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Inner isotopes associated with automorphisms of commu-

tative associative algebras

Vladimir Tkachev

Abstract. The principal observation of the present paper is that an inner isotopy (i.e.
a principal isotopy defined by an algebra endomorphism) is a very helpful instrument
in constructing and studying interesting classes of nonassociative algebras. By using
methods developed in the paper, we define a new class of commutative nonasso-
ciative algebras obtained by inner isotopy from commutative associative polynomial
algebras. There is a natural bijection between isomorphism classes of our algebras
and integer partitions of the algebra dimensions. Among the interesting features of
the nonassociative algebras constructed are that these algebras are generic, some of
examples are axial and metrized algebras. We completely describe both the set of
algebra idempotents and their spectra.
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1 Introduction

By an algebra (A, ∗) we understand a nonassociative algebra over a fieldK of char(K) 6=
2, 3 with multiplication ∗. An element c ∈ A is called an idempotent if c ∗ c = c. The set
of nonzero idempotents of (A, ·) is denoted by Idm(A, ∗). Given an element a ∈ (A, ∗), we
denote by L∗(a)x → a ∗ x the left multiplication operator by a and Aλ(a) the kernel of
(λ1A − L∗(a)), where 1A is the identity operator.

A commutative algebra (A, ∗) is called isospectral if the spectrum of L∗(c) is the same
for any nonzero idempotent c. By using the syzygy method, it was established in [16]
that if an isospectral algebra (A, ∗) is generic (see Definition 1.1 below) then the common
spectrum of the algebra idempotents consists of simple eigenvalues satisfying λdimA = 1.
A further analysis given in [17] reveals that under some mild conditions, an isospectral
generic algebra must be medial, i.e. the algebra multiplication associates on pairs:

(x ∗ y) ∗ (z ∗ t) = (x ∗ z) ∗ (y ∗ t),

and, moreover, such an algebra is an inner isotopy of a certain commutative associative
algebra. Recall that given an algebra (A, ∗), its inner isotope (A, ∗h) is the vector space
A with the new multiplication

x ∗h y = h(x ∗ y) = h(x) ∗ h(y),

where h ∈ Aut(A, ∗) is an automorphism of (A, ∗). More precisely, the medial isospectral
generic algebras discussed in [17] are exactly the inner isotopes of the quotient polynomial
algebra K[z]/(zn − 1) under the automorphism τ ∈ Aut(Kn, •) acting by substitution
[p(z)] → [p(ǫnz)], where ǫn is a primitive root of unity of order n. The corresponding inner
isotope algebra (K[z]/(zn − 1), •τ ) has many distinguished properties (see Section 10.2
below for n = 3 and Section 7 for the general case).
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In this regard, it is natural to find the full automorphism group Aut(Kn, •) and char-
acterize the corresponding (isomorphy classes of) inner isotopes of (Kn, •). A similar
approach is also relevant for an arbitrary algebra (A, ∗) and its inner isotopes (A, ∗h).

These questions were an original motivation for the present paper. As we shall see,
an inner isotopy is a very helpful instrument for constructing of interesting classes of
nonassociative algebras. In particular, this approach is already fruitful for the simplest
possible case when the initial algebra is commutative and associative. In that case, any
nontrivial inner isotopy destroys the associativity but not so much: any inner isotope of a
(commutative) associative algebra is always a medial algebra, see Corollary 5.2.

A relevant in the present context is the mentioned above concept of generic nonassocia-
tive algebras [16]. The definition comes back to Segre’s observation [24] that idempotents
in an n-dimensional commutative algebra (Kn, ∗) over an algebraically closed field K with
a basis {ei}1≤i≤n can be interpreted as the set of common zeros of n quadratic polynomials

Φk(x) := (x ∗ x− x)k =
∑

1≤i,j≤n

aijkxixj − xk = 0, 1 ≤ k ≤ n,

in Kn, where x =
∑

1≤i≤n xiei and aijk are the structural constant of ∗ in the basis {ei}.
By the Bézout theorem the number of intersection points (i.e. the algebra idempotents)
properly counted in the projective spaceKPn is either 2n or infinite. An intersection point c
is simple if the quadrics are in relative general position at c. On the algebra level, the latter
is equivalent to that the idempotent c is regular [32], i.e. the Jacobian of the quadratic
endomorphism Φ(x) : Kn → Kn is nonzero: det(DΦ(x)) = det(L∗(c) −

1
2
1A) 6= 0. Then

the Bézout estimate holds:

the number of regular idempotents of A ≤ 2dimA. (1)

In general, if the ground field K is not algebraically closed then the algebra (A, ∗,K′) over
an algebraic extension K′ of K has the same dimension, and any idempotent regular in
(A, ∗,K) is a regular idempotent in (A, ∗,K′). Applying (1) to (A, ∗,K′), this implies that
(1) also holds in (A, ∗,K). This motivates the following definition.

Definition 1.1. A commutative nonassociative algebra A over an arbitrary field K is called
generic if it has exactly 2dimA distinct regular idempotents.

Remark 1.2. An algebra on a vector space V is uniquely identified with a point of the set
of all bilinear multiplication V ∗⊗V ∗⊗V on V . In this sense, the subset of generic algebras
is a Zariski open subset of V ∗ ⊗ V ∗ ⊗ V . The above definition has appeared in [16], [15]
and it should not be confused with some similar analogues, for example in [27], [28].

In this paper, we show that under some natural assumptions any inner isotope of a
commutative associative algebra is generic and, moreover, we explicitly characterize the
set of idempotents and their spectral properties.

Another relevant concept here is the so-called axial algebras, i.e. the algebras generated
by a finite subset of idempotents which satisfy a common fusion law. More precisely, a
fusion law is a set F ⊂ K together with a symmetric binary map θ : F ×F → 2F .
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Definition 1.3 ( [14]). Given a fusion law F , a commutative algebra (A, ∗) over K together
with a distinguished subset of elements X (the called axes) is an F -axial algebra if (A, ∗)
is generated by X , for each c ∈ X , c is a semisimple idempotent, namely A = ⊕λ∈FAλ(c)
and for λ, µ ∈ F :

Aλ(c) ∗ Aµ(c) ⊂ Aθ(λ,µ)(c).

An axial algebra is called primitive if each idempotent in X is primitive, i.e. dimA1(a) = 1
for any a ∈ X .

The isospectral generic algebras considered in [16] and [17] are axial algebras. The
axial algebra concept is an important tool in understanding of finite groups: it appears
that many interesting groups (for example, 3-transposition groups including certain simple
sporadic groups, in particular, the monster group) arise as automorphism groups of cubic
forms on suitable modules [25], [19], [26], [22], [8] by virtue of a correspondence between
certain involutions generating a group and a distinguished family of idempotents in an
appropriate (non)associative commutative algebra. Such a correspondence normally is very
individual and drastically depends on a source group/algebra, as well as its combinatorial
or geometrical realizations [3], [6]. Some recent developments in the axial algebra project
can be found [21], [9], [4], [7], [14], [10], [2] and the references therein.

The algebras discussed in the present paper fit perfectly this context and provide us
with new examples of axial algebras with known automorphism groups. We only outline
some partial results in this direction (see especially the explicit examples in Section 10),
while the general discussion will be addressed elsewhere in the second part of this paper.

Remark 1.4. We are very grateful to the referees for pointing us out the existence of the
isomorphism (17). In the original version of our paper [31], we used a different exposition
based on the polynomial model K[z]/P . The isomorphism (17) simplifies several proofs
below and the structure of the idempotent set becomes more transparent when written in
this form. Still, we believe that the polynomial model K[z]/P is also of interest, especially
for some particular choices of the polynomial P ; see fore example, the criterion given in
Proposition 9.9 below. We refer an interested reader to [31] for the original presentation
and more details concerning the polynomial model.

The paper is organized as follows. In Section 2, we recall some general concepts and
facts used in the paper. In section 3, we outline the general properties of inner isotopes of
an arbitrary algebra and in section 4 we specify these results for commutative associative
algebras. In particular, we show that an inner isotope of a commutative associative algebra
must be medial. In section 5, we develop an appropriate category-theoretical context for
our considerations. The main result of this section states that the categories of calibrated
special commutative medial algebras is isomorphic to the category of calibrated commu-
tative associative algebras. In section 6 we discuss the properties of idempotents in an
arbitrary medial algebra. In section 7 we study the automorphism group of a quotient
polynomial algebra and determine its inner isotopes. We characterize the set of idempo-
tents and theirs spectra in Section 8. The automorphism groups of the obtained algebras
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are studied in Section 9. Finally, in section 10 we illustrate our results in the case n = 3.

2 Preliminaries

By n̄ we denote the set of indices {1, 2, . . . , n}. We recall some standard definitions fol-
lowing [23], see also [1, p.149]. (A, •) denotes an algebra with a multiplication • on a vector
space A. All algebras below are assumed to be commutative but maybe nonassociative.

If (B, •) and (C, •) are ideals of an algebra (A, •) such that A as a vector space is the
direct sum of B and C then (A, •) is called the direct sum:

(A, •) = (B, •)⊕ (C, •).

Note that in this case B • C = 0, so that (B, •) and (C, •) are orthogonal.
Given any two arbitrary algebras (B, ⋆) and (C, ∗) over a field K, one can construct

an algebra (A, •) over K such that (A, •) is the direct sum (A, •) = (B′, •) ⊕ (C′, •)
of ideals (B′, •) and (C′, •) which are isomorphic respectively to (B, ⋆) and (C, ∗): A as
a vector space is the Cartesian product of B and C with the multiplicative structure
• defined by the coordinate-wise multiplication (b1, c1) • (b2, c2) = (b1 ⋆ b2, c1 ∗ c2) for
elements (b1, c1), (b2, c2) ∈ B × C. Then, for example, (B, ⋆) is isomorphic to the ideal
(B′, •) = ((B, 0), •) of (A, •). The resulting algebra is called the direct product of algebras
(B, ⋆) and (C, ∗). In the above notation,

(B, ⋆)× (C, ∗) ∼= (B× C, •) ∼= (B′, •)⊕ (C′, •)

As in the case of vector spaces, the notion of direct sum extends to an arbitrary set of
summands. We shall have occasion to use only finite direct sums.

In particular, rhe field K is a commutative associative algebra over itself, denoted by
(K, ·). The direct summa of n ≥ 1 copies of K with the coordinate-wise multiplication is
denoted by (Kn, •). The •-idempotents

ei = (0, . . . , 1, . . . , 0), 1 ≤ i ≤ n (2)

form the standard basis of Kn. Let xi denote the corresponding coordinate of x ∈ Kn.
Given any index j ∈ {1, 2, . . . , n}, the subspaces

〈ei〉 := {x ∈ Kn : xi = 0 for all i 6= j} (3)

are (pairwise orthogonal) ideals of (Kn, •) and

(Kn, •) =
n⊕

j=1

〈ej〉.

Below we shall need the following observation.
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Proposition 2.1. Let (A, •) =
⊕r

j=1(Bj , •), where (Bj , •) are ideals. Then c is an idempo-
tent in (A, •) if and only if there are (uniquely determined) pairwise orthogonal idempotents
cj ∈ (Bj , •) such that c =

∑r
j=1 cj. Moreover, in this case

det(λ1A)− L•(c)) =
r∏

j=1

det(λ1Bj
− L•(cj)) (4)

The algebra (A, •) is generic if and only each ideal (Bj , •) is so.

Proof. It follows for the assumptions that Bi • Bj = 0 for i 6= j. Let x ∈ A and let
x =

∑r

j=1 xj be the corresponding orthogonal decomposition, xj ∈ Bj . Then x • x =
∑r

j=1 xj • xj, where xj • xj ∈ Bj and xi • xj = 0 whenever i 6= j. It follows that x is an
idempotent on (A, •) if and only if xj is an idempotent in (Bj , •) for all 1 ≤ j ≤ r, thus
implying the first part of the proposition.

Next, let (A, •) be generic. Then (A, •) contains exactly 2n distinct regular idempotents,
where n = dimA. It follows from (4) that all idempotents in each ideal Bj are regular. If
dimBj = nj then n = n1 + . . . + nr. It follows from the above idempotent decomposition
that m1 · . . . ·mr = 2n, where mj is the cardinality of the set of idempotents in Bj , hence
mj = 2kj for some nonnegative integer kj. On the other hand by the Bezout inequality (1)
we have mj = 2kj ≤ 2nj , hence 2n = m1 · . . . ·mr ≤ 2n1+...+nr = 2n which implies that in
fact mj = 2kj = 2nj , i.e. each Bj is generic. In the converse direction, if each ideal Bj is
generic then (A, •) =

⊕r

j=1(Bj , •) has by Proposition 2.1 at least 2n1 · . . . 2nr = 2n distinct
regular idempotents, hence it is generic.

We also fix some standard terminology and facts from permutation theory. Any per-
mutation σ ∈ Sn can be written in cyclic form (or a disjoint cycle decomposition)

σ = σ1 . . . σr ∈ Sn. (5)

For any 1 ≤ i, j ≤ r, the cycles σi and σj commute, therefore the order in (5) in inessential.
Then cycles σj can be naturally thought of as orbits of a faithful action of the cyclic group
〈σ〉 generated by σ on the et of indices n̄ := {1, . . . , n}. To differ a cycle σj as a group
element and as an orbit, we denote the latter by [σj ] ⊂ n̄. By |σi| we denote the length of
the cycle σi, i.e. the cardinality of the orbit [σi]. The type of a permutation is the integer
partition of n,

|σ1|+ . . .+ |σr| = n, (6)

formed from the cycle; we write it by type(σ) = (|σ1|, . . . , |σr|).

Definition 2.2. Given σ ∈ Sn let σ = σ1 . . . σr be its disjoint cycle decomposition and
si = |σi|. A field K will be said σ-admissible, if it is a splitting field for all polynomials
zt − 1, where t ∈ S := {s1, . . . , sr, 2

s1 − 1, . . . , 2sr − 1}. If K has a finite characteristic,
to avoid complications, we additionally assume that the characteristic is co-prime with all
numbers in S,
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3 Inner isotopes

Two algebras (A, ⋄) and (B, ·) are called isotopic, if there is an isotopism (α, β, γ), i.e.
a triple of nondegenerate linear maps A → B such that α(x) ·β(y) = γ(x⋄ y) holds for any
x, y ∈ A. If α = β the isotopy is called strong. If A = B and γ = 1A in the identity map,
then an isotopy is called a principal autotopy.

Definition 3.1. Given an algebra (A, •) and an algebra endomorphism h ∈ End(A, •), we
define a new algebra (A, •h) on the vector space A by

x •h y = h(x) • h(y) = h(x • y). (7)

The new algebra (A, •h) is called a weak inner isotope of (A, •). If h ∈ Aut(A, •), (A, •h)
is called an inner isotope.

The above definition is a particular case of a strong principal autotopy; more pre-
cisely, the algebra (A, •h) is an principal isotopic of (A, •) with (h, h,1A) where the map
h is an •-algebra homomorphism.

Remark 3.2. In the converse direction, if an endomorphism h is invertible then (A, •) is
an inner isotope of (A, •h). Indeed, by virtue of (7), x • y = h−1(x •h y), therefore the
linear endomorphism h−1 is also an •h-algebra endomorphism.

We distinguish the case when h is an bijective, i.e. h is an automorphism of (A, •) and
(A, •h) is an inner isotopy. In this case, if h, f ∈ Aut(A, •) then (1A,1A, f ◦ h−1) is an
isotopy between the corresponding inner isotopes:

x •f y = f(x • y) = f ◦ h−1(x •h y), (8)

where ◦ here and in what follows denote the composition of two maps.
Comparing (8) with (7) a natural question arises: when the algebra (A, •f) is an

inner isotope of (A, •h)? Note that f ◦ h−1 ∈ Aut(A, •), but it is not clear whether
f ◦ h−1 ∈ Aut(A, •h), see the diagram below

(A, •)

(A, •h) (A, •f)

h f

f◦h−1

The next proposition reveals that this is true for commuting automorphisms only.

Proposition 3.3. Let (A, •) satisfy

A
•2 := A • A = A (9)

and let h, f ∈ Aut(A, •). Then (A, •f) is an inner isotope of (A, •h) if and only if f and
h commute.
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Proof. First suppose that (A, •f) is an inner isotope of (A, •h), i.e.

x •f y = g(x •h y) = g(x) •h g(y), ∀x, y ∈ A, (10)

holds for some •h-algebra endomorphism g. Comparing this with (8), we obtain

f(x • y) = f ◦ h−1(x •h y) = g(x •h y) = (g ◦ h)(x • y).

Since the latter holds for any x, y ∈ A we conclude that f = g ◦ h on A•2, and thus by (9)
on A. Therefore g = f ◦ h−1. In particular, g is an •-automorphism too. Therefore, using
the second identity in (10) we get

f(x • y) = g(x) •h g(y) = h(g(x) • g(y))

= (h ◦ g(x)) • (h ◦ g(y))

= (h ◦ g)(x • y) ∀x, y ∈ A,

implying that f = h ◦ g = h ◦ f ◦ h−1 on A
•2 = A, hence f ◦ h = h ◦ f as desired.

Conversely, if f ◦ h = h ◦ f then using (8)

x •f y = g(x •h y), (11)

where g = f ◦ h−1 = h−1 ◦ f ∈ Aut(A, •). We have

g(x •h y) = g ◦ h(x • y) = f ◦ h−1 ◦ h(x • y) = f(x • y),

and on the other hand,

g(x) •h g(y) = h ◦ (g(x) • g(y)) = (h ◦ g)(x • y) = f(x • y),

implying g(x •h y) = g(x) •h g(y), hence g ∈ Aut(A, •h), i.e. it follows from (11) that
(A, •f) is an inner isotope of (A, •h).

The next two propositions explain when two inner isotopes are isomorphic.

Proposition 3.4. Let f : (A, •) → (A′, •′) be an algebra isomorphism and let h ∈ Aut(A, •).
Then h′ := f ◦ h ◦ f−1 ∈ Aut(A′, •′) and f : (A, •h) → (A′, •′h′) is an algebra isomorphism.

Proof. We have f(x•y) = f(x)•′ f(y) and h(x)•h(y) = h(x•y) for any x, y ∈ A, therefore

f ◦ h ◦ f−1(x′ •′ y′) = f ◦ h(f−1(x′) • f−1(y′))

= f(h(f−1(x′)) • h(f−1(y′)))

= f(h(f−1(x′)) •′ f(h(f−1(y′)),

readily implying that h′ := f ◦ h ◦ f−1 ∈ Aut(A′, •′). Furthermore,

f(x •h y) = f ◦ h(x • y) = f ◦ h ◦ f−1(f(x) •′ f(y)) = f(x) •′h′ f(y)

implying that f : (A, •h) → (A′, •′h′) is an algebra isomorphism.
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Proposition 3.5. Let h, f ∈ Aut(A, •). If h and f conjugate in Aut(A, •) then (A, •h) is
isomorphic to (A, •f). In the converse direction, if g : (A, •h) → (A, •f) is an isomorphism
and g ∈ Aut(A, •) then h and f conjugate in Aut(A•2, •).

Proof. If f and h conjugate in Aut(A, •) then f = g ◦h◦g−1 for some g ∈ Aut(A, •), hence

g(x •h y) = g ◦ h(x • y) = f ◦ g(x • y) = f(g(x) • g(y)) = g(x) •f g(y),

hence g : (A, •h) → (A, •f) is an algebra isomorphism. Conversely, by our assumptions we
have

g ◦ h(x • y) = g(x •h y) = g(x) •f g(y) = f(g(x) • g(y)) = f ◦ g(x • y),

hence g ◦ h = f ◦ g on A•2.

Corollary 3.6. Let (A, •) satisfy (9) and h, f ∈ Aut(A, •). Then (A, •h) is isomorphic to
(A, •f) if and only if h and f conjugate in Aut(A, •).

4 Inner isotopes of commutative associative algebras

So far, we have not specified any additional algebraic structure on (A, •). Below we shall
focus on the simplest case when the original algebra (A, •) is commutative and associative.
Sometimes we shall also require that the algebra (A, •) is unital. Note that any unital
algebra satisfies automatically (9).

If (A, •) is a commutative associative algebra then any inner isotope (A, •h) is obviously
commutative but it maybe non-associative, because

x •h (y •h z) = h(x • h(y • z)) = h(x) • h2(y) • h2(z)

and
(x •h y) •h z = h2(x) • h2(y) • h(z)

are not equal in general. On the other hand, such an inner isotope is nearly associative,
namely, it is medial. We recall the definition.

Definition 4.1. An algebra (A, •) is called medial if

(x • y) • (z • w) = (x • z) • (y • w), ∀x, y, z, w ∈ A. (12)

An important corollary of the definition is

(x • y) • (x • y) = (x • x) • (y • y).

which immediately implies

Proposition 4.2. Product of two idempotents in a medial algebra is an idempotent again.
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Proof. If ci • ci = ci, i = 1, 2 then

(c1 • c2) • (c1 • c2) = (c1 • c1) • (c2 • c2) = c1 • c2.

Proposition 4.3. If an algebra (A, •) is commutative and associative, h ∈ End(A, •), then
the inner isotope (A, •h) is a commutative medial algebra. Furthermore, if h ∈ Aut(A, •)
and (A, •) is additionally a unital algebra with unity e then e is an idempotent in (A, •h)
and L•h(e) is an invertible operator.

Proof. We have

(x •h y) •h (z •h w) = h((x •h y) •h (z •h w))

= h(h(x • y) • h(z • w))

= h2(x • y • z • w),

where the right hand side is symmetric under any permutation of factors, implying (12).
Next, assume that (A, •) is additionally a unital algebra with unity e. Since an auto-

morphism stabilizes the unity element, we have

e •h e = h(e • e) = h(e) = e

therefore e becomes an idempotent in (A, •h). Furthermore, e •h x = h(e • x) = h(x) = 0
if and only if x = 0, thus L•h(e) is an invertible operator.

Proposition 4.4. Any associative commutative algebra is medial. A unital commutative
medial algebra is associative.

Proof. Indeed, if (A, •) is an associative commutative algebra then it is medial:

(x • y) • (z • w) = x • y • z • w = x • z • y • w = (x • z) • (y • w).

On the other hand, if (A, •) is a unital commutative medial algebra and e is the algebra
unity then

x • (y • z) = (e • x) • (y • z) = (e • z) • (x • y) = z • (x • y) = (x • y) • z,

hence (A, •) is associative.

We refer to [17] for general medial algebras and their spectral theory.
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5 Categories of calibrated medial algebras

We denote by Idm×(A, ∗) the subset of nonzero idempotents in an algebra (A, ∗) such
that the left multiplication operator L∗(c) is invertible.

Definition 5.1. Amedial algebra (A, ∗) is called special if the set Idm×(A, ∗) is non-empty.

The terminology ‘special’ here correspond exactly to what is called ‘medial class (iii)
algebras’ in [17].

It follows from Proposition 4.3 above that if (A, •) unital commutative associative
algebra then its unity element e of becomes an idempotent in the inner isotope (A, •h),
h ∈ Aut(A, •) and furthermore e ∈ Idm×(A, •h). This proves

Corollary 5.2. Any inner isotope (A, •h) of a unital commutative associative algebra (A, •)
is a special medial algebra.

Idempotents in Idm×(A, ∗) are distinguished in many aspects and a particular choice
of such an idempotent can be thought of as a calibration or pointing of an algebra. To put
this observation into an appropriate context, we define a concept of calibrations for special
medial algebras and unital commutative associative algebras. An important ingredient in
our constructions is Kaplansky’s trick [13], [20].

Definition 5.3. A special (commutative) medial algebra (A, ∗) with a distinguished idem-
potent c ∈ Idm×(A, ∗) is called calibrated and denoted by (A, ∗, c). An algebra homomor-
phism between two special medial algebras f : (A, ∗, a) → (B,⊛, b) is called a calibrated if
f(a) = b.

Definition 5.4. A unital commutative associative algebra (A, ⋄, e) with algebra unity e
and a distinguished automorphism h ∈ Aut(A, ⋄, e) is called calibrated and denoted by
(A, ⋄, e, h). An algebra homomorphism between two calibrated commutative associative
algebras f : (A, ⋄, e, h) → (A′,♦, e′, h′) is called a calibrated homomorphism if h′◦f = f ◦h
(note that f(e) = e′).

We denote two calibrated isomorphic algebras by A
�

∼= A′. Of course, A
�

∼= A′ implies
that A ∼= A′.

Denote by M (respectively by A) the class of calibrated special commutative medial
algebras (respectively calibrated commutative associative unital algebras). These classes
are categories in an obvious way, where the corresponding morphisms are calibrated ho-
momorphisms.

Theorem 5.5. The functor Φ : A → M given by Φ(A, ⋄, e, h) = (A, ∗, e), where x ∗ y =
h(x ⋄ y) and e ∈ Idm×(A, ∗, e), is a category isomorphism. The inverse functor Ψ = Φ−1

is given by Ψ(A, ∗, c) = (A, ⋄, c, h), where x ⋄ y = L−1
∗ (x ∗ y), c is a unity in (A, ⋄) and

h = L∗(c) ∈ Aut(A, ⋄).

Proof. The proof is divided into three steps.
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Step 1. The map Φ is a functor A → M.
Our first claim is that given (A, ⋄, e, h) ∈ A, a new multiplication on A by

x ∗ y = h(x ⋄ y) = h(x) ⋄ h(y) (13)

defines a calibrated medial algebra A, ∗, e) ∈ M of class (iii) with an idempotent e ∈
Idm×(A, ∗). Indeed, since h ∈ Aut(A, ⋄) we have

(x ∗ y) ∗ (z ∗ w) = h((x ∗ y) ⋄ (z ∗ w)) = h(h(x ⋄ y) ⋄ h(z ⋄ w)) = (h ◦ h)(x ⋄ y ⋄ z ⋄ w)

where the right hand side is obviously symmetric for any permutation of factors. Since e
is the unitity element and h is an algebra automorphism in (A, ⋄) then h(e) = e, hence
e ∗ e = h(e ⋄ e) = e, i.e. e is an idempotent in (A, ∗). Also, e ∗ x = h(e ⋄ x) = h(x), hence
L∗(e) = h is a bijection, i.e. e ∈ Idm×(A, h, ∗).

Next, we prove that Φ acts correspondingly on morphisms. To this end consider a
calibrated A-algebra homomorphism f : (A, ⋄, e, h) → (A′,♦, e′, h′). Then f is an algebra
homomorphism and h′ ◦ f = f ◦ h. Let Φ(A, ⋄, e, h) = (A, ∗, e) and Φ(A′,♦, e′, h′) =
(A′,⊛, e′). We consider Φ(f) = f . Then f(e) = e′ and

f(x ∗ y) = (f ◦ h)(x ⋄ y) = (h′ ◦ f)(x ⋄ y) = h′(f(x)♦f(y)) = f(x)⊛ f(y),

hence f : (A, ∗, e) → (A′,⊛, e′) is a calibrated M-algebra homomorphism. The fact that
Φ preserves identity morphisms and composition of morphisms trivially follows by its
definition.

Step 2. The map Ψ is a functor M → A.
Let (A, ∗, c) ∈ M. Define a new multiplication on A by

x ⋄ y = L∗(c)
−1(x ∗ y). (14)

The algebra (A, ⋄) is commutative and c ⋄ x = L∗(c)
−1(c ∗ x) = L∗(c)

−1L∗(c)x = x, hence
c is a unit in (A, ⋄). By 1 in Proposition 6.1, L∗(c)

−1 is an algebra isomorphism of (A, ∗, c)
hence

(x ⋄ y) ⋄ (z ⋄ w) = L∗(c)
−1
(
L∗(c)

−1(x ∗ y) ∗ L∗(c)
−1(z ∗ w)

)
= L∗(c)

−2((x ∗ y) ∗ (z ∗ w))

which implies that (A, ⋄) is medial. By Proposition 4.4, (A, ⋄) is associative. Since L∗(c)
is an algebra isomorphism of (A, ∗, c), it is a bijection. Furthermore,

L∗(c)(x ⋄ y) = L∗(c)L∗(c)
−1(x ∗ y) = x ∗ y

L∗(c)(x) ⋄ L∗(c)(y) = L∗(c)
−1
(
L∗(c)(x) ∗ L∗(c)(y)

)
= x ∗ y,

hence L∗(c)(x ⋄ y) = L∗(c)(x) ⋄ L∗(c)(y), i.e. L∗(c) ∈ Aut(A, ⋄, c). Then Ψ(A, ∗, c) =
(A, ⋄, c, L∗(c)) ∈ A.

Next, we prove that Φ acts correspondingly on morphisms. Let f : (A, ∗, c) → (A′,⊛, c′)
be a calibrated M-algebra homomorphism, i.e. f(c) = c′. Let Ψ(A, ∗, c) = (A, ⋄, c, L∗(c))
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and Ψ((A′,⊛, c′) = (A′,♦, c′, L⊛(c
′)). Then f : (A, ⋄) → (A′,♦) is vector space homomor-

phism and

(L⊛(c
′) ◦ f)(x) = c′ ⊛ f(x) = f(c)⊛ f(x) = f(c ∗ x) = (f ◦ L∗(c))(x),

hence L⊛(c
′) ◦ f = f ◦ L∗(c) and therefore f ◦ L∗(c)

−1 = L⊛(c
′)−1 ◦ f , and it follows that

f(x ⋄ y) =
(
f ◦ L∗(c)

−1
)
(x ∗ y) =

(
L⊛(c

′)−1 ◦ f
)
(x ∗ y)

= L⊛(c
′)−1(f(x)⊛ f(y)) = f(x)♦f(y)

i.e. f is a calibrated A-algebra homomorphism. The fact that Ψ preserves identity mor-
phisms and composition of morphisms readily follows by its definition.

Step 3. Ψ ◦ Φ = idA.
We have Φ(A, ⋄, e, h) = (A, ∗, e) and Ψ(A, ∗, e) = (A,♦, e, L∗(e)), where

x ∗ y = h(x ⋄ y),

x♦y = L∗(e)
−1(x ∗ y).

We have e ∗ z = h(e ⋄ y) = h(e) ⋄ h(z) = h(z), i.e. L∗(e) = h, therefore x♦y = L∗(e)
−1(x ∗

y) = h−1(x ∗ y) = x ⋄ y. This implies that Ψ(A, ∗, e) = (A, ⋄, e, h), hence Ψ ◦Φ = idA. The
theorem follows.

We have several important corollaries of the above result.

Corollary 5.6. Ψ(A)
�

∼= Ψ(A′) if and only if A
�

∼= A′ for A,A′ ∈ M and Φ(A)
�

∼= Φ(A′) if

and only if A
�

∼= A′ for A,A′ ∈ A.

The following propositions describe how the functors Φ : A → M and Ψ : M → A

depend on a particular choice of calibrating.

Proposition 5.7. If (A, ∗) is a special commutative medial algebra and c1, c2 ∈ Idm×(A, ∗)

then (A, ∗, c1)
�

∼= (A, ∗, c2). In particular, given a special commutative medial algebra, there
exists a unique calibrated isomorphy class of A.

Proof. By 1 in Proposition 6.1, f = L∗(c1)
−1L∗(c2) is a ∗-algebra automorphism of (A, ∗).

Furthermore, f(c1) = L∗(c1)
−1L∗(c2)(c1) = L∗(c1)

−1(c1 ∗ c2) = c2, hence f a calibrated
isomorphism of f : (A, ∗, c1) → (A, ∗, c2).

Proposition 5.8. Let (A, ⋄) be a unital commutative associative algebra, h1, h2 ∈ Aut(A, ⋄).

Then (A, ⋄, e, h1)
�

∼= (A, ⋄, e, h2) if and only if h1 and h2 are conjugate in Aut(A, ⋄).

Proof. By the definition, (A, ⋄, e, h1)
�

∼= (A, ⋄, e, h2) if and only if there exists an isomor-
phism f : (A, ⋄) → (A, ⋄) such that h2◦f = f ◦h1, i.e. f ∈ Aut(A, ⋄) and h2 = f ◦h1◦f

−1,
which is equivalent to that h1 and h2 are conjugate in Aut(A, ⋄).
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Corollary 5.9. Given a unital commutative associative algebra (A, ⋄), there is a natural
bijection between its calibrated isomorphy classes and the conjugacy classes of its automor-
phism group:

A/ �

∼=
= Aut(A)/conj

6 Idempotents in inner isotopes

We start with a general result which holds for any commutative medial algebra.

Proposition 6.1 ( [17]). Let (A, ∗) be commutative medial algebra. If c1, c2 ∈ Idm(A, ∗)
then so is c1∗c2. In other words, the set of all idempotents Idm(A, ∗)∪{0} is a multiplicative
magma. Furthermore, for any idempotent c ∈ Idm(A, ∗):

1. L∗(c) is a (A, ∗)-algebra endomorphism;

2. The 0-Peirce subspace kerL∗(c) is an ideal of (A, ∗) and the image L∗(c)(A) is a
subalgebra of A;

3. The 1-Peirce subspace {x ∈ A : L∗(c)x = x} is a subalgebra of the image L∗(c)(A)
and dimAc(1) ≥ 1;

4. For any idempotents c1, c2 ∈ Idm(A) the following composition rule holds:

L∗(c2)L∗(c1) = L∗(c1 ∗ c2)L∗(c2) (15)

Proof. The first claim is an immediate corollary of the medial magma identity (12). Fur-
thermore, the multiplication operator L∗(c) : A → A is linear and it follows from (12) that
for any idempotent c ∈ Idm(A, ∗)

L∗(c)(x ∗ y) = c ∗ (x ∗ y) = (c ∗ c) ∗ (x ∗ y) = (c ∗ x) ∗ (c ∗ y)

= L∗(c)x ∗ L∗(c)y,

hence L∗(c) is an algebra endomorphism. As the kernel of a homomorphism, Ac(0) =
kerL∗(c) is an ideal and as the image of a homomorphism, L∗(c)(A) is a subalgebra.
Further, Ac(1) = {x : L∗(c)x = x} is the set of fixed points of the algebra homomor-
phism L∗(c), thus it is a subalgebra of A. Since L∗(c) stabilizes Ac(1), the latter is also
a subalgebra of L∗(c)(A). Also, the one-dimensional subspace span(c) ⊂ L∗(c)(A), hence
dimAc(1) ≥ 1. Finally, (15) follows from

L∗(c2)L∗(c1)x = c2 ∗ (c1 ∗ x) = (c2 ∗ c2)(c1 ∗ x) = (c2 ∗ c1)(c2 ∗ x)

= L∗(c1 ∗ c2)L∗(c2)x.
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Now let (A, •) be a commutative algebra and (A, •h) its inner isotope, h ∈ Aut(A, •).
Then c is an idempotent in (A, •h) if c = c •h c, which implies

Idm(A, •h) ∪ {0} = {c ∈ A : h(c • c) = c}. (16)

Combining Proposition 4.3 and Proposition 6.1 we obtain

Corollary 6.2. Let (A, •) be commutative associative algebra. The set of all idempotents
Idm(A, •h) ∪ {0} is a multiplicative magma.

The latter makes it natural to ask when the set of all nonzero idempotents Idm(A, •h)
is a quasigroup. Note that this property does not hold in general because the product of
two idempotents may be zero. But, under some natural assumptions, one has the desired
property.

Corollary 6.3. If (A, •) is a commutative associative division algebra and h ∈ Aut(A, •)
then (A, •h) is also a division algebra and the set of nonzero idempotents Idm(A, •h) is a
commutative idempotent medial quasigroup.

Proof. Indeed, given x, y ∈ (A, •h), x •h y = 0 if and only if h(x • y) = 0, where the latter
by the bijectivity of h is equivalent to x• y = 0, therefore (A, •h) is also a division algebra.
This implies by Proposition 6.1 that for any c1, c2 ∈ Idm(A, •h) in fact c1•hc2 ∈ Idm(A, •h).
Suppose that c1 •h c2 = c1 •h c3 for some c1, c2, c3 ∈ Idm(A, •h). Then c1 •h (c2 − c3) =
0, therefore c2 − c3 = 0, hence Idm(A, •h) is in fact a quasigroup, which is obviously
commutative idempotent and medial, the proposition follows.

Proposition 6.4. Let (A, •) be a commutative associative division algebra and h ∈ Aut(A, •).
Then all idempotents c ∈ Idm(A, •h) have the same characteristic polynomial.

Proof. By Corollary 6.3, if c1, c2 ∈ Idm(A, •h) then c1 •h c2 ∈ Idm(A, •h) and L•h(c1) is
invertible, hence by Proposition 6.1 we obtain

L•h(c1 •h c2) = L•h(c1)L•h(c2)L•h(c1)
−1.

and similarly
L•h(c2 •h c1) = L•h(c2)L•h(c1)L•h(c2)

−1.

Since c1 •h c2 = c2 •h c1 we obtain from the last two relations that the characteristic
polynomials of L•h(c2) and L•h(c1) are equal. The proposition follows.

Proposition 6.5. Let (A, •) be a unital commutative associative division algebra with unity
e and let h ∈ Aut(A, •) be an automorphism of finite order d. Then c•(2

d−1) = e for any
c ∈ Idm(A, •h).

Proof. By (16) c = c •h c = h(c • c) = h(c•2), therefore for all k = 1, 2, . . .

c = h(c) • h(c) = h(h(c•2)) • h(h(c•2)) = h2(c•2
2

) = . . . = hk(c•2
k

).

Since hd = id, we obtain c = hd(c•2
d

) = c•2
d

, i.e. c • (c•(2
d−1) − e) = 0, hence by the

assumptions (A, •) does not contain divisors of zero, we conclude that c•(2
d−1) = e.
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7 Inner isotopes of a quotient polynomial algebra

It worthy to point out that although the algebrasK[z]/P considered in the introduction
originate from polynomials, their multiplicative structure does not depend on a particular
choice of a polynomial or set of its roots, but only on the dimension n (i.e. the number of
distinct roots) and the choice of a conjugacy class of permutation σ ∈ Sn. Furthermore,
under the splitting condition, the algebra K[z]/P turns out isomorphic the direct product
algebra of n = degP copies of the ground field K, the theorem below claims.

Theorem 7.1. Let a polynomial P ∈ K[z] split over K and have n = deg P distinct roots.
Then

K[z]/P ∼= (Kn, •). (17)

The automorphism group

Aut(K[z]/P ) ∼= Aut(Kn, •) ∼= Sn

is isomorphic to the symmetric group Sn. Furthermore, two inner isotopes of (Kn, •σ) and
(Kn, •τ), σ, τ ∈ Sn are isomorphic if and only if σ and τ conjugate in Sn.

Proof of Theorem 7.1. Under our assumptions, P = (z−a1) . . . (z−an), where {a1, . . . , an}
are the distinct roots of P . Then the Chinese Remainder Theorem [5, Propoisition 15] gives
an explicit isomorphism

K[z]/P ∼= K[z]/(z − a1) · . . . · (z − an)
∼= (K[z]/(z − a1))× . . .× (K[z]/(z − an))
∼= (K, ·)× . . .× (K, ·)

︸ ︷︷ ︸

n times

∼= (Kn, •).

implying (17), where • is the standard coordinate-wise multiplication on Kn. Let ei =
(0, . . . , 1, . . . , 0), 1 ≤ i ≤ n be the standard basis of Kn (see section 2). Then it follows
that ei • ei = ei, hence ei are idempotents of (Kn, •), and, moreover, the partial sums

eI :=
∑

i∈I

ei, I ∈ 2{1,2,...,n} (18)

are the only nonzero idempotents in Idm(Kn, •). Furthermore, since ei • ej = 0 for any
1 ≤ i < j ≤ n, {ei}1≤i≤n are the only primitive (i.e. indecomposable) idempotents in
Idm(Kn, •). If φ ∈ Aut(Kn, •) is an algebra automorphism then φ(x • x) = φ(x) • φ(x),
hence φ is a permutation of the set of nonzero idempotents Idm(Kn, •). Since φ(x +
y) = φ(x) + φ(y), φ preserve primitive idempotents, thus φ is a permutation of the set
{ei}1≤i≤n ⊂ Idm(Kn, •). This implies that Aut(Kn, •) is a subgroup of Sn. On the other
hand, if σ ∈ Sn is an arbitrary permutation, then the linear map

ψσ : (x1, . . . , xn) → (xσ(1), . . . , xσ(n)) (19)
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is an isomorphism of (Kn, •) implying that in fact Aut(Kn, •) ∼= Sn. Finally, since (K
n, •)

trivially satisfies (9), we conclude by Corollary 3.6 that two inner isotopes of (Kn, •σ) and
(Kn, •τ), σ, τ ∈ Sn are isomorphic if and only if σ and τ conjugate in Sn.

Remark 7.2. It follows from Theorem 7.1 that it suffices to consider some specific poly-
nomial P (z) in each degree n. The circular polynomials P (z) = zn − 1 are distin-
guished in many respects. The corresponding polynomial quotient algebra (Kn, •) :=
(K[z]/(zn − 1), •) and its inner isotopes (Kn, •σ) have originally been introduced and
studied in [17] in the particular case when σ = (2 3 . . . n 1) (in cycle notation). The corre-
sponding algebra is isospectral and as a corollary of the syzygy relation [16], the spectrum
of each idempotent is the set of roots of zn − 1.

Below we consider the general case of a permutation σ with several cycles. It turns out
that the resulting algebra decomposes as a direct sum of the ideals corresponding to the
decomposition of σ into disjoint permutations. By abuse of notation, we shall write

〈σj〉 = span({ei : i ∈ [σj ]}) =
⊕

i∈[σj ]

〈ei〉, (20)

where [σj ] ⊂ n̄ = {1, 2, . . . , n} is the orbit of the cycle σj . Each cycle σj acts as a cyclic
permutation of order |σj | on the orbit [σj ] such that the set of indices n̄ is a disjoint union
of the orbits [σj ], 1 ≤ j ≤ r.

Proposition 7.3. Let a permutation σ ∈ Sn have a disjoint cycle decomposition σ =
σ1 . . . σr. Then

(Kn, •σ) ∼=

r⊕

j=1

(〈σj〉, •σ), (〈σj〉, •σ) ∼= (K|σj |, •σj). (21)

Proof. In the above notation, we have

(〈σj〉, •) ∼= (K|σj |, •). (22)

The corresponding isomorphism ψσ of (Kn, •) in (19) decomposes in the direct sum ψσ =
⊕

1≤j≤r ψσj , where each ψσj ∈ End(〈σj〉) is determined as the restriction of ψσ to 〈σj〉 and
moreover

(Kn, •) =
r⊕

j=1

(〈σj〉, •). (23)

It follows from the definitions that 〈σi〉 • A ⊂ 〈σi〉 and 〈σi〉 • 〈σj〉 = 0 for i 6= j, therefore
(23) is a decomposition into the direct sum of ideals. Let πj : Kn → 〈σj〉 denote the
canonical projection (a linear homomorphism). Then πj : (Kn, •) → (〈σj〉, •) is also an
algebra homomorphism and the following commutative diagram holds:

(Kn, •)
πj

−−−→ (〈σj〉, •)


yψσ



yψσj

(Kn, •)
πj

−−−→ (〈σj〉, •)

(24)
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where the vertical arrows are algebra isomorphisms. Since ψσj ∈ Aut(〈σj〉, •), arguing as
above we conclude that

(Kn, •σ) =
r⊕

j=1

(〈σj〉, •σ), (25)

where (〈σj〉, •σ) ∼= (K|σj |, •σj ) are pairwise orthogonal ideals in (Kn, •σ), implying (21).

By virtue of Proposition 7.3 and Proposition 2.1, it suffices to study inner isotopes
(Kn, •τ) for the case of a single cycle τ , we will consider this in the next section.

8 The structure of idempotents

First we consider the case (Kn, •τ ) (which is equivalent to the construction mentioned in
Remark 7.2) in more detail, i.e. we assume that τ contains a single cycle. More precisely,
let n ≥ 2 be an integer and τ = (2 3 . . . n 1) ∈ Sn be the right cyclic shift (in cycle
notation). We shall suppose that a field K is τ -admissible (see Definition 2.2 above), i.e.
there are primitive roots of unity of orders n and 2n − 1 in K; denote them by ǫ and ζ ,
respectively.

Proposition 8.1. The set of nonzero idempotents of (Kn, •τ ) can be parameterized by

{ck = (ζ2
n−1k, ζ2

n−2k, . . . , ζ2k, ζk) : k ∈ Z/(2n − 1)Z}, (26)

where all ck are pairwise distinct. The idempotents satisfy

ci •τ cj = ci⊛j, (27)

where the binary operation ⊛ on Z/(2n − 1)Z is defined by

i⊛ j ≡
1

2
(i+ j) ≡ 2n−1(i+ j) mod (2n − 1). (28)

Proof. The multiplication of c = (x1, . . . , xn) in (Kn, •τ) is given by

c •τ c = (x2τ(1), . . . , x
2
τ(n)) = (x22, x

2
3, . . . , x

2
n, x

2
1),

thus c is an idempotent if and only if

x2i+1 = xi for each i ∈ Z/nZ. (29)

Iterating the latter relations n times yields x2
n

i = xi for any i. Together with (29) this
implies that either all of xi are zero (and in that case c = 0), or all xi are nonzero, and
in the latter case they satisfy

x2
n−1
i − 1 = 0, ∀i ∈ Z/nZ. (30)



Inner isotopes associated with automorphisms of commutative associative algebras 171

It follows from (29) that any nonzero idempotent x can be written as

x = (t2
n−1

, t2
n−2

, . . . , t2
1

, t), (31)

where t is a primitive root of unity of order 2n−1, hence (31) readily implies (26). Finally,
we have

ci •τ cj = (ζ2
n−2(i+j), ζ2

n−3(i+j), . . . , ζ (i+j), ζ2
n−1(i+j))

implying (27).

Identity (27) expresses the fact that the product of any two nonzero idempotents in
Idm(Kn, •τ ) is a nonzero idempotent again, in other words, the set Idm(Kn, •τ ) is a mul-
tiplicative magma. Furthermore, (27) implies a magma isomorphism

Idm(Kn, •τ ) ∼= (Z/(2n − 1)Z, ⊛)

Moreover, we have

Proposition 8.2. The multiplicative magma (Z/(2n−1)Z, ⊛) is a commutative idempotent
medial quasigroup.

Proof. The quasigroup property can be seen as follows: if s, t, r ∈ (Z/(2n − 1)Z, ⊛) are
such that s⊛ r = s⊛ t then (t− r)/2 ≡ 0 mod (2n− 1), hence t = r in (Z/(2n− 1)Z, ⊛).
Also, given arbitrary s, t ∈ (Z/(2n−1)Z, ⊛), there exists precisely one solution r := 2t−s
to the following equation:

s⊛ r = r ⊛ s =
1

2
(s+ 2t− s) = t.

Next, s⊛ s = s for all s ∈ (Z/(2n − 1)Z, ⊛), thus the quasigroup is idempotent. Finally,
since

(i⊛ j)⊛ (k ⊛ l) ≡
1

2
(i+ j + k + l) mod (2n − 1)

is totally symmetric in all variables, (Z/(2n − 1)Z, ⊛) is a medial quasigroup.

Proposition 8.3. The algebra (Kn, •τ) has exactly 2n − 1 distinct regular idempotents ck,
i.e. it is generic. Each idempotent ck ∈ Idm(Kn, •τ) has the spectrum ǫ, ǫ2, . . . , ǫn, each
eigenvalue has multiplicity one. In other words, the characteristic polynomial of L•τ (ck) is
given by

det(λ1− L•τ (ck)) = λn − 1. (32)

In particular,
(L•τ (ck))

n = 1. (33)
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Proof. Given p ∈ Z/nZ and k ∈ Z/(2n − 1)Z, we define

ηk,p := (z1, ǫ
pz2, ǫ

2pz3, . . . , ǫ
(n−1)pzn), (34)

where zi will be specified later. By (26) to ck = (ζ2
n−1k, ζ2

n−2k, . . . , ζ2
1k, ζk), hence

ck •τ ηk,p = (ǫpζ2
n−2kz2, ǫ

2pζ2
n−3kz3, . . . ǫ

(n−1)pζ2
0kzn, ǫ

npζ2
n−1kz1)

= ǫp · (ζ2
n−2kz2, ζ

2n−3kǫpz3, . . . ζ
20kǫ(n−2)pzn, ζ

2n−1kǫ(n−1)pz1),

therefore, setting
zi := ζ−(2n−2+...+2n−i)kz1 for i = 2, 3, . . . , n

we see that
ζ2

n−ikzi = ζ2
n−ik · ζ−(2n−2+...+2n−i)kz1 = zi−1, 2 ≤ i ≤ n.

Since 2n−2 + . . .+ 21 + 20 = 2n−1 − 1 ≡ −2n−1 mod (2n − 1), we get

zn = ζ−(2n−2+...+21+20)kz1 = ζ2
n−1kz1

implying together with the above that

ck •τ ηk,p = ǫp · (z1, ǫ
pz2, ǫ

2pz3, . . . , ǫ
(n−1)pzn) = ǫpηk,p. (35)

In other words,

ηk,p = (1, ǫpζ−2n−2k, ǫ2pζ−(2n−2+2n−2)k, . . . , ǫ(n−1)pζ−(2n−2+...+21+20)k) (36)

is an eigenvector of L•τ (ck) with eigenvalue ǫp, for any p ∈ Z/nZ. Since all ǫ, ǫ2, . . . , ǫn are
pairwise distinct, for the dimension reasons this implies that each eigenvalue ǫp is simple,
and moreover the eigen-decomposition of L•τ (ck) holds:

(Kn, •τ) =
n⊕

p=1

span(ηk,p). (37)

This also implies the explicit form of the characteristic polynomial of L•τ (ck) is given by
(32). This implies that det(1

2
1− L•τ (ck)) 6= 0, therefore (Kn, •τ) is a generic algebra.

Remark 8.4. It follows from (32) that the generic algebra (Kn, •τ ) is isospectral. On the
other hand, there are nongeneric commutative isospectral algebras containing infinitely
many idempotents. Then their Peirce spectrum (i.e. the total set of eigenvalues of all
idempotents) can have a completely different structure. This holds for the Hsiang algebras
that appear in the context of cubic minimal cones; we refer an interested reader to [18],
[30], [29] for more details.

We need the following auxiliary property

Lemma 8.5.
∑2n−1

k=1 (L•τ (ck))
s = 0 for any s ∈ {1, 2, . . . , n− 1}.
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Proof. Note that by the definition of isotopy, x•τ y = τ(x•y), where τ(x1, . . . , xn−1, xn) =
(x2, . . . , xn, x1) and • is the (commutative associative) coordinate-wise multiplication on
Kn. Write (26) as ck = (ak1, . . . , a

k
n), where ai = ζ2

n−i

do not depend on k. Then iterating
the definition of •τ we obtain

(L•τ (ck))
sx = τ s(ck) • τ

s−1(ck) • . . . • τ(ck) • τ
s(x)

= ωk • τ
s(x),

where ωk = τ s(ck) • τ
s−1(ck) • . . . • τ(ck). Since τ , . . . , τ s are cyclic coordinate shifts

ωk = (ζkm1, ζkm2, . . . , ζkmn), where mi ∈ Z2n−1 do not depend on k, more precisely

mj = 2n−j−1 + . . .+ 2n−j−s = 2n−j−s · (2s − 1) 6= 0 in Z2n−1

Therefore ζkmj 6= 1 and we have

2n−1∑

k=1

(L•τ (ck))
sx =

2n−1∑

k=1

ωk • τ
s(x)

=

(2n−1∑

k=1

(ζkm1, ζkm2, . . . , ζkmn)

)

• τ s(x) = 0

because
∑2n−1

k=1 ζkmj = ζmj(ζmj(2
n−1)−1)(ζmj −1)−1 = 0 for any mj , the claim follows.

Corollary 8.6. span(Idm(Kn, •τ )) = Kn.

Proof. Let x ∈ Kn and z :=
∑n−1

s=0 (L•τ (ck))
sx. Then using (33) we find

L•τ z =

n∑

s=1

(L•τ (ck))
sx =

n−1∑

s=0

(L•τ (ck))
sx = z,

therefore z is an eigenvector of L•τ (ck) with eigenvalue 1, therefore by Proposition 8.3,
z ∈ span(ck). This yields

∑n−1
s=0 (L•τ (ck))

sx = µkck for some µk ∈ K. Summing up the
obtained identities and applying Lemma 8.5, we get

2n−1∑

k=1

µkck =
2n−1∑

k=1

n−1∑

s=0

(L•τ (ck))
sx

=
n−1∑

s=0

2n−1∑

k=1

(L•τ (ck))
sx

=

2n−1∑

k=1

x+

n−1∑

s=1

2n−1∑

k=1

(L•τ (ck))
sx

= (2n − 1)x,

and since 2n − 1 6= 0 in K, we arrive at the desired conclusion.
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Theorem 8.7. A := (Kn, •τ) is an axial algebra with the cyclic fusion law

Aǫp(ck) ∗ Aǫq(ck) = Aǫp+q(ck), ∀p, q ∈ Zn. (38)

Proof. By Corollary 8.6, A is spanned by the set of nonzero idempotents Idm(A) and by
Proposition 8.3 all nonzero idempotents in (Kn, •τ ) have the same spectrum ǫ, ǫ2, . . . , ǫn,
each eigenvalue ǫp is simple, and the eigen-decomposition (37) holds. Moreover, applying
(36) we obtain for the corresponding eigenvectors

ηk,p •τ ηk,q = (ǫp+qζ−2m−1k, ǫ2(p+q)ζ−(2m−1+2m−2)k, . . .) = ǫp+qζ−2m−1kηk,p+q,

which gives span(ηk,p) •τ span(ηk,q) = span(ηk,p+q) and thereby implies the fusion law
(38).

Now we are ready to formulate our main result for the case of an arbitrary σ ∈ Sn.
Combining the above results with Proposition 7.3 and Proposition 2.1 we arrive at the
following general conclusion:

Theorem 8.8. Let a permutation σ ∈ Sn have the disjoint cycle decomposition σ = σ1 . . . σr
and a field K be σ-admissible. Then the following properties hold:

(a) There are exactly 2n distinct regular idempotents in (Kn, •σ) naturally stratified in
2r classes Iα, enumerated by binary codes α ∈ Fr2.

(b) For each α ∈ Fr2, all idempotents in Iα have the same spectrum. More precisely,

det(λ1− L•τ (c)) =
r∏

i=1

(λ|σi| − α(i)), ∀c ∈ Iα. (39)

(c) The algebra (Kn, •σ) is generic.

9 Automorphisms

In order to describe the automorphism group for (Kn, •σ), we recall some definitions.
For two groups G, H , and an action f : H → Aut(G), the corresponding semidirect
product G⋊f H is defined by the group multiplication on G×H given by (g1, h1)(g2, h2) =
(g1fh1(g2), h1h2). In particular, if H = Aut(G) with f = id then one obtains the classical
notion of the holomorph of a group G is the semi-direct product G ⋊id Aut(G) with the
multiplication given by

(g1, α1) · (g2, α2) = (g1α1(g2), α1α2) (40)

The automorphism group of the additive cyclic group ZN := (ZN ,+) is isomorphic to the
multiplicative group (ZN )

× = (Z×
N , ·) of integers modulo N (the group of multiplicative

units):
Aut(ZN) ∼= (ZN )

×,
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where we write for short

Zk := (Z/kZ,+), (ZN)
× = (Z×

N , ·).

The group (ZN )
× is not cyclic in general, but by the fundamental theorem of finite abelian

groups, it is isomorphic to a direct product of cyclic groups of prime power orders. For our
analysis the relevant case is when N = 2n − 1, n ∈ Z+. Then (ZN )

× is the direct product
of the groups corresponding to each of the (odd) prime power factors N = pk11 . . . pkss :

(ZN )
× = (Z

p
k1
1

)× × . . .× (Z
p
ks
s
)× ∼= C

p
k1
1

−p
k1−1

1

× . . . C
p
ks
s −pks−1

s
,

where Cm denote a cyclic group of orderm. For example, for n = 6, B = 26−1 = 63 = 32·7,
hence

(Z63)
× = C6 × C6.

A relevant in the present context is the general affine group of ZN which is isomorphic
to the holomorph of ZN :

Aff(ZN ) ∼= ZN ⋊id (ZN )
×

∼= {

(
m k
0 1

)

: m ∈ Z
×
N , k ∈ ZN}

∼= {ψm,k(i) = mi+ k : m ∈ Z
×
N , k ∈ ZN},

(41)

where the last line is the group of compositions of affine functions ψm,k : ZN → ZN ,

ψm,k ◦ ψm′,k′ = ψmm′,mk′+k. (42)

The exponential map

δ(i) := 2i, δ : (Zn,+) → (Z×
2n−1, ·)

∼= Aut((Z2n−1,+)), (43)

is a well-defined injective group homomorphism, hence there holds the following exact
sequence of abelian groups:

0 7−→ (Zn,+)
δ

7−→ (Z×
2n−1, ·)

µ
7−→ (Z×

2n−1, ·)/(Zn,+) 7−→ 0. (44)

Denote
∆n = im δ = {1, 2, . . . , 2n−1} ⊂ Z2n−1.

Note that ∆n
∼= (Zn,+) ∼= Cn is a multiplicative subgroup of (Z2n−1)

×. We shall also need
the semi-direct product

(Z2n−1,+)⋊δ (Zn,+) ∼= {ψ2q ,k(i) : q, k ∈ Zn} (45)

Remark 9.1. Notice that any algebra automorphism stabilizes the algebra idempotents.
Therefore the automorphism group of an algebra A is a subgroup of the group of symmetries
of nonzero idempotents of A. As above, it suffices to consider the case when σ = τ ∈ Sn
is a single cycle element(the right shift permutation). In this case, Proposition 8.2 yields
that the set of nonzero idempotents is a multiplicative quasigroup. Below we completely
characterize its automorphism group.
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Theorem 9.2. Let τ = (2 3 . . . n 1) ∈ Sm be the right cyclic shift. Then the idempotent
quasigroup is

Aut(Idm(Kn, •τ )) ∼= Z2n−1 ⋊id Z
×
2n−1

∼= Aff(Z2n−1). (46)

Proof. Given a pair m ∈ Z
×
2n−1 and k ∈ Z2n−1, we define a map ψm,k(ci) := cmi+k, i ∈

Z2n−1, of Idm(Kn, •τ)) to itself. Then for any pair i, j ∈ Z2n−1 we obtain using (27)–(28)

ψm,k(ci •τ cj) = ψm,k(c2n−1(i+j)) = c2n−1m(i+j)+k = c2n−1m(i+j)+2nk

= c2n−1(mi+k+mj+k) = cmi+k •τ cmj+k

= ψm,k(ci) •τ ψm,k(cj)

i.e. ψm,k ∈ Aut(Idm(Kn, •τ )).
In the converse direction, if g ∈ Aut(Idm(Kn, •τ)) then g(ci) = ch(i) for some bijection

h : Z2n−1 → Z2n−1, hence for any pair i, j ∈ Z2n−1

ch(2n−1(i+j)) = g(c2n−1(i+j)) = g(ci •τ cj) = g(ci) •τ g(cj) = c2n−1(h(i)+h(j)),

implying h(2n−1(i+ j)) = 2n−1h(i) + 2n−1h(j). Multiplying this by 2 and setting i = j +2
yields in view of 2n = 1 in Z2n−1 that

2h(2nj + 2n) = 2h(j + 1) = h(j + 2) + h(j),

hence
h(j + 2)− h(j + 1) = h(j + 1)− h(j) = . . . = h(2)− h(1) =: m. (47)

Since h is an injection, m 6= 0 in Z2n−1, thus m ∈ Z
×
2n−1. Therefore (47) implies h(j) =

m · (j − 1) + h(1) = mj + k, where k := h(1)−m ∈ Z2n−1. This yields g = ψm,k and (41)
establishes the desired isomorphisms in (46).

Now we consider the automorphism group of the ambient algebra (Kn, •τ ). Recall that
by Remark 9.1, Aut(Kn, •τ) is a subgroup of Aut(Idm(Kn, •τ )). A part of Aut(Kn, •τ )
can be identified by the definitions. More precisely, let k, q ∈ Zn and consider the maps
given by

αq(x1, x2, . . . , xn) = (x1−q, x2−q, . . . , xn−q)

βk(x1, x2, . . . , xn) = (ζ2
n−1kx1, ζ

2n−2kx2, . . . , ζ
kxn)

where αq is the right cyclic shift of the coordinates (understood as elements of Z/nZ), for
example, α1(x) = (xn, x1, x2, . . . , xn−1) etc.

Lemma 9.3. In the notation of (41),

αq = ψ2q ,0 ∈ Aut(Kn, •τ ) (48)

βk = ψ1,k ∈ Aut(Kn, •τ ) (49)

Furthermore, 〈α1, β1〉 ∼= Z2n−1 ⋊δ Zn, where δ is defined in (43).
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Proof. By their definitions, both αq and βk are linear isomorphisms of Kn. An easy
verification implies the relation αq(x •τ y) = αq(x) •τ α(y). Furthermore,

βk(x •τ y) = β((x2y2, . . . , xnyn, x1y1))

= (ζ2
n−1kx2y2, . . . , ζ

21kxnyn, ζ
20kx1y1),

and on the other hand,

βk(x) •τ βk(y) = (ζ2
n−2kx2 · ζ

2n−2ky2, . . . , ζ
2n−1mx1 · ζ

2n−1my1).

Comparing the obtained expressions yields βk(x •τ y) = βk(x) •τ βk(y), hence both αq and
βk are automorphisms of (Kn, •τ ). Applying the definitions to (26) implies (48) and (49).
Furthermore, elements α1, β1 generate a subgroup in Aff(Z2n−1) consisting of all elements
of the kind ψ2q ,k, q, k ∈ Zn, which by virtue of (45) implies the last claim of the lemma.

Recall that the cyclotomic polynomial ΦN (z) is the unique irreducible polynomial with
integer coefficients that is a divisor of zN − 1 and is not a divisor of zk − 1 for any k < N .
Its roots are all Nth primitive roots of unity. It is well known that

∏

d|N

Φd(z) = zN − 1. (50)

Definition 9.4. Let n ≥ 2 be an integer and

Λn(z) := z + z2 + z4 + . . .+ z2
n−1

.

The number n is said to be regular if the cyclotomic polynomial Φ2n−1(z) does not divide
Λn(z

m)− Λn(z) for all m ∈ Z
×
2n−1 \∆n.

Theorem 9.5. If n ≥ 2 is a regular integer then Aut(Kn, •τ ) ∼= Z2n−1 ⋊δ Zn.

Proof. An algebra automorphism stabilizes the set of nonzero idempotents, inducing an
automorphism on the idempotent quasigroup. By Corollary 8.6, span(Idm(Kn, •τ )) = Kn,
hence if some f ∈ Aut(Kn, •τ ) stabilize each nonzero idempotent in Idm(Kn, •τ) then
f = 1. This implies that Aut(Kn, •τ) is a subgroup of Aut(Idm(Kn, •τ )), in particular,
any algebra automorphism has the form ψm,k, where m ∈ Z

×
2n−1, k ∈ Z2n−1.

Therefore we need to identify only those ψk,m ∈ Aff(Z2n−1) which can be extended to
a linear isomorphism of Kn. To this end, we note that since m ∈ Z

×
2n−1, then s := m−1k

is well-defined and by Lemma 9.3 ψ1,s ∈ Aut(Kn), therefore using (42) we conclude that
ψm,k ◦ψ1,s = ψm,0 ∈ Aut(Kn, •τ ). In other words, we can assume without loss of generality
that k = 0.

So let us assume that ψm,0 ∈ Aut(Kn, •τ ). By Lemma 9.3, it suffices to show that
m ∈ ∆n = {1, 2, . . . , 2n−1}. We argue by contradiction and assume that m ∈ Z

×
2n−1 \∆n.

Then by virtue of (26) we find c2n−1 = (1, 1, . . . , 1) and also

Hl := cl + c2l + c4l + . . .+ c2n−1l = Λn(ζ
l)c2n−1, ∀l ∈ Z2n−1. (51)
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Since ψm,0(ci) = cmi for any i ∈ Z2n−1 (in particular, ψm,0(c2n−1) = c2n−1) we have
ψm,0(Hl) = Hml, implying by virtue of (51) that

Λn(ζ
l) = Λn(ζ

lm), ∀l ∈ Z2n−1.

Since the latter holds for any primitive root ζ of unity of order 2n − 1, we conclude
that by the definition, the cyclotomic polynomial Φ2n−1(z) divides Λn(z

lm) − Λn(z
l) for

any l ∈ Z2n−1, in particular, for l = 1, which implies that n is not a regular integer, a
contradiction.

Remark 9.6. Conjecturally, all positive integer numbers are regular, an application of
Galois theory of cyclotomic polynomials would be helpful to establish this conjecture, but
we now are not able to prove this conjecture in the full generality. There are however
several particular cases when the verification can be easily done, for example, for any
Mersenne prime 2n− 1, n is a regular number. In practice, a verification of that a given n
is regular can be done using the resultant, as it shown in the example below.

Example 9.7. Let n = 2, then Z
×
3 \∆2 = ∅, hence n = 2 is a regular integer, implying that

Aut(K2, •τ ) ∼= Z3 ⋊δ Z2
∼= S3.

The latter is the well-known fact that S3 is an internal semi-direct product of the subgroups
Z3 and Z2, where Z3 is the subgroup generated by one of the two 3-cycles and Z2

∼= C2 is
the subgroup generated by any transposition.

Example 9.8. Let n = 3, then Λ3(z) = z + z2 + z4 and Z
×
7 \ ∆3 = {3, 5, 6}. An easy

verification shows that the resultant

R(
Λ3(z

q)− Λ3(z)

z(z − 1)
, Φ7(z)) = 72 6= 0, ∀q ∈ {3, 5, 6},

hence Λ3(z
q) − Λ3(z) does not have common divisors with Φ7(z) (note that z = 0, 1

cannot be common zeros). Therefore n = 3 is a regular integer. Similarly, for Λ4(z) =
z + z2 + z4 + z8, Z×

15 \∆3 = {7, 11, 13, 14} and

R(
Λ4(z

q)− Λ4(z)

z(z − 1)
, Φ15(z)) = 34 · 54 6= 0, ∀q ∈ ∆3,

Finally, we point out the following useful observation. Let n ≥ 2 be an integer, and
Φn(z) be the cyclotomic polynomial of degree n. Consider the quotient polynomial algebra

Tn := (K[z]/Φ2n−1(z), •) ∼= (Kφ(2n−1), •)

where φ is Euler’s totient function. Then Aut(Tn) ∼= Sφ(2n−1), where any automorphism is a
substitution P (z) → P (tα(z)), with α ∈ Sn and tα(z) is the Lagrange polynomial of degree
≤ φ(2n− 1) uniquely determined the relations tα(ζ

k) = ζα(k) for any k ∈ Z
×
2n−1, where ζ is



Inner isotopes associated with automorphisms of commutative associative algebras 179

a fixed primitive root of unity of degree 2n − 1. Note that hm(z) := zm ∈ Aut(Tn), where
m ∈ Z

×
2n−1 (Z×

2n−1 is an abelian subgroup of Sφ(2n−1)).
Now, let us consider Λn(z) as an element in Tn. By (50), Φ2n−1(z)|(z

2n−1 − 1), hence

Λn(z
2)− Λn(z) = z2

n

− z ≡ 0 mod Φ2n−1(z),

therefore Λn(z
2) = Λn(z), in other words we conclude that

Proposition 9.9. Λn is a fixed point of the natural action of ∆n by substitutions. Moreover,
the integer n is regular if and only if the stabilizer subgroup of Λn in Z

×
2n−1 is exactly ∆n.

10 Three examples for n = 3

The main goal of this section is to illustrate our results for (Kn, •σ) in the particular
case n = 3. We shall assume that K is splitting field of polynomial P (z) = z3 − 1 and ǫ
will denote a primitive root of unity of degree 3 (in section 10.2 we additionally assume
that also a primitive root of unity of degree 7 exists). By Theorem 7.1, there are exactly
three distinct (isomorphy classes of) inner isotopes coded by the conjugacy classes of S3,
which are in a one-to-one correspondence with integer partitions of 3, i.e.

3 = 1 + 1 + 1

= 2 + 1

= 3.

(52)

Each of the three-dimensional isotope algebras will be considered below.

10.1 The case ”1 + 1 + 1”: a unital commutative associative algebra

In this case we have the trivial three cycle partition 1+1+1 which uniquely determines
the unity in S3: e = (1)(2)(3) (in the cyclic notation), thus

(K3, •e) ∼= (K3, •)

i.e. the corresponding inner isotope is the associative (direct product) algebra (K3, •)
itself. The multiplication structure is a uniquely determined by the multiplication table in
the standard basis {e1, e2, e3} (2):

ei • ej = ei+j(mod 3).

The automorphism group is given by Theorem 7.1

Aut(K3, •e) ∼= S3.

The algebra (K3, •e) is generic and any algebra idempotent can be written as ck =
(α1, α2, α3), where (α1, α2, α3) ∈ F3

2 is the binary decomposition of k, 0 ≤ k ≤ 7. For
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example, the binary codes 1 = 0012, 2 = 0102 and 4 = 1002 correspond to the three stan-
dard basis idempotents e3, e2, e1. The idempotent c7 = e1 + e2 + e3 is the algebra unity.
This yields the multiplication table (Table 1 below) and the characteristic polynomials χi
of L•e(ci) are given by (cf. with (32))

χ0 = λ3, χ1 = χ2 = χ4 = (λ− 1)λ2,

χ3 = χ4 = χ6 = (λ− 1)2λ, χ7 = (λ− 1)3.
(53)

•τ 1 2 3 4 5 6 7

1 1 0 1 0 1 0 1
2 0 2 2 0 0 2 2
3 1 2 3 0 1 2 3
4 0 0 0 4 4 4 4
5 1 0 1 4 5 4 5
6 0 2 2 4 4 6 6
7 1 2 3 4 5 6 7

Table 1: The multiplication table of idempotents i ∼ ci in (K3, •e) with e = (1)(2)(3) ∈ S3

Note that (K3, •e), as an associative algebra is axial in the sense of Definition 1.3
above, it follows from the classical results due to Benjamin Peirce. Indeed, (K3, •e) =
span({e1, e2, e4}), these idempotents are primitive and satisfye the same fusion law:

•e A1 A0

A1 A1 A0

A0 0 A0

(54)

However, in contrast to the single cycle case (see section 10.2 below), the set of nonzero
idempotents is not a multiplicative magma, see table 1.

10.2 The single cycle case ”3”: a commutative isospectral medial algebra

The one-cycle partition corresponds to the conjugacy class of τ = (2 3 1) ∈ S3, i.e.
shifts. Such algebras have been introduced and studied first for n = 3 in [16] in the
context of isospectral algebras and later for any n ≥ 2 in [17] in the polynomial setting.
It is natural to assume that the ground field K additionally contains a primitive root of
unity of order 7 = 23 − 1, denote it by ζ .

The standard basis elements are no longer idempotents, for example e1 •τ e1 = e2. By
Proposition 8.1, the algebra (K3, •τ) is generic and contains 7 distinct nonzero idempotents,
which can be explicitly written by

Idm(K3, •τ ) = {ck = (ζ4k, ζ2k, ζk) : k ∈ Z/7Z}. (55)
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The multiplication rule (27) between idempotents takes the form

ci •τ cj = c4(i+j) = ci⊛j , (56)

where ⊛ on Z/7Z is defined by

i⊛ j ≡ 4(i+ j) mod 7. (57)

The characteristic polynomials are given by

det(λ1− L•τ (ck)) = λ3 − 1. (58)

Therefore (K3, •τ) is isospectral and furthermore it is an axial algebra with the following
fusion law:

•ω A1 Aǫ Aǫ2

A1 A1 Aǫ Aǫ2

Aǫ Aǫ Aǫ2 A1

Aǫ2 Aǫ2 A1 Aǫ

(59)

Combining Theorem 9.2 and Theorem 9.5 with Example 9.8, we obtain

Theorem 10.1. The idempotent quasigroup and the algebra automorphism groups are re-
spectively:

Aut(Idm(K3, •τ)) ∼= Z7 ⋊id Z
×
7 (60)

Aut(K3, •τ) ∼= Z7 ⋊δ Z3, (61)

where Z7 ⋊δ Z3 is the smallest non-abelian group of odd order.

Furthermore, (K3, •τ ) has many other remarkable properties (see [17] for a more de-
tailed discussion), for example it satisfies the algebra identity

(x •τ (x •τ (x •τ y))) = ∆(x)y, ∀x, y ∈ (K3, •τ),

where ∆ is a multiplicative homomorphism of degree 3 given explicitly by a circulant:

∆(a0e0 + a1e1 + a2e2) =

∣
∣
∣
∣
∣
∣

a0 a2 a1
a1 a0 a2
a2 a1 a0

∣
∣
∣
∣
∣
∣

: (K3, •τ ) → (K, •).

10.3 The case [2 + 1]

Finally, we consider the two-cycle partition [2+1] corresponding to the conjugacy class
of transpositions. Without loss of generality we can assume that ω = (2 1)(3) ∈ S3. As in
section 10.1, the algebra (K3, •ω) is decomposable, more precisely:

(K3, •ω) ∼= (K2, •τ)× (K, •e). (62)

The second factor is trivial and the first factor is the two-dimensional Harada algebra
[11], i.e. a uniquely determined up to isomorphism two-dimensional commutative algebra
generated by two distinct idempotents c1 and c2 subject to the condition c1 • c2 = −c1− c2
(we don’t need this characterization later and leave the details to an interested reader).

Combining (62) with Example 9.7, we get
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Proposition 10.2. There holds Aut(K3, •ω) ∼= S3.

11 Final remarks and questions

There are at least two natural questions that remained unanswered in this article:
1) Determine the automorphism group of the obtained inner isotopes of commutative
associative algebras (Kn, •) for the general dimensions, and 2) Which of the constructed
above inner isotopes are axial algebras. Note that in Section 10 we completely discussed
these two questions in the case n = 3 (the case n = 2 is trivial). A further analysis reveals
that by the same methods are applicable to n = 4; also some partial results were mentioned
in [17].

Another interesting natural question is how to apply the present methods to general
nonassociative commutative algebras or at least to inner isotopes of the 2nd order:

(A, ⋆) (A, ⋆h) (A, ⋆hg) . . .

where h ∈ Aut(A, ⋆), g ∈ Aut(A, ⋆h) etc?
Finally, we mention that some methods and ideas of the present paper (inner isotopies)

can be useful in the case K = C in the study, for example, of algebras of holomorphic
functions in the unit disk like Bergman and Bloch spaces of holomorphic functions defined
on the open unit disc in the complex plane [12].
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