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Transposed Poisson structures on solvable Lie algebras with
filiform nilradical

Kobiljon Abdurasulov, Jobir Adashev and Sabohat Eshmeteva

Abstract. In this article, we describe %—derivations of solvable Lie algebras with a
filiform nilradical. Nontrivial transposed Poisson algebras with solvable Lie algebras
are constructed. That is, by using %—derivations of Lie algebras, we have established
commutative associative multiplication to construct a transposed Poisson algebra
with an associated given Lie algebra.

Introduction

C. Bai, R.Bai, L.Guo, and Y.Wu [2] have introduced a dual notion of the Poisson alge-
bra, called transposed Poisson algebra, by exchanging the roles of the two multiplications
in the Leibniz rule defining a Poisson algebra. We know that Poisson algebra is introduced
to commutative associative algebras using its derivation. Similarly, the concept of a trans-
posed Poisson algebra is defined on a Lie algebra through its a %—derivation. A transposed
Poisson algebra defined this way not only shares some properties of a Poisson algebra, such
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as the closedness under tensor products and the Koszul self-duality as an operad but also
admits a rich class of identities [2,3, 6,8, 22,23, 24].

One of the natural tasks in the theory of Poisson algebras is the description of all such
algebras with a fixed Lie or associative part [9,14,28]. This paper classifies transposed
Poisson algebras based on the solvable Lie algebras with a filiform nilradical. Note that any
unital transposed Poisson algebra is a particular case of a “contact bracket” algebra and
a quasi-Poisson algebra [3]. Each transposed Poisson algebra is a commutative Gelfand-
Dorfman algebra [24] and it is also an algebra of Jordan brackets [6]. In [30] computed
d-derivations of simple Jordan algebras with values in irreducible bimodules. They turn
out to be either ordinary derivations (§ = 1), or scalar multiples of the identity map
(6 = 3). This can be considered as a generalisation of the “First Whitehead Lemma” for
Jordan algebras which claims that all such ordinary derivations are inner. In a paper by
Ferreira, Kaygorodov and Lopatkin, a relation between %—derivations of Lie algebras and
transposed Poisson algebras has been established [5]. These ideas were used to describe all
transposed Poisson structures on Witt and Virasoro algebras in [5]; on twisted Heisenberg-
Virasoro, Schrodinger-Virasoro and extended Schrdédinger-Virasoro algebras in [29]; on
Schrodinger algebra in (n + 1)-dimensional space-time in [27]; on Witt type Lie algebras
in [17]; on generalized Witt algebras in [16]; Block Lie algebras in [15,16]; on the Lie
algebra of upper triangular matrices in [19] and showed that there are more transposed
Poisson structures on the Lie algebra of upper triangular matrices; on Lie incidence algebras
in [18]. Any complex finite-dimensional solvable Lie algebra was proved to admit a non-
trivial transposed Poisson structure [21]. The algebraic and geometric classification of
three-dimensional transposed Poisson algebras was given in [4]. For the current list of
open questions on transposed Poisson algebras, see [3]. Recently, in [20], it was described
all transposed Poisson algebra structures on oscillator Lie algebras, i.e., on one-dimensional
solvable extensions of the (2n+1)-dimensional Heisenberg algebra; on solvable Lie algebras
with naturally graded filiform nilradical; on (n 4 1)-dimensional solvable extensions of
the (2n + 1)-dimensional Heisenberg algebra; and on n-dimensional solvable extensions
of the n-dimensional algebra with the trivial multiplication. Furthermore, the authors
found an example of a finite-dimensional Lie algebra with non-trivial %—derivations but
without non-trivial transposed Poisson algebra structures. Also, see [13, Section 7.3] and
the references therein for similar studies. In [4], it was obtained the algebraic and geometric
classification of all complex 3-dimensional transposed Poisson algebras, and in [10] the
algebraic classification of all complex 3-dimensional transposed Poisson 3-Lie algebras.

The purpose of this article is to find all transposed Poisson algebras that demonstrate
solvable Lie algebra with filiform nilradical. To achieve our goal, we have organized the
paper as follows: in Section 2, we described %—derivations of solvable Lie algebras with
a filiform nilradical. In Section 3, we describe all non-trivial transposed Poisson alge-
bras with solvable Lie algebras. Next, using descriptions of %—derivations of Lie algebras,
we established commutative associative multiplication to construct a transposed Poisson
algebra with an associated given Lie algebra.
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1 Preliminaries

In this section, we present the concepts and known results. All the algebras we present
in this section are given over the field C unless otherwise stated.
We first recall the definition of a Poisson algebra.

Definition 1.1. Let £ be a vector space equipped with two bilinear operations
Sl -] LR L L

The triple (£, -, [—, —]) is called a Poisson algebra if (£,-) is a commutative associative
algebra and (£, [—, —]) is a Lie algebra which satisfies the compatibility condition

[,y 2] =[x,y -z +y-[v, 2] (1)

Eq. (1) is called the Leibniz rule since the adjoint operators of the Lie algebra are
derivations of the commutative associative algebra.

Definition 1.2. Let £ be a vector space equipped with two bilinear operations

Sl -] LR L — L
The triple (£, -, [—, —]) is called a transposed Poisson algebra if (£, ) is a commutative
associative algebra and (£, [—, —]) is a Lie algebra which satisfies the following compati-
bility condition

Eq. (2) is called the transposed Leibniz rule because the roles played by the two
binary operations in the Leibniz rule in a Poisson algebra are switched. Further, the
resulting operation is rescaled by introducing a factor 2 on the left-hand side.

Transposed Poisson algebras were first introduced in a paper by Bai, Bai, Guo and
Wu [2]. A transposed Poisson structure - on £ is called trivial, if = -y = 0 for all z,y € £.

The next result shows that the compatibility relations of the Poisson algebra and those
of the Transposed Poisson algebra are independent in the following sense.

Proposition 1.3 ( [2]). Let (£,-) be a commutative associative algebra and (£, [—, —]) be a
Lie algebra. Then (£,-,[—, —]) is both a Poisson algebra and a transposed Poisson algebra
if and only if

Definition 1.4. Let (£,[—, —]) be an algebra with a multiplication [—, —], and ¢ be a

bilinear map. Then ¢ is a %—derivation if it satisfies:

¢WWD:;M@M+WW@U (4)
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Observe that %-derivations are a particular case of d-derivations introduced by Filippov
in [7] (see, [11,12] and references therein). It is easy to see from Definition 1.4 that [£, £]
and Ann(£) are invariant under any 1-derivation of £. Definitions 1.2 and 1.4 immediately
implies the following key Lemma.

Lemma 1.5. Let (£,[—, —]) be a Lie algebra and - a new binary (bilinear) operation on
L. Then (£,-,[—,—]) is a transposed Poisson algebra if and only if - is commutative
and associative and for every z € £ the multiplication by z in (£,-) is a 3-deriwation of

(,Q, [_>_])'

Definition 1.6. An n-dimensional Lie algebra £ is said to be filiform if dim £ = n — 1,
for 2 <i<n.

Now let us define a natural gradation for the nilpotent Lie algebras.

Definition 1.7. Given a nilpotent Lie algebra £ with nilindex s, put £; = £//£7% 1 <
i<s—1,and Gr(£) = £, ®Ly®...D L. Define the product in the vector space Gr(L)
as follows:

[SL’ + £i+17y + 2]’-1—1] = [x,y] 4 £i+j+17

where z € £\ £ y € £\ &* Then [£;, £,] C £;;; and we obtain the graded algebra
Gr(£). If Gr(£) and £ are isomorphic, then we say that the algebra £ is naturally
graded.

It is well known that there are two types of naturally graded filiform Lie algebras. In
fact, the second type will appear only in the case when the dimension of the algebra is
even.

Theorem 1.8 ( [26]). Any naturally graded filiform Lie algebra is isomorphic to one of the
following non isomorphic algebras:

nn,l : [ei,el] = €41, QS’LSTZ—L
Qon: e, e1] =€ig1, 250 <2n -2, [, e9p41-i) = (—1)'€2n, 2< i <.

All solvable Lie algebras whose nilradical is the naturally graded filiform Lie algebra
n, 1 are classified in [25] (n > 4). Furthermore, solvable Lie algebras whose nilradical is
the naturally graded filiform Lie algebra 9, are classified in [1]. It is proved that the
dimension of a solvable Lie algebra whose nilradical is isomorphic to an n-dimensional
naturally graded filiform Lie algebra is not greater than n + 2.

Here we give the list of such solvable Lie algebras. We denote by 5;71 solvable Lie
algebras with nilradical n, ; and codimension one, and by s,, » with codimension two:

5;,1(5) : [6iael] = €i+1, 2 S { S n— ]-> [61,1’] = €1, [eiax] = (Z -2 _l_ﬁ)ei) 2 S { S n;
leiser] =e€ir1, 2<i<n—1, [e;,z] =¢;, 2<i<mn
s leiser] =e€ir1, 2<i<n—1, [e;,z] =e1+ ey, [e;,2] = (1 —1)e;, 2 <7 <m
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5;1“1(0[3,0(4, . .,Oén_l) : [62‘, 61] = €41, 2 S 7 S n—l, [ei,x] =e;+ Z A 1-4€1, 2 S 7 S n;
I=i+2
lei,er] =eip1, 2<i<n—1, [e,z1] =ey,
n2 - . . .
lei,x1] = (i —2)e;, 3<i<n, [e,xe)=¢;, 2<i<n.
Any solvable complex Lie algebra of dimension 2n + 1 with nilradical isomorphic to
9, is isomorphic to one of the following algebras:
e er] = €ipr, 2<0<2n =2, e, eanqr-i] = (—1)'ean, 2 <10 <,
tonr1(A) 1 Q [er, 2] = €1, [enx] = (i — 2+ Ney, 2<4<2n— 1,
lean, ] = (2n — 3+ 2X)eap;

lei,er] = €1, 2<i<2n—2, e, eonq1-i] = (—1)€,, 2<i<nm,
tont1(2—n,e) 1 ¢ [er, 2] = ey +eean, e =—1,1,  [es, 2] = (i — n)e;, 2<1<2n—1,

[62n7 x] = €2n;

lei,er] =eiy1, 250 <2n -2, e, e9nq1-i) = (—1)'e2n, 2<i<m,

[2”7271;]
2

Tan1(As, - Aznn) ¢ [eovisx] = eapi+ D Aokyi€oriryi, 0 <7< 2n —6,
k=2

[62n—i7$] = €apn—i, Z - 1a 27 3a [62n7$] = 262n-

Moreover, the first nonvanishing parameter Ao, can be normalized to 1.
Finally, for any n > 3 there is only one solvable Lie algebra t,,.5 of dimension 2n + 2
having a nilradical isomorphic to Q», :

leiver] = e, 2<i<2n—2, e, eanq1—] = (—1)'€an, 2<i <,
tongo @ { € T1] =€, 1 <1 <2n—1, [eg,, 1] = (2n+ 1)eg,,

[ei,xg] = €4, 2 S 7 S 2n — 1, [€2n,$2] = 2€2n-

Note that %—derivations of s, o were studied by I. Kaygorodov and A. Khudoyberdiyev
[20].

Theorem 1.9. Any %-dem’vatz’on @ of the algebra s, 5 has the form

o(x1) = azy + (0 — 2)Be,, o(x2) = e + Ben, pler) = aey, 1 <k <n.
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Theorem 1.10. Let (s, 2, -, [—, —]) be a transposed Poisson algebra structure defined on the
Lie algebra s, 5. Then, up to isomorphism, there is only one non-trivial transposed Poisson
algebra structure on s, 9. It is given by

x1 1w = (n— 2)26n, To 11 = (n—2)e,, Ty To= ey,

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

It’s obvious from Eq. (3) that this structure is non-Poisson.

2 %—derivations of solvable Lie algebras with filiform nilradical

In this section, we calculate %—derivation of solvable Lie algebras with filiform nilradical
algebras.

Theorem 2.1. Any 3-derivation ¢ of the algebra s, () has the form:
forn=4:

p(e1) = arer + e + azes + agey, w(ez) = arey + ez + ey, w(es) = ares + %ﬁ3€47
ples) = aneq, () = Bzer + (B — D)azes + Baues + dyeq +

with restrictions (f — 2)ag = (6 —2)3 = (2 — 5)P4 = 0;

formn >5:
pler) = > aie, wlez) = arey + Bren, w(e;) = are;, 3 <1< n,
i=1
n—1
QO(LU) = Z (7’ -3 + B)ai+1€i + 5n€n + ax,
i=2

with restrictions (8 — 2)ag = (n —2 — 3)5, = 0.

Proof. It is easy to see that from the multiplication table of the algebra s, () we conclude
that e, es and x are the generator basis elements of the algebra. We use these generators
to calculate the %—derivation.

90(61) = Z Q;e; + Q1 T, 90(62) = Z Biei + Bni1, <P($) = Z 0i€; + Opy1.
i=1 =1

i=1

Now consider the condition of %—derivation for the elements e; and e, :

ples) = p(lex e]) = %([w(ez%el] +le2, p(en)]) =
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1 & n
= 5([2 Biei + Brn1z, e1] + [e2, Z ae; + 1))
i=1

i=1

1 & 1 -
= —( Bi—16i—Brr1e1+ores+ani1fes) = =(—Fpr1e1+an118ea+(a1+52)es+ Bi—1€;).
2 i=3 2 i—4

Now consider the condition of %—derivation for the elements e; and z :

pller, o) = S(lpen), ]+ fens @) = 303 e+ angrz, ] +ler, Y- e + daal)

1 n n
= 5(0&161 + Z(Z — 2+ B)aie; — Z 0i—1€; + Ontre1)

=2 =3

= %((al + asn)er + Bages + ) (i = 2+ Bai — §-1)e)-

1=3

On the other hand
eler,al) = plen) = 3 aies + an iz,
i=1
Comparing coefficients of the basis elements we obtain that
o1 =1, (B—2)ap=0, 6= (0—-3+pBai, 2<i<n—1, a1 =0.
Now consider the condition of %—derivation for the elements es, x :

p(le2; 2]) = 5([e(e2), 2] + [e2, o(2)])

— %([é ﬁi€i+ﬁn+1l’, SL’] + [62, Zf: 5i€i+5n+1x]) = %(ﬁlel —+ ﬁ:(i—2+ﬁ)ﬁiei+5leg +B5n+162>

i=1 1=2

= %(ﬁlel + B(B2 + dng1)ez + (1 + )85 + 01)es + é(z’ — 2+ 5)@@).

On the other hand .
p(le2, z]) = Bp(es) = B(Z Biei + Bni1m).
i=1
Comparing coefficients of the basis elements we obtain that
(28-=1)B1 =0, B(B2 = bpt1) =0, 01 =(B—-1)B5, (i—-2-58)3;=0,4<i<n

Now consider the condition of %—derivation for the elements e3 and z :

¢(les, 2]) = 5([e(es), 2] + [es, o(2)])
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<[%(_5n+1€1 + (a1 + Ba)es + Zn: Bi—1€:), ] + [es, zn: die; + 5n+19€]> =

=4 =1

[N

= %(%(—ﬁnﬂel -+ (1 —+ ﬁ)(OKl —+ 52)63 -+ zn:(l -2 -+ ﬁ)ﬁi_lei) + 5164 —+ (1 -+ ,B)(Sn+163> .

=4

On the other hand

olles, 7)) = (1+ B)ples) = (1 + B)(=Basrer + (on + Ba)es + z Bires).

Comparing coefficients of the basis elements we obtain that
(264+1)Brs1 =0, (14+8)(a14+ P2 —20,41) =0, 26, = B3, (i—4—F)Fiz1 =0, 5<i<n.
Comparing the obtained equalities, we get the following relations.
(28-1)B1=0, Bo=cu, (B—2)B3=0, 61 = fs,

(5—2)0(2:0, (n—Q—ﬁ)ﬁn:O, (26+1)6n+1:0, 6220, 4§Z§TL—1
We have the following

wler) = > ey, ple2) = Prer + ares + fses + Buen + Prii,
i=1

n—1
@(63) = %(—Bnﬂel + 20(163 + ﬁ364), QO(LL’) = ,8361 + Z (Z -3+ ﬁ)oziﬂei + 5nen + oz,
i=2
Using property of the %—derivation for the product [es, e;] = e4 we have
( ) 1€y, if n= 4,
es) =
P €4 + i,@3€5, if n > 5.

If we check the situation for the elements {e4,z} and {es, es}, we get the following
relations

o([es, ea]) = %([90(6’3), es] + [es, p(e2)]), = Bi1 = Bny1 =0,
p(les 2]) = 5([p(es), 2] + es, p(2)]), = B3=0 for n>5.
By induction, argument and the property of %—derivation, we derive
@(62) = (1€, 5 S 1 S n.

Thus we have the following
forn=4:

p(e1) = arer + ages + azes + ages, p(ez) = ares + Pzes + Baes, (es) = anes + 03¢,

p(es) = areq, @(x) = PBser + (B — L)agey + Bayes + dgeq + ay,
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with restrictions (5 — 2)ag = (6 —2)83 = (2 — 5)5, = 0;

forn>5:
pler) = 2 aues, ples) = ares + Buen, @) = are;, 3<i <,
i=1
n—1
o(x) = > (i =3+ B)aie; + dnen + ar7,
i=2

with restrictions (5—2)ay = (n—2—0)/,, = 0. This completes the proof of the theorem. [

Now we study the %—derivation of the algebra 5%71.

Theorem 2.2. Any %—dem’vation @ of the algebra 5%,1 has the form

n n—1
(,0(61) = 161 + Z Q;€;, @(62) = (1€, 2 S 7 S n, QO(LU) = Q1165 -+ 5nen + ayx.
i=3 1=2
Proof. From the multiplication table of the algebra 5%71 we conclude that ej,es and x
are the generator basis elements of the algebra. We use these generators to calculate
%—derivation:
n

pler) = > e + a1, wlea) =Y fiei + Bnrrz, o(x) = 0ie; + Opy1.
' i=1

=1 i=1

Now consider the condition of %—derivation for the elements e; and e :
ples) = p(les, e1]) = %([w(ez), e1] + [e2, p(e1)])
Bi—1€; + ares + apqie).

- %([; Biei + Bpr1z, e1] + [ea, Zaiei + api1]) = %( 3

=1 7
Using property of the %-derivation for the products [e1, 2] = 0 and [ey, x] = e, we have
[61,2[‘]:0, = ay =0, 5i:ai+1,2§i§n—1,
[62,2[‘]:62, = (51253, 5n+1:B27 BZ:0,4§ZSH+1
Now consider the condition of %—derivation for the elements es3, x :

p(les, 2l) = 5([(es), 2] + [es, o(2)])

n—1

= %([%((52 + ai)es + Pzes + appi€2), x] + €3, Bser + D qiv1€; + Onen + 52£E]>

i=2
= %(%((ﬁ@ + aq)es + Bseq + apyiez) + Pseq + 52€3>-

On the other hand
o([es, ]) = p(e3) = %((52 + ar)es + Bseq + appies).



450 Kobiljon Abdurasulov, Jobir Adashev and Sabohat Eshmeteva

Comparing coefficients of the basis elements we obtain that a,.1 = 0, 5y = ay, B3 = 0.
Thus we have the following

n n—1
p(er) = arer + ) aue;, p(ea) = ares, p(es) = ares, p(x) = Q1€ + Opepn + T
i=3 i=2
Now consider the condition of %—derivation for the elements e; and ¢; for 3<i<mn—1:

pleit) = p(lei, e1]) = 5([(e:), ex] + [es, p(en)])

n
= %([aleiv el] + [ei, arer + 3 ajeq]) = %(04162‘+1 + Q1€i41) = Q1641
j=3

This completes the proof of the theorem. O

Now we will study the %—derivation of the algebra 55’171.

Theorem 2.3. Any %—dem’vation @ of the algebra 5%71 has the form

n n—1
pler) = ager + > e, ple) =age;, 2<i<n, p(x)= > (i —2)aj116; + Onen + aqz.
i=3 i=3

Proof. The algebra 52,1 has ey, e and = as generators. We put
pler) = D aiei + aniz, @lez) = ) fiei + Bopix, @(x) = Y diei + 0y
i=1 i=1 i=1
Now consider the condition of %—derivation for the elements es and =z :

n

p(lea 2]) = 5([(e2), 2] + [e2, (2)]) = 5(] :lﬁiei + Bus1@, @] + [e2, 3 di€; + On417])

7 i=1

- %(51(61 +e2) + > (1 —1)Bie; + bres + 5n+162>.
i=2

On the other hand
o(le2, x]) = p(e2) = 2@‘6@' + Bt

Comparing coefficients of the basis elements we obtain that
1 =0, 01=0, 0pt1 =02, 5i=0,4<i<n+1l
Now consider the condition of %—derivation for the elements ey, x :
e(len,a]) = H(lpler), a] + [er, 9(@)]) = L3 ques + anpaz, a] + [er, 32 Gies + bnpaz])

=1 =1

n

= %(al(t?l +ea) + D (i — Dage; — Y ire; + Oppa(er + 62))-
i=2 =3

On the other hand
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o(ler, z]) = pler +e2) = Y aie; + apgax + Baes + PBses.
i=1

Comparing coefficients of the basis elements we obtain that
Qg = O, Upt1 = 0, 5n+1 = (g, 52 = —253, (SZ = (Z — 2)0&2'4_1, 3 S 1 S n— 1.

From the i-derivation property (1.4) we have

p(es) = p([ea, e1]) = 5([w(e2), e1] + [e2, (en)])

= %([04162 -+ B3€3, 61] + [62, aep + Z oziei]) = (€3 —+ %B364.
=3

Therefore, from ¢([es, z]) = 1([¢(es), 2] + [e3, ¢(2)]), we obtain 3 = 0.
By applying the induction and the i-derivation property (1.4) for 3 <i <n—1, we
derive

plein1) = p([eier]) = 5([p(e:), er] + [es, p(e)])

- %([aleh e1] + [ei, arer + Y ajeg]) = %(a16i+1 +aieip1) = arei.

j=3

This completes the proof of the theorem. O
Now we will study the i-derivation of the algebra sy | (v, v, . . ., Qp—1).

Theorem 2.4. Any -derivation ¢ of the algebra sp, , (as, @, . . ., an1) has the form

pler) = arer + Y aie;, p(e;) = are;, 2 < <,

=3
el ia
p(x) = > (A1 + ) uai—y2)e; + cuey + ar.
i=2 =3
Proof. We can easily show that, the algebra 531(043, Qg,...,0,_1) has 3 generators. We

put the l-derivation for generators:

pler) = > ae; + aniix, @(es) = > bie; + bz, p(x) = cie; + e,
=1 i—1 i=1

.

From 0 = ¢([e1,2]) = 3([¢(e1), z] + [e1, p(x)]), we obtain that

i—1
ay =0, ¢; = iy1 + D G442, 2<i<n—1.
t=3

Now consider the %—derivation for the elements e; and e :

ples) = ¢([es, e1]) = %([w(ez), e1] + [ea, p(e1)])

= %([Z biei+bni17, e1]+[e2, D aiei +an17]) = % < Y bicieitares+anpi(ea+ ) at—let)>

i=1 1=1 =3 t=4
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= %(an+162 -+ (a1 + b2)€3 -+ Z(bi—l + CLn+1Oéi_1)6i> .
1=4

Similarly, from 0 = ¢([es, e2]) = 3([(e3), €2] + [e3, (e2)]), we derive by =0, b1 = 0.
We prove the following equality for 3 < ¢ < n by induction.

pler) = 7 (272 = Danier s + (272 = Dy + bo)e,

n

+ 3 (bmio + (272 — 1)an+1at—i+2)€t>~

t=i14+1

If i = 3, the relationship is fulfilled according to the above equality. Now we prove that

it is true for 7 and for 7 + 1. Now consider the condition of %—derivation for the elements
€, €1 .

plein) = p([ei,er]) = 5([p(e:), er] + [es, p(e)])

= %([22‘14 ((22'—2 — Dapiiei1 + (272 = 1)ag + by)e;

+ > (b—iro + (2i_2 — 1>an+1at—i+2)et) ,e1] + [ei, Z a;e; + an+1l’]>

t=i+1 1=1

= %(21'172 ((2i_2 - 1)a'n+lei + ((22'—2 — 1)&1 + bg)e,qu

+ > (b—ir1 + (2i_2 — 1>an+1at—i+1)et> +areip1 + anti(e; + D at—i+16t>)
=42 t=it+2

21-1,1 ((Qi_l - 1)an+1ei + ((Qi_l - 1)@1 + b2)6i+1 + Z (bt—i—l—l + (2i_1 - 1)an+1at—i+1>€t) .

t=it2
Furthermore, using the property of %—derivation for the products [e,, x] = e,, [e,_1, 2] =

n
en—1 and [ea, ] = ey + > a;_1€;, we have
i=4

1 _ e
Up41 = 0? Cny1 = 2n_2((2n 2 l)al + b2)7 62 = das, b3 =2 3017

01:0, b,zO, 4§Z§7’L

This completes the proof of the theorem. O

Below, we present analogous descriptions of the %-derivation for the solvable complex
Lie algebras having a nilradical isomorphic to the algebra Q,,,.
Theorem 2.5. Any 5-derivation ¢ of the algebras ta,1(N) has the form
2n

pler) = arer + > ey, plea) = arey + Ban—1€2n—1 + Bonean,
i=3
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e;) = aie; + (_1)i71a2n+2—i62na 3<1<2n—1, p(ez,) = aiea,,
¥ 2

2n—2

p(r) = 2oLy e + (3 — 2n) Banean—1 + Ganean + a1,
=

where
(2n =3 —=X)f2pn-1=0, 2n —5+2N)a; =0, 3<i < 2n. (5)

Proof. The algebra ta,.1(\) has e;, e5 and z as generators. We put

2n

2n 2n
wler) = > e + agpx, @lex) = Y Bie; + Ponti, ©(x) = > die; + dona1 2.
i=1 i=1 i=1

Now consider the condition of %—derivation for the elements e; and z :

o(ler, z]) = %([go(el), ]+ [e1, p(2)]) = %([iznl Qi€; + Qon 1T, T] + [61,§5i6i + 5n+1$]>

2n—1 2n—1
= %(alel + Z (Z -2 + )\)aiei + (271 — 3 + 2)\)a2n62n — Z 5i—1€i + 52n+161> .
=2 =3

On the other hand

2n

p(ler, 2]) = pler) = 30 e + agnia .
i=1

Comparing coefficients of the basis elements we obtain that
Aopt1 = 0, 52n+1 = (, ()\ — 2)0(2 = 0, (271 — 5 + 2)\)0&2n = 0,

Now consider the condition of %—derivation for the elements es,  :

i) = Slotea),a) + lea, (o)) = 3([35 e+ Bunnr o] + feas X5 i + el

2n—1
= %(5161 + Z (Z -2 + )\)ﬁ,é’z + (271 -3 + 2)\)ﬁ2n62n + 5163 + 52n_162n + )\Oé162>.
=2
On the other hand

ol(e2,a]) = Apl(e2) = 32 ABies + Az

=1

Comparing coefficients of the basis elements we obtain that

(2)\ — 1)51 = 0, 62n—1 = (3 — Qn)ﬁgn, )\/82n+1 = O, 51 = ()\ — 1)53, )\(/BQ — Oél) = O,

(i—2-NB=0,4<i<2n—1. (6)

From the i-derivation property (1.4) we have
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o(es) = olless ea)) = Hlplea), 1] + [eas p(er)]) = %([j:z"l Bres + Bons1z, 1] + [z )

2n—1

1

= 5( > Bicie; — Pongre1 + ones + Oé2n—1€2n>-
i=3

Now consider the condition of %—derivation for the elements e3, x :

p(les, 7)) = 5([p(es), z] + [es, p(@)])
%([%(2:21 Bi—1€; — Bant1€1 + re3 + Qap_1€2,), | + €3, 22:2%1 0ie; + qu])

2n—1
= %( ;} (i =24+ N)Bi—1ei — Ponsre1 + (1 + XN)ages + (2n — 3 4+ 2X)agp_1€2,

‘F2(1-— A)ﬁ3€4-— 252n_262n'+’2a1(1 +'A)63>.
On the other hand

2n—1
o(les, z]) = (1+ N)p(es) = (1 + )\)%( ;’ Bi—1e; — Bansre1 + anes + agp_162,).

Comparing coefficients of the basis elements we obtain that

2\ — 1)Baps1 = Q, (T+XN)(f2—aq) = Q, 20952 = (2n — 5) o1, )
(1—3=XN)p;=0,3<i<2n-—2.
Comparing the ratios of (6) and (7) we obtain the following restrictions
2A\=1)81 =0, o =1, N3 =0,8 =0, 4 <i < 2n—2, (201—3—\)Ban_1 = 0, Bans1 = 0.
01 =P, 0; = (i =3+ AN)aiy1,2 <i <2n — 2, dgp1 = (3 — 2n)B2n, d2nt1 = au,
agnr1 =0, (A =2)ay =0, (2n —5+2\)ag,_1 =0.
Thus, we have
p(es) = %(204163 + B + aan_1€2,).
From the %-derivation property (1.4) we have

ples) = p(les, e1]) = %([@(63)7 e1] + [es, p(e1)])

1

2n
3 <[%(2041€3 + B3es + Qon_162,), €1] + [e3, D Oéﬁz‘]) = i(4041€4 + Baes — 202p_2€2y).
i=1

If we use the %—derivation property for the pairs {es, es} and {ey, x}, we get 51 = B3 = 0.

Furthermore, by applying the induction and the %—derivation property (1.4) for 4 <
1 <n—1, we derive
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pleir1) = @(lei, e1]) = 5([w(e:), ea] + [es, (e1)])

= %([221,2 (2i_2a16i + (—1)i_12i_3a2n+2_,~62n, 61] + [61', Z Oéj6j])
j=1

_ 1 i1 i oyi—2
= 51 (22 areip1 + (—1)2° Oé2n+1—i€2n)-

The equality ¢([ea,—1,€1]) = %([gp(egn_l), e1] + [ean—1, ¢(€1)]) gives ap = 0.
From the i-derivation property (1.4) we have

p(lei 2]) = 5([e(ei), 2] + [ei, o(2)])

— %([221,2 (2i_2041€i + (—1)i_12i_3062n+2_i62n, LU] + [ei, ; 5@'61' -+ oqx])

_ %((z’ — 2+ Nare; + EU7 (20 — 34 20)antai€an + (—1)idon1_sean + (i — 2+ )\)alei> .
On the other hand
o(lei,x]) = =24 Np(e;) = (i —2+ )\)(21-1,2 (27 2ae; + (—1)71207 3, 10 _ie0,).
Comparing coefficients of the basis elements we obtain that

26211—1—1—2' = (2n +1-— 27;>O[2n+2_i, 3 S 1 S 2n — 1.

This completes the proof of the theorem. O
Theorem 2.6. Any 5-derivation ¢ of the algebras ta,41(2 — n,€) has the form
ole) =ae;, 1 <i<2n, i#2, p(es) = aey + beay,, o(x) = (3 —2n)beg,_1 + cesy, + ax.

Proof. The algebra ty,,1(2 — n,¢) has e, e5 and x as generators. We put

2n 2n 2n
ler) = D aie; + aapz, @le2) = > Bie; + Pont1x, ©(x) =Y die; + dopia.
=1 =1 =1

Now consider the condition of %—derivation for the elements es, x :

pllenia) = Slotea)a) + lea, (o)) = 3([55 s+ Bunns ] + o 35 i +

2n—1
= %(ﬁl(el +eean) + D (1 —n)fie; + Poneon + 0163 + Oon_1€2, + (2 — n)52n+162>.
i=2

On the other hand
2n

p(le, 2]) = (2 —n)p(er) = 2. (2 —n)Bie; + (2 = n) fanta .

i=1
Comparing coefficients of the basis elements we obtain that

B1 = Pon+1 =0, dopy1 = P2, 61 = (1 —n)Ps, dan_1 = (3—2n)Ps,, Bi =0, 4<i<2n—1.
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From the i-derivation property (1.4) we have

p(es) = p([ea, e1]) = 5([9(e2), e1] + [e2, (e1)])

= %([5262 + Bses + Baneon, €1] + [€2, Y que; + Oé2n+1f13]>
i=1

= %(5263 + B3es + ares + qon_1€2n + (2 — n)a2n+162>-
Now consider the condition of %—derivation for the elements es, x :
p([es, z]) = 3([(es), 7] + [es, p(2)]) =
1

2n
3 ([%((2 —n)agni1es + (a1 + Ba)es + Baes + aon_162,), 7] + [e3, Y die; + 521']> =
i=1

=

<(2 — n)2a2n+162 —+ (3 — n) (Oél -+ ,82)63 —+ (4 — n)ﬁ3€4 “+ Qiop_1€9, + 25164 — 252n_262n +
2(3 — n)5263> .
On the other hand

e(les, 2]) = (3 —n)p(es) = %(3 —n) <(2 —n)agmi1es + (a1 + Ba)es + Baeq + Oézn—1€2n>-

Comparing coefficients of the basis elements we obtain that

Qo1 =0, fo=0y, B3 =01 =0, 20,2 = (2n — 5)ag,_1.
Thus, we obtain

1
p(es) = ages + §a2n—1e2n-

By applying the induction and the %—derivation property (1.4) for 3 <1i <2n—2, we
derive

peir1) = ¢(lei e1]) = 3([p(ei), er] + [es, p(er)])

N [—=

qyie1 n Vi
= %([04161' + ( 12) Qant2-—i€an; €1] + [€i, D ajej]) = €iy1 + ( 21)
j=1

Qop+1—i€2n-

o) = p([e2, e2n-1]) = %([90(62)7 ean—1] + [e2; p(€2n-1)])
= %([04162 + Bon€on, €2n—1] + [e2, a1€2p1 + %Oé3€2n]) = (1 €p.

The equality ¢([ea,—1,€1]) = %([gp(egn_l), x] + [ean_1,(e1)]) derives ap = 0.
From the i-derivation property (1.4) we have

w(lei, z]) = 3([p(e), 2] + [ei, o(2)])
(—1)i-1 2

= %([O&lﬁ’i + 2 Aon+2-—i€Con, ZL’] + [61', 22(5162 + Oéll’]>
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. _1yi—1 . .
= %((Z — n)ozlei + ( 1% Qop12_;€op + (_1)252n+1—i€2n + (’L — n)oqei) .

On the other hand
i—1

pllesal) = (1= mp(er) = (i =) (anes + = aniaiean ).

Comparing coefficients of the basis elements we obtain that
20, = (2t —2n — Doyyq, 2<t<2n—2.
Now consider the condition of %—derivation for the elements ey, x :

llersad) = Blp(en).a) + len (@) = 3 (fones + 3 el +len, 35 b+ )

=3 1=

2n—1 2n—1
= %(al(el +eey,) + D (1 —n)ae; + agnean + O 016 + ag(eg + 862n)>.
i=3 =3

On the other hand

2n

o(ler, x]) = @(er) +eplean) = arer + Y. aie; + eayég,.
i=3

Comparing coefficients of the basis elements we obtain that
ap =0, 3<1i<2n.
This completes the proof of the theorem. O

Theorem 2.7. Any }-derivation ¢ of the algebra o, 1(Xs, ..., A1) has the form
ple) =ae;, 1<i<2n, i#2, p(es) = aes + bea,, () = cesy, + ax.

Proof. 1t is easy to see that to,11(As, ..., Aoy_1) has three generators. We use these gen-
erators to calculate %—derivation.

2n 2n 2n
ler) = Z e + op1,  p(e2) = Z Biei + Bony1z,  (x) = Z di€; + 021
i=1

i=1 i=1
Now consider the condition of %—derivation for the elements es and e :

ples) = ¢([es, e1]) = %([w(ez), e1] + [ea, p(e1)])

2n

2n
= %([; Bie; + Pans1, e1] + [eo, 21 ajei] + Qant1)

n—1 —1

= %(a2n+1€2 + (a1 + Ba)es + Y- Baicreai + D (Bai + QangaAaig1)e2ig1 + Qan_162n).
i=2 i=2

Therefore, from ¢([es, z]) = L([¢(es), 2] + [es, p(z)]), we obtain as,41 = 0. Thus, we
have
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2n—1
p(es) = %((041 + Bo)es + D> Bimiei + Qap_1€2n).
i=4
We prove the following equality for 3 < ¢ < 2n — 1 by induction:
2n—1

L@ -Dar+ Btz 3 Brise+

t=14+1

a2n—i+2e2n-

90(62') =3

If © = 3, the relationship holds according to the above equality. Now, we prove that it is
true for ¢ and i 4+ 1. By considering the condition of %—derivation for the elements ey, e; we

have
pleir1) = @(lei, e1]) = 5([w(e:), 1] + [es, (e1)])

) 2n—1 2n
= %([L«?Z =Dy +52)6z stz D Biigalr + —)azn i+2€2n, €1] + [€i, D akek]>

2i—2
t=i+1 k=1

2n—2
L <(2’_2 — Doy + ﬁ2>€z‘+1 + 2%2 t Zlﬁt—i+2€t+1 + €41 + (_1>2a2n—i+1€2n>
=1+

|
N[
/N
S,

2n—1

= 21-171 <(2i_1 oy + 52>6z+1 + 2@ =1 D Biipie + = ) Q2n—i4+1€2n-
t=i+2

Now, consider the condition of %—derivation for the elements e, €9,,_1 :
90(€2n) = 90([62, €2n—1]) = %([@(62), €2n—1] + [627 90(62n—1)])

(1)

2n
= %([Z Bie; + Bans1, €an—1] + [€2, 55— ((22"_3 Dag + ﬁg)egn 1+ Oégegn])

i=1

= %(ﬁ262n — Bont1€an—1 + 22n%3 <(22n_3 —Day + 52) 6271)
= —3Bomi1€2m-1 + 5= <(22n_3 — Day + (27 + 1)52)6%'

Thus, we obtain that

1 1
p(egn) = —552n+1€2n—1 + San—2 <(22n_3 —Day + (227° + 1)52) €2n-

Using the property of the %-derivation for the products [eg,, ] = 2eq,, [e2,¢;] =0, 3 <
i <2n—2 and [eg, x] = €2 + Ase5 + A\rer + -+ - + Aop_1€2,-1, We have

_ _ _ (23 -Dan+(22"341)82
[e2n, ] = 2e9n, = Bont1 =0, dopp1 = 57n=2 )

lea, 5] = 0, = (1=p=0 3<i<2n-2,

[eg,x] =€+ Z A€, = 52n+1 = ﬁ27 o = ﬁ2n—1 =0, ﬁ2 =

=3
Oon—1 = Q3Aop—1 + QsAgp_3 + - -+ + Qop_3As.
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By considering the condition of %-derivation for the elements e; and x we have
=1

2
Qy =, =0, 0; = Z Aok1Q—gkt2 + iy, 2 <0 < 2n — 2. (8)
k=2

Now, we consider the condition of %—derivation for the elements es,,_1 and z :

p(ean—1) = @(lean—1,2]) = 5([w(ean—1), 7] + [e2n—1, p(7)])

2n

1 a: _ 1

=3 ([Oélezn—l + Greon, ] + [e2n-1, Y diei + Oé1l’]> =3 <041€2n—1 + azegn — dg€a, + Oé1€2n—1>-
i=2

On the other hand
o(le2n—1,7]) = w(ean—1) = 1 + Fegy.

Comparing coefficients of the basis elements we obtain that do = 0. Considering the ratio
(8) we have a3 = 0. Having consistently considered the condition of %-derivation for the
elements es, ; and x, 2 < i < 2n — 3 and taking into account the relations (8), we have

Oék+1:ﬁk:0, 2§k§2n—2

This completes the proof of the theorem. O

Theorem 2.8. Any $-derivation ¢ of the algebra ta,io has the form
ple)) =ae;, 1<i<2n, @(x1) = (2n+ 1)bes, + az1, p(x2) = 2bez, + as.

Proof. The algebra ty,,9 has ey, es, 1 and x5 as generators. We put

2n 2n
oler) = > e + Qopi1®1 + Qopio®a, @(e2) = Y. Bie; + Pont1T1 + Pantoto,

i=1 i=1
2n 2n

©(x1) = D 6ie; + Oang1T1 + donyo®a,  ©(22) = D Yi€i + Yont121 + Yont2To.
= =

Now consider the condition of %—derivation for the elements e, x7 :

p(ler, m]) = %([@0(61),%] + [ex, p(21)])

2n 2n
1
~ 9 ([Z e + Q24121 + Qonta2, 1] + [e1, Z 0i€i + O2n+121 + 52n+2362]>

i=1 i=1

2n—1
1
= 5 ((O&l + 52n+1)61 + 20(262 + Z (ZOKZ - 5i_1)ei + (2n + 1>a2n€2n> .
=3

On the other hand
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2n
o(ler, z]) = pler) = Z Q;€; + Q21171 + Qo 2To.

=1
Comparing coefficients of the basis elements we obtain that
Qo = Qopy1 = Qoppo = 0, dopp1 = 0, 0o = (1 —2)ay, 3 <1< 2n— 1.
Now consider the condition of %—derivation for the elements ey and z7 :

ez, 21]) = 5([(e2), 2] + [e2, (21)])

2

2n n
= %([Z Biei + Bont171 + BongaTa, T1] + [e2, D diei + don171 + 52n+2$2])
i=1 =1

2n—1
= %(ﬁlel + (282 + 20211 + O2ng2)ez + (Bs +01)es + D ifie; + ((2n + 1) 3o, + 52n—1)€2n>-
i=4

On the other hand

o(le2, 11]) = 2¢(e2) = 2( %Z%lﬁiei + Bong1w1 + 52n+2932)-

1=

Comparing coefficients of the basis elements we obtain that
Br= Pons1 = Pony2 =0, 61 =5, (i—4)3i=0, 4 <i<2n—1,
Oan—1 = (3 = 2n)Bapn, dans2 = 28y — 201,

Now consider the condition of %—derivation for the elements e, x5 :

0= plles,2a]) = 3 (lolen), 2] + fer, ()

2n—1 2n

1
D) <[Z aze;, o1] + [ex, Z%’ez‘ + Yont171 + ’Y2n+236’2]> =
i=1

=1
2n—1
1

=35 <(72n+161 + ey + Z (i — %—1)61')-
i=3

Comparing coefficients of the basis elements we obtain that
ag =Yont1 =0, 51 =q;, 3< 1< 2n—1.

Now consider the condition of %—derivation for the elements e, and x5 :

p([e2, za]) = 5([(e2), 2] + [e2, p(2)])

2n—2
= %([ﬁ2€2+5363+5464+ﬁ2n62m932]4-[62,71€1+ > Oéi+1€i+72n—1€2n—1+72n62n+72n+2952])
i=2

- %<(ﬁ2 + Yant2)ez + (B3 +71)es + (282, + ’Y2n—1)€2n)-
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On the other hand
©(lez, 72]) = p(ea) = Baea + Bzez + Baes + Banean.
Comparing coefficients of the basis elements we obtain that

Yon+2 = B2, 1= B3, Ba =0, Yon—1 =0.

From the i-derivation property (1.4) we have

ples) = ¢(les, e1]) = %([w(ez), e1] + [ea, p(e1)])

2n—1
= %([5262 + Bse3 + Boneon, €1] + €2, arer + Y aiei]) = %((041 + B2)es + Bzeq + Oé2n—1€2n>-
i=3

Therefore, from ¢([es, z2]) = 5([¢(e3), T2] + [e3, ©(2)]), we obtain

B2 = aq, B3 = Yan—2 = 0.

We prove the following equality for 3 < ¢ < 2n — 1 by induction.
(1!
2

ole;) = ane; +

If i = 3, the relationship is fulfilled according to the above equality. Now we prove that
it is true for ¢ and for ¢ + 1. Now consider the condition of %—derivation for the elements
€;, €1 .

Qon42—i€2n-

plein1) = p([ei,er]) = 5([p(e:), e1] + [es, p(e)])

2n—1
([aleﬂr (_) gt i€an, 1] + [e, aer + Y oziei])
=3

- %(O‘lei—i-l + i€ + (_l)ia2n+1—ie2n)> =
and

plean) = p(le2; e2n-1]) = %([w(ez), ean—1] + [e2; p(e2n-1)])

= %([04162 + Bon€on, €2n—1] + [2, a1€2p1 + %043€2n]) = 1 €.

From the %-derivation property (1.4) for 3 <7 < 2n — 1 we have

p(lei, z2]) = 5([p(ei), 2] + [ei, p(x2)])

(-1 i1 2n—2

_1 ) _
=3 <[a1€i + S —Qanto-i€on, Ta| + (€5, Y Qiy1€; + Yanon + 04@2]) =
i=2

- %(0‘162‘ + (=) agpia_ieon + (—1) oo i€y + 04162‘).

On the other hand
(= )

o(lei, z]) = @(e;) = are; + a2n+2 i€2n-
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Comparing coefficients of the basis elements we obtain that
=0, 3<i<2n—1.
By using the property of %—derivation for the product [z, x5] = 0, we have
200, = (2n + 1)79,.
This completes the proof of the theorem. O

3 Transposed Poisson structure on solvable Lie algebras with filiform
nilradical

In this section, we give the description of all transposed Poisson algebra structures on
solvable Lie algebras with naturally graded filiform nilradical.

Theorem 3.1. Let (s ,(8),-,[—, —]) be a transposed Poisson algebra structure defined on
the Lie algebra sy, (5). Then the multiplication of (s} (53),-) has the following form:
TP1(5}1’1(1>> . €1 €1 = (€3 + Q9ey, €1 T = Qge3 + Q3€4, T+ T = (3€3 + ey,

( 1
e1- €1 = ey + ez + ey, €1 -3 = (33 + 51 Q3€Cy,

€1 €3 = %%64, €2+ €2 = %a§e4,

TPy(s51(2)) 1 { €1+ = ase; + ares + 200e3 + quey, e3-T = asez + 3a;ases,
€y T — (Qi3€2 + 1(3€3 + Qg(X3€y4, €4 T = (X364,

(T - = apase; + 2ai0ey + 204e3 + aseq + asa;

)

e1-€e1 = €3+ ey, €1 €2 = g€y,

TP3(5}1,1(2)) DQ e x = e+ 20163 + (zey, €s - T = 2093 + 201006y,

(€30 = ey, T-T = 2ci9e1 + 2ai169 + 203e3 + gey;
TP4(5}t71(2)) Derrep =€y, e1-T = 2e3+ ey, €3+ = ey, T-T = 2€y+ 20163+ Qz€y;

TP;5(s;,(2)) : {

€1 €2 = (N1€y4, €2 €2 = (2€4, €1 - T = (364,

€y - X = 20163 + quey, €3+ = ey, T-x = 20161 + 203€3 + asey;
e1- €1 = ey, e -1 = Pajes + asey,
TPg(s! :
ole11(5)) v-r=(8—1)Barey + Pases + azey, B #1,2;
where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

Proof. Let (5}‘71(6),-, [—,—]) be a transposed Poisson algebra structure defined on the
Lie algebra sj (). Then for any element of z € s;,(f5), we have that the operator of
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multiplication ¢,(y) =z -y is a %—derivation. Hence, for 1 <i < 4 we derive by Theorem
2.1:

Pe;(€1) = @iner + @€ + i 3€3 + Qi 4e4,
©e,(€2) = vi1€a + B 3e3 + Pisea, @e,(€3) = ;13 + %@,364, e, (€4) = i€y,
Ye; (1) = Biger + (B — D)ayzes + Bayaes + viaea + i,

) = g ie1 + agoes + o 3e3 + 0y aey,
z(€2) = ag1es + Brzes + Braes, pales) = azie3 + %5@36’4, Og(es) = g 164,

0p(x) = Puger + (B — 1)agzes + fagaes + Vpa€s + ap i,

with restrictions
(5 - 2)ax,2 = (ﬁ - 2)5x,3 = (2 - 6)5@4 =0,
(B=2)a0=(B—-2)Bizs=02—-0)Bia=0, 1 <i<4;

Considering the property ¢,(y) = z-y = y -2 = ¢,(z), we obtain the following
restrictions:

{61, 6’2} = Qg1 = 0, Qoo = (11, Qg3 = 51,3, Qg4 = 51,4,

{er,e3} = 31 =0, a32=0, agz =01, ags = %51,3,

{er,ea} = 1 =0, =0, ay3 =0, ass = iy,

{ea,e3} = B33=0, B34= %ﬁz:’n

{ea,ea} = Baz =0, Bas=0,

{e, 7} = a1=0, g1 = P13, o= (B—1aus, ars=Bary, Qs =714,
{ea, 2} = Boz=0, (B-2)B13=0, Bez = BB14, Boa= Y24,

{es,z} = (B-2)Bi3=0, y34= %551,4>

{es, 2} = yaa=Pis.

Thus, the following table of multiplications of the algebra gives us a transposed Poisson
algebra structure (s, (5), -, [—, —]):

_ 1 _
€1 - €1 = (€ + Qg + ey, €1 - €2 = Q5€3 + Q6€y, €1 - €3 = 50564, € * €2 = (U7€4,
e1-x =ase; + (8 — 1)ages + Payes + agey, €9+ T = ases + 2063 + gey,
€3+ T = ase3 + ey, €4+ T = asey, T-x = 2age1 + (B — 1)Bayes + Pages + arey + asz,

with restrictions
(B=2)(B=1az=(2—B)ag=(B—2)az = (B —2)as = (2— B)ag = (8 —2)ar = 0.
We have the following cases.

1. If B =1, then we get as = a5 = ag = a7 = ag = 0, and we have the algebra
TP1(s;,(1)).
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2. If B =2, by considering the general change of basis

4 4 4

/ / /

ey = E Asey, €5 = E Biey, ' = Hx + E Chey,
t=1 t=1 t=1

4
we find the relation between parameters o, and as from the product e;-e; = Y ajey,
j=2

as follows:

Now we consider the following subcases.

(a) Let ap # 0. Then by choosing By = A?ay we can assume ay = 1. Considering
the associative identities z - (e1-e1) = (z-e1)-e; and eg- (e1-€1) = (eg-€1) - €y,
we obtain the following restrictions:

1
2
Qe = 5613@5, Qg = 045, Q7 = 5045-

Hence, we obtain the algebra TP;(s),(2)).

(b) Let ag = 0. Then from the identity e - (e - e3) = (€1 - €1) - ez, we derive ag = 0.
Again by using a change of basis, we obtain the following relation:

i.

1l

If a3 # 0, then from the associative identities e; - (x - e3) = (e1 - x) - €5 and
e (z-x) = (ey-x)-x, we conclude ay = 0, ag = 2a4006. S0, we obtain the
algebra TP3s,(2)).
If az = 0, by using a change of basis, we get
;1

Qy = EO@.
If ay # 0, then considering associative identities for the triples {e;,z,z}
and {eq,z,2} we derive ag = oz = 0. Hence, the algebra TP,(s},(2)) is
obtained.
If ay = 0, then we have the algebra TP5(sy,(2)).

3. If B # 1,2, then we have as = a3 = a5 = ag = ay = ag = 0, and obtain the algebra
TP6(5}1,1(5))~

O
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Theorem 3.2. Let (s, ,(8),-,[—,—]) be a transposed Poisson algebra structure defined on

)

1
the Lie algebra s, () and n > 5. Then the multiplication of (s, (B),-) has the following
form:

’ n n—1
€161 = Z Oéjej, 1T = Z (t — 2)Oét+1€t -+ B3€n,
TP, (s},(1)) - ey
k:c cr = tz;(t —2)(t — Dagyoer + (n — 3)Bsen—1 + Bsén;
: n n—1
€€ = Z Qj€j, €1 T = Z(t - 1)at+1et + B3en,
TP;(s},(2)) : 3
Tox = tZ2(t2 —t)ayoe + (n — 2)Bsen_1 + Bsen;

\
(

n
€161 = Z Qj€j, €1 €2 = Bien, ez - ey = Paey,,

J=5
n—1
€T = n+t—3)oyie + Paen, €21 = [ien,
TPs(s,(n—2)): { %( Jairrec + Ben, €2 Bi
r-x=>Y (n+t—=>5)(n+t—4)y2e+
t=3

\_'_(2” - 6)B3€n—1 + ﬁ5en;

( n
e1-€e1 =e4+ Zozjej,

j=5
n—1
el = pPeyg+ n—'—t—5a e; + en,
TPy(s, ,(n —2)): ! Bea ;l( Jouyie; + B
62-x:ﬁ4en7 x'x:(n_3>(n—2)62—|—

n—2

+ Z (n +t— 5)(n +t— 4)Oét+2€t + (272, — 6)536n_1 + 55€n;
t=3

\

( n
€1 €61 = Z a;éj,
=1

n—1
TPs(s% ,(5)) : el T = %(t — 3+ B)ayrrer + Bsen, B#1,2,n—2,
L= Z(t_3+ﬁ)(t_2+5)at+26t—|—
t=2

\_l_(/n' —4+ ﬁ)ﬂ?}en—l + 656n;
where it 1s taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

Proof. Let (s),,(8),-, [, —]) be a transposed Poisson algebra structure defined on the Lie
algebra s, (). Then for any element of z € s, (), we have that operator of multi-
plication ¢,(y) = x -y is a 3-derivation. Hence, for 1 < ¢ < n we derive by Theorem
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Pe;(€1) = :1 iger, ©e,(€2) = i1es + Binen, Peer) = azrey, 3<t <,
Yei(T) = z(t — 34 B)ay 1€t + Yinen + i1,
pa(er) = :1 Qg ey, Pa(€2) = pres + Bonen, aler) = agie, 3 <t <n,
pele) = St =3+ Basires + Gunn + ana

with restrictions (8—2)a,2 = (n—2—0)rn = (6—2)i2 = (n—2—0F)Fin =0, 1 <i<n.

It is known that ¢, (e;) = e;-e; = ;- e; = @, (e;). Fori =1, j = 2 we have
ag e + Bine, = Z Qo €4
j=1

Comparing coefficients of the basis elements we obtain that
a1 =0, ano = a1, aop = Pin, =0, 3<t<n—1.

Fori:=1, 3 <j <n we have

n
a11€5 = E Qj t€¢.
J=1

Comparing coefficients of the basis elements we obtain that
ajj=a, aj;=0,1<t<n 3<j#t<n.
For i =2, 3 <j <n we have 0 = 3;,,¢,, and we obtain that
Bin=0,3<j<n.

It is known that @, (x) = €1 -z =x-e; = p,(e1). We have

—_

n—

(t =3+ B)onsp1es + Vnn + 0117 = Y gl
t=1

~
||
(V]

Comparing coefficients of the basis elements we obtain that
a11 =0, app =Y, @1 =0, @y =t —3+Pag, 2<t<n-—1
It is known that @.,(x) = ez -z = x - e3 = p,(e3). We have

(n —4+ 5)61,71671—1 + V2,n€n = ﬁx,nen-
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Comparing coefficients of the basis elements we obtain that
(n—4+8)B1n=0, Ben = Yo
It is known that ., (x) =€; -z =z - ¢; = @,(e;). For 3 <i <n we have
Yin =0, 3 <1< n.

Thus, we obtain TP(ag, ..., 0, b1y, 05) :

n
€161 = Z €, €1 €3 = Bren, e2- ey = Baen,
j=2

n—1

€12 = Z (t -3+ B)at+1€t + Bsen, ex-x = Paey,
t=2
n—2

vor= (t—=3+pB)(t—2+ B)oysse + (n— 4+ B)Bsen_1 + Bsen.

t=2
with restrictions

467

(B=2)(B-1)asz =0, (n=2=)1s =0, (6=2)ay =0, (n—2—-F)41 =0, (n—2-5)6, = 0.

Considering the associative identity = - (y - z) = (z - y) - z, we obtain the following

restrictions on structure constants:

{er, e, el = By =0,

{eg, ez} = (B—1)asfy =0,
{eren,z} = (B —1)asfi = azfy,
{z,z,e1} = B(B—1aup =0,
{z,2z,e2} = B(B—1)asfy=0.

We have the following cases.

1. If 3 =1, then we get ay = 51 = B2 = 4 = 0 and obtain the algebra TPl(ﬁi,l(l)).

2. If B =2, then we derive 3; = f; = 4 = 0 and have the algebra TPs(s,, ;(2)).

3. If 8 =n—2, then we conclude ap, = a3 =0 and ay, = 0, ay8s = 0. In this case we

consider the general change of basis:

n n n

/ / /

€, = E Atet, €y = E Btet, v =Hzx + E Ctet.
t=1 t=1 t=1

Then from the multiplication e;-e; = Y, aje;, we discover that the structure constant

i=2
of the a4 changes as follows:

/ Oy

oy = —.

17 B,

Now we consider the following subcases.
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(a) If ay = 0, then we have the algebra TP3(s), ,(n — 2)).

(b) If ag # 0, then we get ay = 1,8, = 0,6, = 0, and obtain the algebra
TPy(s,  (n —2)).

4. If B # 1,2,n — 2, then we derive ay = a3 = 1 = o = 4 = 0 and we have the
algebra TP;5(s), ,(5)).

O

Theorem 3.3. Let (52 [—, —]) be a transposed Poisson algebra structure defined on the

n,1» "
2

Lie algebra s, . Then the multiplication of (s, ,,-) has the following form.:

n—1 n—2

n
TP(s,,) 1 61 = z = + ‘w= + +
Sp1) €€ = ey, €1 T = Q4164 +Y1€p, T X = Q4261 + Y1€n—1 + V2€n,
t=4 t=3 t=2

where it 1s taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

Proof. Let (s ,,-,[—, —]) be a transposed Poisson algebra structure defined on the Lie
algebra s ;. Then for any element of x € s, |, we have that the operator of multiplication

¢z(y) = x -y is a 3 -derivation. Hence, by using Theorem 2.2 for 1 <7 < n, we derive

n

SOei(€1) = ;€1 + Z Qi €4, <Pei(€t) = 16, 2<t<mn,
t=3
n—1

e, (x) = Qi t+1€¢t + Vinen + 1T,
t=2

n
wr(er) = az1er + D agier, wuler) = agie, 2 <t <mn,
t=3
n—1

Pz (LU) = Oy 14164 + Vz,nbn + Q1.
t=2

It is known that ¢, (e;) = e;-e; = ¢€;j-e; = @, (e;). For 2<i <n, j =1 we have
;161 + Z Q; 1€y = (1,165
t=3

Comparing coefficients of the basis elements we obtain that
Oé171:O, Oéi71:Oéi7t:O, QSZSTL, 3§t§n

It is known that @.,(x) =€ -z =x-e; = p,(e1). We have

n—1

n
g Q14416 + V1,pn = Qg 161 + g Qg €4
t=2 t=3
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Comparing coefficients of the basis elements we obtain that
a13=0, az1 =0, Qpn ="Y10 Qur =11, 3<E<n—1

It is known that ¢.,(z) =¢€; - v = 2 - ¢; = p,(e;). We obtain that v;, =0, 2 <i < n.

Thus, we have the algebra TP(s? ). O
Theorem 3.4. Let (si,l, - [=,—]) be a transposed Poisson algebra structure defined on the

Lie algebra s} . Then the multiplication of (s} |,-) has the following form.:

n n—1
\ er-er =) ey, er-x = (I —2)ar1e; + Yien,
TP(sn,l) : n3§3 =
r-r = Z (T, — 2)(t — 1)Oét+2€t + (n - 3)71€n—1 + Y2€n,
t=3

where it 1s taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

Proof. Let (s ,,-,[—,—]) be a transposed Poisson algebra structure defined on the Lie
algebra 5% ;. Then for any element of 2 € s} ,, we have that operator of multiplication

¢z(y) = x -y is a 3-derivation. Hence, from Theorem 2.3 for 1 < i < n we derive

n

e, (€1) = aire1 + D ajqer, Qe (er) = aire, 2<t<n,

=3
n—1
Ve, () = D (t = 2)vi 1418 + Vinen + @in,
=3
Y€1) = agrer + Y agier, gu(e) = agie, 2<t <n,
=3
n—1
QOm(LL’) = Z (t - Q)Ofgc,t—l—let + Yzn€n + Qg1 T.
=3

It is known that ¢, (e;) = e;-e; =¢;j-e; = @, (e;). For 2<i <nand j =1 we have

n
;161 + g Q; 1€y = (1,165
t=3
Comparing coefficients of the basis elements we obtain that

06171207 Oéi71:Oéi7t:O, QSZSH, BST,SH

Similarly, from ¢, () = e - =z - e; = p,(e1), we reduce

—_

n—

n
(t - 2)a1,t+1€t + Vinbn = Qz1€1 + 5 Oy €.
t=3

-+
Il
w
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Comparing the coefficients for the basis elements, we obtain the following restrictions
on the coefficients:

Qg1 = 0, Qgrn = Vn, Ot = (t - 2)a1,t+1> 3<t<n-1

Finally, from the equality ¢.,(z) = €;-x = x-e; = @,(e;), we derive v, ,, =0, 2 <i < n.

Thus, we have the algebra TP (s} ). O
Theorem 3.5. Let (5;1171(CY3, gy ooy Qp_1), - |—, —]) be a transposed Poisson algebra struc-
ture defined on the Lie algebra s, (o3, u, . . ., om_1). Then the multiplication of
($p1(@s,u, ..., 1), ") has the following form.:
( n n—1 t—2
er-er =73 Ber, er-x =3 (B + 2 arfioria)er + men,
t=4 =3 r=3
n—2 i—1 i—j
TP(s,,): ¢z 2= (/Bi+2 + > i (2Biji3 + D arﬁi—j—r+4)>€i
i=2 7=3 r=3
n—2 n—i—1
+(71 + Z O‘i(ﬁn—i+2 + Z O‘rﬁn—i—r—i—i’»))en—l + Y2€n,
i=3 =3

\ T

where it 1s taken into account that the transposed Poisson algebra has its products with

respect to the bracket [—, —], and the remaining products are equal to zero.
Proof. Let us consider the transposed Poisson structure (sy, (a3, ay, ..., an-1),-, [—, —]) on
the Lie algebra s, (as, ay, ..., a,—1). Then for any element of x € s}, ,(as, a4, ..., an_1),

we have that the operator of multiplication ¢,(y) = z-y is a %—derivation. Hence, by using
Theorem 2.4 we derive the following:
o fore;, 1<i<n:

n

Qe,(e1) = €1+ Y- ager, @e,(er) = a;ne, 2 <t <,

t=3
n—1 t—1
Ve, () = Y (Aips1 + Y WQig—ri2)€r + Cinen + i1,
t=2 r=3

o for z:

n
wiler) = azre1 + D agrer,  piler) = agqie, 2 <t <mn,
t=3

n—1 t—1
QOZ(SL’) = Z (am,t—l-l + Z arax,t—r+2)et + Cenn + Ay 1T.
t=2 r=3

By considering equality o, (e;) =€;-e; = ¢ - e; = @,;(e;) for 2 <i <nand j =1, we
have

n
a;1€e1 + E Q; 1€y = G1,1€;.
=3
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From this, we conclude
0,171:0, CLLl:CLLt:O, QSZSTL, 3§t§n

Also, from the multiplications @, (x) = e;-x =z -e; = p,(e1) and @,,(z) = €; - =
e; = pz(e;), we have

n—1 t—1
(@141 + E Q1 4—rt2)€t + C1p€n = Ay1€1 + E azrer and ¢; e, = 0.
t=2 r=3 t=3

From these, we conclude

t—1
13 = 0p1 =0, Qzpp = Cipy Agg = Q1441 + ZOérCh,t—rJrz, 3<t<n-—1,
r=3
cin=20,2<:<n.
Thus, we have the algebra TP(s), ). O

Now we give descriptions of all transposed Poisson algebra structures on solvable Lie
algebras with nilradical isomorphic to the algebra £,

Theorem 3.6. Let (ty,41(N), -, [—, ]) be a transposed Poisson algebra structure defined on
the Lie algebra ta,1(N), X # 2n — 3,522 Then the multiplication of (tz,11(X),-) has the
following form:
TPl(t2n+1()\)) X T = €2p;
TPQ(thJ,_l()\ ) . €T = €9p, T T = (3 — 2n)62n_1;
2

TPQ(t2n+1(3_2 n)) L €T =€gp, T T = (3 — 2n)€2n_1 + €ap;

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

Proof. Let (t2,:1(A),-, [—, —]) be a transposed Poisson algebra structure defined on the
Lie algebra ta,11()) for A # 2n — 3,522, Then from relation (5) we get:

Bon—1=0a; =0, 3 <1< 2n.

Furthermore we aim to describe the multiplication - by Lemma 1.5. Hence, for any element
T € tan41(A), the multiplication operator ,(y) =z -y =y -z = ¢,(z) is a 3 -derivation.
Hence, by Theorem 2.5 we have:

©e,(e1) = aier, @e,(e2) = aies + biean, @e,(€;) = aze;, 3 < j < 2n,
e, () = (3 — 2n)biean—1 + i€, + a;x,
wi(e1) = azer, @u(e2) = azes + byean, pai(e;) = azej, 3 < j < 2n,

vz () = (3 = 2n)bgeon_1 + czea, + az.
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Firstly, for all 4, j from ¢, (e;) = €; - €; = €; - €; = @, (e;), we obtain that
a;=0,1<i<2n, b =0, b =0, 3<t<2n.
Secondly, we have @, (x) =¢; - = - e¢; = p,(e;), which implies
a; =0, bp =0, by =c9, c1 =0, ¢, =0, 3 <t < 2n.
Thus, we obtain
€y T = ey, T x = (3—2n)aegy, 1+ Pea,.

Now we consider the general change of basis:

2n 2n
el =Y Ajej, e =) Bje;, e =eel], 2<i<2n—2
1= Iy Y2 T J%1 T+l T i M1b =" = )
j=1 j=1

2n
o, = €, €hn 1], ¥ = Hx + Z Ciean.
=1
We express the new basis elements {€], €}, ..., e, 2’} via the basis elements
{e1,€ea,..., €9, x}. By verifying all the multiplications of the algebra in the new basis, we

obtain the relations between the parameters {o/, 8’} and {«, 5}:

, o ,  AB+(2A+2n - 3)Asa

:T7ﬁ_ )
A3 B,

(%
2n—2 2
Al B2

where AlBg % 0.
We have the following possible cases:

1. a =0, then we get § # 0, and via automorphism
¢($) =7, ¢(€1> = €y, ¢(€2) =V B_leiv 2 S l S 2n — 17 ¢(e2n) = B_162n7
we obtain the algebra TP (to,11(A)).

2. a#0, A= 3_22" and 8 = 0, then via automorphism
p(x) =, ¢ler) =e1, dle;) = ey, 2<i < 2n—1, ¢ex) = a 2eay,
we have the algebra TPy (ta,,1(2%2)).

2

3. a#0, \= % and 8 # 0, then by automorphism

¢(€Z) _ 2n7€/a2n—1—iﬁi+l—2nei’ 2 S 7 S I — 1’ ¢(€2n) _ ﬁ—le%’
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we get the algebra TPj(vo,41(322)).

4. v # 0 and \ # 3_22", then by automorphism

2 -2 .
QS(I’) =T+ %627 ¢(61) =€+ %6& ¢(el) = Oé_lfii, 2 S ? S 2n — 2a

-3
Plean—1) = a teg_1 + %6%, P(ean) = a egp,

we obtain the algebra TPy (to,41(A # 2522)).
U

Theorem 3.7. Let (to,41(2n—3), -, [—, —]) be a transposed Poisson algebra structure defined
on the Lie algebra to,1(2n — 3). Then the multiplication of (va,41(2n — 3),+) has the
following form:

€9 - €y = €9p—1 + €on, €2 T = (3 — 2n)€2n_1 + A€o,

TP (v0,01(2n —3)) : -7 = egy;
TPy(v0,1(2n —3)) : ea-x =e€9,, T - = (3 —2n)eg,_1;
TP3(t2,01(2n —3)) : ex-z =e9,, - = (3 —2n)eg,_1 + €2p;
TP4(t2n+1(2n — 3)) . €€y = €op, €2 T = (3 — 2n)62n_1;
TP5(t2n+1(2n — 3)) . €9 €y = €op, €2 T = (3 — 2n)62n_1, T T = €gpn,
TPg(v2,41(2n—3)) : e3-ea = €9y, €3:x = (3—2n)eg,_1+€2,, T-T = (3—2n)e2,_1+0Coy;
TP7(v0,41(2n — 3)) : €9 - €3 = €9,_1;
TPs(v0,41(2n—3)) 1 €23 = €941, T T = €gy;
TPg(t2n+1(2’n, — 3)) . €€y = €op_1, €T = €op, T T = (3 — 2n)€2n_1 + Qeay;
)

x-x=(3—2n)aey,_1 + Pey;
where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

Proof. Let (to,41(2n — 3),+,[—, —]) be a transposed Poisson algebra structure defined on
the Lie algebra tg,41(2n —3). Then we aim to describe the multiplication - by Lemma 1.5.
So for any element of x € tg,,1(2n — 3), the operator of multiplication ¢,(y) = z -y =
Y-z =¢y(x) is a 1 -derivation. Hence, we have

o fore;, 1 <1< 2n:
©e,(€1) = aier, @e;(€2) = ajea + by €91 + bajeon, @, (€j) = aiej, 3 < j < 2n,

Pe; (SL’) = (3 — 271)()2’2'62”_1 + c;e9, + a;x,

o for z:

0u(e1) = azer, pu(e2) = azes + by geon_1 + bazeon, wi(e;) = azej, 3 <j < 2n,
(px(x) = (3 - 2n)b2,x62n—1 + Cz€2on + Az T.
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Firstly, for all 4, j from ¢, (e;) = €; - €; = €; - €; = @, (e;), we obtain that
4; =0, 1 <i<2n, by =byy =0, by=by, =0, 3<t< 2n.
Secondly, we have ¢, (x) =¢; - = - ¢; = p,(e;), which implies
a; =0, by, =3 —2n)bya, boy=co, c1 =0, ¢, =0, 3<t<2n.
Thus, we obtain
€y €y = Q€an_1 + A€oy, €3+ T = (3 — 2n)aean 1 + 3oy,

r-x = (3—=2n)ages,_1 + aueo,.

Now we consider the general change of basis:
2n 2n
el =Y Ajej, e =) Bje;, e =eel], 2<i<2n—2
1 J%3s V2 T I3 il T i M1 = v = )
j=1 j=1

2n
! / / /
€oy = [€3, €5, 1], o' = Hx + th@n-

t=1
We express the new basis elements {€], €}, ..., e, 2’} via the basis elements
{e1,ea,..., €9, x}. By verifying all the multiplications of the algebra in the new basis, we

obtain the relations between the parameters {o], ob, of, o)} and {aq, oo, ag, oy }:

r_ Eﬁ I 1 r_ 1 I 1
oy = @ab oy = Waz’ Qg = ma& ay = WC%
where AlBg % 0.
Then we have the following cases.
l.ag = ay = a3 = a4 = 0, then we have trivial algebras, i.e. all commutative

associative multiplications are zero.

2. a1 = as = ag = 0 and a4 # 0, then by choosing A; = 1, By, = \/ay we have the
algebra TP (to,41(2n — 3)).

3. a1 = as = a4 = 0 and a3 # 0, then by choosing A; = 1, By = a3 we have the
algebra TPy (to,41(2n — 3)).

4. o1 =ay =0, az #0, ay # 0, then by choosing A; = *"/a3a;’, By = a3 ay we
have the algebra TP3(to,1(2n — 3)).

5. a1 =0, ag # 0, ag = a4 = 0, then by choosing A; = 2»=3/ay we have the algebra
TP4(t2n+1(2n — 3))
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6. ay = 0,00 #0, a3 = 0, oy # 0, then by choosing A, = ¥z, By = \/ o, ‘o we
have the algebra TP5(to,1(2n — 3)).

7. a1 = 0,05 # 0, ag # 0, then by choosing A; = ></az, By = a;'az we have the
algebra TPG(t2n+1(2n - 3))7

8. a1 #0, ay = ag = a4 = 0, then by choosing A; =1, By = a1—1 we have the algebra
TP7(t2n+1(2n - 3))

9. 00 #0, ag = a3 = 0, ay # 0, then by choosing A; = **"/alay, By = {/a] ay
we have the algebra TPg(to,1(2n — 3)).

10. aq #0, ay =0, az # 0, then by choosing A; = 22"3/a a3, By = \/Oél_lOé3 we have
the algebra TPg(ta,41(2n — 3)).

11. a3 # 0, as # 0, then by choosing A; = 2»~¥ay, By = al_lag we have the algebra
TPlo(t2n+1(2n — 3))

O

Theorem 3.8. Let (t2n+1(5_22"), ,[—,—]) be a transposed Poisson algebra structure defined

on the Lie algebra ton1(352%). Then the multiplication of (tani1(3522), ) has the following

form:

( 2n
e1- e =eq+ ) agey,
=5
= £ 3<j<2n—2
€1 €; = 5 2p42-j€2ny, O S ] S 24N — 4,
1
€1 €2m—2 = —5C20n,
5-2 22 ygno
— 5— —2n—
€1 T =" > a1 + baeay,
t=3
5—2n .
TP1(t2n1(P5") 0 4 ey 2 = byesy,
_ (—1)j’1(2n+3—2j) ;
ej T = A2n13—j€om, 4 <7 < 2n— 2,
4n+1
€n—1-"T = €2n,
(3—2n)(5—2n) 203 ot 9n—1)(2t—2n+1)
n n n— n
T = f@ 2 + Z 1 at+2€t+
=3
\+b362n—1 + byeon;
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4 2n
el -e; = Z i€y, €1 - €y = b1€2n7
t=5
_ (=t 3<j<2n—3
€1 - e = 5 A2p42—jC2n, O > ] = 41— I,
RS
E— —4n—
t=4
TP, (¢ S=anyy L
2( 2n+1( 2 )) €y - x = bsey,, €31 = 55162n>
_ (=11 (2n43-2)) j
ej T = 1 a2n+3—j€2’n7 4 S J S 2n — 2’
23 (r—on—1)(2t—2n+1)
—on— —2n
€T-T = g 1 at+2€t+

\+2n2_5b1€2n—2 + b3€an—1 + baean;
where it is taken into account that the transposed Poisson algebra has its products with

respect to the bracket [—, —], and the remaining products are equal to zero.
Proof. Let (ton41(222), -, [—, —]) be a transposed Poisson algebra structure defined on the
Lie algebra t2n+1(¥) and from relation (5) we get 3,1 = 0. Then we aim to describe

the multiplication - by Lemma 1.5. So for any element € ta,41(352), the multiplication

operator ¢,(y) =z -y =y -z = ¢ () is a 3-derivation. Hence, by Theorem 2.5 for all i,
we have

2n
e (€1) = aj1e1 + Y aier, pe,(€2) = a; 12 + bieap,
i=3
_ (=ni-t :
@e,(€j) = aiie; + —5—a;iomy2—j€2n, 3 < j < 2n—1,
22 o1
— — —Zn—
e, (€2n) = i1€2n, e, (T) = == a1t + biean 1 + Ciean + a1,
=2
2n
©z(e1) = agrer + Y azer, ©i(e2) = ag1ea + byeon,
=3
_ (=1ni-t :
Pu(€j) = az1€j + —5—apony2—j€on, 3 < J < 2n—1,
2 o
_ _ —zn—
pr(e2n> - ax,1€2n7 pr(x) - p) ax,t—l—let + bwe2n—1 + Cz€2n + ax,lx-
=2

Firstly, for all 4, j from ¢, (e;) = €; - €; = €; - €; = e, (e;), we obtain that

(-
2

aonon =0, by =0, 3<t<2n, a;; =0, 2<:<2n, 3<t<2n—1.

a;1 =0, 1 <0< 2n, asoy, = b1, G2 = a1 on42—i; 3 <1< 2n—1,

Secondly, we have @, (x) =¢; - = 2 - ¢; = p,(e;), which implies

2t —2n —1

9 a1.t+41, BStSQn_2a

13 = 0z1 =0, Azon—1 =01, Uypon = C1, Qzy =
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_1i—12 3_2
62202"207b:v:CmCs:—bl,Ci:( ) (2n + i)

5 1 a1on+3—i, 4 <1< 2n—1.

Thus, we obtain

S (1!
€1 €1 = ) €y, €16y = bieoy, €1 €j = 5 —aguia_jCoy, 3 < J < 20— 2,
t=4
22 gron1 1
. —zn— . —
€1 T = a6+ biegy 1 + baeay, €21 = bieay,, €31 = biegy,
t=3
(=1 1(2n+3-27) .
€T = 7 An43—j€an, 4 < 7 < 2n—1,
23 ot an—1)(2t—2n+1) m—5
o —2n— —2n n—
Tor= ) 1 A€y + 520169, 2 + bzean 1 + baeap.
t=2

If we check for associativity, we get the relation asb; = 0.

5—2n

Similarly, by using the multiplication of Lie algebra ty,1(*5™) we consider the general
basis change:
2n 2n 2n
e) = ZAtet, ey = ZBtet, ¥ =Hx + ZC’tet.
t=1 t=1 t=1

2n
Then the product €] - €] = > alel gives
i=4

We have the following cases.

1. Let ay # 0. Then we derive oy = 1, by = 0 and in this case we obtain the algebra
TP (von41(>5))-

2. Let ay = 0. Then we have the algebra TPg(tgn_Fl(%)).
O

Theorem 3.9. Let (t9,41(2 — n,€),-,[—, —]) be a transposed Poisson algebra structure de-
fined on the Lie algebra to, 1(2 — n,e). Then the multiplication of (ten1(2 — n,e),+) has
the following form:

TP (ton1(2 —n,¢€)) 1 -z = egy;

TPg(t2n+1(2 —n, 6)) L €T =€9p, T T = (3 — 2n)e2n_1;

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.
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Proof. Let (va,41(2 —n,e),-,[—, —]) be a transposed Poisson algebra structure defined on
the Lie algebra vy,,1(2 — n,e). Then by Lemma 1.5 for any element of z € ty,,1(2 —n, ¢),
there is a related 3-derivation ¢, of (tan41(2—n,¢), [—, —]) such that p,(y) =z-y =y-z =
y(x), with y € t9,,11(2 — n, ¢). Therefore, by Theorem 2.6 for any ¢, we have

Pe;

(e1) = azer, @e,(e2) = ajes + biean, @e,(€;) = aej, 3 < j < 2n,
e, () = (3 = 2n)biean_1 + i, + i,
©ae1) = azer, pu(e2) = ages + byeon, wu(e;) = azej, 3 < j < 2n,
wr(x) = (3 =2n)bgea,_1 + crea, + a,.

Considering the equalities o, (e;) = €;-e; = € - €; = @, (e;) and @, (v) = €; -z =
x-e; = pi(e) forall 4,5 € {1,2,...,2n}, we have

a;=0,1<i<2n, by=0,0,=0, a, =0, by =0, by =co, 1 =0, ¢, =0, 3<t < 2n.
Thus, we obtain
ey T = ey, T -r=(3—2n)aey,_1+ Lea,.

Now we consider the general change of basis:
2n 2n
/ / / / / .
€1 = E Ajej, ey = E Bjej, e = ej,€l], 2<i <2 -2,
j=1 j=1

2n
/ / / /
e, = ley, €5, 1], ¥ = Hx + E Ciean.

t=1
We express the new basis elements {€], €}, ..., e, 2’} via the basis elements
{e1,eq,...,ea,, x}. By verifying all the multiplications of the algebra in the new basis, we
obtain the relations between the parameters {o/, 8’} and {«, 8}:
/ Oé ,_ Af+ Asa
O =gy B = — e

where AlBQ 7é 0.
Since we are only interested in non-trivial transposed Poisson algebra structures, there-
fore we have the following possible cases:

1. a =0, then we have 8 # 0 and via isomorphism
¢($) =7z, ¢(61) = 5_1617 ¢(6Z) = ﬁn_ieia 2 S { S 2n — ]-7 ¢(62n) = 5_162717

we obtain the algebra TP (tg,1(2 — n,¢)).
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2. a # 0, then by choosing the isomorphism
¢(€Z) = n7V1 oz"—iei, 2 S ) S 2n — 27 ¢(61) = nixl/ 04_161 + B n711/a—2€3’

plz) =2 —(n—2)8"Vales, ¢(e1)=a ‘ez —Ba 2es, dlean) = "Valey,
we find the algebra TPa(te,41(2 — n,¢)).
U

Theorem 3.10. Let (vo,41(As, ..., Aan1), -, [—, —]) be a transposed Poisson algebra struc-
ture defined on the Lie algebra ton11(Xs, ..., Aan_1). Then the multiplication of
(tans1( A5, .., Aon_1), ) has the following form:

(t2nta )t T = ea;

( (As, .. ) ey x = egy;
TP3(ton1(As, ..o, Aop_1)) : €27 =e€3,, T-T = €gy;

(t2nt1(As, - ) ey eq = Cap;

( ( )): g€y =63, T T = ey

(t2na )

€2 €3 = €2pn, €2 T = €2y, T T = QEap;

where it is taken into account that the transposed Poisson algebra has its products with

respect to the bracket [—, —], and the remaining products are equal to zero.
Proof. Let (van41(As,. .., Aon_1),+,|—, —]) be a transposed Poisson algebra structure de-
fined on the tg,11(A5,...,A2n—1). Then for any element of x € to, 1(As5, ..., Agp_1) the

linear operator ¢,(y) = = -y is a %—derivation. Therefore, according to Theorem 2.7 we
derive

(pei(€1> = aq;eq, 9061-(62> = a;eg + biegn, goei(ej) = a;¢j, 3 Sj < 271, (pei(l') = ¢i€ay T a;,
or(e1) = azer, pz(e2) = azes + byean, wai(e;) = azej, 3 < j < 2n, @, (x) = cyea, + az.

From equalities o, (e;) = €;-e; = €; - €; = @, (€;) and @, (v) = €; - = T - ¢; = @, (e;)
we derive

a;=0,1<i<2n, by =0, 0,=0, a, =0, by =c3, ¢, =0, ¢, =0, 3<t < 2n.
Thus, we obtain
€9 - €9 = (€, €3 T = [eog,, T T = Yeg,.
Now we consider the general change of basis:

2n 2n
el =Y Aje;, e, =Y Bjej, e =1le,el], 2<i<2n—2
= I 2 g€ Ciy1r — BB 4 =0 = )
Jj=1

J=1
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2n
/ / / /

t=1

We express the new basis elements {€], €}, ..., e, 2’} via the basis elements
{e1,eq,...,ea,, x}. By verifying all the multiplications of the algebra in the new basis, we
obtain the relations between the parameters {o/, 5',+'} and {«, 5,7}:

_F_
A" B,

[0
T p2n-3»
Al

__J
BB,

/

a B = , Y =

where AlBQ 7é 0.
To obtain only non-trivial transposed Poisson algebra structures, we have the following
possible cases:

1. « =0, =0 and v # 0, then via automorphism
dx) =z, dler) =1, dle) =y e, 2< i <2 — 1, Plean) =7 "ean,
we get the algebra TPq(vo,41(As, ..., Aan_1)).
2. a=0, f#0and v =0, then via automorphism
d(x) =2, dler) =e1, ole;) =B e, 2<i<2n—1, ¢(ea,) = B 2ean,
we have the algebra TPy (to,11(As, ..., Aon_1))-

3. a=0, f#0and v # 0, then via automorphism
pler) = "N/ VB 21, dle) = By N/ (B2) 2, 2 <0 < 2n— 1,

¢($> =, ¢(62n> = 7_1627”
we obtain the algebra TP3(to,11(Xs, ..., Aon_1)).

4. a #0, =0 and v =0, then via automorphism
plz) =1, dler) = "Valey, ¢le;) = "Vare, 2<i<2n—1, ¢les,) = a tea,
we find the algebra TPy (to,11(As, ..., Aon_1))-

5. a # 0, =0 and v # 0, then via automorphism

¢(61) = 2n7\3/0é_161, ¢(6z) — 4”16/a2n—2i+173—2n6i’ 2<i<2n—1,

¢($) =T, ¢(e2n) = 7_162na
we derive the algebra TPs5(to,1(As, ..., Aon_1)).
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6. a# 0 and 8 # 0, then via automorphism
dler) = "VaTler, dle) = "Va2—157 e, 2<i < 2n—1,
o(x) =z, Plean) = aff ean,
we establish the algebra TPg(ton1(As, .., Aon_1))-
]

Now we give a description of transposed Poisson algebra structures on solvable Lie
algebras with naturally graded filiform nilradical Qg, with codimension two.

Theorem 3.11. Let (ton42,-,[—, —]) be a transposed Poisson algebra structure defined on
the Lie algebra to, 9. Then the multiplication of (tenyo,+) has the following form:

TP(t2n+2) X1 = (2n -+ 1)262n7 T1 Lo = 2(2n+ 1)€2n7 Lo - Lo = 4€2n7

where it 1s taken into account that the transposed Poisson algebra has its products with
respect to the bracket [—, —], and the remaining products are equal to zero.

Proof. Let (tani9,-,[—, —]) be a transposed Poisson algebra structure defined on the Lie
algebra to,,o. Then according to Lemma 1.5 for each element of x € ty,,o the linear
operator ¢,(y) =x -y is a %—derivation. Hence, by using Theorem 2.8 for all 1 < 14,5 <n
we can put

goei(ej) = aiej, Pe; (LL’l) = (2n —+ 1)[92'62” + a;xTq, Pe; (S(Zg) = Qbiegn + a; T2,
Oui (€5) = agiej, @u (1) = (2n + 1)by €20 + A3y X1, ©u, (T2) = 2by, €2 + Ay, T2,
Ouy(€5) = gy, Y1) = (2 + 1)byye0n + Ary®1, ©u,(T2) = 2by,€0, + Ay, To.

By checking the equalities of o, (e;) = €;-e; = €; - €; = @e;(€i), Ye,(Th) = €; - 1) =
T € = g, (€;) and @y, (T2) = 1 - T2 = To - 1 = @, (21) for all 4,5 € {1,2,...,2n} and
k € {1,2}, we have the following restrictions:
4 =0, ag, =0, ag, =0, by =0, 1 <t < 2n, 2b,, = (2n+ 1)b,,.
Thus, we obtain

11 = (2n + 1)2Oé62n, T - To = 2(2n + 1)a€2n, To + Lo — 4a€2n.

We have non-trivial transposed Poisson algebra structures only in the case when a # 0.
Further, by using the transformation

o(x) =z, der) = e1, dle;)) = Vale, 2<i<2n—1, dles,) = a 'eay,

we get the algebra TP (tg,2). O
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