |Ut| = |{y ∈ Γ : ψ1(y) > t}|. (21)

Thus ψ∗
1 is monotonically decreasing, with ψ∗

1(0) =M and ψ∗
1(L) = 0. See Figure 2.

M

0 L

ψ∗
1

x = |Ut|

t

Figure 2: The rearranged function ψ∗
1 on [0, L].

4There is a minor technical assumption embedded in this assertion, which we will studiously ignore:
we are assuming that Γ is still connected after removal of all Dirichlet vertices. If not, ψ1 will generally
be supported on one connected component of this punctured graph and be identically zero on all others.
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A technical lemma (which we will omit) shows that ψ∗
1 ∈ H1(0, L), while Cavalieri’s

principle (using (21)) implies that

‖ψ∗
1‖Lp([0,L]) = ‖ψ1‖Lp(Γ)

for all p ∈ [1,∞), and in particular for p = 2.

Lemma 4.5. We have ∫

Γ

|ψ′
1|2 dx ≥

∫ L

0

|(ψ∗
1)

′|2 dx.

Proof. The proof, which can comfortably be omitted on a first reading, relies on the coarea
formula, a kind of a change of variable formula, which in dimension one is as follows: for
any suitable function ϕ (piecewise continuous and integrable is sufficient),

∫

Γ

ϕ(x)|ψ′
1(x)| dx =

∫ M

0

(
∑

x∈St

ϕ(x)

)
dt,

part of the assertion being that the integrand on the right-hand side is in fact integrable.
Before we proceed, we also make two observations: firstly,

∑

x∈St

|ψ′
1(x)| ≥

(
∑

x∈St

1

|ψ′
1(x)|

)−1

almost everywhere (also noting that ψ′
1(x) can vanish or be undefined only on a null set),

since ∑

x∈St

1

|ψ′
1(x)|

∑

y∈St

|ψ′
1(y)| ≥

∑

x∈St

1 = #St ≥ 1.

secondly, if yt ∈ [0, L] is the unique point such that ψ∗
1(yt) = t, i.e. {yt} = S∗

t = ∂U∗
t , then

the relation |Ut| = |U∗
t | implies

∑

x∈St

1

|ψ′
1(x)|

=
∑

y∈S∗
t

1

|(ψ∗
1)

′(y)| =
1

|(ψ∗
1)

′(yt)|

for almost all t ∈ [0,M ]. With these two observations, we can give the main calculation:

∫

Γ

|ψ′
1(x)|2 dx =

∫ M

0

∑

x∈St

|ψ′
1(x)| dt

≥
∫ M

0

1∑
x∈St

1
|ψ′

1(x)|

dt

=

∫ M

0

1

1/|(ψ∗
1)

′(yt)|
dt

=

∫ M

0

|(ψ∗
1)

′(yt)| dt =
∫ L

0

|(ψ∗
1)

′(y)|2 dy,
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where the first line is the coarea formula, the second follows from the first observation, the
third from the second observation, and the final line is another application of the coarea
formula.

The proof of Theorem 4.4 now follows the same reasoning as the theorem of Faber–
Krahn in Rd: since ψ∗

1(L) = 0,

λ1(Γ) =

∫
Γ
|ψ′

1|2 dx∫
Γ
|ψ1|2 dx

≥
∫ L
0
|(ψ∗

1)
′|2 dx

∫ L
0
|ψ∗

1|2 dx
≥ inf

u∈H1(0,L)
u(L)=0

∫ L
0
|u′|2 dx

∫ L
0
|u|2 dx

= λND1 (0, L) =
π2

4L2
.

To prove Theorem 4.3 using this approach, we apply Theorem 4.4 to the nodal domains
of the second eigenfunctions.

Definition 4.6. Let ϕ ∈ C(Γ). We call

(a) the closed set N(ϕ) := {x ∈ Γ : ϕ(x) = 0} the nodal set of ϕ;

(b) Ω ⊂ Γ a nodal domain if it is the closure of a connected component of Γ \N(ϕ).

(The decision to take Ω as closed is somewhat non-standard and made for technical
reasons. In general, on domains and manifolds, the nodal domains of a function ϕ are
usually the (open) connected components of the complement of the nodal set.) Note that
ϕ(x) = 0 for all x ∈ ∂Ω ⊂ Γ, and ϕ does not change sign on Ω.

Example 4.7. If Γ = I = [0, L] is just a bounded interval, and ψk ∼ λk is a kth eigenfunc-
tion of Aq on I (q ∈ L∞(I)), then by Sturm–Liouville theory, ψk has exactly k − 1 zeros
in the interior of I, and thus exactly k nodal domains Ω1, . . . ,Ωk.

As a more explicit example, if q = 0 and k = 2, then ψ2(x) = A cos(πx
L
) is an eigenfunc-

tion for λ2 =
π2

L2 ; N(ψ2) = {L
2
} (independently of A 6= 0), and so Ω1 = [0, L

2
], Ω2 = [L

2
, L].

Remark 4.8. If k ≥ 2, then ψk ∼ µk(Γ) changes sign on Γ (since it is orthogonal in L2(Γ)
to the function ψ1, which is positive everywhere). In particular, if k = 2, then there exist
nodal domains Ω+ and Ω− where ψk is positive and negative, respectively.

This principle applies far more generally than just on graphs. The analysis of the
number of nodal domains of the eigenfunctions as a function of k (be it on a Euclidean
domain, a manifold, or a graph Γ) is a longstanding area of investigation:

• Sturm: in 1D, ψk has exactly k nodal domains.

• Courant: in Ω ⊂ R
d, ψk has ≤ k nodal domains.

• Pleijel: in Ω ⊂ Rd,

lim sup
k→∞

#nodal domains of ψk
k

< 1

(this uses Faber–Krahn, Theorem 4.1), see [43].
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• On graphs: Alon, Band, Berkolaiko, Smilansky among others: for “most” graphs
(more precisely, those for which the eigenfunctions never vanish on any essential
vertex),

k − (#E −#V + 1) ≤ #nodal domains of ψk ≤ k

(the number #E − #V + 1 is known as the (first) Betti number of Γ, and is equal
to the number of independent cycles in Γ). This is a topic of ongoing study; see, for
example, [2, 10]. The situation is more complicated if one or more ψk vanish at one
or more essential vertices, see Exercise 3.1 and [27].

Lemma 4.9. Suppose ψk is an eigenfunction for µk(Γ) on Γ and Ω ⊂ Γ is any nodal
domain of ψk. Denote by λ1(Ω) the first eigenvalue of the Laplacian on Ω with Dirichlet
conditions on ∂Ω and standard conditions at all other vertices (see Exercise 2.4), i.e.

λ1(Ω) = inf
06=u∈H1(Ω)
u(x)=0∀x∈∂Ω

∫
Ω
|u′|2 + q|u|2 dx∫

Ω
|u|2 dx .

Then µk(Γ) = λ1(Ω).

Proof. By assumption ψk satisfies the eigenvalue equation −ψk = µkψk strongly (indeed
pointwise) in Γ, and hence in Ω. But it also satisfies all vertex conditions in Ω by con-
struction. Thus, it is equal to some eigenfunction on Ω; in particular, µk = λj(Ω) for some
k ≥ 1.

Now since ψk does not change sign in Ω, and λ1(Ω) is the only eigenvalue on Ω with a
non-sign-changing eigenfunction, we must have j = 1.

First proof of Theorem 4.3. Fix an eigenfunction ψ2 ∼ µ2(Γ), then ψ2 has (at least) two
nodal domains Ω+, Ω−; at least one of them, say Ω+, has total length ≤ L/2. Since
∂Ω+ 6= ∅, i.e. Ω+ has at least one Dirichlet vertex, by Lemma 4.9 and Theorem 4.4,

µ2(Γ) = λ1(Ω
+) ≥ π2

4|Ω+|2 ≥ π2

L2
.

The symmetrisation method allows a generalisation of the inequality to the higher
eigenvalues:

Theorem 4.10 (Friedlander). For all k ≥ 1,

µk(Γ) ≥
π2(k − 1)2

L2
.

The minimising graph is an equilateral k-star.
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N D

L/k k copies

Rough idea of proof. If ψk has k nodal domains, then at least one has length ≤ L/k; apply
Theorem 4.4. Otherwise, there exists a linear combination of ψ1, . . . , ψk which does have
k nodal domains. Apply the symmetrisation technique to one of these.

Remark 4.11. We note in passing the high multiplicity of the minimising graph (cf. Exer-
cise 3.1): 0 = µ1(Γ) < µ2(Γ) = . . . = µk(Γ) < µk+1(Γ) for the equilateral k-star Γ. This is
to be compared with the numerically observed property of domains in R2 which minimise
λk(Ω) [3]: there, numerical evidence strongly suggests that the multiplicity of λk for the
optimal domain grows with k, but there is no known proof.

On the other hand, the values in Friedlander’s theorem diverge sharply from the values
of µk(Γ) given by Weyl’s law for any fixed graph Γ. This is starkly at odds with Pólya’s
conjecture (see, e.g. [19]) for the Dirichlet and Neumann Laplacian eigenvalues, which
posits that the first term in the Weyl asymptotics is always a lower bound for the Dirichlet
eigenvalues and an upper bound for the Neumann eigenvalues, on any domain. It seems
likely that this is related to the failure of the unique continuation principle mentioned in
Section 3.4 and to the nodal domain counts explored in [27].

4.3 Surgery

Second proof of Theorem 4.3: the “doubling trick” (Nicaise/Kurasov–Naboko)
The original proof given by Nicaise was based on the idea of finding a double covering

of the graph Γ. The following version of the proof, given by Kurasov and Naboko [39], is
more explicit and elegantly uses a classical theorem of Euler.

Given Γ, construct a new, “doubled” graph Γ2 by replacing each edge e of Γ with two
identical parallel edges, each of the same length as e. Then |Γ2| = 2L.
Duplicate the eigenfunction ψ2 ∈ H1(Γ) on each edge to create a new function ψ̃2 ∈ H1(Γ2);
then by construction ∫

Γ2

|ψ̃′
2|2 dx = 2

∫

Γ

|ψ′
2|2 dx

∫

Γ2

|ψ̃2|2 dx = 2

∫

Γ

|ψ2|2 dx
∫

Γ2

ψ̃2 dx = 2

∫

Γ

ψ2 dx = 0,
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and so

µ2(Γ) =

∫
Γ
|ψ′

2|2 dx∫
Γ
|ψ2|2 dx

=

∫
Γ2
|ψ̃′

2|2 dx∫
Γ2
|ψ̃2|2 dx

≥ inf
06=u∈H1(Γ2)∫

Γ2
u dx=0

∫
Γ2
|u′|2 dx∫

Γ2
|u|2 dx = µ2(Γ2).

(A similar argument shows that µk(Γ) ≥ µk(Γ2) for all k ≥ 1.)

Γ
Γ2 C

Figure 3: The original graph Γ (left); the “doubled graph” Γ2 (centre); an Eulerian cycle
C (right), which forms a closed cycle in Γ2, traversing every edge exactly once.

Theorem 4.12 (Euler, 1736, “Bridges of Königsberg”). If all vertices of a graph Γ2 have
even degree, then there exists an Eulerian cycle C in Γ2 traversing each edge of Γ2 exactly
once.

(The cycle may pass through one or more vertices more than once.) Map each function
u ∈ H1(Γ2) onto a function ũ ∈ H1(C) in the obvious way; then all integrals are preserved.
Since not every function in H1(C) can be transformed back into an H1(Γ2)-function, we
may identify H1(Γ2) with a (proper) subspace of H1(C), and so

µ2(Γ) ≥ µ2(Γ2) = inf
06=u∈H1(Γ2)∫

Γ2
u dx=0

∫
Γ2
|u′|2 dx∫

Γ2
|u|2 dx = µ2(Γ2)

≥ inf
06=u∈H1(C)∫

C
udx=0

∫
C
|u′|2 dx∫

C
|u|2 dx = µ2(C) = µ2(C).

Now C is a cycle (circle) of length 2L, which corresponds to an interval of length 2L with
periodic boundary conditions and first nonzero eigenvalue µ2(C) =

4π2

(2L)2
. Summarising,

µ2(Γ) ≥ µ2(Γ2) ≥ µ2(C) =
4π2

(2L)2
=
π2

L2
.

This completes the alternative proof of Theorem 4.3.
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Remark 4.13. If Γ already contains an Eulerian cycle, then the “doubling trick” is not
necessary:

µ2(Γ) ≥ µ2(cycle of length L) =
4π2

L2
.

Actually, this inequality holds for a more general class of graphs, known as doubly connected
graphs (Theorem of Band–Lévy, [8, Theorem 2.1(2)]). Intuitively, graphs which are more
connected, i.e. have more non-overlapping paths between any pairs of points, necessarily
have larger µ2 and thus faster convergence of diffusion processes to equilibrium. Higher
graph connectivity and its effect on the eigenvalues is also explored in [12]. This closely
parallels results for discrete graph Laplacians which have been known for many decades
[23,40], where the discrete counterpart of µ2 is even called the algebraic connectivity of the
graph.

We shall explore the related principle that loosening connections, or “cutting through
the graph” lowers the eigenvalues. This is a prototypical surgery principle: one examines
how making a local topological, geometric or metric change to a graph (“surgery”) affects
its Laplacian spectrum. Some such principles were implicit in the works of Nicaise [42] and
Friedlander [24], but only started being studied systematically in the 2010s with [38, 39],
and are arguably now recognised as a powerful collection of techniques. The standard
reference is probably [13].

Definition 4.14. We say Γ̃ is formed from Γ by cutting through the vertex v ∈ V (Γ) if v is

replaced by p ≥ 2 vertices v1, . . . , vp ∈ V (Γ̃) such that all other incidence and adjacency
relations are preserved.

v v1

v2
or

v1 v3

v2

Figure 4: Two examples of cutting through a vertex of degree 6. The first (centre) has
rank 1; the second (right) has rank 2, and is in fact a rank 1 cut of the first.

The rank of the cut is the number of new vertices created, i.e. p−1. The inverse process
is called gluing vertices.

Lemma 4.15. Suppose Γ̃ is formed from Γ by making a rank r ≥ 1 cut of a vertex v of Γ,
preserving standard conditions at all vertices. Then

µk(Γ) ≥ µk(Γ̃) ≥ µk−r(Γ) (22)

for all k ≥ 1 (where for the lower bound we assume k ≥ r + 1).
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See also Exercise 3.2 or [13, Section 3]. The process of cutting/gluing is more compli-
cated if other vertex conditions are imposed, since then, unlike with the case of standard
conditions, there may be no natural conditions the newly created vertices should satisfy.

Proof. A rank r cut removes r continuity conditions at v: we may identify C(Γ) with a

subspace of C(Γ̃) of codimension r. It follows from the definition of the H1-spaces that

H1(Γ) →֒ C(Γ) may also be identified with a codimension r subspace of H1(Γ̃). (Cf. also
Exercise 2.1(d).)

(22) now follows from the min-max principle (Theorem 2.5/Remark 3.26).

Corollary 4.16 (Weyl asymptotics). Let Γ be a compact metric graph with total length L.
Then

µk(Γ) =
π2k2

L2
+O(k)

as k → ∞.

Proof. Exercise 3.3.

How can we make µ2 as large as possible using this idea? We saw (Exercise 3.1) that
there cannot be a complementary upper bound to Theorem 4.3. But we can still exploit
the principle that gluing vertices increases the eigenvalues:

Theorem 4.17. (Cf. [31, Theorem 4.2].) Let Γ be a compact metric graph with total length
L > 0 and m edges. Then

µ2(Γ) ≤
π2m2

L2
=

π2

(mean edge length)2
.

The inequality is sharp: there is equality if (but not only if) Γ is an equilateral flower
graph.

Figure 5: A flower graph with 7 edges.

(A flower graph is a graph with only one vertex, with all edges starting and ending at
that vertex. It is equilateral if all edge lengths are equal; in this case they would each have
length L/m.)

For the proof we need Lemma 4.15 and a second surgery principle:
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Definition 4.18. We say that a closed subset Γ′ ⊂ Γ of a given graph Γ is a pendant
subgraph of Γ if it is attached to the rest of Γ at a single point, that is, the set

Γ′ ∩ Γ \ Γ′

is a singleton.

The single point of attachment may without loss of generality be assumed to be a
vertex of Γ, by Remark 3.23.

Lemma 4.19. Suppose Γ̃ is formed from Γ by deleting a pendant subgraph Γ′ ⊂ Γ (equiv-

alently, Γ is formed from Γ̃ by gluing a new graph Γ′ to Γ̃ at a single vertex). Suppose
standard conditions are imposed at all vertices of all graphs in question. Then

µk(Γ̃) ≥ µk(Γ)

for all k ≥ 1.

Proof. Given Γ and its subgraph Γ′ attached to Γ̃ = Γ \ Γ′ at the vertex v, form a new,
disconnected graph

Γ′ ⊔ Γ̃

via a suitable cut through v. This is a cut of rank 1, thus, by Lemma 4.15,

µk(Γ
′ ⊔ Γ̃) ≥ µk−1(Γ)

for all k ≥ 2. Now the set of eigenvalues of Γ′⊔ Γ̃ is just the union of the set of eigenvalues
of Γ′ and the set of eigenvalues of Γ̃ (where eigenvalues are always repeated according to

their multiplicities). Since µ1(Γ) = µ1(Γ̃) = 0 has multiplicity 2, it follows that µ2(Γ̃) can,

at best, correspond to µ3(Γ
′ ⊔ Γ̃), µ3(Γ̃) at best to µ4(Γ

′ ⊔ Γ̃), and so on. Thus, in general,

µk(Γ̃) ≥ µk+1(Γ
′ ⊔ Γ̃) ≥ µk(Γ)

for all k ≥ 1.

This lemma can also be proved using a test function argument, see [44, Proposition 3.1].
Its sharpest form can be found in [13, Theorem 3.10]. It is intuitively clear that attaching
a pendant subgraph (basically, an extra dead end) should slow the rate of diffusion. The
picture is far more complicated if the subgraph being attached or deleted is not a pendant,
but rather attached at two or more points, as the following simple example shows.

Example 4.20. Let Γ be a loop of length L > 0, let Γ̃ be an interval subgraph of Γ of
length ℓ, and let Γ′ be its complement, an interval of length L − ℓ; then Γ is formed by
gluing Γ̃ and Γ′ twice, at their respective endpoints. Now

µ2(Γ) =
4π2

L2
, µ2(Γ̃) =

π2

ℓ2
,

so that µ2(Γ̃) ≥ µ2(Γ) iff ℓ ≤ L
2
.
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Proof of Theorem 4.17. We may certainly assume that m ≥ 2, since otherwise Γ is just an
interval. Given such a Γ, glue all its vertices together. This forms a flower graph F with
the same number m of edges and same total length L as Γ, and

µ2(Γ) ≤ µ2(F )

by Lemma 4.15. Choose the longest two edges of F , then their total length is at least
2L/m. Form a new graph F̃ by deleting all remaining m− 2 edges from F (“pluck all but
the two largest petals”). Since each edge of F is a pendant subgraph of F attached to the
rest of F at a single vertex, by Lemma 4.19

µ2(F ) ≤ µ2(F̃ ).

Now F̃ is a figure-8 graph. A direct calculation (left as an exercise, using the result of
Exercise 3.2) shows that a figure-8 has the same µ2 as a circle of the same length:

µ2(F̃ ) =
4π2

|F̃ |2
≤ 4π2m2

(2L)2
=
π2m2

L2
.

It is left as another exercise to check that the second eigenvalue of an equilateral m-flower
graph is in fact π2m2

L2 .

4.4 Advanced surgery

To illustrate the full power of the surgery methods introduced in the previous section
(and more advanced surgery techniques), we briefly sketch two examples of applications
of surgery methods for obtaining bounds on µ2(Γ) on the more sophisticated end of the
spectrum (no pun intended), following [13]. For another such application see [29].

Third proof of Theorem 4.3: “unfolding pendant edges” (Berkolaiko–K.–
Kurasov–Mugnolo)

Definition 4.21. Let e1, . . . , ek be pendant edges of Γ (i.e. each should have one vertex

of degree one) all attached to the same vertex v. We say that Γ̃ is obtained from Γ by
unfolding the pendant edges e1, . . . , ek if these k edges are deleted and replaced by a single
pendant edge of length |e1|+ . . .+ |ek|.

v v

Figure 6: Unfolding three pendant edges at v.

This is an example of transplantation, removing length (“mass”) from one part of the
graph (which may be deleting or shortening edges) and attaching it elsewhere (inserting
new edges or lengthening additional ones), usually in such a way as to preserve the total
length. It is explored in detail in [13, Section 3.3].
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Lemma 4.22. Suppose Γ̃ is formed from Γ by unfolding pendant edges. Then

µ2(Γ̃) ≤ µ2(Γ).

Keeping with our running intuition about the speed of diffusion, this kind of princi-
ple (and related principles involving “unfolding parallel edges”) says that “diffusion (in
our usual L2-sense) is slowed when connections in parallel are replaced by connections in
sequence”. The elementary but somewhat delicate proof is given in [13, Proof of Theo-
rem 3.18(4)].

Third proof of Theorem 4.3. Fix a graph Γ. By Lemma 4.15 we may assume without loss
of generality that Γ is actually a tree, since cutting through any cycles can only lower µ2.
Denote by n = n(Γ) the number of leaves (degree one vertices) of Γ; Γ is a path graph if
and only if n = 2. If n ≥ 3, then Γ must have at least one pair of neighbouring pendant
edges. Create a new graph Γ1 by unfolding these; then we have reduced the number of
leaves by one, n(Γ1) = n−1, and µ2(Γ1) ≤ µ2(Γ) by Lemma 4.22. Repeating this argument
inductively will produce a path graph, with lower µ2, after n− 2 steps.

The characterisation of equality in Theorem 4.3 can be obtained by using a refined
version of Lemma 4.22. This proof, while not being generalisable to the higher eigenvalues
or more highly connected graphs, does give a family of comparisons: µ2 decreases succes-
sively as the graph is progressively transformed from its original state into a more path-like
object.

Interpolation between the theorems of Nicaise and Band–Lévy; fourth proof
of Theorem 4.3 (Berkolaiko–K.–Kurasov–Mugnolo)

We recall that Nicaise’ theorem (Theorem 4.3) states that

µ2(Γ) ≥
π2

L2

for all compact graphs Γ of total length L, equality being achieved (only) by path graphs
(equivalently, intervals); while the Theorem of Band–Lévy ( [8, Theorem 2.1(2)], cf. Re-
mark 4.13) states that

µ2(Γ) ≥
4π2

L2

for all doubly connected graphs Γ of total length L, equality being achieved by loops,
equivalently, flat one-dimensional tori.5 We can interpolate between the two inequalities
based on the size of the doubly connected part of Γ:

5There is actually a family of related minimisers owing to a basic surgery principle, but not relevant
for our purposes here: we may glue the loop together at certain points without affecting the eigenvalue,
if there is always an eigenfunction which takes on the same value at the points being glued. This is the
refinement of Lemma 4.15 mentioned in the proof of Theorem 4.17.
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Definition 4.23. The doubly connected part DΓ of a graph Γ is the unique closed subgraph
of Γ such that x ∈ DΓ if and only if there exists a non-self-intersecting path in Γ starting
and ending at x.

Equivalently, DΓ is the largest subgraph of Γ (not necessarily connected) such that
every connected component is itself doubly connected; DΓ may be obtained from Γ by
deleting every point x ∈ Γ whose removal would disconnect Γ (“bridges”).

Figure 7: A dumbbell graph (left); its doubly connected part consists of its two loops
(right).

Theorem 4.24. [13, Theorem 6.3] Suppose Γ has doubly connected part of total length
V ∈ [0, L]. Let D be the dumbbell graph (cf. Figure 7) of total length L, whose two loops
have equal length V/2 each. Then

µ2(Γ) ≥ µ2(D).

While in general there is no closed analytic formula for µ2(D) as a function of L and
V , one can show easily that, for fixed L, it is a monotonically increasing function of V
from π2

L2 at V = 0 to 4π2

L2 at V = L (where D becomes a figure-8 graph); in particular, it
interpolates smoothly between, and contains as special cases, the bounds of Nicaise and
Band–Lévy in function of V = |DΓ|.6

The proof of Theorem 4.24 (which, in particular, yields a fourth proof of Theorem 4.3)
combines all the techniques we have seen thus far, and variants:

Step 1: Use the previously mentioned case of equality in Lemma 4.15 to glue Γ at all
“critical levels”, i.e. one glues together all points at which the eigenfunction has a critical
value or a vertex value; this creates a “minimally maximally connected” graph with the
same µ2, known as a pumpkin chain, and on which the eigenfunction is monotonically
increasing along the chain. (See Figure 8.)

This process preserves the size of the doubly connected part; any bridges of Γ are
preserved as bridges in the pumpkin chain.

Step 2: The edges within each of the constituent pumpkins in the pumpkin chain
from Step 1 may not have the same length. Apply a local symmetrisation argument (a
local version of the symmetrisation method of Section 4.2) to make each of the pumpkins
equilateral (although edges from different pumpkins are allowed to have different lengths).

6In [13] these claims about µ2(D) are proved using surgery techniques – what else? – however the
secular equation in this case should be just about simple enough to study directly.
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In Figure 8 this step is not necessary due to the symmetry of the original graph and its
eigenfunction.

Step 3: Apply a transplantation argument to the symmetrised pumpkin chain to
“push” the mass outwards to form a dumbbell.7

Step 4: This dumbbell may not be symmetric. However, “balancing” the loops to
create the symmetric dumbbell of the theorem lowers µ2.

8

v−

v+
v− v+

Figure 8: Turning a graph (here an equilateral complete graph on four edges) into a
pumpkin chain, based on the behaviour of an arbitrary but fixed second eigenfunction. The
vertices v− and v+ represent, respectively, where the eigenfunction reaches its minimum
and maximum; its values at the other vertices are considered “critical”, and thus all points
at which it attains those values (labelled in blue and red, respectively) are glued together.
The resulting pumpkin chain has the same eigenvalue and eigenfunction (up to a canonical
mapping between the graphs), such that the eigenfunction is now monotonically increasing
along each path from v− to v+. (Each of the sets of parallel edges betweek neighbouring
vertices is a pumpkin.) Figure adapted from [13, Figure 5.1].

Appendix: Exercises

1.1 Use the spectral theorem to prove Courant–Fischer (Theorem 2.5), and show that
the minimum in (1a) is attained if and only if u is an eigenvector corresponding to
λ1. Can you characterise equality in (1b) and (1c)?

1.2 Prove that if u ∈ C1(Ω), then its classical partial derivative ∂u
∂xj

∈ C(Ω) is also a

weak partial derivative of u. Conversely, prove that if gj is a weak partial derivative
of u and gj ∈ C(Ω), then in fact gj is a classical partial derivative of u.

1.3 Prove Lemma 2.12.

7This step is actually quite complicated and is performed individually on each of the two nodal domains
of the pumpkin chain. While it is a transplantation, in practice it requires combining a transplantation
argument with a cutting procedure and a Hadamard formula for the derivative of µ2 as a function of the
edge lengths.

8This, again, requires the Hadamard formula mentioned in the previous footnote.
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1.4 Schrödinger operators. Given a bounded Lipschitz domain Ω ⊂ R
d, define a

Hermitian form aq : H
1
0 (Ω)×H1

0 (Ω) → C for q ∈ L∞(Ω,R) by

aq(u, v) :=

∫

Ω

∇u · ∇v + quv dx.

(a) Show that the form aq is bounded and L2-elliptic on H1
0 (Ω), and find the op-

erator Aq on L2(Ω) which is associated with aq. Deduce that Aq satisfies the
conclusions of the spectral theorem, Theorem 2.4.
Note: In particular, this proves Theorem 2.13(a), which corresponds to q = 0.

(b) Use the variational characterisation of the eigenvalues to show that, given
q1, q2 ∈ L∞(Ω,R), if q1 ≤ q2 almost everywhere in Ω, then

λk(Aq1) ≤ λk(Aq2) for all k ≥ 1.

1.5 The Robin Laplacian. Given a bounded Lipschitz domain Ω ⊂ Rd, for α ∈ R

define a form aα : H1(Ω)×H1(Ω) → C by

aα(u, v) :=

∫

Ω

∇u · ∇v dx+
∫

∂Ω

αuv ds,

where the functions in the boundary integral are to be taken as the traces of u and
v. Clearly aα is Hermitian, and aα coincides with the form a from (8) when α = 0.

(a) Use the trace inequality (5) to prove that aα is bounded and L2-elliptic on
H1(Ω).

(b) Show that the operator Aα on L2(Ω) associated with aα is given by

D(Aα) =

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω),

∂u

∂ν
∈ L2(∂Ω) and = −αu in L2(∂Ω)

}
,

Aαu = −∆u,

and deduce that Aα satisfies the conclusions of the spectral theorem, Theo-
rem 2.4.

1.6 The first eigenvalue of the Robin Laplacian Aα from the previous exercise may be
characterised variationally as

λ1(α) := λ1(Aα) = min
06=u∈H1(Ω)

∫
Ω
|∇u|2 dx+

∫
∂Ω
α|u|2 dx∫

Ω
|u|2 dx .

(a) Prove that (on a fixed domain Ω) the function α 7→ λ1(α) is a convex monoton-
ically increasing and continuous function of α ∈ R, and that λ1(α) ≤ λ1(−∆D),
the first eigenvalue of the Dirichlet Laplacian, for all α ∈ R.
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(b) Now suppose α > 0.

It follows immediately from (a) that λ1(α) ց λ1(−∆N ) = 0, the first eigenvalue
of the Neumann Laplacian, as α → 0. Show that λ1(α) > 0 for all α > 0, and
deduce that

√
aα(u, u) defines an equivalent norm on H1(Ω).

(c) Show that λ1(α) ր λ1(−∆D) as α → ∞.
Hint: Given αn → ∞, let ψn be an eigenfunction for λ1(αn) with L2-norm 1.
Deduce from (a) and (b) that (ψn) forms a bounded, and thus weakly conver-
gent, sequence in H1(Ω).

2.1 W 1,p
0 -spaces. Given a (connected, compact) graph Γ = (V,E), choose an arbitrary

subset VD ⊆ V of the vertices of Γ and define, for fixed 1 ≤ p ≤ ∞,

W 1,p
0 (Γ) :=W 1,p

0 (Γ;VD) := {f ∈ W 1,p(Γ) : f(v) = 0 for all v ∈ VD}.

If p = 2, then we usually writeH1
0 (Γ) = H1

0 (Γ;VD) in place ofW 1,2
0 (Γ) = W 1,2

0 (Γ;VD).

(a) Prove that W 1,p
0 (Γ;VD) is a closed subspace of W 1,p(Γ).

Hint: It follows from Lemma 3.14 that the embedding W 1,p(Γ) →֒ C(Γ) is also
continuous.

(b) Consider the 3-star graph Γ of Example 3.4. Show that if VD = {v4}, then
W 1,p

0 (Γ; {v4}) is isometrically isomorphic to the direct sum of three copies of
W 1,p

0 ([0, 1]; {1}). Thus, imposing a Dirichlet condition at a vertex of degree ≥ 2
“decouples” the vertex.

(c) Still on the example of the 3-star graph Γ, show that W 1,p
0 (Γ; {v1, v2, v3}) is not

isometrically isomorphic to W 1,p
0 (Γ; {v4}). Obviously, the choice of the set VD

matters!

(d) Returning to the general case, prove that the codimension of H1
0 (Γ) in H1(Γ)

is #VD. Is the same true if p 6= 2?

2.2 Prove Lemma 3.21.

2.3 Prove Proposition 3.22 in the special case when q = 0.

2.4 The Laplacian with (some) Dirichlet vertex conditions. Given a (connected,
compact) graph Γ = (V,E), choose a set VD ⊆ V and consider the form

a0(f, g) =

∫

Γ

f ′g′ dx

from (13), but this time defined on H1
0 (Γ;VD) instead of H1(Γ). It is obvious that

Lemma 3.21 continues to hold in this space, and thus the spectral theorem holds for
the associated operator.
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(a) Prove that the associated operator AD0 is given by

D(AD0 ) =
{
f ∈ H1(Γ) : f ′′ ∈ L2(Γ), f(v) = 0 ∀v ∈ VD,

and
∑

e∼v

∂νf |e(v) = 0 ∀v ∈ V \ VD
}
,

AD0 f = −f ′′

in the sense of distributions. Thus, functions in D(AD0 ) satisfy a Dirichlet
condition at every vertex in VD and standard conditions at all others.

(b) Prove that, for any VD ⊆ V ,

λk(A0) ≤ λk(A
D
0 ) ≤ λk+(#VD)(A0),

where the λk(A0) are the eigenvalues of the standard Laplacian.
Hint: Use the results of 2.1(a) and (d) together with the variational (min-max)
characterisation of the eigenvalues.

(c) Prove that if VD 6= ∅, then λ1(AD0 ) > 0.

(d) Repeat this exercise (with appropriate modifications) for the following operator.
Given a set of vertices VR ⊆ V and α > 0, the form is taken to be

aα(f, g) =

∫

Γ

f ′g′ dx+
∑

v∈VR

αf(v)g(v)

on H1(Γ).
Note: The associated operator is the Laplacian with Robin, a.k.a. δ, vertex
conditions on VR (and standard conditions elsewhere). The constant α, which
may also be allowed to depend on the vertex, represents a δ-potential being
imposed at the vertices VR. This constant may also be taken non-positive, but
then the conclusions of (b) and (c) are not valid. The eigenvalues do, however,
satisfy the same conclusions as in 1.6.

2.5 The discrete Laplacian on the 3-star graph. We will study a prototypical discrete
graph which is the analogue of the 3-star graph of Example 3.4.

(a) With the vertex numbering of Example 3.4 (in particular, where deg v4 = 3),
write down the adjacency matrix A of Γ, that is, Aij = 1 if there is an edge
between vi and vj, and 0 otherwise.

(b) Let D be the 4 × 4-diagonal matrix whose (i, i)-th entry is the degree of the
vertex vi, and let

L = D − A.

Determine L, and determine its spectrum. L is the discrete Laplacian on Γ.
(Observe that L is a symmetric, real-valued matrix.)
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(c) Show that a vector u ∈ C
4 satisfies Lu = 0 if and only if u has the mean value

property : for every vertex vk,

u(vk) =
1

deg vk

∑

vj∼vk

u(vj).

These definitions and properties hold for the discrete Laplacian on any finite graph
Γ.

3.1 Let Γm be the (equilateral) m-star graph consisting of m edges of length 1
m

each,
attached together at a vertex of degree m. (That is, formally, E = {e1, . . . , em},
V = {v1, . . . , vm+1}, with ek ∼ vkvm+1, where deg vk = 1 for k = 1, . . . , m and
deg vm+1 = m.)

(a) Determine the lowest nontrivial eigenvalue µ2(Γm) of the standard Laplacian
on Γm, and conclude that µ2(Γm) → ∞ even though |Γm| = 1 for all m ≥ 3.

(b) Describe all eigenvalues and eigenfunctions of Γm. Take care with the high
multiplicities.

3.2 Use the characterisation of equality in (16) to prove the following special case of

equality in Lemma 4.15: Suppose Γ is formed from Γ̃ by gluing together two vertices
v1 and v2, and suppose also that there is an eigenfunction ψ2 for µ2(Γ̃) such that

ψ2(v1) = ψ2(v2). Then µ2(Γ) = µ2(Γ̃).

3.3 Weyl asymptotics. In this exercise we will prove Corollary 4.16, that if Γ has total
length L, then µk(Γ) =

π2k2

L2 + o(k2) as k → ∞.

(a) Prove that the assertion holds if Γ is just an interval of length L.

(b) Use (a) to show that the assertion also holds if Γ is a disjoint union of m
intervals (of lengths ℓ1, . . . , ℓm > 0).
Hint: It may be more practical to work with the counting function

N(λ) := #{k ∈ N : µk(Γ) ≤ λ}.

(c) Use (b) and (22) to obtain the Weyl asymptotics for an arbitrary compact
metric graph Γ.

(d) Prove that the Weyl asymptotics is still valid if any mix of standard, Dirichlet
and Robin conditions (with α > 0 for simplicity) is imposed at the vertices.

3.4 (a) Prove Rohleder’s inequality [44, Theorem 3.4]: Suppose Γ is a tree graph, i.e.
a graph with no cycles, and define its diameter to be the longest path in the
graph,

D := max{dist(x, y) : x, y ∈ Γ}.
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Then, for any k ≥ 1,

µk(Γ) ≤
π2k2

D2
= µk(interval of length D).

(b) (Hard.) Does the same inequality hold if Γ is not a tree graph?

(c) (Less hard but still hard.) Prove that no corresponding lower bound is possible.
That is, find a sequence of tree graphs Γn such that each has diameter 1, but
µ2(Γn) → 0 as n→ ∞.
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Canada, July 4–14, 2016. Proceedings, pages 187–203. Providence, RI: American Mathe-
matical Society (AMS); Montreal: Centre de Recherches Mathématiques (CRM), 2018.
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Birkhäuser, 2006.



438 James Kennedy

[26] A. Henrot, editor. Shape optimization and spectral theory. Berlin: De Gruyter, 2017.

[27] M. Hofmann, J. B. Kennedy, D. Mugnolo, and M. Plümer. On Pleijel’s nodal domain
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