2l EPIsciences

arXiv:2301.06145v3 [cs.DM] 31 Jul 2024

Communications in Mathematics 33 (2025), no. 2, Paper no. 5
DOT: https://doi.org/10.46298 /cm.12695

(©2025 Lucas Mol, Narad Rampersad and Jeffrey Shallit

This is an open access article licensed under the CC BY-SA 4.0

Dyck words, pattern avoidance, and automatic sequences

Lucas Mol, Narad Rampersad and Jeffrey Shallit

Abstract. We study various aspects of Dyck words appearing in binary sequences,
where 0 is treated as a left parenthesis and 1 as a right parenthesis. We show that
binary words that are 7/3-power-free have bounded nesting level, but this no longer
holds for larger repetition exponents. We give an explicit characterization of the
factors of the Thue-Morse word that are Dyck, and show how to count them. We
also prove tight upper and lower bounds on f(n), the number of Dyck factors of
Thue-Morse of length 2n.

Contents

1 Introduction

2 Repetitions and Dyck words

3 Dyck factors of Thue-Morse

4 Dyck factors of some automatic sequences
5 Upper and lower bounds for d(n)

6 Dyck words in other sequences

MSC 2020: 68R15
Keywords: Dyck word, pattern avoidance, automatic sequence
Contact information:
L. Mol:
Affiliation: Department of Mathematics and Statistics, Thompson Rivers University,
Canada.
Email: 1mol@tru.ca
N. Rampersad:
Affiliation: Department of Mathematics and Statistics, University of Winnipeg, Canada.
Email: n.rampersad@uwinnipeg.ca
J. Shallit:
Affiliation: School of Computer Science, University of Waterloo, Canada.
Email: shallit@uwaterloo.ca

14

18

Lucas Mol, Narad Rampersad and Jeffrey Shallit

1 Introduction

We define 3, :={0,1,...,k—1}. Suppose x € ¥%; that is, suppose x is a finite binary
word. We say it is a Dyck word if, considering 0 as a left parenthesis and 1 as a right
parenthesis, the word represents a string of balanced parentheses [6]. For example, 010011
is Dyck, while 0110 is not. Formally, x is Dyck if x is empty, or there are Dyck words vy, 2
such that either z = Oyl or = yz. The set of all Dyck words forms the Dyck language.

In this paper we are concerned with the properties of factors of infinite binary words
that are Dyck words.

If = is a Dyck word, we may talk about its nesting level N(z), which is the deepest
level of parenthesis nesting in the string it represents. Formally, we have that N(e) = 0,
N(0yl) = N(y) + 1, and N(yz) = max(N(y), N(z)) if y,z are Dyck words. The Dyck
property and nesting level are intimately connected with balance, which is a function
defined by B(x) = |z|o — |z|1, the excess of 0’s over 1’s in . It is easy to see that a word
is Dyck if and only if B(x) = 0 and B(z") > 0 for every prefix 2’ of . Furthermore, the
nesting level of a Dyck word z is the maximum of B(z') over all prefixes z’ of z.

In this paper we will also be concerned with pattern avoidance, particularly avoidance
of powers. We say a finite word w = w[1..n] has period p > 1 if w[i] = w[i+p] for all indices
i with 1 <17 < n—p. The smallest period of w is called the period, and is denoted per(w).
The exponent of a finite word w is defined to be exp(w) := |w|/per(w). A word with
exponent « is said to be an a-power. For example, exp(alfalfa) = 7/3 and so alfalfa is
a 7/3-power. If a word contains no powers > «, then we say it is a-power-free. If it contains
no powers > «, then we say it is a-power-free. If w is a finite or infinite word, its critical
exponent is defined to be ce(w) := sup{exp(x): z is a finite nonempty factor of w}. A
square is a word of the form zx, where z is a nonempty word. An overlap is a word of the
form azraza, where a is a single letter and z is a possibly empty word.

Some of our work is carried out using the Walnut theorem prover, which can rigorously
prove many results about automatic sequences. See [11,15] for more details. Walnut is
free software that can be downloaded at

https://cs.uwaterloo.ca/~shallit/walnut.html .

A preliminary version of this paper appeared previously [10].

2 Repetitions and Dyck words

Theorem 2.1. If a binary word is 7/3-power-free and Dyck, then its nesting level is at
most 3.

Proof. The 7/3-power-free Dyck words of nesting level 1 are 01 and 0101. The set of 7/3-
power-free Dyck words of nesting level 2 is therefore a subset of {01,0011,001011}*. Let
x be a 7/3-power-free Dyck word of nesting level 3. Suppose that z = Oyl, where y has
nesting level 2. Then, to avoid the cubes 000 and 111, the word y must begin with 01
and end with 01. Furthermore, since y has nesting level 2 it must contain one of 0011 or
001011. Write z = 001y/011. The word 3’ cannot begin or end with 01, since that would

2

https://cs.uwaterloo.ca/~shallit/walnut.html

Dyck words, pattern avoidance, and automatic sequences

imply that = contains one of the 5/2-powers 01010 or 10101. Thus ¢’ begins with 001 and
ends with 011, which means x begins with 001001 and ends with 011011. Consequently
x cannot be extended to the left or to the right without creating a cube or 7/3-power.
Furthermore, this implies that a 7/3-power-free Dyck word of nesting level 3 cannot be
written as a concatenation of two non-empty Dyck words, nor can it be extended to a
7/3-power-free Dyck word of nesting level 4. O]

Theorem 2.2. Define h(0) = 01, h(1) = 0011, and h(2) = 001011. A binary word w is an
overlap-free Dyck word if and only if either

(i) w = h(z), where x € ¥} contains no square as a proper factor and contains no 212
or 20102; or

(ii) w = Oh(x)l, where x € X} is square-free, begins with 01 and ends with 10, and
contains no 212 or 20102.

Proof. Let w be an overlap-free Dyck word. By Theorem 2.1, we have N(w) < 3. Suppose
N(w) < 2. Then w € {01,0011,001011}* by the proof of Theorem 2.1. So, we have
w = h(x) for some =z € ¥5. If N(w) = 3, then by the proof of Theorem 2.1, we have
w = Oh(z)1. If x contains a square yy as a proper factor, then certainly w contains one of
the overlaps 1h(y)h(y) or h(y)h(y)0. Furthermore, if 2 contains 212, then w contains the
overlap 011001100 and if x contains 20102, then w contains the overlap 1101001101001.
Finally, if w = Oh(z)1, then z must begin and end with 0 and contain at least one 1 or 2.
If begins with 02, then w contains the overlap 0010010, and if ends with 20, then w
contains the overlap 1011011. Thus, x begins with 01 and ends with 10.

For the other direction, let x € 33 be a squarefree word that contains no 212 or 20102.
First consider the word h(z), which is clearly a Dyck word. We now show that h(z) is
overlap-free. 'We verify by computer that if |x| < 10, then h(z) is overlap-free. So, we
may assume that |z| > 11. Suppose towards a contradiction that h(x) contains an overlap
z. Assume that z = 0y0y0; the case z = 1ylyl is similar, and the proof is omitted. We
consider several cases depending on the prefix of y.

If y starts with 0, then A=1(207') = h=(0y0y) is a square that appears as a proper
factor of z.

If y starts with 100, write y = 100y’, so that z = 01003'01003'0. In this case,
h=1(z071) = h~1(0100y'0100y") is a square that appears as a proper factor of z.

If y starts with 101, write y = 101%/, so that z = 0101y/0101y'0. Note that 00 is not a
factor of z, so any occurrence of 0101 in z is as a factor of h(2) = 001011. Consequently,
the word A=1(02071) = A=1(00101y/00101y/) is a square that appears as a proper factor
of x.

Finally, if y starts with 11, then write y = 11y/, so that z = 0113/011y/0. Then z is a
factor of h(ax'bx’c), where a,b,c € {1,2}, and the value of b is determined by the suffix of
y': if ¥/ ends with 001 then b = 2 and if ¥’ ends with 0 then b = 1. Clearly, we have a # b
and b # ¢, since otherwise x contains a square as a proper factor. However, if b = 2 then ¢/
ends with 001, which implies ¢ = 2, a contradiction. So, we have b = 1, and further, since

Lucas Mol, Narad Rampersad and Jeffrey Shallit

a # b and b # ¢, we have a = ¢ = 2. We therefore have a factor 22’122 of . Now z’ can
neither begin nor end with 2 or 1, so we have 22'12'2 = 202”0102”02. Similarly, the word
x” can neither begin nor end with 0 or 1, so we have 202”010z”02 = 2022"20102x"202,
whence x contains the forbidden factor 20102, a contradiction.

Thus, we conclude that h(x) is an overlap-free Dyck word. Finally, assume that z
begins with 01 and ends with 10, and consider the word Oh(x)l. Again, it is clear that
Oh(z)1 is a Dyck word, and we have already shown that the word h(z) is overlap-free.
Now 0h(x)1 begins with 0010011 and ends with 0011011. Note that the only occurrences
of 00100 and 11011 as factors of Oh(z)1 are as a prefix and a suffix, respectively. It follows
that if Oh(z)1 contains an overlap, then this overlap has period at most 4 and occurs as
either a prefix or a suffix of 0h(x)1. However, one easily verifies that no such overlap exists.
This completes the proof. O

Corollary 2.3. There are arbitrarily long overlap-free Dyck words of nesting levels 2 and 3.

Proof. Consider the well-known word s, which is the infinite fixed point, starting with 0,
of the morphism defined by 0 +— 012, 1 + 02, 2 — 1. Thue [18] proved that s is squarefree
and contains no 010 or 212; this is also easy to verify with Walnut (cf. [15]). Let = be a
prefix of s that ends in 10. Since the factor 10 appears infinitely many times in s, there
are arbitrarily long such words x. So, x is squarefree, contains no 212 or 20102, begins
in 01, and ends in 10. By Theorem 2.2, the words h(z) and Oh(x)1 are overlap-free Dyck
words. It is easy to see that h(z) has nesting level 2, and 0h(z)1 has nesting level 3, which
completes the proof. O

The third author and Zavyalov [16, Theorem 2] have given an alternative proof of
Corollary 2.3 (for nesting level 3). Their construction uses an implementation of transduc-
ers in Walnut to compute and output the nesting level of a word z if it is < 3 and output
4 otherwise.

Theorem 2.1 says that every 7/3-power-free Dyck word has nesting level at most 3.
We will see that this result is best possible with respect to the exponent 7/3; in fact,
there are 7/3"-power-free Dyck words of every nesting level. Before we proceed with the
construction of such words, we provide a very simple construction of cube-free Dyck words
of every nesting level, which serves as a preview of the main ideas in the more complicated
construction of 7/3"-power-free Dyck words of every nesting level.

Lemma 2.4. Let u and v be Dyck words, and let f : X5 — X% be the morphism defined by
f(0) =0u and f(1) =wvl. If w is a nonempty Dyck word, then f(w) is a Dyck word, and
N(f(w)) = N(w) + max(N (u), N(v)).

Proof. The proof is by induction on |w|. In the base case, if w = 01, then f(w) = Ouvl,
and N(f(w)) =1+ max(N(u), N(v)) = N(w) + max(N(u), N(v)).

Now suppose that |w| = n for some n > 2, and that the statement holds for all
nonempty Dyck words of length less than n. We have two cases.
Case 1: We have w = 0Oyl for some nonempty Dyck word y.

Dyck words, pattern avoidance, and automatic sequences

By the induction hypothesis, the word f(y) is a Dyck word with
N(f(y)) = N(y) + max(N(u), N(v)).
So f(w) = 0uf(y)vl is a Dyck word with

N(f(w)) =1 +max(N(u), N(f(y)), N(v))
=14 N(y) + max(N(u), N(v))
= N(w) + max(N(u), N(v)).

Case 2: We have w = yz for some nonempty Dyck words y, 2.
By the induction hypothesis, the word f(y) is a Dyck word with

N(f(y)) = N(y) + max(N(u), N(v)),

and f(z) is a Dyck word with N(f(z)) = N(z) + max(N(u), N(v)). Therefore, the word
f(w) = f(y)f(2) is a Dyck word with

N(f(w)) = max(N(f(y)), N(f(2)))
= max(N(y), N(z)) + max(N(u), N(v))
= N(w) + max(N(u), N(v)). O

Corollary 2.5. There is a cube-free Dyck word of every nesting level.

Proof. Let f : 35 — X3 be the morphism defined by f(0) = 001 and f(1) = 011. Note
that f(0) = Ou and f(1) = ul, where u = 01 is a Dyck word with N(u) = 1. It is also well-
known that the morphism f is cube-free; for example, this follows easily from a criterion
of Keréinen [7], which states that to confirm that a uniform binary morphism is cube-free,
it suffices to check that the images of all words of length at most 4 are cube-free. Thus, by
a straightforward induction using Lemma 2.4, we see that w; = f*(01) is a cube-free Dyck
word with N(w;) =t + 1. O

We now define the specific morphisms involved in our construction of 7/3%-power-free
Dyck words of arbitrarily large nesting level. Let g : 35 — X3 be the 6-uniform morphism
defined by

4(0) = 022012,
g(1) = 022112, and
9(2) = 202101.

Let f: X5 — X5 be the 38-uniform morphism defined by

f£(0) =00100110100110010110010011001011001101,
f(1) =00101100110100110110011010010110011011, and
f(2) =00101101001101001011001101001011010011.

Lucas Mol, Narad Rampersad and Jeffrey Shallit

We will show that for every ¢ > 0, the word f(¢"(2)) is a 7/3*-power-free Dyck word of
nesting level 2t + 2. The letters f and g denote these specific morphisms throughout the
remainder of this section.

Over the ternary alphabet Y3, we think of the letter 0 as a left parenthesis, the letter 1
as a right parenthesis, and the letter 2 as a Dyck word. So we will be particularly interested
in the ternary words for which the removal of every occurrence of the letter 2 leaves a Dyck
word, and we call these ternary Dyck words.

Definition 2.6. Let §: X5 — X3 be defined by 5(0) =0, 5(1) = 1, and §(2) = ¢, and let
w e 35, If f(w) is a Dyck word, then we say that w is a ternary Dyck word. In this case,
the nesting level of w, denoted N(w), is defined by N(w) = N(B(w)).

Lemma 2.7. Let w € 5. If w is a nonempty ternary Dyck word, then g(w) is a ternary
Dyck word with N(g(w)) = N(w) + 1.

Proof. Throughout this proof, we let u = 01, a Dyck word with nesting level 1. Note that
B(g(0)) = 001 = 0u, B(g(1)) = 011 = ul, and B(g(2)) = 0101 = u?.

The proof is by induction on |3(w)|. We have two base cases. If f(w) = ¢, then w = 2°
for some ¢ > 1, and N(w) = 0. We have 3(g(w)) = u*, so we see that g(w) is a ternary
Dyck word with N(g(w)) = 1 = N(w) + 1. If S(w) = 01, then w = 2102712 for some
i,7,k >0, and N(w) = 1. We have

Blg(w)) = v* (0u)u™ (ul)u®* = u? 0u??1u?,

so we see that g(w) is a ternary Dyck word with N(g(w)) =2 = N(w) + 1, as desired.
Now suppose that |f(w)| = n for some n > 2, and that the statement holds for all

ternary Dyck words w’ with |5(w’)| < n. We have two cases.

Case 1: We have f(w) = Oyl for some nonempty Dyck word y.

In this case we may write w = 2°0w'12/ for some 4,5 > 0, so that B(w') = y. By the

induction hypothesis, the word g(w’) is a ternary Dyck word with N(g(w')) = N(w') + 1.

It follows that 8(g(w)) = v*0uB(g(w’))ulu® is a Dyck word, so g(w) is a ternary Dyck

word, and

N(g(w)) =1+ N(g(w'))
=1+ N(w')+1
= N(w) + 1.

Case 2: We have f(w) = y19» for some nonempty Dyck words y1, ys.
Write w = wywy for some wy,ws € X% such that f(wy) = y1, and f(wy) = y2. By the
induction hypothesis, the words g(w;) and g(ws) are ternary Dyck words with

N(g(wy)) = N(wy) + 1, and N(g(ws)) = N(wq) + 1.

Dyck words, pattern avoidance, and automatic sequences

Therefore, the word g(w) = g(w;)g(ws) is a ternary Dyck word with

N(g(w)) = max (N (g(w1)), N(g(w2)))
= max(N(wq) + 1, N(wp) + 1)
= maX(N(wl) N(ws)) +1
N(w) +1. O

Lemma 2.8. Let w € ¥5. If w is a nonempty ternary Dyck word, then f(w) is a Dyck
word with N(f(w)) = 2N (w) + 2.

Proof. Note that f(0) = Ouy0ug, f(1) = usluyl, and f(2) = v, where uy, us, ug, and uy
are Dyck words of nesting level 2 and length 18, and v is a Dyck word of nesting level 2
and length 38.

The proof is by induction on |3(w)|. We have two base cases. If f(w) = ¢, then w = 2
for some ¢ > 1, and N(w) = 0. We have f(w) = v, so we see that f(w) is a Dyck word
with N(f(w)) =2 =2N(w) +2. If f(w) = 01, then w = 2/02712* for some i, j, k > 0, and
N(w) = 1. We have

f(w) = v"0ur Ougv?usluy 10,

so we see that f(w) is a Dyck word with N(f(w)) =4 = 2N (w) + 2.

Now suppose that |f(w)| = n for some n > 2, and that the statement holds for all
ternary Dyck words w’ with |5(w’)| < n. We have two cases.
Case 1: We have f(w) = Oyl for some nonempty Dyck word y.
In this case we may write w = 2'0w'12’ for some 4,5 > 0, so that B(w
induction hypothesis, the word f(w’) is a Dyck word with N(f(w'))
follows that f(w) = v*0u;0ug f(w)uzluylv? is a Dyck word with

N(f(w)) =2+ N(f(w')
=2+ 2N(w') +2
= 2N (w) + 2.

||"

Case 2: We have (w) = y1y» for some nonempty Dyck words y1, ys.
Write w = wyws for some wy, wy € 3% such that f(w;) = y1, and S(we) = yo. By the
induction hypothesis, the words f(w;) and f(ws) are Dyck words with

N(f(wy1)) =2N(wy) + 2, and N(f(wy)) = N(ws) + 1.

Therefore, the word f(w) = f(wy)f(ws) is a Dyck word with

N(f(w)) = max (N (f(w1)), N(f(w2)))
= max (2N (w1) + 2, 2N (w;) + 2)
— 2max(N(wy), N(wy)) +2
= 2N (w) + 2. L

Lucas Mol, Narad Rampersad and Jeffrey Shallit

Theorem 2.9. There are 7/3" -power-free Dyck words of every nesting level.

Proof. Let t > 0. We claim that the word f(¢*(2)) is a 7/3%-free Dyck word of nesting
level 2t + 2. Since 2 is a ternary Dyck word with nesting level 0, by Lemma 2.7, and
a straightforward induction, the word ¢'(2) is a ternary Dyck word with nesting level t.
Thus, by Lemma 2.8, the word f(g¢'(2)) is a Dyck word with nesting level 2t + 2.

It remains only to show that f(g¢*(2)) is 7/3"-power-free. We use the Walnut theorem-
prover to show that f(¢“(0)) is 7/3*-power-free, which is equivalent. One only need type
in the following commands:

morphism f
"0->00100110100110010110010011001011001101
1->00101100110100110110011010010110011011
2->00101101001101001011001101001011010011":

morphism g "0->022012 1->022112 2->202101":

promote GG g:
image DFG f GG:

eval DFGtest "?msd_6 Ei,n (n>=1) & At (3%t<=4x*n) =>
DFG[i+t]=DFG[i+t+n]":

and Walnut returns FALSE. Here the first two morphism commands define f and g, and
the next two commands create a DFAO for f(¢¥(0)). Finally, the last command asserts
the existence of a 7/3% power in f(g*(0)).

This was a large computation in Walnut, requiring 130 GB of memory and 20321
seconds of CPU time. O

Remark 2.10. An alternative method of proof is to first use Walnut to show that the word
g*(0) is overlap-free, and then apply an extended version [9, Lemma 23] of a well-known
result of Ochem [12, Lemma 2.1] to show that f(¢*(0)) is 7/3"-power-free.

3 Dyck factors of Thue-Morse

In this section we give a characterization of those factors of t, the Thue-Morse sequence,
that are Dyck.

Let g : 35 — X3 be the morphism defined by ¢(0) = 011, g(1) = 01, and ¢(2) = 0 and
let f: X5 — X5 be the morphism defined by f(0) = 012, f(1) = 02, and f(2) = 1. Define
s = f¥(0). It is well-known (see [8, Proposition 2.3.2]) that g(s) = t. Recall the morphism
h : X5 — 3% defined earlier by h(0) = 01, h(1) = 0011, and A(2) = 001011.

Theorem 3.1. The Dyck factors of the Thue-Morse word are exactly the words h(x) where
T 18 a factor of s.

Dyck words, pattern avoidance, and automatic sequences

Proof. By considering the return words of 11 in t (here what we mean are all factors r of t
that have exactly one occurrence of 11, as a suffix, and always occur in t either as a prefix
of t or following an occurrence of 11; see [2]) we see that t begins with 011 followed by a
concatenation of the four words

0011, 010011, 001011, 01001011.
These are all Dyck words, as shown by the bracketings
(0(01)1), (01)(0(01)1), (0(01)(01)1), ~ (01)(0(01)(01)1).

Furthermore, these words must have the above bracketings when they occur as factors of
any larger Dyck word in t. It follows that t = 011t/ where t’ is a concatenation of the
three Dyck words h(0) = 01, h(1) = 0011, and h(2) = 001011.

To complete the proof, it suffices to show that h(s) = (011)~'t = (011)'g(s). We have

R(F(0)) = h(012) = ¢(120210) = (0~ £(0)0)

h(f(1)) = h(02) = g(1210) = g(0~" f*(1)0)
h(f(2)) = h(1) = g(20) = g(0~" f*(2)0),
h(s) = h(f(s)) = g(07" f*(s)) = g(07"s) = (011)'g(s),
as required. O

4 Dyck factors of some automatic sequences

In this section we are concerned with Dyck factors of automatic sequences. Recall
that a sequence over a finite alphabet (s(n))n,>o is k-automatic if there exists a DFAO
(deterministic finite automaton with output) that, on input n expressed in base k, reaches
a state with output s(n).

Since the Dyck language is not a member of the FO[+]-definable languages [5], this
means that “automatic” methods (like that implemented in the Walnut system; see [11,15])
cannot always directly handle such words. However, in this section we show that if a k-
automatic sequence also has a certain special property, then the number of Dyck factors
of length n occurring in it is a k-regular sequence.

To explain the special property, we need the notion of synchronized sequence [14]. We
say a sequence (v(n)),>o is synchronized if there is a finite automaton accepting, in parallel,
the base-k representations of n and v(n). Here the shorter representation is padded with
leading zeros, if necessary.

Now suppose s = (s(n)),>0 is a k-automatic sequence taking values in ¥ and define
the running sum sequence v(n) = > _,_, s(i). If v.= (v(n))n>o is synchronized, we say
that s is running-sum synchronized. For example, any fixed point of a k-uniform binary
morphism such that the images of 0 and 1 have the same number of 1’s is running-sum
synchronized.

Lucas Mol, Narad Rampersad and Jeffrey Shallit

Theorem 4.1. Suppose s = (s(n))n>0 i a k-automatic sequence taking values in Xy that is
running-sum synchronized. Then there is an automaton accepting, in parallel, the base-k
representations of those pairs (i,n) for which sli..i +n — 1] is Dyck. Furthermore, there
is an automaton accepting, in parallel, the base-k representations of those triples (i,n,x)
for which s[i..i +n — 1] is Dyck and whose nesting level is x. In both cases, the automaton
can be effectively constructed.

Proof. We use the fact that it suffices to create first-order logical formulas for these claims
[15]. Suppose V' (n, x) is true if and only v(n) = x. Then define

Ni(i,n,x): Jy,z V(i,y) ANV(ii+nz) Ne+y=z
No(i,n,x) : Jy Ni(i,n,y) An=z+y
Dyck(i,n) : (3w No(i,n,w) A Ny(i,n,w)) A
(Vt,y,z (t <n A No(i,t,y) A Ni(i,t,2)) = y > 2).

Here
e Noy(i,n,x) asserts that [s[i..i +n — 1]|p = x;
e Ni(i,n,x) asserts that |s[i..i +n — 1]|; = z;
e Dyck(i,n) asserts that s[i..i +n — 1] is Dyck.

We can now build an automaton for Dyck(i,n) using the methods discussed in [15].

Next we turn to nesting level. First we need a first-order formula for the balance B(z)
of a factor x. Since we are only interested in balance for prefixes of Dyck words, it suffices
to compute max(0, B(z)) for a factor x. We can do this as follows:

Bal(i,n,z) : Jy,z No(i,n,y) A Ni(i,n,2) AN ((y<zAzxz=0)|(y>zANy=z+2)).
Next, we compute the nesting level of a factor, assuming it is Dyck:
Nest(i,n,z) : Im m <n A Bal(i,m,z) A Vp,y (p <n A Bal(i,p,y)) = y < x.

This completes the proof. O

Corollary 4.2. If s = (s(n))n>0 s a k-automatic sequence taking values in Xo that is
running-sum synchronized, then it is decidable

(a) whether s has arbitrarily large Dyck factors;

(b) whether Dyck factors of s are of unbounded nesting level.

Proof. Tt suffices to create first-order logical statements asserting the two properties:
(a) Vn Ji,m m >n A Dyck(i,m)

(b) Yq Ji,n,p Dyck(i,n) A Nest(i,n,p) A p > q.]
10

Dyck words, pattern avoidance, and automatic sequences

Example 4.3. As an example, let us use Walnut to prove that there is a Dyck factor of
the Thue-Morse word for all even lengths. We can use the following Walnut commands,
which implement the ideas above. We use the fact that the sum of T'[0..n — 1] is n/2 if n
is even, and (n —1)/2 4 T'[n — 1] if n is odd.

def even "Ek n=2x*k":

def odd "Ek n=2xk+1":

def V "($even(n) & 2*x=n) | ($odd(n) & 2*x+1=n & T[n-1]=00) |
($0dd(n) & 2*x=n+1 & T[n-1]=0@1)":

number of 1’s in prefix T[O..n-1]

def N1 "Ey,z $V(i,y) & $V(i+n,z) & x+y=z":
number of 1’s in T[i..i+n-1]
def NO "Ey $N1(i,n,y) & n=x+y":

def Dyck "(Ew $NO(i,n,w) & $N1(i,n,w)) &
At,y,z (t<n & $NO(i,t,y) & $N1(i,t,z)) => y>=z":
is T[i..i+n-1] a Dyck word?

eval AllLengths "An $even(n) => Ei $Dyck(i,n)":

and Walnut returns TRUE.

Example 4.4. Continuing the previous example, let us prove some other interesting state-
ments about the Dyck factors of the Thue-Morse word.

First we show that the nesting level of every Dyck factor of Thue-Morse is < 2. Of
course, this follows from Theorem 3.1, but this shows how it can be done for any automatic
sequence that is running-sum synchronized. We use the following Walnut commands:

def Bal "Ey,z $NO(i,n,y) & $N1(i,n,z) &

((y<z & x=0) | (y>=z & y=x+z))":

computes max(0, B(T[i..i+n])) where B is balance; 14 states
def Nest "Em (m<n) & $Bal(i,m,x) &

Ap,y (p<n & $Bal(i,p,y)) => y<=x":

computes nesting level of factor, assuming it is Dyck

eval maxnest2 "Ai,n,x ($Dyck(i,n) & $Nest(i,n,x)) => x<=2":

and Walnut returns TRUE for the last assertion.

We now consider two questions about the indices at which Dyck factors start in the
Thue-Morse word. First of all, we show that there is a Dyck word starting at every index
i such that T[] = 0. (The condition that T'[i] = 0 is obviously necessary.) We use the
following Walnut command:

eval everyindex "Ai T[i]=@0 => En (n>0) & $Dyck(i,n)":

11

Lucas Mol, Narad Rampersad and Jeffrey Shallit

and Walnut returns TRUE. We also describe the indices at which there are arbitrarily long
Dyck factors starting in the Thue-Morse by means of an automaton. We use the following
Walnut command:

def startlong "Am En (n>m) & $Dyck(i,n)":

and Walnut returns the 3-state automaton in Figure 1, which accepts base-2 representations
of i such that the Thue-Morse word has arbitrarily long Dyck factors starting at index .
In particular, we observe that there are infinitely many indices at which arbitrarily long
Dyck factors start in the Thue-More word.

0
[y
0 1
A0
Figure 1: DFA accepting base-2 representations of ¢ such that the Thue-Morse word has
arbitrarily long Dyck factors starting at index i.

Now we turn to enumerating Dyck factors by length. Let us recall that a sequence
(s(n))n>0 is k-regular if there is a finite set of sequences (s;(n))n>0, ¢ = 1,...,t, with
s = s1, such that every subsequence of the form (s(kn+a)),>o with e > 0 and 0 < a < k°
can be expressed as a linear combination of the s;. See [1] for more details.

Alternatively, a sequence (s(n)),>o is k-regular if there is a linear representation for
it. If v is a row vector of dimension ¢, w is a column vector of dimension ¢, and v is a
matrix-valued morphism with domain ¥, and range ¢ X t-matrices, then we say that the
triple (v, vy, w) is a linear representation for a function s(n), of rank ¢. It is defined by
s(n) = vy(z)w, where z is any base-k representation of n (i.e., possibly containing leading
zeroes). See [3] for more details.

It is not difficult to use the characterization of Theorem 3.1 to find a linear represen-
tation for d(n), the number of Dyck factors of length 2n appearing in t, the Thue-Morse
word. However, in this section we will instead use a different approach that is more general.

Theorem 4.5. Suppose s = (s(n)),>0 s a k-automatic sequence that is running-sum syn-
chronized. Then (d(n))n>0, the number of Dyck factors of length 2n appearing in s, is
k-regular.

Proof. 1t suffices to find a linear representation for d(n).
To do so, we first find a first-order formula asserting that s[i..i + n — 1] is nowvel; that
is, it is the first occurrence of this factor in s:

FacEq(i,j,n) : Vt (t <n) = s[i +t] =s[j +1]
Novel(i,n) : V5 FacEq(i,j,n) = j > 1.

12

Dyck words, pattern avoidance, and automatic sequences

Then the number of ¢ for which
Novel(i, 2n) A Dyck(i, 2n)

holds is precisely the number of Dyck factors of s of length 2n. Since s is k-automatic,
and its running sum sequence v is synchronized, it follows that there is an automaton
recognizing those ¢ and n for which Novel(i, 2n) A Dyck(i, 2n) evaluates to true, and from
known techniques we can construct a linear representation for the number of such . [

Corollary 4.6. Let d(n) denote the number of Dyck factors of length 2n appearing in the
Thue-Morse word. Then (d(n))n>o is a 2-reqular sequence.

Proof. We can carry out the proof of Theorem 4.5 in Walnut for t, as follows:

def FacEq "At (t<n) => T[i+t]=T[j+t]":
def Novel "Aj $FacEq(i,j,n) => j>=i":
def NovelDyck "$Dyck(i,n) & $Novel(i,n)":
def LR n "$NovelDyck(i,2*n)":

The last command creates a rank-29 linear representation for the number of length-2n
Dyck factors. 0

Remark 4.7. Using the algorithm of Schiitzenberger discussed in [3, Chapter 2], we can
minimize the linear representation obtained in the proof to find a linear representation
(va, Ya, wq) for d of rank 7, as follows:

r100 0 0 0 0
0010 0 0 O
T 0)= | 0000 0 0 1
=[1000000 =
Yd] 74(0) 000-2 3 -2 2
000 0 2 -2 2
| 0001/25/4 —5/23
010 0 0 0 0 -1
000 1 0 0 0 1
000 0 0 1 O 5
1) = | 000 3/4 11/8 —23/2 w,= |3].
Vd() 000 1/2 1/4 0 1 d 2
000-5/211/4 -2 3 4
000-7/219/4 -5 5 | 6

This gives a very efficient way to compute d(n).

Table 1 gives the first few terms of the sequence d(n). It is sequence A345199 in the
On-Line Encyclopedia of Integer Sequences [17].

10 11 12 13 14 15 16 17 18 19 20
8§ 8 12 9 12 13 8 14 16 14 16

n |01 23456 9
dn) |1 1 2 3 2 4 6 8

Table 1: First few values of d(n).

13

https://oeis.org/A345199

Lucas Mol, Narad Rampersad and Jeffrey Shallit

5 Upper and lower bounds for d(n)

In this section we prove tight upper and lower bounds for d(n), the number of Dyck
factors of t of length 2n.
We start with a characterization of some of the subsequences of (d(n)),>o-

Lemma 5.1. We have

d(2n) = 2d(n) (1)
d(4n+3) =2d(n) + d(2n+ 1) + ¢q(n) (2)
d8n+1) =2d(2n+1) + d(4n+ 1) — q(n) (3)

d(8n +5) =2d(n) + d(2n + 1) + 2d(2n + 2) (4)

NS

for allm > 3. Here q(n) is the 2-automatic sequence computed by the DFAQ in Figure

Figure 2: DFAO computing ¢(n). States are in the form ¢/a, where ¢ is the name of the
state and a is the output.

Proof. Notice that 1 < ¢(n) <2 for n > 1.

These relations can be proved using linear representations computable by Walnut. We
only prove the most complicated one, namely Eq. (3). Substituting n = m+ 3, we see that
Eq. (3) is equivalent to the claim that

d(8m + 25) = 2d(2m + 7) + d(4m + 13) — ¢(m + 3) for m > 0.

We now obtain linear representations for each of the terms, using the following Walnut
commands.

morphism aa "0->01 1->23 2->22 3->33":
morphism b "0->0 1->1 2->2 3->1":
promote Q1 aa:

image Q b Q1:

def terml m "$LR(i,8*m+25)":
def term2 m "$LR(i,2*m+7)":
def term3 m "$LR(i,4*m+13)":
def term4d m "(i=0 & Q[m+3]=01) | (i<=1 & Q[m+3]=02)":

14

Dyck words, pattern avoidance, and automatic sequences

From these four linear representations, using block matrices, we can easily create a linear
representation for

d(8m + 25) — 2d(2m + 7) — d(4m + 13) + q(m + 3).

It has rank 735. When we minimize it (using a Maple implementation of the Schiitzenberger
algorithm mentioned previously), we get the linear representation for the 0 function, thus
proving the identity.

The other identities can be proved similarly. O]

Theorem 5.2. We have d(n) < n for all n > 1. Furthermore, this bound is tight, since
d(n)=n forn=3-2" and i > 0.

Proof. We will actually prove the stronger bound that d(n) < n— (n mod 2) for n > 1, by
induction.

The base caseis 1 < n < 29. In this case we can verify the bound by direct computation.
Otherwise assume n > 29 and the bound is true for all smaller positive n’ < n (the 29
comes from the fact that Eq. (4) is only valid for n > 3); we prove it for n.

There are four cases to consider: n =0 (mod 2), n = 3 (mod 4), n = 1 (mod 8), and
n =5 (mod 8).

Suppose n = 0 (mod 2). By induction we have d(n/2) < n/2 — (n/2 mod 2). But from
Eq. (1) we have d(n) = 2d(n/2) < 2(n/2) —2(n/2 mod 2) < n.

Suppose n = 3 (mod 4). By induction we have

d((n—3)/4) < (n—3)/4— ((n—3)/4 mod 2) and
d(n—1)/2) < (n—1)/2—((n—1)/2 mod 2).
From Eq. (2) we have
d(n) = 2d((n —3)/4) + d((n —1)/2) + q((n = 3)/4)
(n—3)/2—-2((n—3)/4mod 2) + (n—1)/2 — ((n —1)/2 mod 2)
+q((n—3)/4)
<n-—1,

as desired.
Suppose n = 1 (mod 8). By induction we have

d((n+3)/4) < (n+3)/4—((n+3)/4 mod 2) and
d(n+1)/2) < (n+1)/2—((n+1)/2 mod 2).
From Eq. (3) we have
d(n) = 2d((n +3)/4) + d((n +1)/2) — ¢((n —1)/8)
<(n+3)/2—-2((n+3)/4mod 2) + (n+1)/2 —2((n+1)/2 mod 2)
—q((n—1)/8)

S’I’L—l,

15

Lucas Mol, Narad Rampersad and Jeffrey Shallit

as desired.
Suppose n =5 (mod 8). By induction we have

d((n —5)/8) < (n—5)/8 — ((n — 5)/8 mod 2)
d((n—1)/4) < (n—1)/4— ((n — 1)/4 mod 2)
d((n+3)/4) < (n+3)/4 — ((n+3)/4 mod 2).

From Eq. (4) we have

d(n) =2d((n —5)/8) +d((n —1)/4) + 2d((n + 3)/4)
<(n—->5)/4—2((n—>5)/8mod 2)+ (n—1)/4—((n—1)/4 mod 2)
+(n+3)/2—=2((n+3)/4 mod 2)
<n-— 17

as desired. This completes the proof of the upper bound.

We can see that d(n) = n for n = 3 - 2% as follows. Using the linear representation for
n we have d(3 - 2") = v474(11)74(0) wg.

The minimal polynomial of v4(0) is X*(X — 1)(X + 1)(X — 2). It follows that

d(3-2")=a-2"+b+c(—1) fori>2.

Solving for the constants, we find that a = 3, b = 0, ¢ = 0, and hence d(3 - 2") = 3- 2" as
claimed. u

Theorem 5.3. We have d(n) > n/2 forn > 0, and d(n) > (n+ 3)/2 for n > 1 odd.
Furthermore, the bound d(n) > n/2 is attained infinitely often.

Proof. We prove the result by induction on n. It is easy to verify by direct computation
that the result is true for n < 29. Otherwise assume n > 29 and the bound is true for all
small positive n’ < n; we prove it for n.

Again we consider the four cases n = 0 (mod 2), n = 3 (mod 4), n = 1 (mod 8), and
n =5 (mod 8).

Suppose n = 0 (mod 2). By induction and Eq. (1) we have

d(n) =2d(n/2) >2(n/2)/2 =n/2.

Otherwise n is odd.
Suppose n = 3 (mod 4). By induction we have

16

Dyck words, pattern avoidance, and automatic sequences

Hence, using Eq. (2) we get

d(n) = 2d((n — 3)/4) +d((n —1)/2) + q((n — 3)/4)
> (n—3)/4+ (n+5)/4+ q((n—3)/4)
>(n+1)/2+1

= (n+3)/2.

Suppose n = 1 (mod 8). By induction we have

d((n+3)/4)
d((n+1)/2)

Hence, using Eq. (3) we get

(n+3)/4+3)/2=(n+15)/8

>
>((n+1)/2+3)/2=(n+T7)/4

d(n) = 2d((n+3)/4) + d((n +1)/2) — q((n — 1)/8)
> (n+15)/4+ (n+7)/4 -2
=(n+7)/2.

Suppose n = 5 (mod 8). By induction we have

d((n—5)/8) = (n—5)/16
d((n—1)/4) = ((n = 1)/4+3)/2 = (n +11)/8
d((n+3)/4) = (n+3)/8.

Hence, using Eq. (4) we get

d(n) =2d((n—5)/8)+d((n—1)/4) + 2d((n + 3)/4)
>2(n—"5)/16+ (n+11)/8+2(n+3)/8
= (n+3)/2.
This completes the induction proof of both lower bounds.

It is easy to prove, using the same techniques as in the last part of the proof of Theo-
rem 5.2, that d(n) =n/2 for n = 2", 1 > 2. O

Theorem 5.4. We have) ;o d(i) =19 -4"/48 — 2" /4 +5/3 for n > 2.

Proof. The summation), o, d(i) is easily seen to equal v4(7a(0) + va(1))"ws. We can
then apply the same techniques as above to the matrix 74(0) + v4(1). O

It follows that the “average” value of d(n) is L2n.

17

Lucas Mol, Narad Rampersad and Jeffrey Shallit

6 Dyck words in other sequences

Proposition 6.1. The only nonempty Dyck words in the Fibonacci word f are 01 and 0101.

Proof. Let 6 be the Fibonacci morphism defined by 6(0) = 01 and 6(1) = 0. Let w be
a nonempty Dyck factor of the Fibonacci word. Then w begins with 0, ends with 1, and
has an equal number of 0’s and 1’s. It follows that w = #(w'), where w’ is a factor of the
Fibonacci word consisting entirely of 0’s. However, the longest such w’ is w’ = 00. O]

A similar argument applied to the morphism that maps 0 — 01 and 1 — 00 gives the
following result.

Proposition 6.2. The only nonempty Dyck words in the period-doubling sequence are 01,
0101, and 010101.

Recall that the Rudin-Shapiro sequence r = (r(n)),>o is defined to be the number of
occurrences of 11, taken modulo 2, in the base-2 expansion of n.

Theorem 6.3. There are Dyck factors of arbitrarily large nesting level in the Rudin-Shapiro
sequence.

Proof. For n > 0 define x,, = r[2-4"..4"*"1 — 1]. We will show, by induction on n, that z,
is a Dyck factor of nesting level 2"+ — 1.

The base case is n = 0. In this case r[2..3] = 01 is a Dyck factor of nesting level 1.

For n > 0 define y, = r[0..2 - 4" — 1]. We claim that 2,11 = Y2, UnZy,; this follows
immediately by considering the first three bits of the base-2 representations of the numbers
in the range [2 - 4"*1.4"2 —1].

Define s(n) = > c;c,(—1)". It should be clear that s(n) is the imbalance between
the number of 0’s (left parens) and 1’s (right parens) in r[0..n]. We now claim that
0 < s(i) <s(2-4"—1) =2""1for 0 <4 < 2-4" — 1. In fact, the stronger claim
s(i) > 0 for all 7 is [4, Satz 9]. The fact that s(2-4" — 1) = 2"*! is [4, Beispiel 6], and the
inequality s(i) < 2" for 0 <4 < 2-4" —1 can be deduced from [4, Satz 9]. Thus we have
shown that the imbalance of y, is 2"*!, the imbalance of x, is 0 and its nesting level is
271 — 1, the imbalance of 7, is —2""!, and hence 2,41 = ¥,2, U2, is Dyck with nesting
level 272 — 1. O

Theorem 6.4. The set of n such that there is a Dyck factor of length n in the Rudin-Shapiro
word is a 4-automatic (and hence 2-automatic) set.

Proof. Our proof uses Walnut. However, the reader will recall from our earlier discussion
that we need r to be running-sum synchronized (i.e., there is an automaton accepting in
parallel the base-2 representations of n and) .., 7(n)) in order for us to be able to
apply Walnut. It turns out that r is not running-sum synchronized for base 2. However,
in [13] the last two authors show that r is (4, 2)-running-sum synchronized; i.e., there is

18

Dyck words, pattern avoidance, and automatic sequences

an automaton accepting in parallel the representations of n and). i<n r(j), where n is
given in base-4 and the running sum® is given in base-2.

Figure 3: DFA accepting base-4 representations of n such that the Rudin—Shapiro sequence
contains a Dyck factor of length n.

The Walnut code given below computes an automaton (Figure 3) accepting the base-4
representations of all n such that there is a Dyck factor of length n in the Rudin-Shapiro
word. Here RS4 refers to a DFAO that takes the base-4 representation of n as input and
computes the n-th term of the Rudin-Shapiro sequence over {+1, —1} (so here +1 plays the
role of the left parenthesis and —1 plays the role of the right parenthesis). The command
$rss(i,x) refers to an invocation of the automaton given in [13] for the running sum
function; i.e., this command returns TRUE if x is the base-2 representation of > ., 7(j)
and 7 is given in base-4.

eval dyck_rs "Ei “msd_4 n>=1 &

(Ax,y ($rss(i,x) & $rss(i+n-1,y) & RS4[i] = @1) =>
7msd_2 x=y+1) &
(Ax,y ($rss(i,x) & $rss(i+n-1,y) & RS4[i] = @-1) =>

msd_2 x=y-1) &

(Ax,y,t (t<n & $rss(i,x) & Prss(i+t,y) & RS4[i] = @1) =>
msd_2 x<=y+1) &
(Ax,y,t (t<n & $rss(i,x) & $rss(i+t,y) & RS4[i] = @-1) =>

7msd_2 x<=y-1)":

!The running sum here is somewhat unusually indexed as running from 0 to n rather than from 0 to
n — 1, which leads to the awkward appearance of various +1 or —1 terms in our Walnut formula.

19

Lucas Mol, Narad Rampersad and Jeffrey Shallit

]

We also offer the following conjecture concerning the Dyck factors of the paperfolding
sequence.

Conjecture 6.5. The paperfolding sequence has a Dyck factor of length n iff n is of the
form 28 — 20 for 0 < i < k.

Acknowledgments

Research of Lucas Mol is supported by an NSERC Grant, Grant number RGPIN-2021-
04084. Research of Narad Rampersad is supported by an NSERC Grant, Grant number
2019-04111. Research of Jeffrey Shallit is supported by an NSERC Grant, Grant number
2018-04118.

References

[1] J.-P. Allouche and J. Shallit. The ring of k-regular sequences. Theoret. Comput. Sci.,
98(2):163-197, 1992.

[2] L. Balkové, E. Pelantovd, and W. Steiner. Return words in the Thue-Morse and other
sequences, 2006. Preprint available at https://hal.science/hal-00089863v2.

[3] J. Berstel and C. Reutenauer. Noncommutative rational series with applications, volume 137
of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 2011.

[4] J. Brillhart and P. Morton. Uber Summen von Rudin-Shapiroschen Koeffizienten. Illinois
J. Math., 22(1):126-148, 1978.

[5] C. Choffrut, A. Malcher, C. Mereghetti, and B. Palano. First-order logics: some character-
izations and closure properties. Acta Inform., 49(4):225-248, 2012.

[6] N. Chomsky and M. P. Schiitzenberger. The algebraic theory of context-free languages.
In Computer programming and formal systems, pages 118-161. North-Holland, Amsterdam,
1963.

[7] V. Kerénen. On k-repetition freeness of length uniform morphisms over a binary alphabet.
Discrete Appl. Math., 9(3):297-300, 1984.

[8] M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cambridge Uni-
versity Press, Cambridge, 1997.

[9] L. Mol, N. Rampersad, and J. Shallit. Extremal overlap-free and extremal S-free binary
words. Electron. J. Combin., 27(4):Paper No. 4.42, 2020.

[10] L. Mol, N. Rampersad, and J. Shallit. Dyck words, pattern avoidance, and automatic
sequences. In Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci.,
pages 220-232. Springer, 2023.

20

https://hal.science/hal-00089863v2

Dyck words, pattern avoidance, and automatic sequences

[11] H. Mousavi. Automatic theorem proving in Walnut, 2016. Preprint available at http:
//arxiv.org/abs/1603.06017.

[12] P. Ochem. A generator of morphisms for infinite words. Theor. Inform. Appl., 40(3):427-441,
2006.

[13] N. Rampersad and J. Shallit. Rudin-Shapiro sums via automata theory and logic. In
Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci., pages 233-246.
Springer, 2023.

[14] J. Shallit. Synchronized sequences. In Combinatorics on words, volume 12847 of Lecture
Notes in Comput. Sci., pages 1-19. Springer, 2021.

[15] J. Shallit. The logical approach to automatic sequences—exploring combinatorics on words
with Walnut, volume 482 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 2023.

[16] J. Shallit and A. Zavyalov. Transduction of automatic sequences and applications. In
Implementation and application of automata, volume 14151 of Lecture Notes in Comput.
Sci., pages 266-277. Springer, 2023.

[17] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2022. Available online at
https://oeis.org.

[18] A. Thue. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk.
Skr. Mat. Nat. Kl., 1:1-67, 1912. Reprinted in Selected Mathematical Papers of Axel Thue,
T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413-478.

Received: December 15, 2023
Accepted for publication: May 27, 2024
Communicated by: Rigo Michel, Emilie Charlier and Julien Leroy

21

http://arxiv.org/abs/1603.06017
http://arxiv.org/abs/1603.06017
https://oeis.org

	Introduction
	Repetitions and Dyck words
	Dyck factors of Thue-Morse
	Dyck factors of some automatic sequences
	Upper and lower bounds for d(n)
	Dyck words in other sequences

