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Proving Properties of φ-Representations with the Walnut

Theorem-Prover

Jeffrey Shallit

Abstract. We revisit a classic theorem of Frougny and Sakarovitch concerning au-
tomata for φ-representations, and show how to obtain it in a different and more com-
putationally direct way. Using it, we can find simple, induction-free proofs of existing
results in the literature about these representations, in a uniform and straightforward
manner. In particular, we can easily and “automatically” recover many of the results
of recent papers of Dekking and Van Loon. We also obtain a number of new results
on φ-representations.
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1 Introduction

In 1957, George Bergman [2] observed that one can expand a non-negative real number
z in base φ = (1 +

√
5)/2, in the sense that there exist “digits” ai ∈ {0, 1} such that

z =
∑

−∞≤i<r

aiφ
i. (1)

In analogy with base-b representation, we can write such a base-φ representation as a string
of digits ar−1 · · · a0 . a1a2a3 · · · where the non-negative and negative powers are separated
by the analogue of a “decimal point”. We call ar−1 · · · a0 the left part and . a1a2a3 · · · the
right part of the φ-representation. The left part is always finite, while the right part may
be finite or infinite. These parts are analogous to the more familiar integer and fractional
parts of decimal representations of the positive reals.

If Equation (1) holds, then we write

z = [ar−1 · · · a0 . a1a2a3 · · · ]φ.

For example, 2 = [10.01]φ = [1.11]φ and 1
2
= [.010010010010 · · · ]φ.

Furthermore, such a representation x.y as a string of binary digits with a decimal point
is essentially unique if one imposes the very natural restriction that aiai+1 ̸= 1 for all i
(or, equivalently, if the string xy contains no occurrence of the block 11), and furthermore
that if the expansion is infinite, it cannot end in 010101 · · · . Throughout the paper, we
adopt the convention that in expansions of the form [x.y]φ, we disregard leading zeros in
x and trailing zeros in y. Thus 10.01 and 010.0100 are regarded as “essentially” the same.
This convention is extremely useful, as sometimes our automata will need to pad multiple
inputs with zeros to ensure they all have the same length.

We call a φ-representation obeying these rules canonical , and write it as (x)φ. Bergman
[2] proved that the canonical φ-representation of a natural number is finite, and Table 1
gives the canonical expansions of the first few positive integers.
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n 1 2 3 4 5 6 7
(n)φ 1. 10.01 100.01 101.01 1000.1001 1010.0001 10000.0001

Table 1: First few canonical expansions.

The left and right parts of the canonical φ-representation of n can be found in sequences
A105424 and A341722 in the On-Line Encyclopedia of Integer Sequences (OEIS) [36].

Bergman’s ideas were generalized to positive real numbers β by Rényi [30], who called
such expansions β-expansions. Later, fundamental work characterizing such expansions
was done by Parry [29].

Several researchers, including Bertrand-Mathis and Frougny, have found deep and in-
teresting connections between these expansions and finite automata when β is an algebraic
number. See, for example, [1, 5, 16,17,18,19,20,21,22].

In a very interesting article, Frougny and Sakarovitch [23] proved that the canonical
φ-representation of a non-negative integer can be computed by a finite automaton A, in the
following sense: A takes three inputs in parallel: n represented in the Zeckendorf numera-
tion system (see below), and binary strings x and y, and accepts if and only if (n)φ = x.yR.
Here, yR denotes the reversal of the string y. This representation is called “folded”; it is
useful in part because the coefficients corresponding to small (in absolute value) powers of
φ are grouped together when read by an automaton. For example, the entry of Table 1 cor-
responding to n = 6 would correspond to the accepted input [1, 1, 1][0, 0, 0][0, 1, 0][1, 0, 0]:
the first entries of each triple spell out 1001, which is 6 in Zeckendorf representation; the
second entries spell out 1010 and the third entries spell out 1000. However, their article is
rather challenging to read and they did not explicitly present this automaton.

The first goal of this paper is to explain how the Frougny-Sakarovitch automaton can
be, rather easily, computed explicitly using existing software; namely, the free software
Walnut initially developed by Hamoon Mousavi [28]. This software can prove or disprove
theorems about automatic sequences and their generalizations, using a decision procedure
for a certain extension of Presburger arithmetic [34]. It suffices to express the desired
assertions in first-order logic. Furthermore, if the particular logical statement has free
variables, Walnut will compute a finite automaton accepting precisely those values of the
free variables making the statement true. Finally, if a formula F has two or more free
variables, say n and x1, x2, . . . xt, Walnut can compute the number of t-tuples (x1, . . . , xt)
such that F (n, x1, . . . , xt) evaluates to TRUE.

Once we have this automaton, we can use it to easily reprove existing results from the
literature in a straightforward and uniform manner. For example, we reprove some results
recently considered by Dekking and Van Loon [13]. They called a finite φ-representation
(not necessarily canonical) of an integer n a Knott expansion if it does not end in 011,
and they developed a rather complicated method for computing the number of different
Knott expansions of n. We will see that the Frougny-Sakarovitch automaton allows us to
enumerate Knott expansions, and thereby recover the results of Dekking and Van Loon
in a purely “automatic” fashion, without any tedious inductions. Furthermore, by sim-
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ply changing the conditions we impose on the form of the expansion, we can easily and
“automatically” enumerate other types of expansions. The second goal of the paper is to
illustrate these techniques and obtain a number of new results.

The paper is organized as follows. In Section 2 we construct the Frougny-Sakarovitch
automaton. In Sections 3–7 we prove various old and new results about φ-representations;
one new result is Theorem 3.1, which proves a 2012 conjecture of Dale Gerdemann. In
Section 8 we discuss Knott expansions; in Section 9 we discuss a different type of expansion,
called a “natural expansion”, introduced by Dekking and Van Loon; and in Section 10 we
discuss another kind of expansion, called DVL-expansions. Finally, in Section 11 we discuss
more general expansions for algebraic integers.

2 The Frougny-Sakarovitch automata

We will need two different representations of integers: the Zeckendorf system and the
negaFibonacci system.

Let the Fibonacci numbers be defined by the recurrence Fn = Fn−1 + Fn−2 and initial
conditions F0 = 0 and F1 = 1. Note that this uniquely defines Fn for all integers n (even
negative integers).

In the well-known Zeckendorf system [26, 38], we write a non-negative integer n as a
sum n =

∑
2≤i≤t aiFi with ai ∈ {0, 1}. We abbreviate this by the expression [x]F , where

x = atat−1 · · · a2. This representation is unique if we impose the condition aiai+1 ̸= 1; we let
(n)F denote the canonical representation obeying this condition. Thus (43)F = 10010001.

It will also be useful to be able to represent negative integers. In the negaFibonacci
system [7,35], we write an integer n (positive, negative, or zero) as a sum n =

∑
1≤i≤t aiF−i,

where again ai ∈ {0, 1}. We abbreviate this by the expression [x]−F , where x = at · · · a1.
Again, this representation is unique if we impose the condition aiai+1 ̸= 1; we let (n)−F

denote the canonical representation obeying this condition. Thus (43)−F = 101001010.
(An interesting alternative to the negaFibonacci system has recently been proposed by

Labbé and Lepšová; see [25].)
We start by constructing the first Frougny-Sakarovitch automaton. It has three inputs

over {0, 1} that are read in parallel: w, x, and y. Here

• w is the (canonical) Zeckendorf representation of some integer n,

• x is the left part of a φ-representation

• yR is the right part of a φ-representation

and the automaton accepts if and only if n = [x.y]φ. Notice that for this automaton we
impose no other conditions on x and y; they are simply arbitrary binary strings. However,
w is assumed to contain no occurrence of 11. All three inputs are allowed to have any
number of leading zeros, which permits the inputs to be of the same length so they can be
read simultaneously in parallel.
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The basic idea is very simple. As Bergman [2] noted (and easily proved by induction),
we have φk = Fkφ+ Fk−1 for all integers k. It now follows that∑

0≤i<r

aiφ
i =

∑
0≤i<r

ai(Fiφ+ Fi−1)

=

(∑
0≤i<r

aiFi

)
φ+

(∑
0≤i<r

aiFi−1

)

=

(
a0F0 + a1F1 +

∑
2≤i<r

aiFi

)
φ+ a0F−1 + a1F0 + a2F1 +

∑
2≤j<r−1

aj+1Fj

= (a1 + [ar · · · a2]F )φ+ [ar · · · a3]F + a0 + a2. (2)

Similarly, ∑
1≤i≤s

biφ
−i =

∑
1≤i≤s

bi(F−iφ+ F−i−1)

=

(∑
1≤i≤s

biF−i

)
φ+

∑
1≤i≤s

biF−i−1

= [bs · · · b1]−F φ+ [bs · · · b10]−F . (3)

Thus, the left part of a φ-representation is easily expressed as a linear combination cφ+d,
in terms of shifted Zeckendorf representations, and the right part of a φ-representation
is easily expressed as a linear combination c′φ + d′, in terms of shifted negaFibonacci
representations. Then n = (c + c′)φ + d + d′ implies that n = [ar−1 · · · a1a0.b1b2 · · · bs] if
and only if

c′ = −c (4)

n = d+ d′ (5)

both hold.
These are conditions that can be expressed in first-order logic, and hence we can build

an automaton to check them. In Walnut we can build this automaton from smaller, easily-
digestible pieces, as we now describe.

It may be helpful to have a short summary of Walnut syntax.

• reg defines a regular expression

• def defines an automaton based on a logical formula

• eval evaluates a formula with no free variables and returns TRUE or FALSE

• E represents the existential quantifier ∃; A represents the universal quantifier ∀
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• & is logical AND, | is logical OR, => is logical implication; <=> is logical IFF; ~ is logical
NOT

• ?msd fib instructs Walnut that numbers should be expressed in Zeckendorf repre-
sentation; ?msd neg fib does the same thing for negaFibonacci representation.

2.1 Zeckendorf normalizer

We need a “normalizer” for Zeckendorf expansions; it takes x and y as inputs, with x
an arbitrary binary string and y a canonical Zeckendorf expansion of some integer n, and
accepts if and only if n = [x]F . Such an automaton can be found, for example, in [3, 33].
It has 5 states (or 4 if one omits the dead state). We call it fibnorm.

Figure 1: The automaton fibnorm.

2.2 NegaFibonacci normalizer

We also need the analogous “normalizer” for negaFibonacci expansions; it takes x and
y as inputs, with x an arbitrary binary string and y a canonical negaFibonacci expansion
of some integer n, and accepts if and only if n = [x]−F . Such an automaton has 5 states
(or 4 if one omits the dead state). We call it negfibnorm. Correctness is left to the reader.

Figure 2: The automaton negfibnorm.
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2.3 Shifters

As we have seen in Equations (2) and (3), we need to shift some representations left or
right. We do this with the following automata:

• shiftl takes arguments x and y, and accepts if y is x shifted to the left (and 0
inserted at the right).

• shiftr takes arguments x and y, and accepts if y equals the string x shifted to the
right (and the least significant digit disappears).

We can easily build these with regular expressions as follows:

reg shiftl {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":

reg shiftr {0,1} {0,1} "([0,0]|[1,0][1,1]*[0,1])*(()|[1,0][1,1]*)":

2.4 Last bits

Again, as we have seen in Equations (2) and (3), we need the ability to extract the
last, second-to-last, or third-to-last bits of a string. These can easily be specified with
regular expressions. We create three: lstbit1, lstbit2, and lstbit3. Here lstbitn

takes arguments x and y, where x ∈ {0, 1}∗ and y is the representation of either 0 or 1,
and accepts if y is the n’th-last bit of x (or 0 if |x| < n).

reg lstbit1 {0,1} msd_fib "()|(([0,0]|[1,0])*([0,0]|[1,1]))":

reg lstbit2 {0,1} msd_fib "()|[0,0]|[1,0]|(([0,0]|[1,0])*

(([0,0]([0,0]|[1,0]))|([1,0]([0,1]|[1,1]))))":

reg lstbit3 {0,1} msd_fib "()|[0,0]|[1,0]|(([0,0]|[1,0])

([0,0]|[1,0]))|(([0,0]|[1,0])*(([0,0]([0,0]|[1,0])

([0,0]|[1,0]))|([1,0]([0,0]|[1,0])([0,1]|[1,1]))))":

2.5 Converting from negaFibonacci to Zeckendorf

Finally, we will need to be able to convert negaFibonacci representation to Zeckendorf
representation. We need two automata:

• fibnegfib takes two arguments x and y, where x = (n)F for some n ≥ 0 and
y = (m)−F , and accepts if n = m. It has 12 states.

• fibnegfib2 takes two arguments x and y, where x = (n)F for some n ≥ 0 and
y = (m)−F , and accepts if n = −m. It has 9 states.

2.6 Constructing the first Frougny-Sakarovitch automaton

We now have all the pieces we need to construct the first Frougny-Sakarovitch au-
tomaton directly from the formulas (2) and (3). We do this with the following Walnut

code:
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def phipartleft "?msd_fib Er,s,y,b $shiftr(x,r) & $shiftr(r,s) &

$fibnorm(s,y) & $lstbit2(x,b) & z=y+b":

def intpartleft "?msd_fib Er,s,t,y,b,c $shiftr(x,r) & $shiftr(r,s) &

$shiftr(s,t) & $fibnorm(t,y) & $lstbit1(x,b) & $lstbit3(x,c) &

z=y+b+c":

def phipartright "?msd_neg_fib $negfibnorm(x,z)":

def intpartright "?msd_neg_fib Er $shiftl(x,r) & $negfibnorm(r,z)":

def frougny1 "?msd_fib Et1,t2 $phipartleft(x,t1) &

$phipartright(y,?msd_neg_fib t2) & $fibnegfib2(t1,t2)":

# accepts if the phi part of inputs x and y sums to 0

def frougny2 "?msd_fib Et1, t2, x2 $intpartleft(x,t1)

& $intpartright(y,?msd_neg_fib t2) & (((?msd_neg_fib t2<0) &

$fibnegfib2(x2,?msd_neg_fib t2) & ?msd_fib t1=n+x2)|

(((?msd_neg_fib t2>=0) & $fibnegfib(x2,?msd_neg_fib t2) &

?msd_fib n=t1+x2)))":

# accepts if the integer parts of inputs x and y sum to n

def frougny3 "?msd_fib $frougny1(x,y) & $frougny2(n,x,y)":

fixleadzero frougny frougny3:

Here phipartleft (resp., intpartleft) computes the coefficient of φ (resp., the coefficient
of 1) in the expression (2). Similarly, phipartright (resp., intpartright) does the same
thing for (3). The command fixleadzero allows one to remove useless leading zeroes
from the resulting automaton.

Next, frougny1 checks the condition (4) and frougny2 checks the condition (5). Fi-
nally, frougny checks the conjunction of the two conditions. The resulting automaton
frougny has 116 states.

If we want a simpler automaton, namely, where x.yR must be a canonical representation
(no occurrences of 11 allowed), we can intersect the automaton frougny with a simple
automaton imposing this condition on x and y. This gives us a second Frougny-Sakarovitch
automaton saka with only 39 states.

def saka2 "?msd_fib $frougny(n,?msd_fib x,?msd_fib y) & $no11xy(x,y)":

fixleadzero saka saka2:

With this automaton we can easily prove the following characterization of the canonical
φ-representation of Fn, which is the content of both [23, Corollary 6] and [13, Proposi-
tion 3.1].

Proposition 2.1. We have

• (F4i)φ = 100(0100)i−1.(0100)i−11, i ≥ 1;
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• (F4i+1)φ = 1000(1000)i−1.(1000)i−11001, i ≥ 1;

• (F4i+2)φ = 1(0001)i.(0001)i, i ≥ 0;

• (F4i+3)φ = 10(0010)i.(0010)i01, i ≥ 0.

Proof. We apply the automaton saka to the Fibonacci numbers Fn for n ≥ 2:

reg isfib msd_fib "0*10*":

def prop31a "?msd_fib $saka(n,x,y) & $isfib(n)":

fixleadzero prop31 prop31a:

The resulting automaton is depicted in Figure 3.

0

[0,0,0] 1[1,1,0]

2

[1,1,1]

3
[0,0,1]

4[0,0,0]

5[0,0,0]

6
[0,0,0]

7

[0,0,0]

8
[0,0,1]

[0,1,0]

[0,1,0]

Figure 3: Canonical φ-representation of Fn.

Inspection of the automaton shows that, ignoring leading zeros, there are essentially
four different acceptance paths:

• [1, 1, 0][0, 0, 1][0, 0, 0]([0, 0, 0][0, 1, 0][0, 0, 1][0, 0, 0])∗.

• [1, 1, 1][0, 0, 0][0, 0, 0][0, 0, 1]([0, 1, 0][0, 0, 0][0, 0, 0][0, 0, 1])∗;

• [1, 1, 0]([0, 0, 1][0, 0, 0][0, 0, 0][0, 1, 0])∗;

• [1, 1, 1][0, 0, 0]([0, 0, 0][0, 0, 1][0, 1, 0][0, 0, 0])∗;

These correspond to the cases n ≡ 0, 1, 2, 3 (mod 4), respectively, and prove the result.

We can also see from Figure 3 a partial explanation for the periodicity (mod 4) in the
Frougny-Sakarovitch construction.

Exactly the same techniques can be used to prove a similar result for the Lucas numbers,
defined by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2. We omit the details.
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Theorem 2.2. We have

• (L2i)φ = 102i.02i−11, i ≥ 1;

• (L2i+1)φ = (10)i1.(01)i, i ≥ 0.

One very useful feature of the automaton saka is we can use it to completely charac-
terize the folded representations of all natural numbers.

Theorem 2.3. The string ar−1 · · · a1a0.a−1a−2 · · · a−r is the φ-representation of an integer
n ≥ 0 if and only if

[ar−1, a−r][ar−2, a1−r] · · · [a1, a−2][a0, a−1]

is accepted by the automaton in Figure 4.

0

[0,0]
1[1,0]

2
[1,1]

3

[0,1]
4[0,0]

[1,0]

5

[0,0]

[1,0]

6[0,0]
[1,1][0,0]

[0,1]

7[1,1]

[0,0]

Figure 4: Automaton accepting the folded representations of all n ≥ 0.

Proof. We use the Walnut code

def berg "?msd_fib En $saka(n,x,y)":

Let us now turn to characterizing the right part of canonical φ-representations. Dekking
[9, Theorem 7.3] proved the following result:

Theorem 2.4. If a binary string is of even length, ends in a 1, and contains no 11, then
it appears as the right part of the φ-representation of some natural number n.

Proof. To prove this, we make a Walnut regular expression for strings of even length ending
in a 1. Some care is needed here, for two reasons: first, the representation of the right part
is “folded”, so we’re really talking about beginning with a 1 instead of ending. Second,
our automata may have leading zeros in the (reversed) representation of the right part, for
the reasons mentioned previously. Keeping these two points in mind, we use the following
Walnut code:
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reg has11 {0,1} "(0|1)*11(0|1)*":

def rightp2 "?msd_fib En,x $saka(n,x,y)":

fixleadzero rightp rightp2:

reg evenl {0,1} "(0*)|(0*1(0|1)((0|1)(0|1))*)":

eval thm73 "?msd_fib Ay $rightp(y) <=> ($evenl(y) & ~$has11(y))":

And Walnut returns TRUE.

In a similar way, we can prove a companion theorem for the left part of canonical
φ-representations. This appears to be new.

Theorem 2.5. A binary string x appears as the left part of a φ-representation of some n
if and only if x has no 11 and does not have a suffix of the form 1(00)i1.

Proof. We use the following Walnut code:

def leftp2 "?msd_fib En,y $saka(n,x,y)":

fixleadzero leftp leftp2:

reg suff {0,1} "(0|1)*1(00)*1":

eval claim "?msd_fib Ax $leftp(x) <=> ((~$suff(x))&(~$has11(x)))":

And Walnut returns TRUE.

It is easy to see that every positive integer has infinitely many (possibly non-canonical)
φ-representations; for example, we may write

2 = [10.01]φ = [10.0011]φ = [10.001011]φ = · · · .

However, there can only be finitely many distinct left parts among all of these. How many
are there? We can use Walnut to “automatically” compute a special kind of formula for
this quantity, called a linear representation.

A linear representation for a function f from Σ∗ to N is a triple (v, γ, w), where v is a
t-element row vector, γ is a t × t matrix-valued morphism, and w is a t-element column
vector, such that f(x) = vγ(x)w. The rank of such a representation is defined to be t.
Two linear representations are said to be equivalent if they compute the same function of
x. There is an algorithm that, given a linear representation, finds an equivalent minimal
one: that is, one of minimal rank [4, Chapter 2]. A nice feature of linear representations is
that they allow efficient computation of the corresponding function. For more information
about linear representations, see [4].

Let us find a linear representation for p(n), the number of distinct left parts of φ-
representations for n. We can do this with the following Walnut command:

def numleft n "?msd_fib Ey $frougny(n,x,y)":

This gives us a linear representation of rank 112 to compute p(n), which can be minimized
to a linear representation of rank 28. The first few terms of this sequence are given in
Table 2. This is sequence A362970 in the OEIS.

11
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
p(n) 1 2 2 3 3 3 3 4 5 4 5 4 4 5 6 6 5 4 5 7

Table 2: First few values of p(n).

3 Base-φ sum of digits

Dekking [12] studied the sum-of-digits function for base-φ representations. Denoting by
n =

∑
L≤i≤R diφ

i the canonical base-φ representation, then we define s(n) =
∑

L≤i≤R di.
The sequence s(n) is sequence A055778 in the OEIS.

Let us compute a linear representation for s(n). The idea is to define an automaton
with two binary inputs x, y that accepts precisely if y has a single 1 in a position matching
a 1 in x. Then the number of pairs (x, y) accepted corresponds to the number of 1’s in x.
We can then find linear representations for the left and right parts of (n)φ.

reg match1 {0,1} {0,1} "([0,0]|[1,0])*[1,1]([0,0]|[1,0])*":

def countl "?msd_fib Ex,y $saka(n,x,y) & $match1(x,t)":

def countr "?msd_fib Ex,y $saka(n,x,y) & $match1(y,u)":

def sl n "?msd_fib $countl(n,t)":

def sr n "?msd_fib $countr(n,u)":

This gives a linear representation of rank 99 for sL and one of rank 82 for sR. When
minimized, we get a representation of rank 19 for sL and one of rank 21 for sR. We can then
find a linear representation of rank 40 for s by summing these two linear representations.
This can be minimized to a linear representation for s of rank 21.

We now show how to apply our automaton saka to solve an open problem due to
Dale Gerdemann in 2012, and stated in the text for sequence A055778 in the OEIS. Once
again, the proof is more or less purely computational, but here we need some additional
computational tools.

Theorem 3.1. The sum of the digits for n in Zeckendorf representation is always at most
the sum of the digits for n in canonical base-φ representation.

Proof. Let |x|a denote the number of occurrences of the symbol a in the string x. It
is easy, using the techniques above, to obtain a linear representation of rank 23 for the
difference |(n)φ|1 − |(n)F |1. However, there is no algorithm for determining whether a
given linear representation computes a function that is always non-negative, so this linear
representation does not seem to be useful to solve the problem. Instead, we use a different
technique.

Recall that the automaton saka takes three inputs in parallel—n, x, and y—and accepts
if x.yR is the canonical φ-representation for n. The transitions of this automaton are
therefore of the form [a, b, c] where a, b, c ∈ {0, 1}. Suppose an input a1 · · · at, b1 · · · bt,
c1 · · · ct is accepted. Then |(n)φ|1 − |(n)F |1 =

∑
1≤i≤t(bi + ci)− ai.
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Therefore, we can take the automaton for saka and form a directed graph G from it by
replacing the transition on the triple [a, b, c] with a weight labelled b+ c−a. The assertion
that |(n)φ|1−|(n)F |1 is always non-negative then follows from the following stronger claim:

Every path from the initial state to any state has a non-negative sum of weights. (6)

But this is precisely the minimum-weight path problem solved by the Bellman-Ford algo-
rithm. We ran this algorithm on G and verified that assertion (6) holds.

Next, one can consider those n for which |(n)F |1 = |(n)φ|1. These correspond to
the paths of weight 0 in the graph G just discussed. One can easily verify, by explicit
enumeration, that all simple cycles of G (i.e., no repeated vertices except at the beginning
and end of the cycle) have weight ≥ 0, and furthermore one can determine all those of
weight 0 (there are 26 of them).

Let P be an accepting path of weight 0. If P contains a cycle C, by above the weight
of C is non-negative, by removing C, we get an accepting path of P ′ of weight ≤ 0. But
there are no negative-weight accepting paths, so C must also be of weight 0 and hence so
is P ′. We can then rule out possible cycles by considering the lowest-weight path from the
initial state to the first state of C and similarly from the first state of C to a final state;
these weights must sum to 0. Of the 26 possible cycles, only three possibilities remain (up
to choice of the initial state of the cycle). By considering the possible cycles and how they
join up, we get the automaton in Figure 5.

Figure 5: Automaton for weight-0 paths.

To get the accepted set of n, we project to the first coordinate and determinize the
resulting automaton. Thus we have proved the following result:

Figure 6: Automaton for weight-0 paths.

13
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Theorem 3.2. The automaton in Figure 6 accepts precisely those n in Fibonacci represen-
tation for which |(n)F |1 = |(n)φ|1.

Similarly, one can study the sum of all the bits of the base-φ representation, taken
modulo 2.

reg sum2 {0,1} {0,1} "([0,0]|[1,1])*(([0,1]|[1,0])([0,0]|[1,1])*

([0,1]|[1,0])([0,0]|[1,1])*)*([0,1]|[1,0])([0,0]|[1,1])*":

# sum of all the bits of x and y, mod 2

def sdpr2 "?msd_fib Ex,y $saka(n,x,y) & $sum2(x,y)":

# sum of digits of phi-rep mod 2 is 1

This gives a 73-state automaton for this binary sequence. It is sequence A330037 in
the OEIS.

The automata frougny and saka that we have constructed make it very easy to com-
pute other quantities related to φ-representations. For example, let us define sL(n) to be
the sum of the bits of the left part of the φ-representation of n. This is apparently a
new sequence, never before studied; it is sequence A362716 in the OEIS. (Dekking [11,12]
studied the sum s(n) of all the bits of the φ-representation.)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
sL(n) 0 1 1 1 2 1 2 1 2 2 2 3 1 2 2 3 2 3 1 2

Table 3: First few values of sL(n).

We can easily find a linear representation for sL(n) as follows:

reg match1 {0,1} {0,1} "([0,0]|[1,0])*[1,1]([0,0]|[1,0])*":

def count1 "?msd_fib Ex,y $saka(n,x,y) & $match1(x,t)":

def sl n "?msd_fib $count1(n,t)":

This gives us a linear representation of rank 99, which can be minimized to the following
linear representation (v, γ, w) of rank 19:

v = [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

γ(0) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 2 0 0


γ(1) =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 −1 0 0 0 1 0 0 1
0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0


w =



0
1
1
1
2
1
2
1
2
2
2
3
1
2
3
3
1
3
4


.
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Similarly, one can study the sum-of-digits function sR(n) for the right part of the
canonical φ-representation. We prove a new theorem about it:

Theorem 3.3. The difference d(n) := sR(n+1)− sR(n) is a Fibonacci-automatic sequence
taking values in {−1, 0, 1} only.

Proof. We use the following Walnut code.

reg match1 {0,1} {0,1} "([0,0]|[1,0])*[1,1]([0,0]|[1,0])*":

def countr "?msd_fib Ex,y $saka(n,x,y) & $match1(y,u)":

def sr n "?msd_fib $countr(n,t)":

def sr1 n "?msd_fib $countr(n+1,t)":

This produces linear representations for sR(n) (rank 82; minimizes to rank 21) and sR(n+1)
(rank 64; minimizes to rank 17). From this we can produce a linear representation for
d(n) = sR(n + 1) − sR(n) of rank 38, which minimizes to one of rank 17. We can then
do the “semigroup trick” [34, §4.11] to show that the resulting sequence is Fibonacci
automatic. The automaton is depicted in Figure 7.

0/0

0

1/11 2/00 4/00

5/1

1

3/0

1

17/0

0
6/-1

0

7/0
1

8/00

9/1

0
10/0

1

0

11/10

12/-1

1

0

13/0

1

14/00

1

0

15/0
0

0

1

0

0

16/0

1
0

0

1

Figure 7: Fibonacci automaton for d(n).

4 Length of base-φ representations

Similarly, one can study the length ℓ(n) of the left part of (n)φ (or, alternatively, one
more than the exponent of the highest power of φ appearing in (n)φ).

This is sequence A362692 in the OEIS.
Here the idea is to create a simple automaton, onepos, that accepts binary strings x

and t if and only if t contains a single 1 and it occurs at or to the right of the first 1 in x.
Then we simply count the number of such t:
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def intlength "?msd_fib Ex,y $saka(n,x,y) & $onepos(x,t)":

def intl n "?msd_fib $intlength(n,t)":

The resulting linear representation can be minimized to the following linear representation
of rank 9:

vT =


1
0
0
0
0
0
0
0
0

 γ(0) =


1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 −1 0 2 0 0 0
0 0 0 −1 0 2 0 0 0
0 0 0 −2 1 3 −1 0 0
0 0 0 −2 0 3 0 0 0

 γ(1) =


0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 2
0 0 0 0 0 0 0 0 0

 w =


0
1
2
3
3
4
4
5
5

 .

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ℓ(n) 0 1 2 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7

Table 4: First few values of ℓ(n).

Inspection suggests that ℓ(n) is an increasing sequence and the gaps between successive
terms are only 0 and 1.

We can prove this by finding the linear representation for ℓ(n)−ℓ(n−1) and then using
the “semigroup trick”. This gives a Fibonacci DFAO, depicted in Figure 8, computing
ℓ(n)− ℓ(n− 1).

0/0

0

1/11 2/10
3/10

4/0
1 5/1

0

6/1
0
0

1

Figure 8: Fibonacci DFAO for first difference of ℓ(n).

Inspection of this automaton and observing that the Fibonacci representation of the
Lucas numbers are of the form 1010∗, gives the following result:

Theorem 4.1. We have ℓ(n)−ℓ(n−1) = 1 if and only if n = 1 or n = L2i or n = L2i−1+1
for i ≥ 1.

This is implied by a result of Sanchis and Sanchis [32, Thm. 2.1].
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5 Individual bits

We can also prove theorems about individual bits of the φ-representation. Let

n =
∑

L≤i≤R

di(n)φ
i

be the canonical φ-representation of the natural number n and let

α = (3− φ)/5 = (5−
√
5)/10.

The Sturmian sequence based on α is defined to be w(n) = ⌊(n + 1)α⌋ − ⌊nα⌋; this is
sequence A221150 in the OEIS. For more about Sturmian sequences, see, e.g., [27, Chap. 2].

The following result characterizes d0(n) and d1(n). Some previous papers have charac-
terized these two sequences (see [10, 24]), but it appears that the specific characterization
we present here is new.

Theorem 5.1. We have

(a) d0(n+ 1) = w(n) for n ≥ 1;

(b) d1(n) = w(n+ 1) for n ≥ 0.

Proof.

(a) We can compute w(n) with Walnut using the existing code phin, which computes
⌊φn⌋ (see [34, p. 278]). The resulting automaton computes w in a “synchronized”
fashion; that is, the inputs are n and x, both in Zeckendorf representation, and the
automaton accepts if and only if x = w(n). Now

⌊αn⌋ =
⌊
3− φ

5
n

⌋
=

⌊
⌊(3− φ)n⌋

5

⌋
=

⌊
3n− 1− ⌊φn⌋

5

⌋
for n ≥ 1. It follows that a synchronized automaton for w(n) can be computed by
the following Walnut code.

reg shift {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":

def phin "?msd_fib (s=0 & n=0) | Ex $shift(n-1,x) & s=x+1":

def alphan "?msd_fib Ex $phin(n,x) & z=(3*n-(x+1))/5":

def w "?msd_fib Ez $alphan(n+1,z+1) & $alphan(n,z)":

Similarly, we can construct a synchronized automaton for d0 and verify claim (a) as
follows:

def d0 "?msd_fib Ex,y $saka(n,x,y) & $lstbit1(x,1)":

eval checka "?msd_fib An (n>=1) => ($w(n) <=> $d0(n+1))":
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and Walnut returns TRUE.

(b) We use the following Walnut code, to compute a synchronized automaton for d1 and
check the assertion:

def d1 "?msd_fib Ex,y $saka(n,x,y) & $lstbit2(x,1)":

eval checkb "?msd_fib An ($w(n+1) <=> $d1(n))":

and Walnut returns TRUE.

Now let us turn to d−1(n). Of course, this is a Fibonacci-automatic sequence (and can
be computed by a DFAO of 13 states). We can find a surprising connection for d−1(n) by
consulting the OEIS, as follows.

Instead of representations involving sums of Fibonacci numbers, we can consider sums
of Lucas numbers Ln, defined previously. The following result was proved by Brown [6]:
every natural number can be written as a sum

∑
0≤i≤t eiLi, where ei ∈ {0, 1}. We use the

shorthand notation [et · · · e1e0]L for this sum. However, this representation is not always
unique, even if we impose the natural condition that

eiei+1 ̸= 1 for all i. (7)

For example, we have [1010]L = L3 + L1 = 5 = L2 + L0 = [101]L. Recently, Chu, Luo,
and Miller [8] proved that if we impose Condition (7), then there are at most two distinct
Lucas representations for each n. The set of n with two distinct Lucas representations
forms sequence A342089 in the OEIS.

Theorem 5.2. For all n ≥ 0 we have d−1(n) = 1 if and only if n has exactly two distinct
Lucas representations.

Proof. We start by constructing an automaton to evaluate a Lucas representation. It takes
a number n in Zeckendorf representation and a binary string x as inputs and accepts if
[x]L = n.

To do so, we use the classic identity Ln = Fn+1 + Fn−1 for all n. It follows that
[xabc]L = [xab]F + [x]F + a + 2c for for binary strings x and a, b, c ∈ {0, 1}. We can
therefore compute it as follows:

def luc2fib "?msd_fib Eu,v,w,a,c,y,z $shiftr(x,u) & $shiftr(u,v) &

$shiftr(v,w) & $lstbit3(x,a) & $lstbit1(x,c) & $fibnorm(u,y) &

$fibnorm(w,z) & n=y+z+a+2*c":

Next, we create an automaton to accept the Fibonacci representation of those n with two
different Lucas representations.
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reg has11 {0,1} "(0|1)*11(0|1)*":

reg equal {0,1} {0,1} "([0,0]|[1,1])*":

def tworep "?msd_fib Ex,y (~$has11(x)) & (~$has11(y)) &

(~$equal(x,y)) & $luc2fib(n,x) & $luc2fib(n,y)":

Finally, we create a synchronized automaton for d−1(n) and check its equality with sequence
A342089:

def dm1 "?msd_fib Ex,y $saka(n,x,y) & $lstbit1(y,1)":

eval checkseq "?msd_fib An ($dm1(n) <=> $tworep(n))":

and Walnut returns TRUE.

Remark 5.3. Hart and Sanchis [24] proved that the limiting frequency of 1’s in (d−1(n))n≥0,
namely limn→∞

1
n

∑
0≤i<n d−1(n), is γ := 1/(3φ + 1)

.
= 0.17082. We can easily prove

this with Walnut as follows: first, define d′(n) =
∑

0≤i≤n d−1(i). Then we can “guess”
a synchronized automaton for d′(n) using the method outlined in [34, §10.15]. Next, we
verify that our guess is correct using the automaton dm1 computed above. Finally, we show
with Walnut that |d′(n)−w′(n)| ≤ 1, where w′(n) is the Sturmian sequence corresponding
to γ. We omit the details.

We now turn to considering what Dekking and van Loon [14] called “vertical runs
of 1’s”. Given i ∈ Z, we saw above that di(n) is the coefficient of αi in the canonical
φ-representation of n. A vertical run of 1’s takes place starting at position n if

di(n− 1) = 0, di(n) = 1, di(n+ 1) = 1, . . . , di(n+ t− 1) = 1, di(n+ t) = 0.

and we say the length of the run is t. (If n = 0 we assume di(−1) = 0 for all i.) The name
comes from thinking of the base-φ representation of the numbers di(n − 1), . . . , di(n + t)
written vertically, with the i’th position lined up. For example, for i = 4 and n = 7 we
have a vertical run of length 5, as illustrated in Table 5.

n (n)φ
6 001010.0001
7 010000.0001
8 0110001.0001
9 010010.0101
10 010100.0101
11 010101.0101
12 100000.101001

Table 5: A vertical run of 5 1’s.

For each i we can determine the possible lengths of vertical runs.
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Theorem 5.4. For the canonical φ-representation the vertical runs of 1’s have length v(i),
as follows:

v(i) =


Li−1 + (−1)i, if i ≥ 1;

1, if i = 0;

L−i, if i < 0.

Proof. We can create a Walnut formula that determines the possible lengths of vertical
runs for each i ≥ 0, as follows:

def matchfib "?msd_fib Ex,y $saka(n,x,y) & $isfib(t) & $match1(x,t)":

def verticalr "?msd_fib (i>0) & En (~$matchfib(n-1,t)) &

(~$matchfib(n+i,t)) & Aj (j<i) => $matchfib(n+j,t)":

The resulting automaton accepts the Zeckendorf representation of v(i) in parallel with a
binary string with exactly one 1, occurring i bits from the right end. It is displayed in
Figure 9.

0

[0,0]
1[0,1] 2

[1,1]

3
[0,0]

4[1,0]

5[1,0]

6[0,0]

7[0,0]

8[0,0]

9
[0,0]

10[1,0]

[0,0]

11[1,0]

12
[0,0]

[0,0]

[1,0][0,0]

Figure 9: Automaton for v(i), i > 0.

As one can see by inspecting the automaton in Figure 9, the acceptance paths, ignoring
leading 0’s, are of the following types:

(a) [1, 1]

(b) [0, 1][1, 0]

(c) [0, 1][1, 0][0, 0]

(d) [0, 1][0, 0][1, 0][0, 0]

(e) [0, 1][1, 0][0, 0][0, 0][0, 0]

(f) [0, 1][0, 0][1, 0][0, 0]([0, 0][1, 0])∗

(g) [0, 1][0, 0][1, 0][0, 0][1, 0]([0, 0][0, 0])∗[0, 0][1, 0]
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These correspond to the following accepted inputs:

(a) i = 0, v(0) = 1;

(b) i = 1, v(1) = 1;

(c) i = 2, v(2) = 2;

(d) i = 3, v(3) = 2;

(e) i = 4, v(5) = 5;

(f) i = 2k + 1 odd, v(i) = Li−1 − 1;

(g) i = 2k even, v(i) = Li−1 + 1.

The case of i < 0 can be handled similarly; we omit the details.

Remark 5.5. Dekking and Van Loon [14] claimed that “there is no such regularity”, but
Theorem 5.4 would seem to contradict that.

6 Palindromic and anti-palindromic φ-representations

Let us consider natural numbers with palindromic φ-representations, that is, where
n = [x.xR]φ. There are two variations: one where we demand that the expansion be
canonical, and one where we do not make this assumption.

Let us start with the canonical case. Since the representation that our automaton saka

uses is “folded”, we can find the Zeckendorf representation of those n with palindromic
φ-representations with the following Walnut code:

def palcanon "?msd_fib Ex,y $saka(n,x,y) & $equal(x,y)":

0

0

11

2

0

3
0

40 50

6
0

7
1

81

90

100

11

0

121

1

0

1

Figure 10: Fibonacci automaton for those n with palindromic φ-representations.
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Hence we have shown the following

Theorem 6.1. The natural number n has a palindromic canonical φ-representation if and
only if the 12-state automaton depicted in Figure 10 accepts (n)F .

The resulting sequence of n accepted by this automaton is

2, 14, 36, 38, 94, 96, 246, 248, 260, . . .

and forms sequence A362780 in the OEIS.
Now we turn to the case of allowing non-canonical expansions. Here there are additional

examples such as 6 = [1001.1001], which is palindromic, non-canonical due to the presence
of 11. We can construct an automaton for these n as follows:

def pal "?msd_fib Ex,y $frougny(n,x,y) & $equal(x,y)":

This proves the following result:

Theorem 6.2. The natural number n has some palindromic (possibly non-canonical) φ-
representation if and only if the 16-state automaton depicted in Figure 11 accepts (n)F .

0

0

11

2

0

3

0
40

5

1

6
0

7

0
81

9
1

100

11
0

120

13

1

1

0

141

150

0

0

Figure 11: Fibonacci automaton for those n having some palindromic (possibly non-
canonical) φ-representations.

The resulting sequence of n accepted by this automaton is

2, 6, 14, 36, 38, 94, 96, 100, 246, 248, 252, 260, . . .

and forms sequence A330672 in the OEIS. We remark that the only new examples are
those where the only 11 occurs as the 1 at the end of x (and hence at the beginning of
xR), as can be verified with the following Walnut code:

def pal11 "?msd_fib Ex,y $frougny(n,x,y) & $equal(x,y) & $has11(x)":
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which accepts nothing.
Next we turn to Shevelev’s so-called “φ-antipalindromic numbers”; these are the n for

which the canonical base-φ representation of n is of the form xa.xR, where a ∈ {0, 1}.
(The name comes from A178482 and is rather confusing, but we are keeping it.)

def shevanti "?msd_fib Ex,y $shiftr(x,y) & $saka(n,x,y)":

Theorem 6.3. Shevelev’s φ-antipalindromic numbers n are precisely those for which (n)F
is accepted by the automaton in Figure 12.

0

0

11 20

3

0

4

1
50

6

1

70

8

0

9

1

0

10

0

11

1

12

0
130

0

1

14

0

0

151

0

16
1

171

180

0

190

0

1

20

0

1

0

Figure 12: Fibonacci automaton accepting Shevelev’s φ-antipalindromic numbers.

The resulting sequence of accepted n,

0, 1, 3, 4, 7, 8, 10, 11, 18, 19, 21, 22, 25, 26, 28, 29, 47, . . .

forms sequence A178482 in the OEIS.
Finally, we consider antipalindromic expansions, i.e., expansions of the form n = [x.xR],

where the overline denotes a bitwise complement 0 → 1, 1 → 0. Here we have to allow
leading zeros in the left part and trailing zeros in the right part.

Theorem 6.4. There is a 193-state automaton that accepts precisely those (n)F for which
n has a (possibly non-canonical) antipalindromic base-φ expansion.

Proof. We use the following Walnut code to produce the automaton:

reg compl {0,1} {0,1} "[0,0]*([0,1]|[1,0])*":

def antip "?msd_fib $frougny(n,x,y) & $compl(x,y)":

The first few terms of this sequence are

1, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 45, . . . .

This is apparently a new sequence, never studied before, and is sequence A362781 in the
OEIS.

Table 6 gives the first few antipalindromic expansions for these numbers.
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n [x.y]
1 1.0
3 0011.0011
4 101.010
5 0110.1001
6 001001.011011
8 001100.110011
11 10101.01010
13 00100001.01111011
14 011011.001001
15 00100100.11011011

Table 6: Antipalindromic expansions.

7 Canonical expansions with fixed number of 1’s

As further examples of what can be done, let us consider those n for which (n)φ contains
a given fixed number t of 1’s, for 2 ≤ t ≤ 5. We use the following code:

reg haszero1 {0,1} "0*":

reg hasone1 {0,1} "0*10*":

reg hastwo1 {0,1} "0*10*10*":

reg hasthree1 {0,1} "0*10*10*10*":

reg hasfour1 {0,1} "0*10*10*10*10*":

reg hasfive1 {0,1} "0*10*10*10*10*10*":

def canon2 "?msd_fib Ex,y $saka(n,x,y) & (($haszero1(x)&$hastwo1(y))|

($hasone1(x)&$hasone1(y))|($hastwo1(x)&$haszero1(y)))":

def canon3 "?msd_fib Ex,y $saka(n,x,y) & (($haszero1(x)&$hasthree1(y))|

($hasone1(x)&$hastwo1(y))|($hastwo1(x)&$hasone1(y))|

($hasthree1(x)&$haszero1(y)))":

def canon4 "?msd_fib Ex,y $saka(n,x,y) & (($haszero1(x)&$hasfour1(y))|

($hasone1(x)&$hasthree1(y))|($hastwo1(x)&$hastwo1(y))|

($hasthree1(x)&$hasone1(y))|($hasfour1(x)&$haszero1(y)))":

def canon5 "?msd_fib Ex,y $saka(n,x,y) & (($haszero1(x)&$hasfive1(y))|

($hasone1(x)&$hasfour1(y))|($hastwo1(x)&$hasthree1(y))|

($hasthree1(x)&$hastwo1(y))|($hasfour1(x)&$hasone1(y))|

($hasfive1(x)&$haszero1(y)))":

We summarize our results below.

Theorem 7.1. For all t ≥ 0 there is an automaton recognizing those (n)F such that (n)φ
contains exactly t 1’s. For 2 ≤ t ≤ 5 the number of states is given in Table 7.

24



Proving Properties of φ-Representations with the Walnut Theorem-Prover

sequence in OEIS
t number of states enumerating (n)φ

with t 1’s
2 6 A005248
3 9 A104626
4 24 A104627
5 46 A104628

Table 7: Number of states for automaton recognizing (n)F such that (n)φ contains exactly
t 1’s.

8 Knott expansions

Recently Dekking and Van Loon [13] studied Knott representations of the positive
integers, which are those φ-representation of n that do not end in 011 (followed, perhaps,
by an arbitrary number of 0’s). For example, 1.11 and 10.01 are Knott representations of
2, but 1.1011 and 10.0011 are not Knott. They gave a method to compute Totκ(n), the
number of Knott representations of n in terms of the Zeckendorf representation of n, but
finding it and expressing it is rather complicated. Here we show that, starting with the first
Frougny-Sakarovitch automaton, one can easily find, with Walnut, a linear representation
for Totκ(n) that permits efficient computation. All we have to do is find an automaton
to check the Knott condition and ask Walnut to compute the appropriate matrices, as
follows:

def dekking "?msd_fib $frougny(n,x,y) & $knott(x,y)":

def dek n "?msd_fib $dekking(n,x,y)":

These give a linear representation (v, γ, w) for Totκ(n) of rank 122. This is sequence
A289749 in the OEIS.

This linear representation gives us a O(log n) method to compute Totκ(n), and much
more. It also allows us to compute closed forms for various kinds of n. For example, we
can easily recover the following two results of [13]:

Theorem 8.1. We have

(a) Totκ(Fk) = Fk for k ≥ 1;

(b) Totκ(Lk) =

{
k, if k odd;

k + 1, if k even.

Proof. The basic idea has already been explored in detail in a number of works; see [34]
for example. The basic idea is that if the Zeckendorf representation of n looks like rskt
for strings r, s, t, then the linear representation for f evaluates to vγ(r)γ(s)kγ(t)w, and
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therefore is dependent on the entries of the kth power of the matrix γ(s). This, in turn, is
governed by the zeros of the minimal polynomial of γ(s).

For our Theorem, we have (Fk)F = 10k−2 and (Lk)F = 1010k−3. Therefore, the subse-
quences Totκ(Fk) and Totκ(Lk) can be expressed as a linear combination of the powers of
the zeros of the minimal polynomial of γ(0).

We can ask Maple (or any symbolic algebra system) to compute the minimal polynomial
of γ(0); it is

X3(X2 + 1)(X4 + 3X2 + 1)(X2 +X − 1)(X2 −X − 1)(X − 1)3(X + 1)3.

The zeros other than 0, 1,−1 are therefore

−φi, −(1/φ)i, (1/φ)i, φi, −φ, 1/φ, −1/φ, φ.

It follows that Totκ(Fk) for k ≥ 3 is a linear combination of the k’th powers of these zeros,
together with k2, k, 1, k2(−1)k, k(−1)k, (−1)k. We can then solve for the coefficients with
linear algebra and hence prove both of the desired results.

Furthermore, we can (almost trivially) obtain new results at will. As an example,
consider the following result:

Proposition 8.2. We have Totκ(3Fn) = Fn+2 − Fn−4 for n ≥ 4.

Proof. We use the fact that (3Fn)F = 10n10, and the technique above.

As another example of the power of these techniques, let us compute the average
number of Knott expansions for n in the interval Fi ≤ n < Fi+1. The idea was already
explained in [34, §9.10]: the canonical Zeckendorf representations for n in the interval
[Fi, Fi+1) consist of those i − 1 bit numbers that start with 1 and have no occurrence of
11. Suppose (v′, γ′, w′) is a linear representation for Totκ that has been modified so that
v′γ′(x)w′ = 0 if x has an occurrence of 11; then

sκ(i) :=
∑

Fi≤n<Fi+1

Totκ(n) =
∑

x contains no 11
and starts with 1

|x|=i−1

v′γ′(x)w′

= v′γ′(1)(γ′(0) + γ′(1))i−2w′,

and hence sκ(n) is representable as a linear combination of the i−2’th powers of the zeros
of the minimal polynomial for γ′(0) + γ′(1). We can then determine the coefficients by
solving a linear system. When we do this, we get the following result:

Theorem 8.3. The average number of Knott expansions for n in the interval [Fi, Fi+1) is
asymptotically Θ(ρi), where ρ = ζ/φ

.
= 1.5334624126, and ζ

.
= 2.4811943040920156 is the

dominant zero of X3 − 2X2 − 2X + 2.

Proof. We use this Walnut code to compute the linear representation:
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def dek2 n "?msd_fib (~$has11(n)) & $dekking(n,x,y)":

The result is a linear representation of rank 122, with minimal polynomial of degree 38.
We can use the technique of [15, Theorem 6] to refine this minimal polynomial for sκ(i) to

(X3 − 2X2 − 2X + 2)(X + 1)(X4 + 3X2 + 1)(X2 −X − 1).

The dominant zero here is 2.4811943040920156 · · · of X3 − 2X2 − 2X + 2. Dividing by
Fi−1, the number of summands, gives the result for the average value.

9 Natural expansions

Dekking and Van Loon also enumerated what they called “natural” φ-representations,
which are those expansions n = [x.y]φ where the length of y (not including trailing zeros,
of course) is the same as the length of y′, where (n)φ = x′.y′.

We can do this in the same manner as we constructed the automaton saka above:
namely, we simply intersect the first Frougny-Sakarovitch automaton with another au-
tomaton that imposes the length condition.

reg first1match {0,1} {0,1} "[0,0]*[1,1]([0,0]|[0,1]|[1,0]|[1,1])*":

def natural "?msd_fib Ew,x $saka(n,w,x) & $frougny(n,y,z) &

$first1match(x,z)":

def nat n "?msd_fib $natural(n,y,z)":

which produces a linear representation of rank 123 for Totν(n), the number of such expan-
sions of length n. Using this linear representation, we can easily recover Theorem 4.3 of
Dekking and Van Loon, as follows:

Theorem 9.1. We have Totν(F2n+1) = Totν(F2n+2) = F2n+1 for n ≥ 0.

Using the same technique, we can also easily prove an additional result:

Theorem 9.2. We have Totν(L2n+1) = 1 and Totν(L2n) = 2n for n ≥ 1.

10 Dekking–Van Loon “canonical” expansions

Dekking and Van Loon [14] introduced a different kind of base-φ representation, which
they called “canonical”. However, to avoid confusion, in this paper, we call them DVL-
expansions.

In a DVL expansion, we allow 11, but only as the digits d1d0, and then only if d−1 = 0.
We can create an automaton dvl that accepts DVL expansions by adding a restriction
dvlcond to frougny, as depicted in Figure 13.

The input is x and y in parallel, corresponding to the φ-representation x.yR, and accepts
if it obeys the DVL condition.

We can then accept DVL expansions, as follows:
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def dvl "?msd_fib $frougny(n,x,y) & $dvlcond(x,y)":

The resulting automaton has 48 states and accepts n, x, y iff the DVL expansion of n is
[x.yR].

0

[0,0]

1

[1,0] 2

[0,1] 3

[1,1]

[0,1]

4

[0,0]

5

[1,0]

[1,0]
6

[0,0]
[0,0]

[1,0]

[1,0]

[0,1]

[1,1]
[0,0]

[1,0]

[0,1] [1,1]

[0,0]

Figure 13: Automaton checking the DVL condition.

We can then use this automaton to “automatically” obtain many of the results in [14];
for example, their Proposition 3.3:

Proposition 10.1. The canonical φ-representation of an integer n differs from the DVL
expansion of n if and only if there exists m ≥ 1 such that n = ⌊(φ+ 2)m⌋.

Proof. We use the Walnut code

reg equal {0,1} {0,1} "([0,0]|[1,1])*":

def differ "?msd_fib Ex,y,w,z $saka(n,x,y) & $dvalcanon(n,w,z) &

((~$equal(x,w))|(~$equal(y,z)))":

eval prop33 "?msd_fib An $differ(n) <=> (Em,t m>=1 & $phin(m,t) &

n=t+2*m)":

and Walnut returns TRUE.

Theorem 6.2 of Dekking and Van Loon [14] characterized the lengths of vertical runs
in DVL expansions; they used a case-based proof and 3 pages. We can obtain their results
directly using exactly the same ideas as for canonical expansions above in Theorem 5.4.
For example, for i ≥ 1, we use the code
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def matchdvl "?msd_fib Ex,y $dvl(n,x,y) & $isfib(t) & $match1(x,t)":

def verticaldvl "?msd_fib (i>0) & En (~$matchdvl(n-1,t)) &

(~$matchdvl(n+i,t)) & Aj (j<i) => $matchdvl(n+j,t)":

which gives an 11-state automaton from which we can easily read off their results.

11 Algebraic integers

As is well-known [37, §2.4], the algebraic integers of Q(
√
5) are given by Z[φ]. The

non-negative real members of Z[φ] are precisely those with finite φ-representations [31].
Given a real number of the form z = mφ + n ≥ 0 with m,n ∈ Z, we would like

to compute its φ-representation with an automaton. Since m,n could each possibly be
negative, it makes sense to represent them in negaFibonacci representation. We can then
compute the appropriate automaton, using Eqsuations (2) and (3) by a small variation of
what we did in Section 2. We give the Walnut code:

def intpartleft "?msd_fib Er,s,t,y,b,c $shiftr(x,r) & $shiftr(r,s) &

$shiftr(s,t) & $fibnorm(t,y) & $lstbit1(x,b) & $lstbit3(x,c) &

z=y+b+c":

def phipartleft "?msd_fib Er,s,y,b $shiftr(x,r) & $shiftr(r,s) &

$fibnorm(s,y) & $lstbit2(x,b) & z=y+b":

def intpartright "?msd_neg_fib Er $shiftl(x,r) & $negfibnorm(r,z)":

def phipartright "?msd_neg_fib $negfibnorm(x,z)":

def genfrou "?msd_neg_fib Ez,t,u,q,r,s $intpartleft(x,?msd_fib z) &

$fibnegfib((?msd_fib z),t) & $intpartright(y,u) & n=t+u &

$phipartleft(x,?msd_fib q) & $phipartright(y,r) &

$fibnegfib((?msd_fib q),s) & m=r+s":

# 536 states

def canfrou "?msd_neg_fib $genfrou(m,n,x,y) & $no11xy(x,y)":

# 259 states

Here genfrou does not assume that the expansion given by [x.yR] is canonical, but canfrou
does.

As an application, let us find the algebraic numbers mφ+n such that the left and right
parts of their base-φ representation have the same length.

Theorem 11.1. There is a 96-state automaton that accepts those pairs m,n, in negaFi-
bonacci representation, such that (mφ+ n)φ has left and right parts of the same length.
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Proof. We use the following Walnut code:

def samelen "?msd_neg_fib Ex,y $canfrou(m,n,x,y) & $first1match(x,y)":

12 A final word

Walnut is available for free download at
https://cs.uwaterloo.ca/~shallit/walnut.html.

For the definitions of Walnut automata that we did not give explicitly, see
https://cs.uwaterloo.ca/~shallit/papers.html.

Most of the other results of [13] can be proved using the analogous techniques.
In principle, everything we have said in this paper can be applied to β-expansions,

where β is a quadratic Pisot number. The choice β = φ was particularly easy in the
current version of Walnut, because it already has Fibonacci and negaFibonacci numbers
implemented, and adders for integers represented in these forms.
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