
Communications in Mathematics 33 (2025), no. 2, Paper no. 5
DOI: https://doi.org/10.46298/cm.12695
©2025 Lucas Mol, Narad Rampersad and Jeffrey Shallit
This is an open access article licensed under the CC BY-SA 4.0

Dyck words, pattern avoidance, and automatic sequences

Lucas Mol, Narad Rampersad and Jeffrey Shallit

Abstract. We study various aspects of Dyck words appearing in binary sequences,
where 0 is treated as a left parenthesis and 1 as a right parenthesis. We show that
binary words that are 7/3-power-free have bounded nesting level, but this no longer
holds for larger repetition exponents. We give an explicit characterization of the
factors of the Thue-Morse word that are Dyck, and show how to count them. We
also prove tight upper and lower bounds on f(n), the number of Dyck factors of
Thue-Morse of length 2n.

Contents

1 Introduction 2

2 Repetitions and Dyck words 2

3 Dyck factors of Thue-Morse 8

4 Dyck factors of some automatic sequences 9

5 Upper and lower bounds for d(n) 14

6 Dyck words in other sequences 18

MSC 2020: 68R15
Keywords: Dyck word, pattern avoidance, automatic sequence
Contact information:

L. Mol:
Affiliation: Department of Mathematics and Statistics, Thompson Rivers University,

Canada.
Email: lmol@tru.ca

N. Rampersad:
Affiliation: Department of Mathematics and Statistics, University of Winnipeg, Canada.
Email: n.rampersad@uwinnipeg.ca

J. Shallit:
Affiliation: School of Computer Science, University of Waterloo, Canada.
Email: shallit@uwaterloo.ca

1

ar
X

iv
:2

30
1.

06
14

5v
3

 [
cs

.D
M

]
 3

1
Ju

l 2
02

4

Lucas Mol, Narad Rampersad and Jeffrey Shallit

1 Introduction

We define Σk := {0, 1, . . . , k− 1}. Suppose x ∈ Σ∗
2; that is, suppose x is a finite binary

word. We say it is a Dyck word if, considering 0 as a left parenthesis and 1 as a right
parenthesis, the word represents a string of balanced parentheses [6]. For example, 010011
is Dyck, while 0110 is not. Formally, x is Dyck if x is empty, or there are Dyck words y, z
such that either x = 0y1 or x = yz. The set of all Dyck words forms the Dyck language.

In this paper we are concerned with the properties of factors of infinite binary words
that are Dyck words.

If x is a Dyck word, we may talk about its nesting level N(x), which is the deepest
level of parenthesis nesting in the string it represents. Formally, we have that N(ϵ) = 0,
N(0y1) = N(y) + 1, and N(yz) = max(N(y), N(z)) if y, z are Dyck words. The Dyck
property and nesting level are intimately connected with balance, which is a function
defined by B(x) = |x|0 − |x|1, the excess of 0’s over 1’s in x. It is easy to see that a word
is Dyck if and only if B(x) = 0 and B(x′) ≥ 0 for every prefix x′ of x. Furthermore, the
nesting level of a Dyck word x is the maximum of B(x′) over all prefixes x′ of x.

In this paper we will also be concerned with pattern avoidance, particularly avoidance
of powers. We say a finite word w = w[1..n] has period p ≥ 1 if w[i] = w[i+p] for all indices
i with 1 ≤ i ≤ n− p. The smallest period of w is called the period, and is denoted per(w).
The exponent of a finite word w is defined to be exp(w) := |w|/ per(w). A word with
exponent α is said to be an α-power. For example, exp(alfalfa) = 7/3 and so alfalfa is
a 7/3-power. If a word contains no powers ≥ α, then we say it is α-power-free. If it contains
no powers > α, then we say it is α+-power-free. If w is a finite or infinite word, its critical
exponent is defined to be ce(w) := sup{exp(x) : x is a finite nonempty factor of w}. A
square is a word of the form xx, where x is a nonempty word. An overlap is a word of the
form axaxa, where a is a single letter and x is a possibly empty word.

Some of our work is carried out using the Walnut theorem prover, which can rigorously
prove many results about automatic sequences. See [11, 15] for more details. Walnut is
free software that can be downloaded at

https://cs.uwaterloo.ca/~shallit/walnut.html .
A preliminary version of this paper appeared previously [10].

2 Repetitions and Dyck words

Theorem 2.1. If a binary word is 7/3-power-free and Dyck, then its nesting level is at
most 3.

Proof. The 7/3-power-free Dyck words of nesting level 1 are 01 and 0101. The set of 7/3-
power-free Dyck words of nesting level 2 is therefore a subset of {01, 0011, 001011}∗. Let
x be a 7/3-power-free Dyck word of nesting level 3. Suppose that x = 0y1, where y has
nesting level 2. Then, to avoid the cubes 000 and 111, the word y must begin with 01
and end with 01. Furthermore, since y has nesting level 2 it must contain one of 0011 or
001011. Write x = 001y′011. The word y′ cannot begin or end with 01, since that would

2

https://cs.uwaterloo.ca/~shallit/walnut.html

Dyck words, pattern avoidance, and automatic sequences

imply that x contains one of the 5/2-powers 01010 or 10101. Thus y′ begins with 001 and
ends with 011, which means x begins with 001001 and ends with 011011. Consequently
x cannot be extended to the left or to the right without creating a cube or 7/3-power.
Furthermore, this implies that a 7/3-power-free Dyck word of nesting level 3 cannot be
written as a concatenation of two non-empty Dyck words, nor can it be extended to a
7/3-power-free Dyck word of nesting level 4.

Theorem 2.2. Define h(0) = 01, h(1) = 0011, and h(2) = 001011. A binary word w is an
overlap-free Dyck word if and only if either

(i) w = h(x), where x ∈ Σ∗
3 contains no square as a proper factor and contains no 212

or 20102; or

(ii) w = 0h(x)1, where x ∈ Σ∗
3 is square-free, begins with 01 and ends with 10, and

contains no 212 or 20102.

Proof. Let w be an overlap-free Dyck word. By Theorem 2.1, we have N(w) ≤ 3. Suppose
N(w) ≤ 2. Then w ∈ {01, 0011, 001011}∗ by the proof of Theorem 2.1. So, we have
w = h(x) for some x ∈ Σ∗

3. If N(w) = 3, then by the proof of Theorem 2.1, we have
w = 0h(x)1. If x contains a square yy as a proper factor, then certainly w contains one of
the overlaps 1h(y)h(y) or h(y)h(y)0. Furthermore, if x contains 212, then w contains the
overlap 011001100 and if x contains 20102, then w contains the overlap 1101001101001.
Finally, if w = 0h(x)1, then x must begin and end with 0 and contain at least one 1 or 2.
If x begins with 02, then w contains the overlap 0010010, and if x ends with 20, then w
contains the overlap 1011011. Thus, x begins with 01 and ends with 10.

For the other direction, let x ∈ Σ∗
3 be a squarefree word that contains no 212 or 20102.

First consider the word h(x), which is clearly a Dyck word. We now show that h(x) is
overlap-free. We verify by computer that if |x| ≤ 10, then h(x) is overlap-free. So, we
may assume that |x| ≥ 11. Suppose towards a contradiction that h(x) contains an overlap
z. Assume that z = 0y0y0; the case z = 1y1y1 is similar, and the proof is omitted. We
consider several cases depending on the prefix of y.

If y starts with 0, then h−1(z0−1) = h−1(0y0y) is a square that appears as a proper
factor of x.

If y starts with 100, write y = 100y′, so that z = 0100y′0100y′0. In this case,
h−1(z0−1) = h−1(0100y′0100y′) is a square that appears as a proper factor of x.

If y starts with 101, write y = 101y′, so that z = 0101y′0101y′0. Note that 00 is not a
factor of x, so any occurrence of 0101 in z is as a factor of h(2) = 001011. Consequently,
the word h−1(0z0−1) = h−1(00101y′00101y′) is a square that appears as a proper factor
of x.

Finally, if y starts with 11, then write y = 11y′, so that z = 011y′011y′0. Then z is a
factor of h(ax′bx′c), where a, b, c ∈ {1, 2}, and the value of b is determined by the suffix of
y′: if y′ ends with 001 then b = 2 and if y′ ends with 0 then b = 1. Clearly, we have a ̸= b
and b ̸= c, since otherwise x contains a square as a proper factor. However, if b = 2 then y′

ends with 001, which implies c = 2, a contradiction. So, we have b = 1, and further, since

3

Lucas Mol, Narad Rampersad and Jeffrey Shallit

a ̸= b and b ̸= c, we have a = c = 2. We therefore have a factor 2x′1x′2 of x. Now x′ can
neither begin nor end with 2 or 1, so we have 2x′1x′2 = 20x′′010x′′02. Similarly, the word
x′′ can neither begin nor end with 0 or 1, so we have 20x′′010x′′02 = 202x′′′20102x′′′202,
whence x contains the forbidden factor 20102, a contradiction.

Thus, we conclude that h(x) is an overlap-free Dyck word. Finally, assume that x
begins with 01 and ends with 10, and consider the word 0h(x)1. Again, it is clear that
0h(x)1 is a Dyck word, and we have already shown that the word h(x) is overlap-free.
Now 0h(x)1 begins with 0010011 and ends with 0011011. Note that the only occurrences
of 00100 and 11011 as factors of 0h(x)1 are as a prefix and a suffix, respectively. It follows
that if 0h(x)1 contains an overlap, then this overlap has period at most 4 and occurs as
either a prefix or a suffix of 0h(x)1. However, one easily verifies that no such overlap exists.
This completes the proof.

Corollary 2.3. There are arbitrarily long overlap-free Dyck words of nesting levels 2 and 3.

Proof. Consider the well-known word s, which is the infinite fixed point, starting with 0,
of the morphism defined by 0 7→ 012, 1 7→ 02, 2 7→ 1. Thue [18] proved that s is squarefree
and contains no 010 or 212; this is also easy to verify with Walnut (cf. [15]). Let x be a
prefix of s that ends in 10. Since the factor 10 appears infinitely many times in s, there
are arbitrarily long such words x. So, x is squarefree, contains no 212 or 20102, begins
in 01, and ends in 10. By Theorem 2.2, the words h(x) and 0h(x)1 are overlap-free Dyck
words. It is easy to see that h(x) has nesting level 2, and 0h(x)1 has nesting level 3, which
completes the proof.

The third author and Zavyalov [16, Theorem 2] have given an alternative proof of
Corollary 2.3 (for nesting level 3). Their construction uses an implementation of transduc-
ers in Walnut to compute and output the nesting level of a word x if it is ≤ 3 and output
4 otherwise.

Theorem 2.1 says that every 7/3-power-free Dyck word has nesting level at most 3.
We will see that this result is best possible with respect to the exponent 7/3; in fact,
there are 7/3+-power-free Dyck words of every nesting level. Before we proceed with the
construction of such words, we provide a very simple construction of cube-free Dyck words
of every nesting level, which serves as a preview of the main ideas in the more complicated
construction of 7/3+-power-free Dyck words of every nesting level.

Lemma 2.4. Let u and v be Dyck words, and let f : Σ∗
2 → Σ∗

2 be the morphism defined by
f(0) = 0u and f(1) = v1. If w is a nonempty Dyck word, then f(w) is a Dyck word, and
N(f(w)) = N(w) + max(N(u), N(v)).

Proof. The proof is by induction on |w|. In the base case, if w = 01, then f(w) = 0uv1,
and N(f(w)) = 1 + max(N(u), N(v)) = N(w) + max(N(u), N(v)).

Now suppose that |w| = n for some n > 2, and that the statement holds for all
nonempty Dyck words of length less than n. We have two cases.
Case 1: We have w = 0y1 for some nonempty Dyck word y.

4

Dyck words, pattern avoidance, and automatic sequences

By the induction hypothesis, the word f(y) is a Dyck word with

N(f(y)) = N(y) + max(N(u), N(v)).

So f(w) = 0uf(y)v1 is a Dyck word with

N(f(w)) = 1 + max(N(u), N(f(y)), N(v))

= 1 +N(y) + max(N(u), N(v))

= N(w) + max(N(u), N(v)).

Case 2: We have w = yz for some nonempty Dyck words y, z.
By the induction hypothesis, the word f(y) is a Dyck word with

N(f(y)) = N(y) + max(N(u), N(v)),

and f(z) is a Dyck word with N(f(z)) = N(z) + max(N(u), N(v)). Therefore, the word
f(w) = f(y)f(z) is a Dyck word with

N(f(w)) = max(N(f(y)), N(f(z)))

= max(N(y), N(z)) + max(N(u), N(v))

= N(w) + max(N(u), N(v)).

Corollary 2.5. There is a cube-free Dyck word of every nesting level.

Proof. Let f : Σ∗
2 → Σ∗

2 be the morphism defined by f(0) = 001 and f(1) = 011. Note
that f(0) = 0u and f(1) = u1, where u = 01 is a Dyck word with N(u) = 1. It is also well-
known that the morphism f is cube-free; for example, this follows easily from a criterion
of Keränen [7], which states that to confirm that a uniform binary morphism is cube-free,
it suffices to check that the images of all words of length at most 4 are cube-free. Thus, by
a straightforward induction using Lemma 2.4, we see that wt = f t(01) is a cube-free Dyck
word with N(wt) = t+ 1.

We now define the specific morphisms involved in our construction of 7/3+-power-free
Dyck words of arbitrarily large nesting level. Let g : Σ∗

3 → Σ∗
3 be the 6-uniform morphism

defined by

g(0) = 022012,

g(1) = 022112, and

g(2) = 202101.

Let f : Σ∗
3 → Σ∗

2 be the 38-uniform morphism defined by

f(0) = 00100110100110010110010011001011001101,

f(1) = 00101100110100110110011010010110011011, and

f(2) = 00101101001101001011001101001011010011.

5

Lucas Mol, Narad Rampersad and Jeffrey Shallit

We will show that for every t ≥ 0, the word f(gt(2)) is a 7/3+-power-free Dyck word of
nesting level 2t + 2. The letters f and g denote these specific morphisms throughout the
remainder of this section.

Over the ternary alphabet Σ3, we think of the letter 0 as a left parenthesis, the letter 1
as a right parenthesis, and the letter 2 as a Dyck word. So we will be particularly interested
in the ternary words for which the removal of every occurrence of the letter 2 leaves a Dyck
word, and we call these ternary Dyck words.

Definition 2.6. Let β : Σ∗
3 → Σ∗

2 be defined by β(0) = 0, β(1) = 1, and β(2) = ε, and let
w ∈ Σ∗

3. If β(w) is a Dyck word, then we say that w is a ternary Dyck word. In this case,
the nesting level of w, denoted N(w), is defined by N(w) = N(β(w)).

Lemma 2.7. Let w ∈ Σ∗
3. If w is a nonempty ternary Dyck word, then g(w) is a ternary

Dyck word with N(g(w)) = N(w) + 1.

Proof. Throughout this proof, we let u = 01, a Dyck word with nesting level 1. Note that
β(g(0)) = 001 = 0u, β(g(1)) = 011 = u1, and β(g(2)) = 0101 = u2.

The proof is by induction on |β(w)|. We have two base cases. If β(w) = ε, then w = 2i

for some i ≥ 1, and N(w) = 0. We have β(g(w)) = u2i, so we see that g(w) is a ternary
Dyck word with N(g(w)) = 1 = N(w) + 1. If β(w) = 01, then w = 2i02j12k for some
i, j, k ≥ 0, and N(w) = 1. We have

β(g(w)) = u2i(0u)u2j(u1)u2k = u2i0u2j+21u2k,

so we see that g(w) is a ternary Dyck word with N(g(w)) = 2 = N(w) + 1, as desired.
Now suppose that |β(w)| = n for some n > 2, and that the statement holds for all

ternary Dyck words w′ with |β(w′)| < n. We have two cases.
Case 1: We have β(w) = 0y1 for some nonempty Dyck word y.
In this case we may write w = 2i0w′12j for some i, j ≥ 0, so that β(w′) = y. By the
induction hypothesis, the word g(w′) is a ternary Dyck word with N(g(w′)) = N(w′) + 1.
It follows that β(g(w)) = u2i0uβ(g(w′))u1u2j is a Dyck word, so g(w) is a ternary Dyck
word, and

N(g(w)) = 1 +N(g(w′))

= 1 +N(w′) + 1

= N(w) + 1.

Case 2: We have β(w) = y1y2 for some nonempty Dyck words y1, y2.
Write w = w1w2 for some w1, w2 ∈ Σ∗

3 such that β(w1) = y1, and β(w2) = y2. By the
induction hypothesis, the words g(w1) and g(w2) are ternary Dyck words with

N(g(w1)) = N(w1) + 1, and N(g(w2)) = N(w2) + 1.

6

Dyck words, pattern avoidance, and automatic sequences

Therefore, the word g(w) = g(w1)g(w2) is a ternary Dyck word with

N(g(w)) = max (N(g(w1)), N(g(w2)))

= max(N(w1) + 1, N(w2) + 1)

= max(N(w1), N(w2)) + 1

= N(w) + 1.

Lemma 2.8. Let w ∈ Σ∗
3. If w is a nonempty ternary Dyck word, then f(w) is a Dyck

word with N(f(w)) = 2N(w) + 2.

Proof. Note that f(0) = 0u10u2, f(1) = u31u41, and f(2) = v, where u1, u2, u3, and u4

are Dyck words of nesting level 2 and length 18, and v is a Dyck word of nesting level 2
and length 38.

The proof is by induction on |β(w)|. We have two base cases. If β(w) = ε, then w = 2i

for some i ≥ 1, and N(w) = 0. We have f(w) = v, so we see that f(w) is a Dyck word
with N(f(w)) = 2 = 2N(w) + 2. If β(w) = 01, then w = 2i02j12k for some i, j, k ≥ 0, and
N(w) = 1. We have

f(w) = vi0u10u2v
ju31u41v

k,

so we see that f(w) is a Dyck word with N(f(w)) = 4 = 2N(w) + 2.
Now suppose that |β(w)| = n for some n > 2, and that the statement holds for all

ternary Dyck words w′ with |β(w′)| < n. We have two cases.
Case 1: We have β(w) = 0y1 for some nonempty Dyck word y.
In this case we may write w = 2i0w′12j for some i, j ≥ 0, so that β(w′) = y. By the
induction hypothesis, the word f(w′) is a Dyck word with N(f(w′)) = 2N(w′) + 2. It
follows that f(w) = vi0u10u2f(w

′)u31u41v
j is a Dyck word with

N(f(w)) = 2 +N(f(w′))

= 2 + 2N(w′) + 2

= 2N(w) + 2.

Case 2: We have β(w) = y1y2 for some nonempty Dyck words y1, y2.
Write w = w1w2 for some w1, w2 ∈ Σ∗

3 such that β(w1) = y1, and β(w2) = y2. By the
induction hypothesis, the words f(w1) and f(w2) are Dyck words with

N(f(w1)) = 2N(w1) + 2, and N(f(w2)) = N(w2) + 1.

Therefore, the word f(w) = f(w1)f(w2) is a Dyck word with

N(f(w)) = max (N(f(w1)), N(f(w2)))

= max(2N(w1) + 2, 2N(w2) + 2)

= 2max(N(w1), N(w2)) + 2

= 2N(w) + 2.

7

Lucas Mol, Narad Rampersad and Jeffrey Shallit

Theorem 2.9. There are 7/3+-power-free Dyck words of every nesting level.

Proof. Let t ≥ 0. We claim that the word f(gt(2)) is a 7/3+-free Dyck word of nesting
level 2t + 2. Since 2 is a ternary Dyck word with nesting level 0, by Lemma 2.7, and
a straightforward induction, the word gt(2) is a ternary Dyck word with nesting level t.
Thus, by Lemma 2.8, the word f(gt(2)) is a Dyck word with nesting level 2t+ 2.

It remains only to show that f(gt(2)) is 7/3+-power-free. We use the Walnut theorem-
prover to show that f(gω(0)) is 7/3+-power-free, which is equivalent. One only need type
in the following commands:

morphism f

"0->00100110100110010110010011001011001101

1->00101100110100110110011010010110011011

2->00101101001101001011001101001011010011":

morphism g "0->022012 1->022112 2->202101":

promote GG g:

image DFG f GG:

eval DFGtest "?msd_6 Ei,n (n>=1) & At (3*t<=4*n) =>

DFG[i+t]=DFG[i+t+n]":

and Walnut returns FALSE. Here the first two morphism commands define f and g, and
the next two commands create a DFAO for f(gω(0)). Finally, the last command asserts
the existence of a 7/3+ power in f(gω(0)).

This was a large computation in Walnut, requiring 130 GB of memory and 20321
seconds of CPU time.

Remark 2.10. An alternative method of proof is to first use Walnut to show that the word
gω(0) is overlap-free, and then apply an extended version [9, Lemma 23] of a well-known
result of Ochem [12, Lemma 2.1] to show that f(gω(0)) is 7/3+-power-free.

3 Dyck factors of Thue-Morse

In this section we give a characterization of those factors of t, the Thue-Morse sequence,
that are Dyck.

Let g : Σ∗
3 → Σ∗

2 be the morphism defined by g(0) = 011, g(1) = 01, and g(2) = 0 and
let f : Σ∗

3 → Σ∗
3 be the morphism defined by f(0) = 012, f(1) = 02, and f(2) = 1. Define

s = fω(0). It is well-known (see [8, Proposition 2.3.2]) that g(s) = t. Recall the morphism
h : Σ∗

2 → Σ∗
2 defined earlier by h(0) = 01, h(1) = 0011, and h(2) = 001011.

Theorem 3.1. The Dyck factors of the Thue-Morse word are exactly the words h(x) where
x is a factor of s.

8

Dyck words, pattern avoidance, and automatic sequences

Proof. By considering the return words of 11 in t (here what we mean are all factors r of t
that have exactly one occurrence of 11, as a suffix, and always occur in t either as a prefix
of t or following an occurrence of 11; see [2]) we see that t begins with 011 followed by a
concatenation of the four words

0011, 010011, 001011, 01001011.

These are all Dyck words, as shown by the bracketings

(0(01)1), (01)(0(01)1), (0(01)(01)1), (01)(0(01)(01)1).

Furthermore, these words must have the above bracketings when they occur as factors of
any larger Dyck word in t. It follows that t = 011t′, where t′ is a concatenation of the
three Dyck words h(0) = 01, h(1) = 0011, and h(2) = 001011.

To complete the proof, it suffices to show that h(s) = (011)−1t = (011)−1g(s). We have

h(f(0)) = h(012) = g(120210) = g(0−1f 2(0)0)

h(f(1)) = h(02) = g(1210) = g(0−1f 2(1)0)

h(f(2)) = h(1) = g(20) = g(0−1f 2(2)0),

so
h(s) = h(f(s)) = g(0−1f 2(s)) = g(0−1s) = (011)−1g(s),

as required.

4 Dyck factors of some automatic sequences

In this section we are concerned with Dyck factors of automatic sequences. Recall
that a sequence over a finite alphabet (s(n))n≥0 is k-automatic if there exists a DFAO
(deterministic finite automaton with output) that, on input n expressed in base k, reaches
a state with output s(n).

Since the Dyck language is not a member of the FO[+]-definable languages [5], this
means that “automatic” methods (like that implemented in the Walnut system; see [11,15])
cannot always directly handle such words. However, in this section we show that if a k-
automatic sequence also has a certain special property, then the number of Dyck factors
of length n occurring in it is a k-regular sequence.

To explain the special property, we need the notion of synchronized sequence [14]. We
say a sequence (v(n))n≥0 is synchronized if there is a finite automaton accepting, in parallel,
the base-k representations of n and v(n). Here the shorter representation is padded with
leading zeros, if necessary.

Now suppose s = (s(n))n≥0 is a k-automatic sequence taking values in Σ2 and define
the running sum sequence v(n) =

∑
0≤i<n s(i). If v = (v(n))n≥0 is synchronized, we say

that s is running-sum synchronized. For example, any fixed point of a k-uniform binary
morphism such that the images of 0 and 1 have the same number of 1’s is running-sum
synchronized.

9

Lucas Mol, Narad Rampersad and Jeffrey Shallit

Theorem 4.1. Suppose s = (s(n))n≥0 is a k-automatic sequence taking values in Σ2 that is
running-sum synchronized. Then there is an automaton accepting, in parallel, the base-k
representations of those pairs (i, n) for which s[i..i + n − 1] is Dyck. Furthermore, there
is an automaton accepting, in parallel, the base-k representations of those triples (i, n, x)
for which s[i..i+n− 1] is Dyck and whose nesting level is x. In both cases, the automaton
can be effectively constructed.

Proof. We use the fact that it suffices to create first-order logical formulas for these claims
[15]. Suppose V (n, x) is true if and only v(n) = x. Then define

N1(i, n, x) : ∃y, z V (i, y) ∧ V (i+ n, z) ∧ x+ y = z

N0(i, n, x) : ∃y N1(i, n, y) ∧ n = x+ y

Dyck(i, n) : (∃w N0(i, n, w) ∧ N1(i, n, w))∧
(∀t, y, z (t < n ∧ N0(i, t, y) ∧ N1(i, t, z)) =⇒ y ≥ z).

Here

• N0(i, n, x) asserts that |s[i..i+ n− 1]|0 = x;

• N1(i, n, x) asserts that |s[i..i+ n− 1]|1 = x;

• Dyck(i, n) asserts that s[i..i+ n− 1] is Dyck.

We can now build an automaton for Dyck(i, n) using the methods discussed in [15].
Next we turn to nesting level. First we need a first-order formula for the balance B(x)

of a factor x. Since we are only interested in balance for prefixes of Dyck words, it suffices
to compute max(0, B(x)) for a factor x. We can do this as follows:

Bal(i, n, x) : ∃y, z N0(i, n, y) ∧ N1(i, n, z) ∧ ((y < z ∧ x = 0) | (y ≥ z ∧ y = x+ z)).

Next, we compute the nesting level of a factor, assuming it is Dyck:

Nest(i, n, x) : ∃m m < n ∧ Bal(i,m, x) ∧ ∀p, y (p < n ∧ Bal(i, p, y)) =⇒ y ≤ x.

This completes the proof.

Corollary 4.2. If s = (s(n))n≥0 is a k-automatic sequence taking values in Σ2 that is
running-sum synchronized, then it is decidable

(a) whether s has arbitrarily large Dyck factors;

(b) whether Dyck factors of s are of unbounded nesting level.

Proof. It suffices to create first-order logical statements asserting the two properties:

(a) ∀n ∃i,m m > n ∧ Dyck(i,m)

(b) ∀q ∃i, n, p Dyck(i, n) ∧ Nest(i, n, p) ∧ p > q.

10

Dyck words, pattern avoidance, and automatic sequences

Example 4.3. As an example, let us use Walnut to prove that there is a Dyck factor of
the Thue-Morse word for all even lengths. We can use the following Walnut commands,
which implement the ideas above. We use the fact that the sum of T [0..n− 1] is n/2 if n
is even, and (n− 1)/2 + T [n− 1] if n is odd.

def even "Ek n=2*k":

def odd "Ek n=2*k+1":

def V "($even(n) & 2*x=n) | ($odd(n) & 2*x+1=n & T[n-1]=@0) |

($odd(n) & 2*x=n+1 & T[n-1]=@1)":

number of 1’s in prefix T[0..n-1]

def N1 "Ey,z $V(i,y) & $V(i+n,z) & x+y=z":

number of 1’s in T[i..i+n-1]

def N0 "Ey $N1(i,n,y) & n=x+y":

def Dyck "(Ew $N0(i,n,w) & $N1(i,n,w)) &

At,y,z (t<n & $N0(i,t,y) & $N1(i,t,z)) => y>=z":

is T[i..i+n-1] a Dyck word?

eval AllLengths "An $even(n) => Ei $Dyck(i,n)":

and Walnut returns TRUE.

Example 4.4. Continuing the previous example, let us prove some other interesting state-
ments about the Dyck factors of the Thue-Morse word.

First we show that the nesting level of every Dyck factor of Thue-Morse is ≤ 2. Of
course, this follows from Theorem 3.1, but this shows how it can be done for any automatic
sequence that is running-sum synchronized. We use the following Walnut commands:

def Bal "Ey,z $N0(i,n,y) & $N1(i,n,z) &

((y<z & x=0) | (y>=z & y=x+z))":

computes max(0, B(T[i..i+n])) where B is balance; 14 states

def Nest "Em (m<n) & $Bal(i,m,x) &

Ap,y (p<n & $Bal(i,p,y)) => y<=x":

computes nesting level of factor, assuming it is Dyck

eval maxnest2 "Ai,n,x ($Dyck(i,n) & $Nest(i,n,x)) => x<=2":

and Walnut returns TRUE for the last assertion.
We now consider two questions about the indices at which Dyck factors start in the

Thue-Morse word. First of all, we show that there is a Dyck word starting at every index
i such that T [i] = 0. (The condition that T [i] = 0 is obviously necessary.) We use the
following Walnut command:

eval everyindex "Ai T[i]=@0 => En (n>0) & $Dyck(i,n)":

11

Lucas Mol, Narad Rampersad and Jeffrey Shallit

and Walnut returns TRUE. We also describe the indices at which there are arbitrarily long
Dyck factors starting in the Thue-Morse by means of an automaton. We use the following
Walnut command:

def startlong "Am En (n>m) & $Dyck(i,n)":

and Walnut returns the 3-state automaton in Figure 1, which accepts base-2 representations
of i such that the Thue-Morse word has arbitrarily long Dyck factors starting at index i.
In particular, we observe that there are infinitely many indices at which arbitrarily long
Dyck factors start in the Thue-More word.

0

0
1

1

0

2

1

0

1

Figure 1: DFA accepting base-2 representations of i such that the Thue-Morse word has
arbitrarily long Dyck factors starting at index i.

Now we turn to enumerating Dyck factors by length. Let us recall that a sequence
(s(n))n≥0 is k-regular if there is a finite set of sequences (si(n))n≥0, i = 1, . . . , t, with
s = s1, such that every subsequence of the form (s(ken+a))n≥0 with e ≥ 0 and 0 ≤ a < ke

can be expressed as a linear combination of the si. See [1] for more details.
Alternatively, a sequence (s(n))n≥0 is k-regular if there is a linear representation for

it. If v is a row vector of dimension t, w is a column vector of dimension t, and γ is a
matrix-valued morphism with domain Σk and range t × t-matrices, then we say that the
triple (v, γ, w) is a linear representation for a function s(n), of rank t. It is defined by
s(n) = vγ(x)w, where x is any base-k representation of n (i.e., possibly containing leading
zeroes). See [3] for more details.

It is not difficult to use the characterization of Theorem 3.1 to find a linear represen-
tation for d(n), the number of Dyck factors of length 2n appearing in t, the Thue-Morse
word. However, in this section we will instead use a different approach that is more general.

Theorem 4.5. Suppose s = (s(n))n≥0 is a k-automatic sequence that is running-sum syn-
chronized. Then (d(n))n≥0, the number of Dyck factors of length 2n appearing in s, is
k-regular.

Proof. It suffices to find a linear representation for d(n).
To do so, we first find a first-order formula asserting that s[i..i + n− 1] is novel ; that

is, it is the first occurrence of this factor in s:

FacEq(i, j, n) : ∀t (t < n) =⇒ s[i+ t] = s[j + t]

Novel(i, n) : ∀j FacEq(i, j, n) =⇒ j ≥ i.

12

Dyck words, pattern avoidance, and automatic sequences

Then the number of i for which

Novel(i, 2n) ∧ Dyck(i, 2n)

holds is precisely the number of Dyck factors of s of length 2n. Since s is k-automatic,
and its running sum sequence v is synchronized, it follows that there is an automaton
recognizing those i and n for which Novel(i, 2n) ∧ Dyck(i, 2n) evaluates to true, and from
known techniques we can construct a linear representation for the number of such i.

Corollary 4.6. Let d(n) denote the number of Dyck factors of length 2n appearing in the
Thue-Morse word. Then (d(n))n≥0 is a 2-regular sequence.

Proof. We can carry out the proof of Theorem 4.5 in Walnut for t, as follows:

def FacEq "At (t<n) => T[i+t]=T[j+t]":

def Novel "Aj $FacEq(i,j,n) => j>=i":

def NovelDyck "$Dyck(i,n) & $Novel(i,n)":

def LR n "$NovelDyck(i,2*n)":

The last command creates a rank-29 linear representation for the number of length-2n
Dyck factors.

Remark 4.7. Using the algorithm of Schützenberger discussed in [3, Chapter 2], we can
minimize the linear representation obtained in the proof to find a linear representation
(vd, γd, wd) for d of rank 7, as follows:

vTd = [1 0 0 0 0 0 0] γd(0) =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 −2 3 −2 2
0 0 0 0 2 −2 2
0 0 0 1/2 5/4 −5/2 3


γd(1) =


0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 3/4 11/8 −2 3/2
0 0 0 1/2 1/4 0 1
0 0 0 −5/2 11/4 −2 3
0 0 0 −7/2 19/4 −5 5

 wd =


1
1
2
3
2
4
6

 .

This gives a very efficient way to compute d(n).

Table 1 gives the first few terms of the sequence d(n). It is sequence A345199 in the
On-Line Encyclopedia of Integer Sequences [17].

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
d(n) 1 1 2 3 2 4 6 6 4 8 8 8 12 9 12 13 8 14 16 14 16

Table 1: First few values of d(n).

13

https://oeis.org/A345199

Lucas Mol, Narad Rampersad and Jeffrey Shallit

5 Upper and lower bounds for d(n)

In this section we prove tight upper and lower bounds for d(n), the number of Dyck
factors of t of length 2n.

We start with a characterization of some of the subsequences of (d(n))n≥0.

Lemma 5.1. We have

d(2n) = 2d(n) (1)

d(4n+ 3) = 2d(n) + d(2n+ 1) + q(n) (2)

d(8n+ 1) = 2d(2n+ 1) + d(4n+ 1)− q(n) (3)

d(8n+ 5) = 2d(n) + d(2n+ 1) + 2d(2n+ 2) (4)

for all n ≥ 3. Here q(n) is the 2-automatic sequence computed by the DFAO in Figure 2.

0/0

0

1/11

2/2
0

3/1

1

0,1

0,1

Figure 2: DFAO computing q(n). States are in the form q/a, where q is the name of the
state and a is the output.

Proof. Notice that 1 ≤ q(n) ≤ 2 for n ≥ 1.
These relations can be proved using linear representations computable by Walnut. We

only prove the most complicated one, namely Eq. (3). Substituting n = m+3, we see that
Eq. (3) is equivalent to the claim that

d(8m+ 25) = 2d(2m+ 7) + d(4m+ 13)− q(m+ 3) for m ≥ 0.

We now obtain linear representations for each of the terms, using the following Walnut

commands.

morphism aa "0->01 1->23 2->22 3->33":

morphism b "0->0 1->1 2->2 3->1":

promote Q1 aa:

image Q b Q1:

def term1 m "$LR(i,8*m+25)":

def term2 m "$LR(i,2*m+7)":

def term3 m "$LR(i,4*m+13)":

def term4 m "(i=0 & Q[m+3]=@1) | (i<=1 & Q[m+3]=@2)":

14

Dyck words, pattern avoidance, and automatic sequences

From these four linear representations, using block matrices, we can easily create a linear
representation for

d(8m+ 25)− 2d(2m+ 7)− d(4m+ 13) + q(m+ 3).

It has rank 735. When we minimize it (using a Maple implementation of the Schützenberger
algorithm mentioned previously), we get the linear representation for the 0 function, thus
proving the identity.

The other identities can be proved similarly.

Theorem 5.2. We have d(n) ≤ n for all n ≥ 1. Furthermore, this bound is tight, since
d(n) = n for n = 3 · 2i and i ≥ 0.

Proof. We will actually prove the stronger bound that d(n) ≤ n− (n mod 2) for n ≥ 1, by
induction.

The base case is 1 ≤ n < 29. In this case we can verify the bound by direct computation.
Otherwise assume n ≥ 29 and the bound is true for all smaller positive n′ < n (the 29
comes from the fact that Eq. (4) is only valid for n ≥ 3); we prove it for n.

There are four cases to consider: n ≡ 0 (mod 2), n ≡ 3 (mod 4), n ≡ 1 (mod 8), and
n ≡ 5 (mod 8).

Suppose n ≡ 0 (mod 2). By induction we have d(n/2) ≤ n/2− (n/2 mod 2). But from
Eq. (1) we have d(n) = 2d(n/2) ≤ 2(n/2)− 2(n/2 mod 2) ≤ n.

Suppose n ≡ 3 (mod 4). By induction we have

d((n− 3)/4) ≤ (n− 3)/4− ((n− 3)/4 mod 2) and

d((n− 1)/2) ≤ (n− 1)/2− ((n− 1)/2 mod 2).

From Eq. (2) we have

d(n) = 2d((n− 3)/4) + d((n− 1)/2) + q((n− 3)/4)

≤ (n− 3)/2− 2((n− 3)/4 mod 2) + (n− 1)/2− ((n− 1)/2 mod 2)

+ q((n− 3)/4)

≤ n− 1,

as desired.
Suppose n ≡ 1 (mod 8). By induction we have

d((n+ 3)/4) ≤ (n+ 3)/4− ((n+ 3)/4 mod 2) and

d((n+ 1)/2) ≤ (n+ 1)/2− ((n+ 1)/2 mod 2).

From Eq. (3) we have

d(n) = 2d((n+ 3)/4) + d((n+ 1)/2)− q((n− 1)/8)

≤ (n+ 3)/2− 2((n+ 3)/4 mod 2) + (n+ 1)/2− 2((n+ 1)/2 mod 2)

− q((n− 1)/8)

≤ n− 1,

15

Lucas Mol, Narad Rampersad and Jeffrey Shallit

as desired.
Suppose n ≡ 5 (mod 8). By induction we have

d((n− 5)/8) ≤ (n− 5)/8− ((n− 5)/8 mod 2)

d((n− 1)/4) ≤ (n− 1)/4− ((n− 1)/4 mod 2)

d((n+ 3)/4) ≤ (n+ 3)/4− ((n+ 3)/4 mod 2).

From Eq. (4) we have

d(n) = 2d((n− 5)/8) + d((n− 1)/4) + 2d((n+ 3)/4)

≤ (n− 5)/4− 2((n− 5)/8 mod 2) + (n− 1)/4− ((n− 1)/4 mod 2)

+ (n+ 3)/2− 2((n+ 3)/4 mod 2)

≤ n− 1,

as desired. This completes the proof of the upper bound.
We can see that d(n) = n for n = 3 · 2i as follows. Using the linear representation for

n we have d(3 · 2i) = vdγd(11)γd(0)
iwd.

The minimal polynomial of γd(0) is X
2(X − 1)(X + 1)(X − 2). It follows that

d(3 · 2i) = a · 2i + b+ c(−1)i for i ≥ 2.

Solving for the constants, we find that a = 3, b = 0, c = 0, and hence d(3 · 2i) = 3 · 2i as
claimed.

Theorem 5.3. We have d(n) ≥ n/2 for n ≥ 0, and d(n) ≥ (n + 3)/2 for n ≥ 1 odd.
Furthermore, the bound d(n) ≥ n/2 is attained infinitely often.

Proof. We prove the result by induction on n. It is easy to verify by direct computation
that the result is true for n < 29. Otherwise assume n ≥ 29 and the bound is true for all
small positive n′ < n; we prove it for n.

Again we consider the four cases n ≡ 0 (mod 2), n ≡ 3 (mod 4), n ≡ 1 (mod 8), and
n ≡ 5 (mod 8).

Suppose n ≡ 0 (mod 2). By induction and Eq. (1) we have

d(n) = 2d(n/2) ≥ 2(n/2)/2 = n/2.

Otherwise n is odd.
Suppose n ≡ 3 (mod 4). By induction we have

d((n− 3)/4) ≥ (n− 3)/8

d((n− 1)/2) ≥ (n+ 5)/4.

16

Dyck words, pattern avoidance, and automatic sequences

Hence, using Eq. (2) we get

d(n) = 2d((n− 3)/4) + d((n− 1)/2) + q((n− 3)/4)

≥ (n− 3)/4 + (n+ 5)/4 + q((n− 3)/4)

≥ (n+ 1)/2 + 1

= (n+ 3)/2.

Suppose n ≡ 1 (mod 8). By induction we have

d((n+ 3)/4) ≥ ((n+ 3)/4 + 3)/2 = (n+ 15)/8

d((n+ 1)/2) ≥ ((n+ 1)/2 + 3)/2 = (n+ 7)/4.

Hence, using Eq. (3) we get

d(n) = 2d((n+ 3)/4) + d((n+ 1)/2)− q((n− 1)/8)

≥ (n+ 15)/4 + (n+ 7)/4− 2

= (n+ 7)/2.

Suppose n ≡ 5 (mod 8). By induction we have

d((n− 5)/8) ≥ (n− 5)/16

d((n− 1)/4) ≥ ((n− 1)/4 + 3)/2 = (n+ 11)/8

d((n+ 3)/4) ≥ (n+ 3)/8.

Hence, using Eq. (4) we get

d(n) = 2d((n− 5)/8) + d((n− 1)/4) + 2d((n+ 3)/4)

≥ 2(n− 5)/16 + (n+ 11)/8 + 2(n+ 3)/8

= (n+ 3)/2.

This completes the induction proof of both lower bounds.
It is easy to prove, using the same techniques as in the last part of the proof of Theo-

rem 5.2, that d(n) = n/2 for n = 2i, i ≥ 2.

Theorem 5.4. We have
∑

0≤i<2n d(i) = 19 · 4n/48− 2n/4 + 5/3 for n ≥ 2.

Proof. The summation
∑

0≤i<2n d(i) is easily seen to equal vd(γd(0) + γd(1))
nwd. We can

then apply the same techniques as above to the matrix γd(0) + γd(1).

It follows that the “average” value of d(n) is 19
24
n.

17

Lucas Mol, Narad Rampersad and Jeffrey Shallit

6 Dyck words in other sequences

Proposition 6.1. The only nonempty Dyck words in the Fibonacci word f are 01 and 0101.

Proof. Let θ be the Fibonacci morphism defined by θ(0) = 01 and θ(1) = 0. Let w be
a nonempty Dyck factor of the Fibonacci word. Then w begins with 0, ends with 1, and
has an equal number of 0’s and 1’s. It follows that w = θ(w′), where w′ is a factor of the
Fibonacci word consisting entirely of 0’s. However, the longest such w′ is w′ = 00.

A similar argument applied to the morphism that maps 0 → 01 and 1 → 00 gives the
following result.

Proposition 6.2. The only nonempty Dyck words in the period-doubling sequence are 01,
0101, and 010101.

Recall that the Rudin-Shapiro sequence r = (r(n))n≥0 is defined to be the number of
occurrences of 11, taken modulo 2, in the base-2 expansion of n.

Theorem 6.3. There are Dyck factors of arbitrarily large nesting level in the Rudin-Shapiro
sequence.

Proof. For n ≥ 0 define xn = r[2 · 4n..4n+1 − 1]. We will show, by induction on n, that xn

is a Dyck factor of nesting level 2n+1 − 1.
The base case is n = 0. In this case r[2..3] = 01 is a Dyck factor of nesting level 1.
For n ≥ 0 define yn = r[0..2 · 4n − 1]. We claim that xn+1 = ynxnynxn; this follows

immediately by considering the first three bits of the base-2 representations of the numbers
in the range [2 · 4n+1..4n+2 − 1].

Define s(n) =
∑

0≤i≤n(−1)r(i). It should be clear that s(n) is the imbalance between
the number of 0’s (left parens) and 1’s (right parens) in r[0..n]. We now claim that
0 < s(i) ≤ s(2 · 4n − 1) = 2n+1 for 0 ≤ i ≤ 2 · 4n − 1. In fact, the stronger claim
s(i) > 0 for all i is [4, Satz 9]. The fact that s(2 · 4n − 1) = 2n+1 is [4, Beispiel 6], and the
inequality s(i) ≤ 2n+1 for 0 ≤ i ≤ 2 · 4n− 1 can be deduced from [4, Satz 9]. Thus we have
shown that the imbalance of yn is 2n+1, the imbalance of xn is 0 and its nesting level is
2n+1 − 1, the imbalance of yn is −2n+1, and hence xn+1 = ynxnynxn is Dyck with nesting
level 2n+2 − 1.

Theorem 6.4. The set of n such that there is a Dyck factor of length n in the Rudin-Shapiro
word is a 4-automatic (and hence 2-automatic) set.

Proof. Our proof uses Walnut. However, the reader will recall from our earlier discussion
that we need r to be running-sum synchronized (i.e., there is an automaton accepting in
parallel the base-2 representations of n and

∑
0≤i<n r(n)) in order for us to be able to

apply Walnut. It turns out that r is not running-sum synchronized for base 2. However,
in [13] the last two authors show that r is (4, 2)-running-sum synchronized; i.e., there is

18

Dyck words, pattern avoidance, and automatic sequences

an automaton accepting in parallel the representations of n and
∑

0≤j≤n r(j), where n is

given in base-4 and the running sum1 is given in base-2.

0

0

11

2

2

3

3

4

0

5

1

6

2 7

3

0

1

8

2

1

90

10

2

11
3

1
2

12

0

1

0

2 13

3

0

1 2

1

2

3

0

1

0
2

2

0, 2
1

1, 3

142

0

151

16

2

2

1, 3

0

0

2
3 171

0

2

0

3
2

1

Figure 3: DFA accepting base-4 representations of n such that the Rudin–Shapiro sequence
contains a Dyck factor of length n.

The Walnut code given below computes an automaton (Figure 3) accepting the base-4
representations of all n such that there is a Dyck factor of length n in the Rudin-Shapiro
word. Here RS4 refers to a DFAO that takes the base-4 representation of n as input and
computes the n-th term of the Rudin-Shapiro sequence over {+1,−1} (so here +1 plays the
role of the left parenthesis and −1 plays the role of the right parenthesis). The command
$rss(i, x) refers to an invocation of the automaton given in [13] for the running sum
function; i.e., this command returns TRUE if x is the base-2 representation of

∑
0≤j≤i r(j)

and i is given in base-4.

eval dyck_rs "Ei ?msd_4 n>=1 &

(Ax,y ($rss(i,x) & $rss(i+n-1,y) & RS4[i] = @1) =>

?msd_2 x=y+1) &

(Ax,y ($rss(i,x) & $rss(i+n-1,y) & RS4[i] = @-1) =>

?msd_2 x=y-1) &

(Ax,y,t (t<n & $rss(i,x) & $rss(i+t,y) & RS4[i] = @1) =>

?msd_2 x<=y+1) &

(Ax,y,t (t<n & $rss(i,x) & $rss(i+t,y) & RS4[i] = @-1) =>

?msd_2 x<=y-1)":

1The running sum here is somewhat unusually indexed as running from 0 to n rather than from 0 to
n− 1, which leads to the awkward appearance of various +1 or −1 terms in our Walnut formula.

19

Lucas Mol, Narad Rampersad and Jeffrey Shallit

We also offer the following conjecture concerning the Dyck factors of the paperfolding
sequence.

Conjecture 6.5. The paperfolding sequence has a Dyck factor of length n iff n is of the
form 2k − 2i for 0 ≤ i < k.

Acknowledgments

Research of Lucas Mol is supported by an NSERC Grant, Grant number RGPIN-2021-
04084. Research of Narad Rampersad is supported by an NSERC Grant, Grant number
2019-04111. Research of Jeffrey Shallit is supported by an NSERC Grant, Grant number
2018-04118.

References

[1] J.-P. Allouche and J. Shallit. The ring of k-regular sequences. Theoret. Comput. Sci.,
98(2):163–197, 1992.

[2] L. Balková, E. Pelantová, and W. Steiner. Return words in the Thue-Morse and other
sequences, 2006. Preprint available at https://hal.science/hal-00089863v2.

[3] J. Berstel and C. Reutenauer. Noncommutative rational series with applications, volume 137
of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 2011.

[4] J. Brillhart and P. Morton. Über Summen von Rudin-Shapiroschen Koeffizienten. Illinois
J. Math., 22(1):126–148, 1978.

[5] C. Choffrut, A. Malcher, C. Mereghetti, and B. Palano. First-order logics: some character-
izations and closure properties. Acta Inform., 49(4):225–248, 2012.

[6] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages.
In Computer programming and formal systems, pages 118–161. North-Holland, Amsterdam,
1963.

[7] V. Keränen. On k-repetition freeness of length uniform morphisms over a binary alphabet.
Discrete Appl. Math., 9(3):297–300, 1984.

[8] M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cambridge Uni-
versity Press, Cambridge, 1997.

[9] L. Mol, N. Rampersad, and J. Shallit. Extremal overlap-free and extremal β-free binary
words. Electron. J. Combin., 27(4):Paper No. 4.42, 2020.

[10] L. Mol, N. Rampersad, and J. Shallit. Dyck words, pattern avoidance, and automatic
sequences. In Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci.,
pages 220–232. Springer, 2023.

20

https://hal.science/hal-00089863v2

Dyck words, pattern avoidance, and automatic sequences

[11] H. Mousavi. Automatic theorem proving in Walnut, 2016. Preprint available at http:

//arxiv.org/abs/1603.06017.

[12] P. Ochem. A generator of morphisms for infinite words. Theor. Inform. Appl., 40(3):427–441,
2006.

[13] N. Rampersad and J. Shallit. Rudin-Shapiro sums via automata theory and logic. In
Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci., pages 233–246.
Springer, 2023.

[14] J. Shallit. Synchronized sequences. In Combinatorics on words, volume 12847 of Lecture
Notes in Comput. Sci., pages 1–19. Springer, 2021.

[15] J. Shallit. The logical approach to automatic sequences—exploring combinatorics on words
with Walnut, volume 482 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 2023.

[16] J. Shallit and A. Zavyalov. Transduction of automatic sequences and applications. In
Implementation and application of automata, volume 14151 of Lecture Notes in Comput.
Sci., pages 266–277. Springer, 2023.

[17] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2022. Available online at
https://oeis.org.

[18] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk.
Skr. Mat. Nat. Kl., 1:1–67, 1912. Reprinted in Selected Mathematical Papers of Axel Thue,
T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.

Received: December 15, 2023
Accepted for publication: May 27, 2024
Communicated by: Rigo Michel, Emilie Charlier and Julien Leroy

21

http://arxiv.org/abs/1603.06017
http://arxiv.org/abs/1603.06017
https://oeis.org

	Introduction
	Repetitions and Dyck words
	Dyck factors of Thue-Morse
	Dyck factors of some automatic sequences
	Upper and lower bounds for d(n)
	Dyck words in other sequences

