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Transposed Poisson structures on solvable Lie algebras with

filiform nilradical

Kobiljon Abdurasulov, Jobir Adashev and Sabohat Eshmeteva

Abstract. In this article, we describe 1
2 -derivations of solvable Lie algebras with a

filiform nilradical. Nontrivial transposed Poisson algebras with solvable Lie algebras
are constructed. That is, by using 1

2 -derivations of Lie algebras, we have established
commutative associative multiplication to construct a transposed Poisson algebra
with an associated given Lie algebra.

Introduction

C. Bai, R.Bai, L.Guo, and Y.Wu [2] have introduced a dual notion of the Poisson alge-
bra, called transposed Poisson algebra, by exchanging the roles of the two multiplications
in the Leibniz rule defining a Poisson algebra. We know that Poisson algebra is introduced
to commutative associative algebras using its derivation. Similarly, the concept of a trans-
posed Poisson algebra is defined on a Lie algebra through its a 1

2
-derivation. A transposed

Poisson algebra defined this way not only shares some properties of a Poisson algebra, such
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as the closedness under tensor products and the Koszul self-duality as an operad but also
admits a rich class of identities [2, 3, 6, 8, 22, 23, 24].

One of the natural tasks in the theory of Poisson algebras is the description of all such
algebras with a fixed Lie or associative part [9, 14, 28]. This paper classifies transposed
Poisson algebras based on the solvable Lie algebras with a filiform nilradical. Note that any
unital transposed Poisson algebra is a particular case of a “contact bracket” algebra and
a quasi-Poisson algebra [3]. Each transposed Poisson algebra is a commutative Gelfand-
Dorfman algebra [24] and it is also an algebra of Jordan brackets [6]. In [30] computed
δ-derivations of simple Jordan algebras with values in irreducible bimodules. They turn
out to be either ordinary derivations (δ = 1), or scalar multiples of the identity map
(δ = 1

2
). This can be considered as a generalisation of the “First Whitehead Lemma” for

Jordan algebras which claims that all such ordinary derivations are inner. In a paper by
Ferreira, Kaygorodov and Lopatkin, a relation between 1

2
-derivations of Lie algebras and

transposed Poisson algebras has been established [5]. These ideas were used to describe all
transposed Poisson structures on Witt and Virasoro algebras in [5]; on twisted Heisenberg-
Virasoro, Schrödinger-Virasoro and extended Schrödinger-Virasoro algebras in [29]; on
Schrödinger algebra in (n + 1)-dimensional space-time in [27]; on Witt type Lie algebras
in [17]; on generalized Witt algebras in [16]; Block Lie algebras in [15, 16]; on the Lie
algebra of upper triangular matrices in [19] and showed that there are more transposed
Poisson structures on the Lie algebra of upper triangular matrices; on Lie incidence algebras
in [18]. Any complex finite-dimensional solvable Lie algebra was proved to admit a non-
trivial transposed Poisson structure [21]. The algebraic and geometric classification of
three-dimensional transposed Poisson algebras was given in [4]. For the current list of
open questions on transposed Poisson algebras, see [3]. Recently, in [20], it was described
all transposed Poisson algebra structures on oscillator Lie algebras, i.e., on one-dimensional
solvable extensions of the (2n+1)-dimensional Heisenberg algebra; on solvable Lie algebras
with naturally graded filiform nilradical; on (n + 1)-dimensional solvable extensions of
the (2n + 1)-dimensional Heisenberg algebra; and on n-dimensional solvable extensions
of the n-dimensional algebra with the trivial multiplication. Furthermore, the authors
found an example of a finite-dimensional Lie algebra with non-trivial 1

2
-derivations but

without non-trivial transposed Poisson algebra structures. Also, see [13, Section 7.3] and
the references therein for similar studies. In [4], it was obtained the algebraic and geometric
classification of all complex 3-dimensional transposed Poisson algebras, and in [10] the
algebraic classification of all complex 3-dimensional transposed Poisson 3-Lie algebras.

The purpose of this article is to find all transposed Poisson algebras that demonstrate
solvable Lie algebra with filiform nilradical. To achieve our goal, we have organized the
paper as follows: in Section 2, we described 1

2
-derivations of solvable Lie algebras with

a filiform nilradical. In Section 3, we describe all non-trivial transposed Poisson alge-
bras with solvable Lie algebras. Next, using descriptions of 1

2
-derivations of Lie algebras,

we established commutative associative multiplication to construct a transposed Poisson
algebra with an associated given Lie algebra.



Transposed Poisson structures on solvable Lie algebras with filiform nilradical 443

1 Preliminaries

In this section, we present the concepts and known results. All the algebras we present
in this section are given over the field C unless otherwise stated.

We first recall the definition of a Poisson algebra.

Definition 1.1. Let L be a vector space equipped with two bilinear operations

·, [−,−] : L⊗ L → L.

The triple (L, ·, [−,−]) is called a Poisson algebra if (L, ·) is a commutative associative
algebra and (L, [−,−]) is a Lie algebra which satisfies the compatibility condition

[x, y · z] = [x, y] · z + y · [x, z]. (1)

Eq. (1) is called the Leibniz rule since the adjoint operators of the Lie algebra are
derivations of the commutative associative algebra.

Definition 1.2. Let L be a vector space equipped with two bilinear operations

·, [−,−] : L⊗ L → L.

The triple (L, ·, [−,−]) is called a transposed Poisson algebra if (L, ·) is a commutative
associative algebra and (L, [−,−]) is a Lie algebra which satisfies the following compati-
bility condition

2z · [x, y] = [z · x, y] + [x, z · y]. (2)

Eq. (2) is called the transposed Leibniz rule because the roles played by the two
binary operations in the Leibniz rule in a Poisson algebra are switched. Further, the
resulting operation is rescaled by introducing a factor 2 on the left-hand side.

Transposed Poisson algebras were first introduced in a paper by Bai, Bai, Guo and
Wu [2]. A transposed Poisson structure · on L is called trivial, if x · y = 0 for all x, y ∈ L.

The next result shows that the compatibility relations of the Poisson algebra and those
of the Transposed Poisson algebra are independent in the following sense.

Proposition 1.3 ( [2]). Let (L, ·) be a commutative associative algebra and (L, [−,−]) be a
Lie algebra. Then (L, ·, [−,−]) is both a Poisson algebra and a transposed Poisson algebra
if and only if

x · [y, z] = [x · y, z] = 0. (3)

Definition 1.4. Let (L, [−,−]) be an algebra with a multiplication [−,−], and ϕ be a
bilinear map. Then ϕ is a 1

2
-derivation if it satisfies:

ϕ([x, y]) =
1

2
([ϕ(x), y] + [x, ϕ(y)]). (4)
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Observe that 1
2
-derivations are a particular case of δ-derivations introduced by Filippov

in [7] (see, [11, 12] and references therein). It is easy to see from Definition 1.4 that [L,L]
and Ann(L) are invariant under any 1

2
-derivation of L. Definitions 1.2 and 1.4 immediately

implies the following key Lemma.

Lemma 1.5. Let (L, [−,−]) be a Lie algebra and · a new binary (bilinear) operation on
L. Then (L, ·, [−,−]) is a transposed Poisson algebra if and only if · is commutative
and associative and for every z ∈ L the multiplication by z in (L, ·) is a 1

2
-derivation of

(L, [−,−]).

Definition 1.6. An n-dimensional Lie algebra L is said to be filiform if dimLi = n − i,
for 2 ≤ i ≤ n.

Now let us define a natural gradation for the nilpotent Lie algebras.

Definition 1.7. Given a nilpotent Lie algebra L with nilindex s, put Li = Li/Li+1, 1 ≤
i ≤ s−1, and Gr(L) = L1⊕L2⊕ . . .⊕Ls−1. Define the product in the vector space Gr(L)
as follows:

[x+ L
i+1, y + L

j+1] := [x, y] + L
i+j+1,

where x ∈ Li \Li+1, y ∈ Lj \Lj+1. Then [Li,Lj ] ⊆ Li+j and we obtain the graded algebra
Gr(L). If Gr(L) and L are isomorphic, then we say that the algebra L is naturally

graded.

It is well known that there are two types of naturally graded filiform Lie algebras. In
fact, the second type will appear only in the case when the dimension of the algebra is
even.

Theorem 1.8 ( [26]). Any naturally graded filiform Lie algebra is isomorphic to one of the
following non isomorphic algebras:

nn,1 : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1;

Q2n : [ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n.

All solvable Lie algebras whose nilradical is the naturally graded filiform Lie algebra
nn,1 are classified in [25] (n ≥ 4). Furthermore, solvable Lie algebras whose nilradical is
the naturally graded filiform Lie algebra Q2n are classified in [1]. It is proved that the
dimension of a solvable Lie algebra whose nilradical is isomorphic to an n-dimensional
naturally graded filiform Lie algebra is not greater than n+ 2.

Here we give the list of such solvable Lie algebras. We denote by sin,1 solvable Lie
algebras with nilradical nn,1 and codimension one, and by sn,2 with codimension two:

s1n,1(β) : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1, [e1, x] = e1, [ei, x] = (i− 2 + β)ei, 2 ≤ i ≤ n;

s2n,1 : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1, [ei, x] = ei, 2 ≤ i ≤ n;

s3n,1 : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1, [e1, x] = e1 + e2, [ei, x] = (i− 1)ei, 2 ≤ i ≤ n;
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s
4
n,1(α3, α4, . . . , αn−1) : [ei, e1] = ei+1, 2 ≤ i ≤ n−1, [ei, x] = ei+

n
∑

l=i+2

αl+1−iel, 2 ≤ i ≤ n;

sn,2 :

{

[ei, e1] = ei+1, 2 ≤ i ≤ n− 1, [e1, x1] = e1,

[ei, x1] = (i− 2)ei, 3 ≤ i ≤ n, [ei, x2] = ei, 2 ≤ i ≤ n.

Any solvable complex Lie algebra of dimension 2n + 1 with nilradical isomorphic to
Q2n is isomorphic to one of the following algebras:

r2n+1(λ) :











[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[e1, x] = e1, [ei, x] = (i− 2 + λ)ei, 2 ≤ i ≤ 2n− 1,

[e2n, x] = (2n− 3 + 2λ)e2n;

r2n+1(2−n, ε) :















[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[e1, x] = e1 + εe2n, ε = −1, 1, [ei, x] = (i− n)ei, 2 ≤ i ≤ 2n− 1,

[e2n, x] = e2n;

r2n+1(λ5, . . . , λ2n−1) :























[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[e2+i, x] = e2+i +
[ 2n−2−i

2 ]
∑

k=2

λ2k+1e2k+1+i, 0 ≤ i ≤ 2n− 6,

[e2n−i, x] = e2n−i, i = 1, 2, 3, [e2n, x] = 2e2n.

Moreover, the first nonvanishing parameter λ2k+1 can be normalized to 1.
Finally, for any n ≥ 3 there is only one solvable Lie algebra r2n+2 of dimension 2n + 2

having a nilradical isomorphic to Q2n :

r2n+2 :















[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[ei, x1] = iei, 1 ≤ i ≤ 2n− 1, [e2n, x1] = (2n+ 1)e2n,

[ei, x2] = ei, 2 ≤ i ≤ 2n− 1, [e2n, x2] = 2e2n.

Note that 1
2
-derivations of sn,2 were studied by I. Kaygorodov and A. Khudoyberdiyev

[20].

Theorem 1.9. Any 1
2
-derivation ϕ of the algebra sn,2 has the form

ϕ(x1) = αx1 + (n− 2)βen, ϕ(x2) = αx2 + βen, ϕ(ek) = αek, 1 ≤ k ≤ n.
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Theorem 1.10. Let (sn,2, ·, [−,−]) be a transposed Poisson algebra structure defined on the
Lie algebra sn,2. Then, up to isomorphism, there is only one non-trivial transposed Poisson
algebra structure on sn,2. It is given by

x1 · x1 = (n− 2)2en, x2 · x1 = (n− 2)en, x2 · x2 = en,

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

It’s obvious from Eq. (3) that this structure is non-Poisson.

2 1

2
-derivations of solvable Lie algebras with filiform nilradical

In this section, we calculate 1
2
-derivation of solvable Lie algebras with filiform nilradical

algebras.

Theorem 2.1. Any 1
2
-derivation ϕ of the algebra s1n,1(β) has the form:

for n = 4 :

ϕ(e1) = α1e1 + α2e2 + α3e3 + α4e4, ϕ(e2) = α1e2 + β3e3 + β4en, ϕ(e3) = α1e3 +
1
2
β3e4,

ϕ(e4) = α1e4, ϕ(x) = β3e1 + (β − 1)α3e2 + βα4e3 + δ4e4 + α1x,

with restrictions (β − 2)α2 = (β − 2)β3 = (2− β)β4 = 0;
for n ≥ 5 :

ϕ(e1) =
n
∑

i=1

αiei, ϕ(e2) = α1e2 + βnen, ϕ(ei) = α1ei, 3 ≤ i ≤ n,

ϕ(x) =
n−1
∑

i=2

(i− 3 + β)αi+1ei + δnen + α1x,

with restrictions (β − 2)α2 = (n− 2− β)βn = 0.

Proof. It is easy to see that from the multiplication table of the algebra s1n,1(β) we conclude
that e1, e2 and x are the generator basis elements of the algebra. We use these generators
to calculate the 1

2
-derivation.

ϕ(e1) =

n
∑

i=1

αiei + αn+1x, ϕ(e2) =

n
∑

i=1

βiei + βn+1x, ϕ(x) =

n
∑

i=1

δiei + δn+1x.

Now consider the condition of 1
2
-derivation for the elements e1 and e2 :

ϕ(e3) = ϕ([e2, e1]) =
1

2
([ϕ(e2), e1] + [e2, ϕ(e1)]) =
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=
1

2
([

n
∑

i=1

βiei + βn+1x, e1] + [e2,
n

∑

i=1

αiei + αn+1x])

=
1

2
(

n
∑

i=3

βi−1ei−βn+1e1+α1e3+αn+1βe2) =
1

2
(−βn+1e1+αn+1βe2+(α1+β2)e3+

n
∑

i=4

βi−1ei).

Now consider the condition of 1
2
-derivation for the elements e1 and x :

ϕ([e1, x]) =
1

2
([ϕ(e1), x] + [e1, ϕ(x)]) =

1

2
([

n
∑

i=1

αiei + αn+1x, x] + [e1,

n
∑

i=1

δiei + δn+1x])

=
1

2
(α1e1 +

n
∑

i=2

(i− 2 + β)αiei −
n

∑

i=3

δi−1ei + δn+1e1)

=
1

2
((α1 + δn+1)e1 + βα2e2 +

n
∑

i=3

((i− 2 + β)αi − δi−1)ei).

On the other hand

ϕ([e1, x]) = ϕ(e1) =

n
∑

i=1

αiei + αn+1x.

Comparing coefficients of the basis elements we obtain that

δn+1 = α1, (β − 2)α2 = 0, δi = (i− 3 + β)αi+1, 2 ≤ i ≤ n− 1, αn+1 = 0.

Now consider the condition of 1
2
-derivation for the elements e2, x :

ϕ([e2, x]) =
1
2
([ϕ(e2), x] + [e2, ϕ(x)])

= 1
2
([

n
∑

i=1

βiei+βn+1x, x]+[e2,
n
∑

i=1

δiei+δn+1x]) =
1
2
(β1e1+

n
∑

i=2

(i−2+β)βiei+δ1e3+βδn+1e2)

= 1
2

(

β1e1 + β(β2 + δn+1)e2 + ((1 + β)β3 + δ1)e3 +
n
∑

i=4

(i− 2 + β)βiei

)

.

On the other hand

ϕ([e2, x]) = βϕ(e2) = β(
n

∑

i=1

βiei + βn+1x).

Comparing coefficients of the basis elements we obtain that

(2β − 1)β1 = 0, β(β2 − δn+1) = 0, δ1 = (β − 1)β3, (i− 2− β)βi = 0, 4 ≤ i ≤ n.

Now consider the condition of 1
2
-derivation for the elements e3 and x :

ϕ([e3, x]) =
1
2
([ϕ(e3), x] + [e3, ϕ(x)])
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= 1
2

(

[1
2
(−βn+1e1 + (α1 + β2)e3 +

n
∑

i=4

βi−1ei), x] + [e3,
n
∑

i=1

δiei + δn+1x]
)

=

= 1
2

(

1
2
(−βn+1e1 + (1 + β)(α1 + β2)e3 +

n
∑

i=4

(i− 2 + β)βi−1ei) + δ1e4 + (1 + β)δn+1e3

)

.

On the other hand

ϕ([e3, x]) = (1 + β)ϕ(e3) =
1
2
(1 + β)(−βn+1e1 + (α1 + β2)e3 +

n
∑

i=4

βi−1ei).

Comparing coefficients of the basis elements we obtain that

(2β+1)βn+1 = 0, (1+β)(α1+β2−2δn+1) = 0, 2δ1 = ββ3, (i−4−β)βi−1 = 0, 5 ≤ i ≤ n.

Comparing the obtained equalities, we get the following relations.

(2β − 1)β1 = 0, β2 = α1, (β − 2)β3 = 0, δ1 = β3,

(β − 2)α2 = 0, (n− 2− β)βn = 0, (2β + 1)βn+1 = 0, βi = 0, 4 ≤ i ≤ n− 1.

We have the following

ϕ(e1) =
n
∑

i=1

αiei, ϕ(e2) = β1e1 + α1e2 + β3e3 + βnen + βn+1x,

ϕ(e3) =
1
2
(−βn+1e1 + 2α1e3 + β3e4), ϕ(x) = β3e1 +

n−1
∑

i=2

(i− 3 + β)αi+1ei + δnen + α1x.

Using property of the 1
2
-derivation for the product [e3, e1] = e4 we have

ϕ(e4) =

{

α1e4, if n = 4,

α1e4 +
1
4
β3e5, if n ≥ 5.

If we check the situation for the elements {e4, x} and {e3, e2}, we get the following
relations

ϕ([e3, e2]) =
1
2
([ϕ(e3), e2] + [e3, ϕ(e2)]), ⇒ β1 = βn+1 = 0,

ϕ([e4, x]) =
1
2
([ϕ(e4), x] + [e4, ϕ(x)]), ⇒ β3 = 0 for n ≥ 5.

By induction, argument and the property of 1
2
-derivation, we derive

ϕ(ei) = α1ei, 5 ≤ i ≤ n.

Thus we have the following
for n = 4 :

ϕ(e1) = α1e1 + α2e2 + α3e3 + α4e4, ϕ(e2) = α1e2 + β3e3 + β4e4, ϕ(e3) = α1e3 +
1
2
β3e4,

ϕ(e4) = α1e4, ϕ(x) = β3e1 + (β − 1)α3e2 + βα4e3 + δ4e4 + α1x,
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with restrictions (β − 2)α2 = (β − 2)β3 = (2− β)β4 = 0;
for n ≥ 5 :

ϕ(e1) =
n
∑

i=1

αiei, ϕ(e2) = α1e2 + βnen, ϕ(ei) = α1ei, 3 ≤ i ≤ n,

ϕ(x) =
n−1
∑

i=2

(i− 3 + β)αi+1ei + δnen + α1x,

with restrictions (β−2)α2 = (n−2−β)βn = 0. This completes the proof of the theorem.

Now we study the 1
2
-derivation of the algebra s2n,1.

Theorem 2.2. Any 1
2
-derivation ϕ of the algebra s2n,1 has the form

ϕ(e1) = α1e1 +
n
∑

i=3

αiei, ϕ(ei) = α1ei, 2 ≤ i ≤ n, ϕ(x) =
n−1
∑

i=2

αi+1ei + δnen + α1x.

Proof. From the multiplication table of the algebra s2n,1 we conclude that e1, e2 and x
are the generator basis elements of the algebra. We use these generators to calculate
1
2
-derivation:

ϕ(e1) =
n
∑

i=1

αiei + αn+1x, ϕ(e2) =
n
∑

i=1

βiei + βn+1x, ϕ(x) =
n
∑

i=1

δiei + δn+1x.

Now consider the condition of 1
2
-derivation for the elements e1 and e2 :

ϕ(e3) = ϕ([e2, e1]) =
1
2
([ϕ(e2), e1] + [e2, ϕ(e1)])

= 1
2
([

n
∑

i=1

βiei + βn+1x, e1] + [e2,
n
∑

i=1

αiei + αn+1x]) =
1
2
(

n
∑

i=3

βi−1ei + α1e3 + αn+1e2).

Using property of the 1
2
-derivation for the products [e1, x] = 0 and [e2, x] = e2, we have

[e1, x] = 0, ⇒ α2 = 0, δi = αi+1, 2 ≤ i ≤ n− 1,

[e2, x] = e2, ⇒ δ1 = β3, δn+1 = β2, βi = 0, 4 ≤ i ≤ n + 1.

Now consider the condition of 1
2
-derivation for the elements e3, x :

ϕ([e3, x]) =
1
2
([ϕ(e3), x] + [e3, ϕ(x)])

= 1
2

(

[1
2
((β2 + α1)e3 + β3e4 + αn+1e2), x] + [e3, β3e1 +

n−1
∑

i=2

αi+1ei + δnen + β2x]
)

= 1
2

(

1
2
((β2 + α1)e3 + β3e4 + αn+1e2) + β3e4 + β2e3

)

.

On the other hand

ϕ([e3, x]) = ϕ(e3) =
1
2
((β2 + α1)e3 + β3e4 + αn+1e2).



450 Kobiljon Abdurasulov, Jobir Adashev and Sabohat Eshmeteva

Comparing coefficients of the basis elements we obtain that αn+1 = 0, β2 = α1, β3 = 0.
Thus we have the following

ϕ(e1) = α1e1 +
n
∑

i=3

αiei, ϕ(e2) = α1e2, ϕ(e3) = α1e3, ϕ(x) =
n−1
∑

i=2

αi+1ei + δnen + α1x.

Now consider the condition of 1
2
-derivation for the elements e1 and ei for 3 ≤ i ≤ n− 1 :

ϕ(ei+1) = ϕ([ei, e1]) =
1
2
([ϕ(ei), e1] + [ei, ϕ(e1)])

= 1
2
([α1ei, e1] + [ei, α1e1 +

n
∑

j=3

αjej ]) =
1
2
(α1ei+1 + α1ei+1) = α1ei+1.

This completes the proof of the theorem.

Now we will study the 1
2
-derivation of the algebra s3n,1.

Theorem 2.3. Any 1
2
-derivation ϕ of the algebra s3n,1 has the form

ϕ(e1) = α1e1 +
n
∑

i=3

αiei, ϕ(ei) = α1ei, 2 ≤ i ≤ n, ϕ(x) =
n−1
∑

i=3

(i− 2)αi+1ei + δnen + α1x.

Proof. The algebra s3n,1 has e1, e2 and x as generators. We put

ϕ(e1) =
n
∑

i=1

αiei + αn+1x, ϕ(e2) =
n
∑

i=1

βiei + βn+1x, ϕ(x) =
n
∑

i=1

δiei + δn+1x.

Now consider the condition of 1
2
-derivation for the elements e2 and x :

ϕ([e2, x]) =
1
2
([ϕ(e2), x] + [e2, ϕ(x)]) =

1
2
([

n
∑

i=1

βiei + βn+1x, x] + [e2,
n
∑

i=1

δiei + δn+1x])

= 1
2

(

β1(e1 + e2) +
n
∑

i=2

(i− 1)βiei + δ1e3 + δn+1e2

)

.

On the other hand

ϕ([e2, x]) = ϕ(e2) =
n
∑

i=1

βiei + βn+1x.

Comparing coefficients of the basis elements we obtain that

β1 = 0, δ1 = 0, δn+1 = β2, βi = 0, 4 ≤ i ≤ n + 1.

Now consider the condition of 1
2
-derivation for the elements e1, x :

ϕ([e1, x]) =
1
2
([ϕ(e1), x] + [e1, ϕ(x)]) =

1
2
([

n
∑

i=1

αiei + αn+1x, x] + [e1,
n
∑

i=1

δiei + δn+1x])

= 1
2

(

α1(e1 + e2) +
n
∑

i=2

(i− 1)αiei −
n
∑

i=3

δi−1ei + δn+1(e1 + e2)
)

.

On the other hand
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ϕ([e1, x]) = ϕ(e1 + e2) =
n
∑

i=1

αiei + αn+1x+ β2e2 + β3e3.

Comparing coefficients of the basis elements we obtain that

α2 = 0, αn+1 = 0, δn+1 = α1, δ2 = −2β3, δi = (i− 2)αi+1, 3 ≤ i ≤ n− 1.

From the 1
2
-derivation property (1.4) we have

ϕ(e3) = ϕ([e2, e1]) =
1
2
([ϕ(e2), e1] + [e2, ϕ(e1)])

= 1
2
([α1e2 + β3e3, e1] + [e2, α1e1 +

n
∑

i=3

αiei]) = α1e3 +
1
2
β3e4.

Therefore, from ϕ([e3, x]) =
1
2
([ϕ(e3), x] + [e3, ϕ(x)]), we obtain β3 = 0.

By applying the induction and the 1
2
-derivation property (1.4) for 3 ≤ i ≤ n − 1, we

derive

ϕ(ei+1) = ϕ([ei, e1]) =
1
2
([ϕ(ei), e1] + [ei, ϕ(e1)])

= 1
2
([α1ei, e1] + [ei, α1e1 +

n
∑

j=3

αjej ]) =
1
2
(α1ei+1 + α1ei+1) = α1ei+1.

This completes the proof of the theorem.

Now we will study the 1
2
-derivation of the algebra s4n,1(α3, α4, . . . , αn−1).

Theorem 2.4. Any 1
2
-derivation ϕ of the algebra s4n,1(α3, α4, . . . , αn−1) has the form

ϕ(e1) = a1e1 +
n
∑

i=3

aiei, ϕ(ei) = a1ei, 2 ≤ i ≤ n,

ϕ(x) =
n−1
∑

i=2

(ai+1 +
i−1
∑

t=3

αtai−t+2)ei + cnen + a1x.

Proof. We can easily show that, the algebra s4n,1(α3, α4, . . . , αn−1) has 3 generators. We
put the 1

2
-derivation for generators:

ϕ(e1) =
n
∑

i=1

aiei + an+1x, ϕ(e2) =
n
∑

i=1

biei + bn+1x, ϕ(x) =
n
∑

i=1

ciei + cn+1x.

From 0 = ϕ([e1, x]) =
1
2
([ϕ(e1), x] + [e1, ϕ(x)]), we obtain that

a2 = 0, ci = ai+1 +
i−1
∑

t=3

αtai−t+2, 2 ≤ i ≤ n− 1.

Now consider the 1
2
-derivation for the elements e1 and e2 :

ϕ(e3) = ϕ([e2, e1]) =
1
2
([ϕ(e2), e1] + [e2, ϕ(e1)])

= 1
2
([

n
∑

i=1

biei+bn+1x, e1]+[e2,
n
∑

i=1

aiei+an+1x]) =
1
2

( n
∑

i=3

bi−1ei+a1e3+an+1(e2+
n
∑

t=4

αt−1et)
)
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= 1
2

(

an+1e2 + (a1 + b2)e3 +
n
∑

i=4

(bi−1 + an+1αi−1)ei

)

.

Similarly, from 0 = ϕ([e3, e2]) =
1
2
([ϕ(e3), e2] + [e3, ϕ(e2)]), we derive b1 = 0, bn+1 = 0.

We prove the following equality for 3 ≤ i ≤ n by induction.

ϕ(ei) =
1

2i−2

(

(2i−2 − 1)an+1ei−1 + ((2i−2 − 1)a1 + b2)ei

+
n
∑

t=i+1

(bt−i+2 + (2i−2 − 1)an+1αt−i+2)et

)

.

If i = 3, the relationship is fulfilled according to the above equality. Now we prove that
it is true for i and for i + 1. Now consider the condition of 1

2
-derivation for the elements

ei, e1 :

ϕ(ei+1) = ϕ([ei, e1]) =
1
2
([ϕ(ei), e1] + [ei, ϕ(e1)])

= 1
2

(

[ 1
2i−2

(

(2i−2 − 1)an+1ei−1 + ((2i−2 − 1)a1 + b2)ei

+
n
∑

t=i+1

(bt−i+2 + (2i−2 − 1)an+1αt−i+2)et

)

, e1] + [ei,
n
∑

i=1

aiei + an+1x]
)

= 1
2

(

1
2i−2

(

(2i−2 − 1)an+1ei + ((2i−2 − 1)a1 + b2)ei+1

+
n
∑

t=i+2

(bt−i+1 + (2i−2 − 1)an+1αt−i+1)et

)

+ a1ei+1 + an+1(ei +
n
∑

t=i+2

αt−i+1et)
)

=
1

2i−1

(

(2i−1 − 1)an+1ei + ((2i−1 − 1)a1 + b2)ei+1 +
n
∑

t=i+2

(bt−i+1 + (2i−1 − 1)an+1αt−i+1)et

)

.

Furthermore, using the property of 1
2
-derivation for the products [en, x] = en, [en−1, x] =

en−1 and [e2, x] = e2 +
n
∑

i=4

αi−1ei, we have

an+1 = 0, cn+1 =
1

2n−2
((2n−2 − 1)a1 + b2), b2 = a1, b3 = 2n−3c1,

c1 = 0, bi = 0, 4 ≤ i ≤ n.

This completes the proof of the theorem.

Below, we present analogous descriptions of the 1
2
-derivation for the solvable complex

Lie algebras having a nilradical isomorphic to the algebra Q2n.

Theorem 2.5. Any 1
2
-derivation ϕ of the algebras r2n+1(λ) has the form

ϕ(e1) = α1e1 +
2n
∑

i=3

αiei, ϕ(e2) = α1e2 + β2n−1e2n−1 + β2ne2n,
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ϕ(ei) = α1ei +
(−1)i−1

2
α2n+2−ie2n, 3 ≤ i ≤ 2n− 1, ϕ(e2n) = α1e2n,

ϕ(x) =
2n−2
∑

i=2

2i−2n−1
2

αi+1ei + (3− 2n)β2ne2n−1 + δ2ne2n + α1x,

where
(2n− 3− λ)β2n−1 = 0, (2n− 5 + 2λ)αi = 0, 3 ≤ i ≤ 2n. (5)

Proof. The algebra r2n+1(λ) has e1, e2 and x as generators. We put

ϕ(e1) =
2n
∑

i=1

αiei + α2n+1x, ϕ(e2) =
2n
∑

i=1

βiei + β2n+1x, ϕ(x) =
2n
∑

i=1

δiei + δ2n+1x.

Now consider the condition of 1
2
-derivation for the elements e1 and x :

ϕ([e1, x]) =
1
2
([ϕ(e1), x] + [e1, ϕ(x)]) =

1
2

(

[
2n
∑

i=1

αiei + α2n+1x, x] + [e1,
2n
∑

i=1

δiei + δn+1x]
)

= 1
2

(

α1e1 +
2n−1
∑

i=2

(i− 2 + λ)αiei + (2n− 3 + 2λ)α2ne2n −
2n−1
∑

i=3

δi−1ei + δ2n+1e1

)

.

On the other hand

ϕ([e1, x]) = ϕ(e1) =
2n
∑

i=1

αiei + α2n+1x.

Comparing coefficients of the basis elements we obtain that

α2n+1 = 0, δ2n+1 = α1, (λ− 2)α2 = 0, (2n− 5 + 2λ)α2n = 0,

δi = (i− 3 + λ)αi+1, 2 ≤ i ≤ 2n− 2.

Now consider the condition of 1
2
-derivation for the elements e2, x :

ϕ([e2, x]) =
1
2
([ϕ(e2), x] + [e2, ϕ(x)]) =

1
2

(

[
2n
∑

i=1

βiei + β2n+1x, x] + [e2,
2n
∑

i=1

δiei + α1x]
)

= 1
2

(

β1e1 +
2n−1
∑

i=2

(i− 2 + λ)βiei + (2n− 3 + 2λ)β2ne2n + δ1e3 + δ2n−1e2n + λα1e2

)

.

On the other hand

ϕ([e2, x]) = λϕ(e2) =
2n
∑

i=1

λβiei + λβ2n+1x.

Comparing coefficients of the basis elements we obtain that

(2λ− 1)β1 = 0, δ2n−1 = (3− 2n)β2n, λβ2n+1 = 0, δ1 = (λ− 1)β3, λ(β2 − α1) = 0,

(i− 2− λ)βi = 0, 4 ≤ i ≤ 2n− 1.
(6)

From the 1
2
-derivation property (1.4) we have
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ϕ(e3) = ϕ([e2, e1]) =
1
2
([ϕ(e2), e1] + [e2, ϕ(e1)]) =

1
2
([

2n
∑

i=1

βiei + β2n+1x, e1] + [e2,
2n
∑

i=1

αiei])

= 1
2

( 2n−1
∑

i=3

βi−1ei − β2n+1e1 + α1e3 + α2n−1e2n

)

.

Now consider the condition of 1
2
-derivation for the elements e3, x :

ϕ([e3, x]) =
1
2
([ϕ(e3), x] + [e3, ϕ(x)])

= 1
2

(

[1
2
(
2n−1
∑

i=3

βi−1ei − β2n+1e1 + α1e3 + α2n−1e2n), x] + [e3,
2n
∑

i=1

δiei + α1x]
)

= 1
4

( 2n−1
∑

i=3

(i− 2 + λ)βi−1ei − β2n+1e1 + (1 + λ)α1e3 + (2n− 3 + 2λ)α2n−1e2n

+2(1− λ)β3e4 − 2δ2n−2e2n + 2α1(1 + λ)e3

)

.

On the other hand

ϕ([e3, x]) = (1 + λ)ϕ(e3) = (1 + λ)1
2
(
2n−1
∑

i=3

βi−1ei − β2n+1e1 + α1e3 + α2n−1e2n).

Comparing coefficients of the basis elements we obtain that

(2λ− 1)β2n+1 = 0, (1 + λ)(β2 − α1) = 0, 2δ2n−2 = (2n− 5)α2n−1,

(i− 3− λ)βi = 0, 3 ≤ i ≤ 2n− 2.
(7)

Comparing the ratios of (6) and (7) we obtain the following restrictions

(2λ−1)β1 = 0, β2 = α1, λβ3 = 0, βi = 0, 4 ≤ i ≤ 2n−2, (2n−3−λ)β2n−1 = 0, β2n+1 = 0.

δ1 = −β3, δi = (i− 3 + λ)αi+1, 2 ≤ i ≤ 2n− 2, δ2n−1 = (3− 2n)β2n, δ2n+1 = α1,

α2n+1 = 0, (λ− 2)α2 = 0, (2n− 5 + 2λ)α2n−1 = 0.

Thus, we have

ϕ(e3) =
1

2
(2α1e3 + β3e4 + α2n−1e2n).

From the 1
2
-derivation property (1.4) we have

ϕ(e4) = ϕ([e3, e1]) =
1
2
([ϕ(e3), e1] + [e3, ϕ(e1)])

= 1
2

(

[1
2
(2α1e3 + β3e4 + α2n−1e2n), e1] + [e3,

2n
∑

i=1

αiei]
)

= 1
4
(4α1e4 + β3e5 − 2α2n−2e2n).

If we use the 1
2
-derivation property for the pairs {e2, e3} and {e4, x}, we get β1 = β3 = 0.

Furthermore, by applying the induction and the 1
2
-derivation property (1.4) for 4 ≤

i ≤ n− 1, we derive
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ϕ(ei+1) = ϕ([ei, e1]) =
1
2
([ϕ(ei), e1] + [ei, ϕ(e1)])

= 1
2

(

[ 1
2i−2 (2

i−2α1ei + (−1)i−12i−3α2n+2−ie2n, e1] + [ei,
n
∑

j=1

αjej]
)

= 1
2i−1

(

2i−1α1ei+1 + (−1)i2i−2α2n+1−ie2n

)

.

The equality ϕ([e2n−1, e1]) =
1
2
([ϕ(e2n−1), e1] + [e2n−1, ϕ(e1)]) gives α2 = 0.

From the 1
2
-derivation property (1.4) we have

ϕ([ei, x]) =
1
2
([ϕ(ei), x] + [ei, ϕ(x)])

= 1
2
([ 1

2i−2 (2
i−2α1ei + (−1)i−12i−3α2n+2−ie2n, x] + [ei,

2n
∑

i=1

δiei + α1x])

= 1
2

(

(i− 2 + λ)α1ei +
(−1)i−1

2
(2n− 3 + 2λ)α2n+2−ie2n + (−1)iδ2n+1−ie2n + (i− 2 + λ)α1ei

)

.

On the other hand

ϕ([ei, x]) = (i− 2 + λ)ϕ(ei) = (i− 2 + λ)( 1
2i−2 (2

i−2α1ei + (−1)i−12i−3α2n+2−ie2n).

Comparing coefficients of the basis elements we obtain that

2δ2n+1−i = (2n + 1− 2i)α2n+2−i, 3 ≤ i ≤ 2n− 1.

This completes the proof of the theorem.

Theorem 2.6. Any 1
2
-derivation ϕ of the algebras r2n+1(2− n, ε) has the form

ϕ(ei) = aei, 1 ≤ i ≤ 2n, i 6= 2, ϕ(e2) = ae2 + be2n, ϕ(x) = (3− 2n)be2n−1 + ce2n + ax.

Proof. The algebra r2n+1(2− n, ε) has e1, e2 and x as generators. We put

ϕ(e1) =
2n
∑

i=1

αiei + α2n+1x, ϕ(e2) =
2n
∑

i=1

βiei + β2n+1x, ϕ(x) =
2n
∑

i=1

δiei + δ2n+1x.

Now consider the condition of 1
2
-derivation for the elements e2, x :

ϕ([e2, x]) =
1
2
([ϕ(e2), x] + [e2, ϕ(x)]) =

1
2

(

[
2n
∑

i=1

βiei + β2n+1x, x] + [e2,
2n
∑

i=1

δiei + α1x]
)

= 1
2

(

β1(e1 + εe2n) +
2n−1
∑

i=2

(i− n)βiei + β2ne2n + δ1e3 + δ2n−1e2n + (2− n)δ2n+1e2

)

.

On the other hand

ϕ([e2, x]) = (2− n)ϕ(e2) =
2n
∑

i=1

(2− n)βiei + (2− n)β2n+1x.

Comparing coefficients of the basis elements we obtain that

β1 = β2n+1 = 0, δ2n+1 = β2, δ1 = (1− n)β3, δ2n−1 = (3− 2n)β2n, βi = 0, 4 ≤ i ≤ 2n− 1.
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From the 1
2
-derivation property (1.4) we have

ϕ(e3) = ϕ([e2, e1]) =
1
2
([ϕ(e2), e1] + [e2, ϕ(e1)])

= 1
2

(

[β2e2 + β3e3 + β2ne2n, e1] + [e2,
2n
∑

i=1

αiei + α2n+1x]
)

= 1
2

(

β2e3 + β3e4 + α1e3 + α2n−1e2n + (2− n)α2n+1e2

)

.

Now consider the condition of 1
2
-derivation for the elements e3, x :

ϕ([e3, x]) =
1
2
([ϕ(e3), x] + [e3, ϕ(x)]) =

1
2

(

[1
2
((2− n)α2n+1e2 + (α1 + β2)e3 + β3e4 + α2n−1e2n), x] + [e3,

2n
∑

i=1

δiei + β2x]
)

=

1
4

(

(2− n)2α2n+1e2 + (3− n)(α1 + β2)e3 + (4− n)β3e4 + α2n−1e2n + 2δ1e4 − 2δ2n−2e2n +

2(3− n)β2e3

)

.

On the other hand

ϕ([e3, x]) = (3− n)ϕ(e3) =
1
2
(3− n)

(

(2− n)α2n+1e2 + (α1 + β2)e3 + β3e4 + α2n−1e2n

)

.

Comparing coefficients of the basis elements we obtain that

α2n+1 = 0, β2 = α1, β3 = δ1 = 0, 2δ2n−2 = (2n− 5)α2n−1.

Thus, we obtain

ϕ(e3) = α1e3 +
1

2
α2n−1e2n.

By applying the induction and the 1
2
-derivation property (1.4) for 3 ≤ i ≤ 2n − 2, we

derive

ϕ(ei+1) = ϕ([ei, e1]) =
1
2
([ϕ(ei), e1] + [ei, ϕ(e1)])

= 1
2
([α1ei +

(−1)i−1

2
α2n+2−ie2n, e1] + [ei,

n
∑

j=1

αjej ]) = α1ei+1 +
(−1)i

2
α2n+1−ie2n.

ϕ(e2n) = ϕ([e2, e2n−1]) =
1
2
([ϕ(e2), e2n−1] + [e2, ϕ(e2n−1)])

= 1
2
([α1e2 + β2ne2n, e2n−1] + [e2, α1e2n−1 +

1
2
α3e2n]) = α1e2n.

The equality ϕ([e2n−1, e1]) =
1
2
([ϕ(e2n−1), x] + [e2n−1, ϕ(e1)]) derives α2 = 0.

From the 1
2
-derivation property (1.4) we have

ϕ([ei, x]) =
1
2
([ϕ(ei), x] + [ei, ϕ(x)])

= 1
2

(

[α1ei +
(−1)i−1

2
α2n+2−ie2n, x] + [ei,

2n
∑

i=2

δiei + α1x]
)
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= 1
2

(

(i− n)α1ei +
(−1)i−1

2
α2n+2−ie2n + (−1)iδ2n+1−ie2n + (i− n)α1ei

)

.

On the other hand

ϕ([ei, x]) = (i− n)ϕ(ei) = (i− n)
(

α1ei +
(−1)i−1

2
α2n+2−ie2n

)

.

Comparing coefficients of the basis elements we obtain that

2δt = (2t− 2n− 1)αt+1, 2 ≤ t ≤ 2n− 2.

Now consider the condition of 1
2
-derivation for the elements e1, x :

ϕ([e1, x]) =
1
2
([ϕ(e1), x] + [e1, ϕ(x)]) =

1
2

(

[α1e1 +
2n
∑

i=3

αiei, x] + [e1,
2n
∑

i=2

δiei + α1x]
)

= 1
2

(

α1(e1 + εe2n) +
2n−1
∑

i=3

(i− n)αiei + α2ne2n +
2n−1
∑

t=3

δt−1et + α1(e1 + εe2n)
)

.

On the other hand

ϕ([e1, x]) = ϕ(e1) + εϕ(e2n) = α1e1 +
2n
∑

i=3

αiei + εα1e2n.

Comparing coefficients of the basis elements we obtain that

αt = 0, 3 ≤ i ≤ 2n.

This completes the proof of the theorem.

Theorem 2.7. Any 1
2
-derivation ϕ of the algebra r2n+1(λ5, . . . , λ2n−1) has the form

ϕ(ei) = aei, 1 ≤ i ≤ 2n, i 6= 2, ϕ(e2) = ae2 + be2n, ϕ(x) = ce2n + ax.

Proof. It is easy to see that r2n+1(λ5, . . . , λ2n−1) has three generators. We use these gen-
erators to calculate 1

2
-derivation.

ϕ(e1) =

2n
∑

i=1

αiei + α2n+1x, ϕ(e2) =

2n
∑

i=1

βiei + β2n+1x, ϕ(x) =

2n
∑

i=1

δiei + δ2n+1x.

Now consider the condition of 1
2
-derivation for the elements e2 and e1 :

ϕ(e3) = ϕ([e2, e1]) =
1
2
([ϕ(e2), e1] + [e2, ϕ(e1)])

= 1
2
([

2n
∑

i=1

βiei + β2n+1x, e1] + [e2,
2n
∑

i=1

αiei] + α2n+1x)

= 1
2
(α2n+1e2 + (α1 + β2)e3 +

n−1
∑

i=2

β2i−1e2i +
n−1
∑

i=2

(β2i + α2n+1λ2i+1)e2i+1 + α2n−1e2n).

Therefore, from ϕ([e3, x]) = 1
2
([ϕ(e3), x] + [e3, ϕ(x)]), we obtain α2n+1 = 0. Thus, we

have
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ϕ(e3) =
1
2
((α1 + β2)e3 +

2n−1
∑

i=4

βi−1ei + α2n−1e2n).

We prove the following equality for 3 ≤ i ≤ 2n− 1 by induction:

ϕ(ei) =
1

2i−2

(

(2i−2 − 1)α1 + β2

)

ei +
1

2i−2

2n−1
∑

t=i+1

βt−i+2et +
(−1)i−1

2
α2n−i+2e2n.

If i = 3, the relationship holds according to the above equality. Now, we prove that it is
true for i and i+1. By considering the condition of 1

2
-derivation for the elements e1, ei we

have

ϕ(ei+1) = ϕ([ei, e1]) =
1
2
([ϕ(ei), e1] + [ei, ϕ(e1)])

= 1
2

(

[ 1
2i−2

(

(2i−2 − 1)α1 + β2

)

ei +
1

2i−2

2n−1
∑

t=i+1

βt−i+2et +
(−1)i

2
α2n−i+2e2n, e1] + [ei,

2n
∑

k=1

αkek]
)

= 1
2

(

1
2i−2

(

(2i−2 − 1)α1 + β2

)

ei+1 +
1

2i−2

2n−2
∑

t=i+1

βt−i+2et+1 + α1ei+1 + (−1)iα2n−i+1e2n

)

= 1
2i−1

(

(2i−1 − 1)α1 + β2

)

ei+1 +
1

2i−1

2n−1
∑

t=i+2

βt−i+1et +
(−1)i

2
α2n−i+1e2n.

Now, consider the condition of 1
2
-derivation for the elements e2, e2n−1 :

ϕ(e2n) = ϕ([e2, e2n−1]) =
1
2
([ϕ(e2), e2n−1] + [e2, ϕ(e2n−1)])

= 1
2

(

[
2n
∑

i=1

βiei + β2n+1x, e2n−1] + [e2,
1

22n−3

(

(22n−3 − 1)α1 + β2

)

e2n−1 +
(−1)2n−1

2
α3e2n]

)

= 1
2

(

β2e2n − β2n+1e2n−1 +
1

22n−3

(

(22n−3 − 1)α1 + β2

)

e2n

)

= −1
2
β2n+1e2n−1 +

1
22n−2

(

(22n−3 − 1)α1 + (22n−3 + 1)β2

)

e2n.

Thus, we obtain that

ϕ(e2n) = −1

2
β2n+1e2n−1 +

1

22n−2

(

(22n−3 − 1)α1 + (22n−3 + 1)β2

)

e2n.

Using the property of the 1
2
-derivation for the products [e2n, x] = 2e2n, [e2, ei] = 0, 3 ≤

i ≤ 2n− 2 and [e2, x] = e2 + λ5e5 + λ7e7 + · · ·+ λ2n−1e2n−1, we have

[e2n, x] = 2e2n, ⇒ β2n+1 = 0, δ2n+1 =
(22n−3

−1)α1+(22n−3+1)β2

22n−2 ,

[e2, ei] = 0, ⇒ β1 = βi = 0, 3 ≤ i ≤ 2n− 2,

[e2, x] = e2 +
n
∑

t=3

λtet, ⇒ δ2n+1 = β2, δ1 = β2n−1 = 0, β2 = α1,

δ2n−1 = α3λ2n−1 + α5λ2n−3 + · · ·+ α2n−3λ5.



Transposed Poisson structures on solvable Lie algebras with filiform nilradical 459

By considering the condition of 1
2
-derivation for the elements e1 and x we have

α2 = α2n = 0, δi =

[i−1]
2

∑

k=2

λ2k+1αi−2k+2 + αi+1, 2 ≤ i ≤ 2n− 2. (8)

Now, we consider the condition of 1
2
-derivation for the elements e2n−1 and x :

ϕ(e2n−1) = ϕ([e2n−1, x]) =
1
2
([ϕ(e2n−1), x] + [e2n−1, ϕ(x)])

= 1
2

(

[α1e2n−1 +
α3

2
e2n, x] + [e2n−1,

2n
∑

i=2

δiei + α1x]
)

= 1
2

(

α1e2n−1 +α3e2n − δ2e2n +α1e2n−1

)

.

On the other hand

ϕ([e2n−1, x]) = ϕ(e2n−1) = α1e1 +
α3

2
e2n.

Comparing coefficients of the basis elements we obtain that δ2 = 0. Considering the ratio
(8) we have α3 = 0. Having consistently considered the condition of 1

2
-derivation for the

elements e2n−i and x, 2 ≤ i ≤ 2n− 3 and taking into account the relations (8), we have

αk+1 = βk = 0, 2 ≤ k ≤ 2n− 2.

This completes the proof of the theorem.

Theorem 2.8. Any 1
2
-derivation ϕ of the algebra r2n+2 has the form

ϕ(ei) = aei, 1 ≤ i ≤ 2n, ϕ(x1) = (2n+ 1)be2n + ax1, ϕ(x2) = 2be2n + ax2.

Proof. The algebra r2n+2 has e1, e2, x1 and x2 as generators. We put

ϕ(e1) =
2n
∑

i=1

αiei + α2n+1x1 + α2n+2x2, ϕ(e2) =
2n
∑

i=1

βiei + β2n+1x1 + β2n+2x2,

ϕ(x1) =
2n
∑

i=1

δiei + δ2n+1x1 + δ2n+2x2, ϕ(x2) =
2n
∑

i=1

γiei + γ2n+1x1 + γ2n+2x2.

Now consider the condition of 1
2
-derivation for the elements e1, x1 :

ϕ([e1, x1]) =
1

2
([ϕ(e1), x1] + [e1, ϕ(x1)])

=
1

2

(

[
2n
∑

i=1

αiei + α2n+1x1 + α2n+2x2, x1] + [e1,
2n
∑

i=1

δiei + δ2n+1x1 + δ2n+2x2]
)

=
1

2

(

(α1 + δ2n+1)e1 + 2α2e2 +
2n−1
∑

i=3

(iαi − δi−1)ei + (2n+ 1)α2ne2n

)

.

On the other hand
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ϕ([e1, x]) = ϕ(e1) =
2n
∑

i=1

αiei + α2n+1x1 + α2n+2x2.

Comparing coefficients of the basis elements we obtain that

α2n = α2n+1 = α2n+2 = 0, δ2n+1 = α1, δi−1 = (i− 2)αi, 3 ≤ i ≤ 2n− 1.

Now consider the condition of 1
2
-derivation for the elements e2 and x1 :

ϕ([e2, x1]) =
1
2
([ϕ(e2), x1] + [e2, ϕ(x1)])

= 1
2

(

[
2n
∑

i=1

βiei + β2n+1x1 + β2n+2x2, x1] + [e2,
2n
∑

i=1

δiei + δ2n+1x1 + δ2n+2x2]
)

= 1
2

(

β1e1 + (2β2 + 2δ2n+1 + δ2n+2)e2 + (β3 + δ1)e3 +
2n−1
∑

i=4

iβiei + ((2n+ 1)β2n + δ2n−1)e2n

)

.

On the other hand

ϕ([e2, x1]) = 2ϕ(e2) = 2
( 2n
∑

i=1

βiei + β2n+1x1 + β2n+2x2

)

.

Comparing coefficients of the basis elements we obtain that

β1 = β2n+1 = β2n+2 = 0, δ1 = β3, (i− 4)βi = 0, 4 ≤ i ≤ 2n− 1,

δ2n−1 = (3− 2n)β2n, δ2n+2 = 2β2 − 2α1.

Now consider the condition of 1
2
-derivation for the elements e1, x2 :

0 = ϕ([e1, x2]) =
1

2
([ϕ(e1), x2] + [e1, ϕ(x2)])

=
1

2

(

[

2n−1
∑

i=1

αiei, x1] + [e1,

2n
∑

i=1

γiei + γ2n+1x1 + γ2n+2x2]
)

=

=
1

2

(

(γ2n+1e1 + α2e2 +

2n−1
∑

i=3

(αi − γi−1)ei

)

.

Comparing coefficients of the basis elements we obtain that

α2 = γ2n+1 = 0, γi−1 = αi, 3 ≤ i ≤ 2n− 1.

Now consider the condition of 1
2
-derivation for the elements e2 and x2 :

ϕ([e2, x2]) =
1
2
([ϕ(e2), x2] + [e2, ϕ(x2)])

= 1
2

(

[β2e2+β3e3+β4e4+β2ne2n, x2]+[e2, γ1e1+
2n−2
∑

i=2

αi+1ei+γ2n−1e2n−1+γ2ne2n+γ2n+2x2]
)

= 1
2

(

(β2 + γ2n+2)e2 + (β3 + γ1)e3 + (2β2n + γ2n−1)e2n

)

.
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On the other hand

ϕ([e2, x2]) = ϕ(e2) = β2e2 + β3e3 + β4e4 + β2ne2n.

Comparing coefficients of the basis elements we obtain that

γ2n+2 = β2, γ1 = β3, β4 = 0, γ2n−1 = 0.

From the 1
2
-derivation property (1.4) we have

ϕ(e3) = ϕ([e2, e1]) =
1
2
([ϕ(e2), e1] + [e2, ϕ(e1)])

= 1
2

(

[β2e2 + β3e3 + β2ne2n, e1] + [e2, α1e1 +
2n−1
∑

i=3

αiei]
)

= 1
2

(

(α1 + β2)e3 + β3e4 +α2n−1e2n

)

.

Therefore, from ϕ([e3, x2]) =
1
2
([ϕ(e3), x2] + [e3, ϕ(x2)]), we obtain

β2 = α1, β3 = γ2n−2 = 0.

We prove the following equality for 3 ≤ i ≤ 2n− 1 by induction.

ϕ(ei) = α1ei +
(−1)i−1

2
α2n+2−ie2n.

If i = 3, the relationship is fulfilled according to the above equality. Now we prove that
it is true for i and for i + 1. Now consider the condition of 1

2
-derivation for the elements

ei, e1 :

ϕ(ei+1) = ϕ([ei, e1]) =
1
2
([ϕ(ei), e1] + [ei, ϕ(e1)])

= 1
2

(

[α1ei +
(−1)i−1

2
α2n+2−ie2n, e1] + [ei, α1e1 +

2n−1
∑

i=3

αiei]
)

= 1
2

(

α1ei+1 + α1ei+1 + (−1)iα2n+1−ie2n)
)

= α1ei+1 +
(−1)i

2
α2n+1−ie2n

and

ϕ(e2n) = ϕ([e2, e2n−1]) =
1
2
([ϕ(e2), e2n−1] + [e2, ϕ(e2n−1)])

= 1
2

(

[α1e2 + β2ne2n, e2n−1] + [e2, α1e2n−1 +
1
2
α3e2n]

)

= α1e2n.

From the 1
2
-derivation property (1.4) for 3 ≤ i ≤ 2n− 1 we have

ϕ([ei, x2]) =
1
2
([ϕ(ei), x2] + [ei, ϕ(x2)])

= 1
2

(

[α1ei +
(−1)i−1

2
α2n+2−ie2n, x2] + [ei,

2n−2
∑

i=2

αi+1ei + γ2ne2n + α1x2]
)

=

= 1
2

(

α1ei + (−1)i−1α2n+2−ie2n + (−1)iα2n+2−ie2n + α1ei

)

.

On the other hand

ϕ([ei, x]) = ϕ(ei) = α1ei +
(−1)i−1

2
α2n+2−ie2n.
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Comparing coefficients of the basis elements we obtain that

αi = 0, 3 ≤ i ≤ 2n− 1.

By using the property of 1
2
-derivation for the product [x1, x2] = 0, we have

2δ2n = (2n+ 1)γ2n.

This completes the proof of the theorem.

3 Transposed Poisson structure on solvable Lie algebras with filiform

nilradical

In this section, we give the description of all transposed Poisson algebra structures on
solvable Lie algebras with naturally graded filiform nilradical.

Theorem 3.1. Let (s14,1(β), ·, [−,−]) be a transposed Poisson algebra structure defined on
the Lie algebra s14,1(β). Then the multiplication of (s14,1(β), ·) has the following form:

TP1(s
1
4,1(1)) : e1 · e1 = α1e3 + α2e4, e1 · x = α2e3 + α3e4, x · x = α3e3 + α4e4;

TP2(s
1
4,1(2)) :



































e1 · e1 = e2 + α1e3 + α2e4, e1 · e2 = α3e3 +
1
2
α1α3e4,

e1 · e3 = 1
2
α3e4, e2 · e2 = 1

2
α2
3e4,

e1 · x = α3e1 + α1e2 + 2α2e3 + α4e4, e3 · x = α3e3 +
1
2
α1α3e4,

e2 · x = α3e2 + α1α3e3 + α2α3e4, e4 · x = α3e4,

x · x = α1α3e1 + 2α2e2 + 2α4e3 + α5e4 + α3x;

TP3(s
1
4,1(2)) :















e1 · e1 = e3 + α1e4, e1 · e2 = α2e4,

e1 · x = e2 + 2α1e3 + α3e4, e2 · x = 2α2e3 + 2α1α2e4,

e3 · x = α2e4, x · x = 2α2e1 + 2α1e2 + 2α3e3 + α4e4;

TP4(s
1
4,1(2)) : e1 · e1 = e4, e1 ·x = 2e3+α1e4, e2 ·x = α2e4, x ·x = 2e2+2α1e3+α3e4;

TP5(s
1
4,1(2)) :

{

e1 · e2 = α1e4, e2 · e2 = α2e4, e1 · x = α3e4,

e2 · x = 2α1e3 + α4e4, e3 · x = α1e4, x · x = 2α1e1 + 2α3e3 + α5e4;

TP6(s
1
4,1(β)) :

e1 · e1 = α1e4, e1 · x = βα1e3 + α2e4,

x · x = (β − 1)βα1e2 + βα2e3 + α3e4, β 6= 1, 2;
where it is taken into account that the transposed Poisson algebra has its products with

respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (s14,1(β), ·, [−,−]) be a transposed Poisson algebra structure defined on the
Lie algebra s14,1(β). Then for any element of x ∈ s14,1(β), we have that the operator of



Transposed Poisson structures on solvable Lie algebras with filiform nilradical 463

multiplication ϕx(y) = x · y is a 1
2
-derivation. Hence, for 1 ≤ i ≤ 4 we derive by Theorem

2.1:

ϕei(e1) = αi,1e1 + αi,2e2 + αi,3e3 + αi,4e4,

ϕei(e2) = αi,1e2 + βi,3e3 + βi,4e4, ϕei(e3) = αi,1e3 +
1
2
βi,3e4, ϕei(e4) = αi,1e4,

ϕei(x) = βi,3e1 + (β − 1)αi,3e2 + βαi,4e3 + γi,4e4 + αi,1x,

ϕx(e1) = αx,1e1 + αx,2e2 + αx,3e3 + αx,4e4,

ϕx(e2) = αx,1e2 + βx,3e3 + βx,4e4, ϕx(e3) = αx,1e3 +
1
2
βx,3e4, ϕx(e4) = αx,1e4,

ϕx(x) = βx,3e1 + (β − 1)αx,3e2 + βαx,4e3 + γx,4e4 + αx,1x,

with restrictions

(β − 2)αx,2 = (β − 2)βx,3 = (2− β)βx,4 = 0,

(β − 2)αi,2 = (β − 2)βi,3 = (2− β)βi,4 = 0, 1 ≤ i ≤ 4;

Considering the property ϕx(y) = x · y = y · x = ϕy(x), we obtain the following
restrictions:

{e1, e2} ⇒ α2,1 = 0, α2,2 = α1,1, α2,3 = β1,3, α2,4 = β1,4,

{e1, e3} ⇒ α3,1 = 0, α3,2 = 0, α3,3 = α1,1, α3,4 =
1
2
β1,3,

{e1, e4} ⇒ α4,1 = 0, α4,2 = 0, α4,3 = 0, α4,4 = α1,1,

{e2, e3} ⇒ β3,3 = 0, β3,4 =
1
2
β2,3,

{e2, e4} ⇒ β4,3 = 0, β4,4 = 0,

{e1, x} ⇒ α1,1 = 0, αx,1 = β1,3, αx,2 = (β − 1)α1,3, αx,3 = βα1,4, αx,4 = γ1,4,

{e2, x} ⇒ β2,3 = 0, (β − 2)β1,3 = 0, βx,3 = ββ1,4, βx,4 = γ2,4,

{e3, x} ⇒ (β − 2)β1,3 = 0, γ3,4 =
1
2
ββ1,4,

{e4, x} ⇒ γ4,4 = β1,3.

Thus, the following table of multiplications of the algebra gives us a transposed Poisson
algebra structure (s14,1(β), ·, [−,−]):

e1 · e1 = α2e2 + α3e3 + α4e4, e1 · e2 = α5e3 + α6e4, e1 · e3 = 1
2
α5e4, e2 · e2 = α7e4,

e1 · x = α5e1 + (β − 1)α3e2 + βα4e3 + α8e4, e2 · x = α5e2 + 2α6e3 + α9e4,

e3 · x = α5e3 + α6e4, e4 · x = α5e4, x · x = 2α6e1 + (β − 1)βα4e2 + βα8e3 + α1e4 + α5x,

with restrictions

(β − 2)(β − 1)α3 = (2− β)α9 = (β − 2)α2 = (β − 2)α5 = (2− β)α6 = (β − 2)α7 = 0.

We have the following cases.

1. If β = 1, then we get α2 = α5 = α6 = α7 = α9 = 0, and we have the algebra
TP1(s

1
4,1(1)).
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2. If β = 2, by considering the general change of basis

e′1 =
4

∑

t=1

Atet, e′2 =
4

∑

t=1

Btet, x′ = Hx+
4

∑

t=1

Ctet,

we find the relation between parameters α′

2 and α2 from the product e1 ·e1 =
4
∑

j=2

αjej ,

as follows:

α′

2 =
A2

1

B2
α2.

Now we consider the following subcases.

(a) Let α2 6= 0. Then by choosing B2 = A2
1α2 we can assume α2 = 1. Considering

the associative identities x · (e1 · e1) = (x · e1) · e1 and e2 · (e1 · e1) = (e2 · e1) · e1,
we obtain the following restrictions:

α6 =
1

2
α3α5, α9 = α4α5, α7 =

1

2
α2
5.

Hence, we obtain the algebra TP2(s
1
4,1(2)).

(b) Let α2 = 0. Then from the identity e1 · (e1 · e2) = (e1 · e1) · e2, we derive α5 = 0.
Again by using a change of basis, we obtain the following relation:

α′

3 =
A1

B2
α3.

i. If α3 6= 0, then from the associative identities e1 · (x · e2) = (e1 · x) · e2 and
e1 · (x · x) = (e1 · x) · x, we conclude α7 = 0, α9 = 2α4α6. So, we obtain the
algebra TP3s

1
4,1(2)).

ii. If α3 = 0, by using a change of basis, we get

α′

4 =
1

B2
α4.

If α4 6= 0, then considering associative identities for the triples {e1, x, x}
and {e2, x, x} we derive α6 = α7 = 0. Hence, the algebra TP4(s

1
4,1(2)) is

obtained.
If α4 = 0, then we have the algebra TP5(s

1
4,1(2)).

3. If β 6= 1, 2, then we have α2 = α3 = α5 = α6 = α7 = α9 = 0, and obtain the algebra
TP6(s

1
4,1(β)).
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Theorem 3.2. Let (s1n,1(β), ·, [−,−]) be a transposed Poisson algebra structure defined on
the Lie algebra s1n,1(β) and n ≥ 5. Then the multiplication of (s1n,1(β), ·) has the following
form:

TP1(s
1
n,1(1)) :















e1 · e1 =
n
∑

j=3

αjej , e1 · x =
n−1
∑

t=2

(t− 2)αt+1et + β3en,

x · x =
n−2
∑

t=2

(t− 2)(t− 1)αt+2et + (n− 3)β3en−1 + β5en;

TP2(s
1
n,1(2)) :















e1 · e1 =
n
∑

j=2

αjej , e1 · x =
n−1
∑

t=2

(t− 1)αt+1et + β3en,

x · x =
n−2
∑

t=2

(t2 − t)αt+2et + (n− 2)β3en−1 + β5en;

TP3(s
1
n,1(n− 2)) :







































e1 · e1 =
n
∑

j=5

αjej , e1 · e2 = β1en, e2 · e2 = β2en,

e1 · x =
n−1
∑

t=4

(n+ t− 3)αt+1et + β3en, e2 · x = β4en,

x · x =
n−2
∑

t=3

(n+ t− 5)(n+ t− 4)αt+2et+

+(2n− 6)β3en−1 + β5en;

TP4(s
1
n,1(n− 2)) :











































e1 · e1 = e4 +
n
∑

j=5

αjej,

e1 · x = βe4 +
n−1
∑

t=4

(n + t− 5)αt+1et + β3en,

e2 · x = β4en, x · x = (n− 3)(n− 2)e2+

+
n−2
∑

t=3

(n+ t− 5)(n+ t− 4)αt+2et + (2n− 6)β3en−1 + β5en;

TP5(s
1
n,1(β)) :







































e1 · e1 =
n
∑

j=4

αjej,

e1 · x =
n−1
∑

t=3

(t− 3 + β)αt+1et + β3en, β 6= 1, 2, n− 2,

x · x =
n−2
∑

t=2

(t− 3 + β)(t− 2 + β)αt+2et+

+(n− 4 + β)β3en−1 + β5en;
where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (s1n,1(β), ·, [−,−]) be a transposed Poisson algebra structure defined on the Lie
algebra s1n,1(β). Then for any element of x ∈ s1n,1(β), we have that operator of multi-
plication ϕx(y) = x · y is a 1

2
-derivation. Hence, for 1 ≤ i ≤ n we derive by Theorem
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2.1:

ϕei(e1) =
n
∑

t=1

αi,tet, ϕei(e2) = αi,1e2 + βi,nen, ϕei(et) = αi,1et, 3 ≤ t ≤ n,

ϕei(x) =
n−1
∑

t=2

(t− 3 + β)αi,t+1et + γi,nen + αi,1x,

ϕx(e1) =
n
∑

t=1

αx,tet, ϕx(e2) = αx,1e2 + βx,nen, ϕx(et) = αx,1et, 3 ≤ t ≤ n,

ϕx(x) =
n−1
∑

t=2

(t− 3 + β)αx,t+1et + γx,nen + αx,1x,

with restrictions (β−2)αx,2 = (n−2−β)βx,n = (β−2)αi,2 = (n−2−β)βi,n = 0, 1 ≤ i ≤ n.
It is known that ϕei(ej) = ei · ej = ej · ei = ϕej(ei). For i = 1, j = 2 we have

α1,1e2 + β1,nen =

n
∑

j=1

α2,tet.

Comparing coefficients of the basis elements we obtain that

α2,1 = 0, α2,2 = α1,1, α2,n = β1,n, α2,t = 0, 3 ≤ t ≤ n− 1.

For i = 1, 3 ≤ j ≤ n we have

α1,1ej =

n
∑

j=1

αj,tet.

Comparing coefficients of the basis elements we obtain that

αj,j = α1,1, αj,t = 0, 1 ≤ t ≤ n, 3 ≤ j 6= t ≤ n.

For i = 2, 3 ≤ j ≤ n we have 0 = βj,nen, and we obtain that

βj,n = 0, 3 ≤ j ≤ n.

It is known that ϕe1(x) = e1 · x = x · e1 = ϕx(e1). We have

n−1
∑

t=2

(t− 3 + β)α1,t+1et + γ1,nen + α1,1x =

n
∑

t=1

αx,tet.

Comparing coefficients of the basis elements we obtain that

α1,1 = 0, αx,n = γ1,n, αx,1 = 0, αx,t = (t− 3 + β)α1,t+1, 2 ≤ t ≤ n− 1.

It is known that ϕe2(x) = e2 · x = x · e2 = ϕx(e2). We have

(n− 4 + β)β1,nen−1 + γ2,nen = βx,nen.
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Comparing coefficients of the basis elements we obtain that

(n− 4 + β)β1,n = 0, βx,n = γ2,n.

It is known that ϕei(x) = ei · x = x · ei = ϕx(ei). For 3 ≤ i ≤ n we have

γi,n = 0, 3 ≤ i ≤ n.

Thus, we obtain TP (α2, . . . , αn, β1, . . . , β5) :

e1 · e1 =
n
∑

j=2

αjej, e1 · e2 = β1en, e2 · e2 = β2en,

e1 · x =
n−1
∑

t=2

(t− 3 + β)αt+1et + β3en, e2 · x = β4en,

x · x =
n−2
∑

t=2

(t− 3 + β)(t− 2 + β)αt+2et + (n− 4 + β)β3en−1 + β5en.

with restrictions

(β−2)(β−1)α3 = 0, (n−2−β)β4 = 0, (β−2)α2 = 0, (n−2−β)β1 = 0, (n−2−β)β2 = 0.

Considering the associative identity x · (y · z) = (x · y) · z, we obtain the following
restrictions on structure constants:

{e1, e1, e2} ⇒ α2β2 = 0,

{e2, e1, x} ⇒ (β − 1)α3β2 = 0,

{e1, e1, x} ⇒ (β − 1)α3β1 = α2β4,

{x, x, e1} ⇒ β(β − 1)α4β1 = 0,

{x, x, e2} ⇒ β(β − 1)α4β2 = 0.

We have the following cases.

1. If β = 1, then we get α2 = β1 = β2 = β4 = 0 and obtain the algebra TP1(s
1
n,1(1)).

2. If β = 2, then we derive β1 = β2 = β4 = 0 and have the algebra TP2(s
1
n,1(2)).

3. If β = n− 2, then we conclude α2 = α3 = 0 and α4β1 = 0, α4β2 = 0. In this case we
consider the general change of basis:

e′1 =

n
∑

t=1

Atet, e′2 =

n
∑

t=1

Btet, x′ = Hx+

n
∑

t=1

Ctet.

Then from the multiplication e1·e1 =
n
∑

j=2

αjej , we discover that the structure constant

of the α4 changes as follows:

α′

4 =
α4

B2

.

Now we consider the following subcases.
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(a) If α4 = 0, then we have the algebra TP3(s
1
n,1(n− 2)).

(b) If α4 6= 0, then we get α4 = 1, β1 = 0, β2 = 0, and obtain the algebra
TP4(s

1
n,1(n− 2)).

4. If β 6= 1, 2, n − 2, then we derive α2 = α3 = β1 = β2 = β4 = 0 and we have the
algebra TP5(s

1
n,1(β)).

Theorem 3.3. Let (s2n,1, ·, [−,−]) be a transposed Poisson algebra structure defined on the
Lie algebra s2n,1. Then the multiplication of (s2n,1, ·) has the following form:

TP(s2n,1) : e1 · e1 =
n

∑

t=4

αtet, e1 · x =
n−1
∑

t=3

αt+1et + γ1en, x · x =
n−2
∑

t=2

αt+2et + γ1en−1 + γ2en,

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (s2n,1, ·, [−,−]) be a transposed Poisson algebra structure defined on the Lie
algebra s2n,1. Then for any element of x ∈ s2n,1, we have that the operator of multiplication
ϕx(y) = x · y is a 1

2
-derivation. Hence, by using Theorem 2.2 for 1 ≤ i ≤ n, we derive

ϕei(e1) = αi,1e1 +
n
∑

t=3

αi,tet, ϕei(et) = αi,1et, 2 ≤ t ≤ n,

ϕei(x) =
n−1
∑

t=2

αi,t+1et + γi,nen + αi,1x,

ϕx(e1) = αx,1e1 +
n
∑

t=3

αx,tet, ϕx(et) = αx,1et, 2 ≤ t ≤ n,

ϕx(x) =
n−1
∑

t=2

αx,t+1et + γx,nen + αx,1x.

It is known that ϕei(ej) = ei · ej = ej · ei = ϕej(ei). For 2 ≤ i ≤ n, j = 1 we have

αi,1e1 +
n

∑

t=3

αi,tet = α1,1ei.

Comparing coefficients of the basis elements we obtain that

α1,1 = 0, αi,1 = αi,t = 0, 2 ≤ i ≤ n, 3 ≤ t ≤ n.

It is known that ϕe1(x) = e1 · x = x · e1 = ϕx(e1). We have

n−1
∑

t=2

α1,t+1et + γ1,nen = αx,1e1 +
n

∑

t=3

αx,tet.
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Comparing coefficients of the basis elements we obtain that

α1,3 = 0, αx,1 = 0, αx,n = γ1,n, αx,t = α1,t+1, 3 ≤ t ≤ n− 1.

It is known that ϕei(x) = ei · x = x · ei = ϕx(ei). We obtain that γi,n = 0, 2 ≤ i ≤ n.
Thus, we have the algebra TP(s2n,1).

Theorem 3.4. Let (s3n,1, ·, [−,−]) be a transposed Poisson algebra structure defined on the
Lie algebra s3n,1. Then the multiplication of (s3n,1, ·) has the following form:

TP(s3n,1) :















e1 · e1 =
n
∑

t=3

αtet, e1 · x =
n−1
∑

t=3

(t− 2)αt+1et + γ1en,

x · x =
n−2
∑

t=3

(t− 2)(t− 1)αt+2et + (n− 3)γ1en−1 + γ2en,

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (s3n,1, ·, [−,−]) be a transposed Poisson algebra structure defined on the Lie
algebra s3n,1. Then for any element of x ∈ s3n,1, we have that operator of multiplication
ϕx(y) = x · y is a 1

2
-derivation. Hence, from Theorem 2.3 for 1 ≤ i ≤ n we derive

ϕei(e1) = αi,1e1 +
n
∑

t=3

αi,tet, ϕei(et) = αi,1et, 2 ≤ t ≤ n,

ϕei(x) =
n−1
∑

t=3

(t− 2)αi,t+1et + γi,nen + αi,1x,

ϕx(e1) = αx,1e1 +
n
∑

t=3

αx,tet, ϕx(et) = αx,1et, 2 ≤ t ≤ n,

ϕx(x) =
n−1
∑

t=3

(t− 2)αx,t+1et + γx,nen + αx,1x.

It is known that ϕei(ej) = ei · ej = ej · ei = ϕej(ei). For 2 ≤ i ≤ n and j = 1 we have

αi,1e1 +

n
∑

t=3

αi,tet = α1,1ei.

Comparing coefficients of the basis elements we obtain that

α1,1 = 0, αi,1 = αi,t = 0, 2 ≤ i ≤ n, 3 ≤ t ≤ n.

Similarly, from ϕe1(x) = e1 · x = x · e1 = ϕx(e1), we reduce

n−1
∑

t=3

(t− 2)α1,t+1et + γ1,nen = αx,1e1 +
n

∑

t=3

αx,tet.
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Comparing the coefficients for the basis elements, we obtain the following restrictions
on the coefficients:

αx,1 = 0, αx,n = γ1,n, αx,t = (t− 2)α1,t+1, 3 ≤ t ≤ n− 1.

Finally, from the equality ϕei(x) = ei ·x = x ·ei = ϕx(ei), we derive γi,n = 0, 2 ≤ i ≤ n.
Thus, we have the algebra TP(s3n,1).

Theorem 3.5. Let (s4n,1(α3, α4, . . . , αn−1), ·, [−,−]) be a transposed Poisson algebra struc-
ture defined on the Lie algebra s4n,1(α3, α4, . . . , αn−1). Then the multiplication of
(s4n,1(α3, α4, . . . , αn−1), ·) has the following form:

TP(s4n,1) :































e1 · e1 =
n
∑

t=4

βtet, e1 · x =
n−1
∑

t=3

(βt+1 +
t−2
∑

r=3

αrβt−r+2)et + γ1en,

x · x =
n−2
∑

i=2

(

βi+2 +
i−1
∑

j=3

αj(2βi−j+3 +
i−j
∑

r=3

αrβi−j−r+4)
)

ei

+
(

γ1 +
n−2
∑

i=3

αi(βn−i+2 +
n−i−1
∑

r=3

αrβn−i−r+3)
)

en−1 + γ2en,

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let us consider the transposed Poisson structure (s4n,1(α3, α4, . . . , αn−1), ·, [−,−]) on
the Lie algebra s4n,1(α3, α4, . . . , αn−1). Then for any element of x ∈ s4n,1(α3, α4, . . . , αn−1),
we have that the operator of multiplication ϕx(y) = x ·y is a 1

2
-derivation. Hence, by using

Theorem 2.4 we derive the following:

• for ei, 1 ≤ i ≤ n :

ϕei(e1) = ai,1e1 +
n
∑

t=3

ai,tet, ϕei(et) = ai,1et, 2 ≤ t ≤ n,

ϕei(x) =
n−1
∑

t=2

(ai,t+1 +
t−1
∑

r=3

αrai,t−r+2)et + ci,nen + ai,1x,

• for x :

ϕx(e1) = ax,1e1 +
n
∑

t=3

ax,tet, ϕx(et) = ax,1et, 2 ≤ t ≤ n,

ϕx(x) =
n−1
∑

t=2

(ax,t+1 +
t−1
∑

r=3

αrax,t−r+2)et + cx,nen + ax,1x.

By considering equality ϕei(ej) = ei · ej = ej · ei = ϕej (ei) for 2 ≤ i ≤ n and j = 1, we
have

ai,1e1 +
n

∑

t=3

ai,tet = a1,1ei.
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From this, we conclude

a1,1 = 0, ai,1 = ai,t = 0, 2 ≤ i ≤ n, 3 ≤ t ≤ n.

Also, from the multiplications ϕe1(x) = e1 · x = x · e1 = ϕx(e1) and ϕei(x) = ei · x =
x · ei = ϕx(ei), we have

n−1
∑

t=2

(a1,t+1 +

t−1
∑

r=3

αra1,t−r+2)et + c1,nen = ax,1e1 +

n
∑

t=3

ax,tet and ci,nen = 0.

From these, we conclude

a1,3 = ax,1 = 0, ax,n = c1,n, ax,t = a1,t+1 +

t−1
∑

r=3

αra1,t−r+2, 3 ≤ t ≤ n− 1,

ci,n = 0, 2 ≤ i ≤ n.

Thus, we have the algebra TP(s4n,1).

Now we give descriptions of all transposed Poisson algebra structures on solvable Lie
algebras with nilradical isomorphic to the algebra Q2n

Theorem 3.6. Let (r2n+1(λ), ·, [−,−]) be a transposed Poisson algebra structure defined on
the Lie algebra r2n+1(λ), λ 6= 2n− 3, 5−2n

2
. Then the multiplication of (r2n+1(λ), ·) has the

following form:

TP1(r2n+1(λ)) : x · x = e2n;

TP2(r2n+1(λ)) : e2 · x = e2n, x · x = (3− 2n)e2n−1;

TP2(r2n+1(
3−2n

2
)) : e2 · x = e2n, x · x = (3− 2n)e2n−1 + e2n;

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (r2n+1(λ), ·, [−,−]) be a transposed Poisson algebra structure defined on the
Lie algebra r2n+1(λ) for λ 6= 2n− 3, 5−2n

2
. Then from relation (5) we get:

β2n−1 = αi = 0, 3 ≤ i ≤ 2n.

Furthermore we aim to describe the multiplication · by Lemma 1.5. Hence, for any element
x ∈ r2n+1(λ), the multiplication operator ϕx(y) = x · y = y · x = ϕy(x) is a

1
2
-derivation.

Hence, by Theorem 2.5 we have:

ϕei(e1) = aie1, ϕei(e2) = aie2 + bie2n, ϕei(ej) = aiej , 3 ≤ j ≤ 2n,

ϕei(x) = (3− 2n)bie2n−1 + cie2n + aix,

ϕx(e1) = axe1, ϕx(e2) = axe2 + bxe2n, ϕx(ej) = axej, 3 ≤ j ≤ 2n,

ϕx(x) = (3− 2n)bxe2n−1 + cxe2n + axx.
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Firstly, for all i, j from ϕei(ej) = ei · ej = ej · ei = ϕej (ei), we obtain that

ai = 0, 1 ≤ i ≤ 2n, b1 = 0, bt = 0, 3 ≤ t ≤ 2n.

Secondly, we have ϕei(x) = ei · x = x · ei = ϕx(ei), which implies

ax = 0, b2 = 0, bx = c2, c1 = 0, ct = 0, 3 ≤ t ≤ 2n.

Thus, we obtain

e2 · x = αe2n, x · x = (3− 2n)αe2n−1 + βe2n.

Now we consider the general change of basis:

e′1 =

2n
∑

j=1

Ajej , e′2 =

2n
∑

j=1

Bjej , e′i+1 = [e′i, e
′

1], 2 ≤ i ≤ 2n− 2,

e′2n = [e′2, e
′

2n−1], x′ = Hx+

2n
∑

t=1

Cte2n.

We express the new basis elements {e′1, e′2, . . . , e′2n, x′} via the basis elements
{e1, e2, . . . , e2n, x}. By verifying all the multiplications of the algebra in the new basis, we
obtain the relations between the parameters {α′, β ′} and {α, β}:

α′ =
α

A2n−3
1 B2

, β ′ =
A1β + (2λ+ 2n− 3)A3α

A2n−2
1 B2

2

,

where A1B2 6= 0.
We have the following possible cases:

1. α = 0, then we get β 6= 0, and via automorphism

φ(x) = x, φ(e1) = e1, φ(ei) =
√

β−1ei, 2 ≤ i ≤ 2n− 1, φ(e2n) = β−1e2n,

we obtain the algebra TP1(r2n+1(λ)).

2. α 6= 0, λ = 3−2n
2

and β = 0, then via automorphism

φ(x) = x, φ(e1) = e1, φ(ei) = α−1ei, 2 ≤ i ≤ 2n− 1, φ(e2n) = α−2e2n,

we have the algebra TP2(r2n+1(
2n−3
2

)).

3. α 6= 0, λ = 3−2n
2

and β 6= 0, then by automorphism

φ(x) = x, φ(e1) =
2n−3
√

α−2βe1,

φ(ei) =
2n−3
√

α2n−1−iβi+1−2nei, 2 ≤ i ≤ 2n− 1, φ(e2n) = β−1e2n,
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we get the algebra TP3(r2n+1(
3−2n
2

)).

4. α 6= 0 and λ 6= 3−2n
2

, then by automorphism

φ(x) = x+ α−2βλ

2λ−3+2n
e2, φ(e1) = e1 +

α−2β

2λ−3+2n
e3, φ(ei) = α−1ei, 2 ≤ i ≤ 2n− 2,

φ(e2n−1) = α−1e2n−1 +
α−3β

2λ−3+2n
e2n, φ(e2n) = α−2e2n,

we obtain the algebra TP2(r2n+1(λ 6= 3−2n
2

)).

Theorem 3.7. Let (r2n+1(2n−3), ·, [−,−]) be a transposed Poisson algebra structure defined
on the Lie algebra r2n+1(2n − 3). Then the multiplication of (r2n+1(2n − 3), ·) has the
following form:

TP1(r2n+1(2n− 3)) : x · x = e2n;
TP2(r2n+1(2n− 3)) : e2 · x = e2n, x · x = (3− 2n)e2n−1;
TP3(r2n+1(2n− 3)) : e2 · x = e2n, x · x = (3− 2n)e2n−1 + e2n;
TP4(r2n+1(2n− 3)) : e2 · e2 = e2n, e2 · x = (3− 2n)e2n−1;
TP5(r2n+1(2n− 3)) : e2 · e2 = e2n, e2 · x = (3− 2n)e2n−1, x · x = e2n;
TP6(r2n+1(2n−3)) : e2 ·e2 = e2n, e2·x = (3−2n)e2n−1+e2n, x·x = (3−2n)e2n−1+αe2n;
TP7(r2n+1(2n− 3)) : e2 · e2 = e2n−1;
TP8(r2n+1(2n− 3)) : e2 · e2 = e2n−1, x · x = e2n;
TP9(r2n+1(2n− 3)) : e2 · e2 = e2n−1, e2 · x = e2n, x · x = (3− 2n)e2n−1 + αe2n;

TP10(r2n+1(2n− 3)) :

{

e2 · e2 = e2n−1 + e2n, e2 · x = (3− 2n)e2n−1 + αe2n,

x · x = (3− 2n)αe2n−1 + βe2n;
where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (r2n+1(2n − 3), ·, [−,−]) be a transposed Poisson algebra structure defined on
the Lie algebra r2n+1(2n−3). Then we aim to describe the multiplication · by Lemma 1.5.
So for any element of x ∈ r2n+1(2n − 3), the operator of multiplication ϕx(y) = x · y =
y · x = ϕy(x) is a

1
2
-derivation. Hence, we have

• for ei, 1 ≤ i ≤ 2n :

ϕei(e1) = aie1, ϕei(e2) = aie2 + b1,ie2n−1 + b2,ie2n, ϕei(ej) = aiej, 3 ≤ j ≤ 2n,

ϕei(x) = (3− 2n)b2,ie2n−1 + cie2n + aix,

• for x :

ϕx(e1) = axe1, ϕx(e2) = axe2 + b1,xe2n−1 + b2,xe2n, ϕx(ej) = axej , 3 ≤ j ≤ 2n,

ϕx(x) = (3− 2n)b2,xe2n−1 + cxe2n + axx.
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Firstly, for all i, j from ϕei(ej) = ei · ej = ej · ei = ϕej (ei), we obtain that

ai = 0, 1 ≤ i ≤ 2n, b1,1 = b2,1 = 0, b1,t = b2,t = 0, 3 ≤ t ≤ 2n.

Secondly, we have ϕei(x) = ei · x = x · ei = ϕx(ei), which implies

ax = 0, b1,x = (3− 2n)b2,2, b2,x = c2, c1 = 0, ct = 0, 3 ≤ t ≤ 2n.

Thus, we obtain

e2 · e2 = α1e2n−1 + α2e2n, e2 · x = (3− 2n)α2e2n−1 + α3e2n,

x · x = (3− 2n)α3e2n−1 + α4e2n.

Now we consider the general change of basis:

e′1 =

2n
∑

j=1

Ajej , e′2 =

2n
∑

j=1

Bjej , e′i+1 = [e′i, e
′

1], 2 ≤ i ≤ 2n− 2,

e′2n = [e′2, e
′

2n−1], x′ = Hx+

2n
∑

t=1

Cte2n.

We express the new basis elements {e′1, e′2, . . . , e′2n, x′} via the basis elements
{e1, e2, . . . , e2n, x}. By verifying all the multiplications of the algebra in the new basis, we
obtain the relations between the parameters {α′

1, α
′

2, α
′

3, α
′

4} and {α1, α2, α3, α4}:

α′

1 =
B2

A2n−3
1

α1, α′

2 =
1

A2n−3
1

α2, α′

3 =
1

A2n−3
1 B2

α3, α′

4 =
1

A2n−3
1 B2

2

α4,

where A1B2 6= 0.
Then we have the following cases.

1. α1 = α2 = α3 = α4 = 0, then we have trivial algebras, i.e. all commutative
associative multiplications are zero.

2. α1 = α2 = α3 = 0 and α4 6= 0, then by choosing A1 = 1, B2 =
√
α4 we have the

algebra TP1(r2n+1(2n− 3)).

3. α1 = α2 = α4 = 0 and α3 6= 0, then by choosing A1 = 1, B2 = α3 we have the
algebra TP2(r2n+1(2n− 3)).

4. α1 = α2 = 0, α3 6= 0, α4 6= 0, then by choosing A1 = 2n−3
√

α2
3α

−1
4 , B2 = α−1

3 α4 we
have the algebra TP3(r2n+1(2n− 3)).

5. α1 = 0, α2 6= 0, α3 = α4 = 0, then by choosing A1 = 2n−3
√
α2 we have the algebra

TP4(r2n+1(2n− 3)).
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6. α1 = 0, α2 6= 0, α3 = 0, α4 6= 0, then by choosing A1 = 2n−3
√
α2, B2 =

√

α−1
2 α4 we

have the algebra TP5(r2n+1(2n− 3)).

7. α1 = 0, α2 6= 0, α3 6= 0, then by choosing A1 = 2n−3
√
α2, B2 = α−1

2 α3 we have the
algebra TP6(r2n+1(2n− 3));

8. α1 6= 0, α2 = α3 = α4 = 0, then by choosing A1 = 1, B2 = α−1
1 we have the algebra

TP7(r2n+1(2n− 3)).

9. α1 6= 0, α2 = α3 = 0, α4 6= 0, then by choosing A1 = 3(2n−3)
√

α2
1α4, B2 = 3

√

α−1
1 α4

we have the algebra TP8(r2n+1(2n− 3)).

10. α1 6= 0, α2 = 0, α3 6= 0, then by choosing A1 = 2(2n−3)
√
α1α3, B2 =

√

α−1
1 α3 we have

the algebra TP9(r2n+1(2n− 3)).

11. α1 6= 0, α2 6= 0, then by choosing A1 = 2n−3
√
α2, B2 = α−1

1 α2 we have the algebra
TP10(r2n+1(2n− 3)).

Theorem 3.8. Let (r2n+1(
5−2n
2

), ·, [−,−]) be a transposed Poisson algebra structure defined
on the Lie algebra r2n+1(

5−2n
2

). Then the multiplication of (r2n+1(
5−2n

2
), ·) has the following

form:

TP1(r2n+1(
5−2n

2
)) :



































































































e1 · e1 = e4 +
2n
∑

t=5

atet,

e1 · ej = (−1)j−1

2
a2n+2−je2n, 3 ≤ j ≤ 2n− 2,

e1 · e2n−2 = −1
2
e2n,

e1 · x = 5−2n
2

e3 +
2n−2
∑

t=3

2t−2n−1
2

at+1et + b2e2n,

e2 · x = b3e2n,

ej · x = (−1)j−1(2n+3−2j)
4

a2n+3−je2n, 4 ≤ j ≤ 2n− 2,

e2n−1 · x = −4n+1
4

e2n,

x · x = (3−2n)(5−2n)
4

e2 +
2n−3
∑

t=3

(2t−2n−1)(2t−2n+1)
4

at+2et+

+b3e2n−1 + b4e2n;
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TP2(r2n+1(
5−2n

2
)) :











































































e1 · e1 =
2n
∑

t=5

atet, e1 · e2 = b1e2n,

e1 · ej = (−1)j−1

2
a2n+2−je2n, 3 ≤ j ≤ 2n− 3,

e1 · x =
2n−2
∑

t=4

2t−2n−1
2

at+1et + b1e2n−1 + b2e2n,

e2 · x = b3e2n, e3 · x = 1
2
b1e2n,

ej · x = (−1)j−1(2n+3−2j)
4

a2n+3−je2n, 4 ≤ j ≤ 2n− 2,

x · x =
2n−3
∑

t=3

(2t−2n−1)(2t−2n+1)
4

at+2et+

+2n−5
2

b1e2n−2 + b3e2n−1 + b4e2n;
where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (r2n+1(
5−2n

2
), ·, [−,−]) be a transposed Poisson algebra structure defined on the

Lie algebra r2n+1(
5−2n
2

) and from relation (5) we get β2n−1 = 0. Then we aim to describe
the multiplication · by Lemma 1.5. So for any element x ∈ r2n+1(

5−2n
2

), the multiplication
operator ϕx(y) = x · y = y · x = ϕy(x) is a

1
2
-derivation. Hence, by Theorem 2.5 for all i,

we have

ϕei(e1) = ai,1e1 +
2n
∑

t=3

ai,tet, ϕei(e2) = ai,1e2 + bie2n,

ϕei(ej) = ai,1ej +
(−1)j−1

2
ai,2n+2−je2n, 3 ≤ j ≤ 2n− 1,

ϕei(e2n) = ai,1e2n, ϕei(x) =
2n−2
∑

t=2

2t−2n−1
2

ai,t+1et + bie2n−1 + cie2n + ai,1x,

ϕx(e1) = ax,1e1 +
2n
∑

t=3

ax,tet, ϕx(e2) = ax,1e2 + bxe2n,

ϕx(ej) = ax,1ej +
(−1)j−1

2
ax,2n+2−je2n, 3 ≤ j ≤ 2n− 1,

ϕx(e2n) = ax,1e2n, ϕx(x) =
2n−2
∑

t=2

2t−2n−1
2

ax,t+1et + bxe2n−1 + cxe2n + ax,1x.

Firstly, for all i, j from ϕei(ej) = ei · ej = ej · ei = ϕej (ei), we obtain that

ai,1 = 0, 1 ≤ i ≤ 2n, a2,2n = b1, ai,2n =
(−1)i−1

2
a1,2n+2−i, 3 ≤ i ≤ 2n− 1,

a2n,2n = 0, bt = 0, 3 ≤ t ≤ 2n, ai,t = 0, 2 ≤ i ≤ 2n, 3 ≤ t ≤ 2n− 1.

Secondly, we have ϕei(x) = ei · x = x · ei = ϕx(ei), which implies

a1,3 = ax,1 = 0, ax,2n−1 = b1, ax,2n = c1, ax,t =
2t− 2n− 1

2
a1,t+1, 3 ≤ t ≤ 2n− 2,
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b2 = c2n = 0, bx = c2, c3 =
1

2
b1, ci =

(−1)i−1(2n+ 3− 2i)

4
a1,2n+3−i, 4 ≤ i ≤ 2n− 1.

Thus, we obtain

e1 · e1 =
2n
∑

t=4

atet, e1 · e2 = b1e2n, e1 · ej = (−1)j−1

2
a2n+2−je2n, 3 ≤ j ≤ 2n− 2,

e1 · x =
2n−2
∑

t=3

2t−2n−1
2

at+1et + b1e2n−1 + b2e2n, e2 · x = b3e2n, e3 · x = 1
2
b1e2n,

ej · x = (−1)j−1(2n+3−2j)
4

a2n+3−je2n, 4 ≤ j ≤ 2n− 1,

x · x =
2n−3
∑

t=2

(2t−2n−1)(2t−2n+1)
4

at+2et +
2n−5

2
b1e2n−2 + b3e2n−1 + b4e2n.

If we check for associativity, we get the relation a4b1 = 0.
Similarly, by using the multiplication of Lie algebra r2n+1(

5−2n
2

) we consider the general
basis change:

e′1 =
2n
∑

t=1

Atet, e′2 =
2n
∑

t=1

Btet, x′ = Hx+
2n
∑

t=1

Ctet.

Then the product e′1 · e′1 =
2n
∑

i=4

α′

ie
′

i gives

α′

4 =
α4

B2

.

We have the following cases.

1. Let α4 6= 0. Then we derive α′

4 = 1, b1 = 0 and in this case we obtain the algebra
TP1(r2n+1(

5−2n
2

)).

2. Let α4 = 0. Then we have the algebra TP2(r2n+1(
5−2n

2
)).

Theorem 3.9. Let (r2n+1(2− n, ε), ·, [−,−]) be a transposed Poisson algebra structure de-
fined on the Lie algebra r2n+1(2 − n, ε). Then the multiplication of (r2n+1(2 − n, ε), ·) has
the following form:

TP1(r2n+1(2− n, ε)) : x · x = e2n;

TP2(r2n+1(2− n, ε)) : e2 · x = e2n, x · x = (3− 2n)e2n−1;

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.
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Proof. Let (r2n+1(2− n, ε), ·, [−,−]) be a transposed Poisson algebra structure defined on
the Lie algebra r2n+1(2− n, ε). Then by Lemma 1.5 for any element of x ∈ r2n+1(2− n, ε),
there is a related 1

2
-derivation ϕx of (r2n+1(2−n, ε), [−,−]) such that ϕx(y) = x ·y = y ·x =

ϕy(x), with y ∈ r2n+1(2− n, ε). Therefore, by Theorem 2.6 for any i, we have

ϕei(e1) = aie1, ϕei(e2) = aie2 + bie2n, ϕei(ej) = aiej , 3 ≤ j ≤ 2n,

ϕei(x) = (3− 2n)bie2n−1 + cie2n + aix,

ϕx(e1) = axe1, ϕx(e2) = axe2 + bxe2n, ϕx(ej) = axej, 3 ≤ j ≤ 2n,

ϕx(x) = (3− 2n)bxe2n−1 + cxe2n + axx.

Considering the equalities ϕei(ej) = ei · ej = ej · ei = ϕej(ei) and ϕei(x) = ei · x =
x · ei = ϕx(ei) for all i, j ∈ {1, 2, . . . , 2n}, we have

ai = 0, 1 ≤ i ≤ 2n, b1 = 0, bt = 0, ax = 0, b2 = 0, bx = c2, c1 = 0, ct = 0, 3 ≤ t ≤ 2n.

Thus, we obtain

e2 · x = αe2n, x · x = (3− 2n)αe2n−1 + βe2n.

Now we consider the general change of basis:

e′1 =

2n
∑

j=1

Ajej , e′2 =

2n
∑

j=1

Bjej , e′i+1 = [e′i, e
′

1], 2 ≤ i ≤ 2n− 2,

e′n = [e′2, e
′

2n−1], x′ = Hx+
2n
∑

t=1

Cte2n.

We express the new basis elements {e′1, e′2, . . . , e′2n, x′} via the basis elements
{e1, e2, . . . , e2n, x}. By verifying all the multiplications of the algebra in the new basis, we
obtain the relations between the parameters {α′, β ′} and {α, β}:

α′ =
α

A2n−3
1 B2

, β ′ =
A1β + A3α

A2n−2
1 B2

2

,

where A1B2 6= 0.
Since we are only interested in non-trivial transposed Poisson algebra structures, there-

fore we have the following possible cases:

1. α = 0, then we have β 6= 0 and via isomorphism

φ(x) = x, φ(e1) = β−1e1, φ(ei) = βn−iei, 2 ≤ i ≤ 2n− 1, φ(e2n) = β−1e2n,

we obtain the algebra TP1(r2n+1(2− n, ε)).



Transposed Poisson structures on solvable Lie algebras with filiform nilradical 479

2. α 6= 0, then by choosing the isomorphism

φ(ei) =
n−1
√
αn−iei, 2 ≤ i ≤ 2n− 2, φ(e1) =

n−1
√
α−1e1 + β

n−1
√
α−2e3,

φ(x) = x− (n−2)β
n−1
√
α−1e2, φ(e2n−1) = α−1e2n−1−βα−2e2n, φ(e2n) =

n−1
√
α−1e2n,

we find the algebra TP2(r2n+1(2− n, ε)).

Theorem 3.10. Let (r2n+1(λ5, . . . , λ2n−1), ·, [−,−]) be a transposed Poisson algebra struc-
ture defined on the Lie algebra r2n+1(λ5, . . . , λ2n−1). Then the multiplication of
(r2n+1(λ5, . . . , λ2n−1), ·) has the following form:

TP1(r2n+1(λ5, . . . , λ2n−1)) : x · x = e2n;

TP2(r2n+1(λ5, . . . , λ2n−1)) : e2 · x = e2n;

TP3(r2n+1(λ5, . . . , λ2n−1)) : e2 · x = e2n, x · x = e2n;

TP4(r2n+1(λ5, . . . , λ2n−1)) : e2 · e2 = e2n;

TP5(r2n+1(λ5, . . . , λ2n−1)) : e2 · e2 = e2n, x · x = e2n;

TP6(r2n+1(λ5, . . . , λ2n−1)) : e2 · e2 = e2n, e2 · x = e2n, x · x = αe2n;

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (r2n+1(λ5, . . . , λ2n−1), ·, [−,−]) be a transposed Poisson algebra structure de-
fined on the r2n+1(λ5, . . . , λ2n−1). Then for any element of x ∈ r2n+1(λ5, . . . , λ2n−1) the
linear operator ϕx(y) = x · y is a 1

2
-derivation. Therefore, according to Theorem 2.7 we

derive

ϕei(e1) = aie1, ϕei(e2) = aie2 + bie2n, ϕei(ej) = aiej, 3 ≤ j ≤ 2n, ϕei(x) = cie2n + aix,

ϕx(e1) = axe1, ϕx(e2) = axe2 + bxe2n, ϕx(ej) = axej , 3 ≤ j ≤ 2n, ϕx(x) = cxe2n + axx.

From equalities ϕei(ej) = ei · ej = ej · ei = ϕej (ei) and ϕei(x) = ei · x = x · ei = ϕx(ei)
we derive

ai = 0, 1 ≤ i ≤ 2n, b1 = 0, bt = 0, ax = 0, bx = c2, c1 = 0, ct = 0, 3 ≤ t ≤ 2n.

Thus, we obtain

e2 · e2 = αe2n, e2 · x = βe2n, x · x = γe2n.

Now we consider the general change of basis:

e′1 =

2n
∑

j=1

Ajej , e′2 =

2n
∑

j=1

Bjej , e′i+1 = [e′i, e
′

1], 2 ≤ i ≤ 2n− 2,
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e′n = [e′2, e
′

2n−1], x′ = Hx+
2n
∑

t=1

Cte2n.

We express the new basis elements {e′1, e′2, . . . , e′2n, x′} via the basis elements
{e1, e2, . . . , e2n, x}. By verifying all the multiplications of the algebra in the new basis, we
obtain the relations between the parameters {α′, β ′, γ′} and {α, β, γ}:

α′ =
α

A2n−3
1

, β ′ =
β

A2n−3
1 B2

, γ′ =
γ

A2n−3
1 B2

2

where A1B2 6= 0.
To obtain only non-trivial transposed Poisson algebra structures, we have the following

possible cases:

1. α = 0, β = 0 and γ 6= 0, then via automorphism

φ(x) = x, φ(e1) = e1, φ(ei) =
√

γ−1ei, 2 ≤ i ≤ 2n− 1, φ(e2n) = γ−1e2n,

we get the algebra TP1(r2n+1(λ5, . . . , λ2n−1)).

2. α = 0, β 6= 0 and γ = 0, then via automorphism

φ(x) = x, φ(e1) = e1, φ(ei) = β−1ei, 2 ≤ i ≤ 2n− 1, φ(e2n) = β−2e2n,

we have the algebra TP2(r2n+1(λ5, . . . , λ2n−1)).

3. α = 0, β 6= 0 and γ 6= 0, then via automorphism

φ(e1) =
2n−3
√

γβ−2e1, φ(ei) = βγ−1 2n−3
√

(γβ−2)i−2ei, 2 ≤ i ≤ 2n− 1,

φ(x) = x, φ(e2n) = γ−1e2n,

we obtain the algebra TP3(r2n+1(λ5, . . . , λ2n−1)).

4. α 6= 0, β = 0 and γ = 0, then via automorphism

φ(x) = x, φ(e1) =
2n−3
√
α−1e1, φ(ei) =

2n−3
√
α2−iei, 2 ≤ i ≤ 2n−1, φ(e2n) = α−1e2n,

we find the algebra TP4(r2n+1(λ5, . . . , λ2n−1)).

5. α 6= 0, β = 0 and γ 6= 0, then via automorphism

φ(e1) =
2n−3
√
α−1e1, φ(ei) =

4n−6
√

α2n−2i+1γ3−2nei, 2 ≤ i ≤ 2n− 1,

φ(x) = x, φ(e2n) = γ−1e2n,

we derive the algebra TP5(r2n+1(λ5, . . . , λ2n−1)).
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6. α 6= 0 and β 6= 0, then via automorphism

φ(e1) =
2n−3
√
α−1e1, φ(ei) =

2n−3
√
α2n−i−1β−1ei, 2 ≤ i ≤ 2n− 1,

φ(x) = x, φ(e2n) = αβ−2e2n,

we establish the algebra TP6(r2n+1(λ5, . . . , λ2n−1)).

Now we give a description of transposed Poisson algebra structures on solvable Lie
algebras with naturally graded filiform nilradical Q2n with codimension two.

Theorem 3.11. Let (r2n+2, ·, [−,−]) be a transposed Poisson algebra structure defined on
the Lie algebra r2n+2. Then the multiplication of (r2n+2, ·) has the following form:

TP(r2n+2) : x1 · x1 = (2n+ 1)2e2n, x1 · x2 = 2(2n+ 1)e2n, x2 · x2 = 4e2n,

where it is taken into account that the transposed Poisson algebra has its products with
respect to the bracket [−,−], and the remaining products are equal to zero.

Proof. Let (r2n+2, ·, [−,−]) be a transposed Poisson algebra structure defined on the Lie
algebra r2n+2. Then according to Lemma 1.5 for each element of x ∈ r2n+2 the linear
operator ϕx(y) = x · y is a 1

2
-derivation. Hence, by using Theorem 2.8 for all 1 ≤ i, j ≤ n

we can put

ϕei(ej) = aiej, ϕei(x1) = (2n+ 1)bie2n + aix1, ϕei(x2) = 2bie2n + aix2,

ϕx1(ej) = ax1ej , ϕx1(x1) = (2n+ 1)bx1e2n + ax1x1, ϕx1(x2) = 2bx1e2n + ax1x2,

ϕx2(ej) = ax2ej , ϕx2(x1) = (2n+ 1)bx2e2n + ax2x1, ϕx2(x2) = 2bx2e2n + ax2x2.

By checking the equalities of ϕei(ej) = ei · ej = ej · ei = ϕej(ei), ϕei(xk) = ei · xk =
xk · ei = ϕxk

(ei) and ϕx1(x2) = x1 · x2 = x2 · x1 = ϕx2(x1) for all i, j ∈ {1, 2, . . . , 2n} and
k ∈ {1, 2}, we have the following restrictions:

at = 0, ax1 = 0, ax2 = 0, bt = 0, 1 ≤ t ≤ 2n, 2bx1 = (2n+ 1)bx2 .

Thus, we obtain

x1 · x1 = (2n+ 1)2αe2n, x1 · x2 = 2(2n+ 1)αe2n, x2 · x2 = 4αe2n.

We have non-trivial transposed Poisson algebra structures only in the case when α 6= 0.
Further, by using the transformation

φ(x) = x, φ(e1) = e1, φ(ei) =
√
α−1ei, 2 ≤ i ≤ 2n− 1, φ(e2n) = α−1e2n,

we get the algebra TP(r2n+2).
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