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On 3-generated axial algebras of Jordan type 1
2

Ravil Bildanov, Ilya Gorshkov

Abstract. Axial algebras of Jordan type η are a special type of commutative non-
associative algebras. They are generated by idempotents whose adjoint operators
have the minimal polynomial dividing (x − 1)x(x − η), where η is a fixed value
that is not equal to 0 or 1. These algebras have restrictive multiplication rules that
generalize the Peirce decomposition for idempotents in Jordan algebras. A universal
3-generated algebra of Jordan type 1

2 as an algebra with 4 parameters was constructed
by I. Gorshkov and A. Staroletov. Depending on the value of the parameter, the
universal algebra may contain a non-trivial form radical. In this paper, we describe
all semisimple 3-generated algebras of Jordan type 1

2 over a quadratically closed field.

Introduction

Axial algebras of Jordan type η were introduced by Hall, Rehren, and Shpectorov [5]
within the framework of the general theory of axial algebras. These algebras are commutative
non-associative algebras over a field F, generated by special idempotents known as primitive
axes. While Jordan algebras generated by primitive idempotents are an example of algebras
of Jordan type 1

2
, not all algebras of this type are Jordan algebras. The Matsuo algebras,

constructed from the group of 3-transpositions, are examples of such algebras. It was
proved in [5] (with a correction in [6]) that for η ̸= 1

2
, algebras of Jordan type η are the

Matsuo algebras or their quotient algebras. Therefore, the case η = 1
2
is special for algebras

of Jordan type, and for this η, they are called algebras of Jordan type 1
2
. The class of

Matsuo algebras was introduced by Matsuo [8] and later generalized in [5].
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Algebras of Jordan type 1
2
are not exhausted by Matsuo algebras and their quotient

algebras. Moreover, the quotient algebras of Matsuo algebras do not contain all Jordan
algebras generated by primitive idempotents. For example, the 27-dimensional Albert
algebra is generated by 4 primitive idempotents and hence it is an algebra of Jordan type
1
2
but not a Matsuo algebra [1].
A universal 3-generated algebra of Jordan type 1

2
A(α, β, γ, ψ) was constructed in [3].

It is proved there that if (α + β + γ − 2ψ − 1)(αβγ − ψ2) ̸= 0 and ψ2 − αβγ is a square
in F, then A(α, β, γ, ψ) is isomorphic to the algebra M+

3 (F) of 3× 3 matrices with Jordan
multiplication. Otherwise, the algebra A(α, β, γ, ψ) is not simple.

A Frobenius form (·, ·) on algebra A is a nonzero symmetric bilinear form that associates
with multiplication in A, i.e., ∀a, b, c ∈ A, we have (ab, c) = (ac, b) and (a, a) ̸= 0 for each
axis a ∈ A. Hall, Rehren, and Shpectorov [5] showed that for algebras of Jordan type, there
exists a unique Frobenius form with the property (a, a) = 1 for every primitive axis a.

Let A be an algebra with a Frobenius form (·, ·). The radical of the form (·, ·) is the
ideal R(A) generated by elements x such that (x, a) = (a, x) = 0 for every element a ∈ A.

The purpose of this article is to describe all 3-generated algebras of Jordan type 1
2
with

trivial radical over a quadratically closed field.
The universal 3-generated algebra A(α, β, γ, ψ) from [3] is a Jordan algebra, so any

quotient algebra is also Jordan. However, we use notation from universal algebra instead
of notation from Jordan algebras. When we embed a 3-generated algebra into some large
algebra, its parameters remain unchanged, even though the large algebra may not be Jordan.
For example, 2-generated subalgebras are studied in [2, Section 3]. In this paper, it is shown
that isomorphic 2-generated subalgebras with different parameters of the Frobenius form
have fundamentally different properties when embedded in a larger algebra. This statement
emphasizes the importance of studying semisimple 3-generated algebras of Jordan type as
algebras with parameters.

1 Preliminary results

We consider commutative non-associative algebras over a ground field F of characteristic
not two. For definitions, we almost always follow [5] and [4].

We denote the linear span of the set X over F by L⟨X⟩, and the algebra generated by
the set X by ⟨⟨X⟩⟩.

Notation 1. Given a ∈ A and λ ∈ F, consider the subspace Aλ(a) = {u ∈ A | au = λu}.
Obviously, Aλ(a) is the eigenspace of the operator ada : x→ ax, associated with λ ∈ F.

Definition 1.1. An idempotent a ∈ A is said to be primitive if dim(A1(a)) = 1.

Definition 1.2. An algebra A is an algebra of Jordan type 1
2
if A is generated by a set

of primitive idempotents X with the following property: For every x ∈ X, there is a
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decomposition A = A0(x)⊕A1(x)⊕A 1
2
(x) with the following fusion (multiplication) rules:

A0(x)A 1
2
(x) ⊆ A 1

2
(x), A1(a)A 1

2
(x) ⊆ A 1

2
(x), A0(x)A1(x) = 0,

(A0(x))
2 ⊆ A0(x), (A1(x))

2 ⊆ A1(x), (A 1
2
(x))2 ⊆ A0(x)⊕ A1(x).

Such idempotents are called axes. By an n-generated algebra we mean an algebra
generated by n primitive axes.

Given an axial algebra of Jordan type 1
2
A and an axis a ∈ A, the map τa : A → A

which acts as xτa = (−1)2λx, for x ∈ Aλ(a), is an involution automorphism of A called
Miyamoto involution. It is clear that yτa = y− 4ya+ 4ϕa(y) for each y ∈ A, where ϕa(y) is
the projection of y on A1(a).

Let us introduce some classes of simple Jordan algebras.

Definition 1.3. Denote by M+
n (F) the matrix algebra Mn(F) with Jordan product

A ◦B =
1

2
(AB +BA).

Definition 1.4. If j is an involutory automorphism of Mn(F), then we define the Hermitian
Jordan algebra H(Mn(F), j) as {A ∈M+

n (F) | j(A) = A}.

Definition 1.5. Let V be an n-dimensional vector space over F and ϕ a symmetric bilinear
form. We define

(a⊕ v) • (b⊕w) = (ab+ ϕ(v,w))⊕ (aw + bv), where a, b ∈ F and v,w ∈ V.

Then, the vector space F⊕ V with multiplication • gives a Jordan algebra which we
call the Jordan algebra of the symmetric bilinear form and denote by JFormn(F).

It is well known that M+
n (F), H+

n (F) and JFormn(F) are simple Jordan algebras for
n ≥ 2 (see [7, Theorem 23.1.2]), so they are algebras of Jordan type 1

2
.

Lemma 1.6. [6, Theorem 4.1] Every algebra of Jordan type η admits a unique Frobenius
form which satisfies the property (a, a) = 1 for all axes a ∈ X.

Lemma 1.7. [5, Proposition 2.7] The radical of Frobenius form R(A) coincides with the
largest ideal of A containing no axes from A.

Definition 1.8. An algebra of Jordan type η is semisimple if the radical of Frobenius form
is trivial.

If A is a Jordan type η algebra, then A/R(A) is a Jordan type η algebra too. It follows
from Lemma 1.6 that A/R(A) has a unique Frobenius form with the property (ā, ā) = 1 for
every axis ā ∈ A/R(A). In the next lemma we prove that when factorizing by the radical,
the Frobenius form does not change.
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Lemma 1.9. Let A be an algebra of Jordan type η. Then, for all a, b ∈ A and their images
a, b ∈ A/R(A), we have (a, b) = (a, b).

Proof. Let a = a+ ra, b = b+ rb, where a, b ∈ A/R(A) and ra, rb ∈ R(A). Then,

(a, b) = (a+ ra, b+ rb) = (a, b) + (a, rb) + (b, ra) + (ra, rb) = (a, b).

Lemma 1.10. [4, Lemma 2] Let A be a finitely generated algebra of Jordan type 1
2
, with

a, b axes, and let α := (a, b). Then we have the following equalities:

1. (a0(b))
2 = (1− α)a0(b);

2. (a 1
2
(b))2 = αa0(b) + (α− α2)a;

3. a0(b)a 1
2
(b) = 1

2
(1− α)a 1

2
(b).

From Lemma 1.6 it follows that on any algebra of Jordan type η A there is a unique
Frobenius form with the property (a, a) = 1 for any axis a ∈ A.

Lemma 1.11. Let A = ⟨⟨a, b⟩⟩ be a 2-generated algebra of Jordan type 1
2
. Then one of the

following holds:

1. dim(A) = 1, (a, b) = 1, a = b, dim(R(A)) = 0;

2. dim(A) = 2, (a, b) = 0, A ∼= F⊕ F, dim(R(A)) = 0;

3. dim(A) = 2, (a, b) = 1, dim(R(A)) = 1;

4. dim(A) = 3, (a, b) = 0, dim(R(A)) = 1, A/R(A) ∼= F⊕ F;

5. dim(A) = 3, (a, b) = 1, dim(R(A)) = 2;

6. dim(A) = 3, (a, b) ̸= 0, 1, and A is a Matsuo algebra. In particular, it is a simple
Jordan algebra isomorphic to JForm2(F).

Proof. The assertion of the lemma is a simple consequence of [5, Theorem 1.1].

Lemma 1.12. [4, Corollary 1] Let A be a 2-generated algebra of Jordan type 1
2
with

generating axes a and b. Let α := (a, b). Then we have

1. a(ab) = 1
2
(αa+ ab);

2. (ab)b = 1
2
(αb+ ab);

3. (ab)(ab) = α
4
(a+ b+ 2ab).

Lemma 1.13. [3, Theorem 1] Let A be a 3-generated Jordan type 1
2
algebra. There exists

a 3-generated 9-dimensional algebra A(α, β, γ, ψ) such that A is a quotient algebra of
A(α, β, γ, ψ) for suitable values of parameters α, β, γ, ψ.

Let A = ⟨⟨a, b, c⟩⟩, dim(A) = 9, α = (a, b), β = (b, c), γ = (a, c), ψ = (ab, c). In Table 1
below (that is similar to [3, Table 6] up to renumbering rows), we present all possible
relations for α, β, γ, ψ for A(α, β, γ, ψ) to not be simple.
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Ai Relations dim(A/R(A)) Basis of the radical

A1 ψ = α = β = γ = 1 1 b− a, c− a, ab− a, bc− a, ac− a,

a(bc) − a, b(ac) − a, c(ab) − a

A2 ψ = α = β = 0, γ = 1 2 c− a, ab, bc, ac− a,

a(bc), b(ac), c(ab)

A3 ψ = α = β = γ = 0 3 ab, bc, ac, a(bc), b(ac), c(ab)

A4 ψ = α = 0, β, γ ̸= 0,

β + γ = 1

3 ab,
1

2
γa−

1

2
βb−

1

2
c + bc,

−
1

2
γa +

1

2
βb−

1

2
c + ac,

1

4
γa +

1

4
βb−

1

4
c + a(bc),

1

4
γa +

1

4
βb−

1

4
c + b(ac), c(ab)

A5 αβγ = ψ2, ψ ̸= 0, α ̸= 1,

α + β + γ = 2ψ + 1

3 α(β − 1)a + α(γ − 1)b + α(1 − α)c + (2α− 2ψ)ab,

(αβ − αψ)b + (ψ − αβ)ab + (α2 − α)bc,

(αγ − αψ)a + (ψ − αγ)ab + (α2 − α)ac,

(αψ − α2β)a + (α + ψ − α2 − αγ)ab + 2α(α− 1)a(bc),

α(ψ − αγ)b + (α + ψ − α2 − αβ)ab + 2α(α− 1)b(ac),

(ψ − αβ)a + (ψ − αγ)b + (1 − α)ab + 2(α− 1)c(ab)

A6 ψ = α = β = 0, γ ̸= 0, 1 4 ab, bc, ac, a(bc), b(ac), c(ab)

A7 ψ2 ̸= αβγ,

α + β + γ = 2ψ + 1,

α ̸= 1

4 1
2
(β − 1)a + 1

2
(β − α)b + 1

2
(1 − α)c + (1 − β)ab + (α− 1)bc,

1
2
(γ − α)a + 1

2
(γ − 1)b + 1

2
(1 − α)c + (1 − γ)ab + (α− 1)ac,

(2ψ − 2αβ + β − 1)a + (γ − 1)b + (1 − α)c + (4 − 2α− 2γ)ab + (4α− 4)a(bc),

(β − 1)a + (2ψ − 2αγ + γ − 1)b + (1 − α)c + (4 − 2α− 2β)ab + (4α− 4)b(ac),

(ψ − α)a + (ψ − α)b + α(1 − α)c + (2 − β − γ)ab + (2α− 2)c(ab)

A8 ψ = α = 0, β, γ ̸= 0,

β + γ ̸= 1

6 ab, b(ac) − a(bc), c(ab)

A9 αβγ = ψ2, ψ ̸= 0,

α + β + γ ̸= 2ψ + 1

6 −βγab− αβac + 2ψa(bc),

−βγab− αγbc + 2ψb(ac),

−αγbc− αβac + 2ψc(ab)

Table 1: Bases of the radical

2 Main Results

In this section we assume that A is a 3-generated algebra of Jordan type 1
2
with a trivial

radical over a quadratically closed field F and denote by (·, ·) the unique Frobenius form on
A satisfying the property that (a, a) = 1 for every axis a of A.

Theorem 2.1. Let A be a 3-generated algebra of Jordan type 1
2
with a trivial radical over

a quadratically closed field F with characteristic not equal to two or three. Then A is
isomorphic to one of the following algebras:

1. Fn, n ∈ {1, 2, 3};

2. JForm2(F);

3. F⊕ JForm2(F);

4. M+
2 (F);

5. H(M3(F), j) with j(X) = XT ;
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6. M+
3 (F).

It follows from Lemma 1.13, that any algebra of Jordan type 1
2
is isomorphic to the

quotient algebra of A(α, β, γ, ψ) for some parameters α, β, γ, ψ. From [7, Enlightenment
Structure Theorem] we obtain that A(α, β, γ, ψ)/R(A(α, β, γ, ψ)) is a direct sum of simple
algebras. Consequently, to describe 3-generated algebras of Jordan type 1

2
with a trivial

radical, we need to describe the quotient algebras of A(α, β, γ, ψ) by its radical for each
choice of the parameters α, β, γ, ψ.

We use the description of the algebra A(α, β, γ, ψ) from [3, Theorem 2]. Let us recall
that, following [3], we use the notation α = (a, b), β = (b, c), γ = (a, c), ψ = (ab, c).

In Table 1, one can find the dimensions and bases of the radicals of the algebra
A(α, β, γ, ψ). Denote by Ai the universal 9-dimensional algebra A(αi, βi, γi, ψi) with pa-
rameters and numeration from Table 1, Ri the radical of this algebra and by Si the quotient
algebra Ai/Ri.

We begin with two trivial propositions for 1-dimensional and 2-dimensional algebras,
which are not generated by three linearly independent axes.

Proposition 2.2. If A is a 1-dimensional algebra of Jordan type 1
2
with a trivial radical,

then A ∼= S1.

Proof. It is easy to see that S1
∼= F. We have that A is 1-dimensional, so dimL⟨a, b, c⟩ = 1

and a = b = c. Hence A ∼= F ∼= S1.

Proposition 2.3. If A is a 2-dimensional 3-generated algebra of Jordan type 1
2
with a trivial

radical, then A ∼= F⊕ F ∼= S2.

Proof. By Lemma 1.11, there is only one 2-dimensional algebra of Jordan type 1
2
with a

trivial radical, so A ∼= F⊕ F ∼= S2.

Lemma 2.4. Algebras S4 and S5 are isomorphic.

Proof. We will first show that S4 = ⟨⟨a, c⟩⟩. Put S = ⟨⟨a, c⟩⟩. We have that

S = S0(a) + S1(a) + S 1
2
(a) and c = c0(a) + γa+ c 1

2
(a),

where c0(a) ∈ S0(a) and c 1
2
(a) ∈ S 1

2
(a). Firstly, assume that c 1

2
(a) = 0. In this case,

we have that c = c2 = (c0(a))
2 + (γa)2, in particular (c0(a))

2 = c0(a). Consequently,
c0(a)c = (c0(a))

2 = c0(a); which contradicts c being the primitive idempotent. Thus,
c 1

2
(a) ̸= 0. Assume that c0(a) = 0. Then,

γa+ c 1
2
(a) = c = c2 = γ2a+ γc 1

2
(a) + (c 1

2
(a))2.

Hence, γ = 1 and from the definition of S4 it follows that β = 0. In this case, we have
that (a− c, b) = (a, b)− (c, b) = 0. It follows that a− c ∈ R(S4), which is a contradiction.
Therefore, dim(S) = 3. Thus, S4 = S and S4 is generated by 2 axes. From Lemma 1.11 it
follows that S4 ≃ JForm2(F)
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Now, consider the algebra S5. By definition of S5, we have (a, b) ̸∈ {0, 1}, where
a, b are the axes from the generating set of the algebra S5. Lemma 1.11 implies that
⟨⟨a, b⟩⟩ ≃ JForm2(F). Since dim(⟨⟨a, b⟩⟩) = 3, we obtain ⟨⟨a, b⟩⟩ = S5, in particular
S5 ≃ S4.

Proposition 2.5. If A is a 3-dimensional 3-generated algebra of Jordan type 1
2
with a trivial

radical, then A is isomorphic to either S3 or S5.

Proof. Assume that A is 2-generated and let a and b are the generating axes. It follows
from Lemma 1.11 that there is only one 3-dimensional 2-generated algebra of Jordan type
1
2
with a trivial radical. In this case, we can choose any other axis of the algebra A. Let us

call it c. Put c = aτb = a− 4ab+ 4αb. We have β = α, γ = (1− 2α)2 and ψ = α(2α− 1).
Therefore αβγ = ψ2, ψ ̸= 0, α ̸= 1, and α + β + γ = 2ψ + 1. So, in this case, A ≃ S5.

Assume that A is not generated by 2 axes. Therefore, based on the dimension of A, we
conclude that A = L⟨a, b, c⟩.

Assume that ab /∈ L⟨a, b⟩. Hence dim⟨⟨a, b⟩⟩ = 3. Therefore c ∈ L⟨a, b, ab⟩ = A, which
is a contradiction. Similarly, we can show that ac ∈ L⟨a, c⟩ and bc ∈ L⟨b, c⟩. In particular,
we have dim(⟨⟨a, b⟩⟩) = dim(⟨⟨a, c⟩⟩) = dim(⟨⟨c, b⟩⟩) = 2. From Lemma 1.11 it follows that
{(a, b), (a, c), (b, c)} ⊆ {0, 1}. Moreover, if (a, b) = 0, then ⟨⟨a, b⟩⟩ ≃ F ⊕ F. Therefore, if
(a, b) = (a, c) = (b, c) = 0, then A ≃ F⊕ F⊕ F and ψ = 0. In this case the Gram matrix of
the algebra A is the identity matrix and hence the radical of A is trivial. We conclude that
in this case A ≃ S3.

Assume that (a, c) ̸= 0. We have (a, c) = 1. In this case, R(⟨⟨a, c⟩⟩) is not trivial
and contains the element a − c. Assume that (a, b) = (b, c) = 0. In this case we have
(a− c, b) = 0. Consequently, a− c ∈ R(A), which is a contradiction. Therefore, without
loss of generality, we can assume that (b, c) = 1. If (a, b) = 1 then (a − c, b) = 0 and
consequently a − c ∈ R(A), which is a contradiction. Therefore (a, b) = 0. From the
description of 2-generated algebras of Jordan type 1

2
we have ab = 0, a = c+ ah, b = c+ bh,

where ah, bh ∈ A 1
2
(c). Therefore,

0 = ab = (c+ ah)(c+ bh) = c+
1

2
(ah + bh) + ahbh,

where c+ ahbh ∈ A0(c)⊕ A1(c) and ah + bh ∈ A 1
2
(c). Therefore ah + bh = 0. In particular,

b = aτc and dim(A) = 2.
Lemma 1.11 implies that in this case A ≃ JForm2(F).

Lemma 2.6. S6 is isomorphic to F⊕ JForm2(F).

Proof. Let ⟨⟨a, b, c⟩⟩ ≃ S6. We have (a, c) ̸∈ {0, 1}. Therefore ⟨⟨a, c⟩⟩ is isomorphic to
JForm2(F). From Table 1, it follows that the radical of A(0, 0, γ, 0) contains ab and bc.
Therefore, ab = bc = 0 and S6 ≃ ⟨⟨a, c⟩⟩ ⊕ ⟨⟨b⟩⟩ ≃ F⊕ JForm2(F).

Lemma 2.7. S7 is isomorphic to M+
2 (F).

7
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Proof. Assume that α = β = γ = 0. We have (cτb , a) = 2αβ + γ − 4ψ = −2 and
⟨⟨cτb , a, b⟩⟩ = ⟨⟨a, b, c⟩⟩ = S7. Thus, up to redesignation of the generating elements, we can
assume that γ ̸= 0.

Let

A =

(
1− λc 1

λc(1− λc) λc

)
, B =

(
1 0
λb 0

)
, C =

(
1 λa
0 0

)
,

where λa, λb, λc ∈ F \ {0}. Consider the following map f : S7 → M+
2 (F), defined by

f(a) = A, f(b) = B, f(c) = C. It is easy to see that dimL⟨A,B,C,A ◦ B⟩ = 4, so
⟨⟨A,B,C⟩⟩ =M+

2 (F).
A map (· , ·) :M+

2 (F)2 → F such that (X, Y ) = tr(XY ) = tr(X ◦Y ), for X, Y ∈M+
2 (F),

is a symmetric bilinear form on M+
2 (F) (see [7, Chapter 1.6]). This form associates with

the product ◦. Clearly, we have tr(A ◦ A) = tr(B ◦B) = tr(C ◦ C) = 1.
Furthermore, we see that

tr(A ◦B) = 1− λa + λb = α,

tr(B ◦ C) = 1 + λaλb = β,

tr(A ◦ C) = 1− λc + λaλc(1− λc) = γ and

tr(A ◦ (B ◦ C)) = tr(B ◦ (A ◦ C)) = tr(C ◦ (A ◦B)) = ψ =
1

2
(1− α− β − γ).

If α ̸= 0 then:

λa =
1

α(α− 1)
(ψ + αγ ∓

√
ψ2 − αβγ),

λb = −−1 + β + γ

γ
,

λc =
1− β

γ

are the solution of these equations.
If α = 0 then:

λa = − γ2 − γ

−1 + β + γ
, λb = −−1 + β + γ

γ
, λc =

1− β

γ

are the solution of these equations. Note that in this case −1 + β + γ ̸= 0, otherwise
ψ = αβγ = 0.

Using computer calculations, we show that multiplication table for f(⟨⟨a, b, c⟩⟩) 1

coincides with multiplication table for S7. Hence, f is an isomorphism.
We also use computer calculations to check that R(f(⟨⟨a, b, c⟩⟩)) = {0} and relations

between α, β, γ, ψ hold 2.

1Computer calculations for multiplication table in S7 can be found in https://github.com/

RavilBildanov/3gen-axial-algebras/blob/main/S7multiplicationtable.nb, see paragraph Tables.
2One can find our computer calculations here:

https://github.com/RavilBildanov/3gen-axial-algebras/blob/main/M2+(S7).nb
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∗ a b c ab

a a * * *

b ab b * *

c

1
2(α−1)

(
(γ − α)a

+(γ − 1)b+ (1− α)c

+2(−γ + 1)ab
)

1
2(α−1)

(
(β − 1)a+ (β − α)b

+(1− α)c+ 2(−β + 1)ab
) c *

ab 1
2 (aα+ ab) 1

2 (bα+ ab)

1
2(α−1)

(
(ψ − α)a

+(ψ − α)b+ (α− α2)c

+(2− β − γ)ab
)

1
4α(a+ b

+2ab)

Table 2: Multiplication table for S7

Proposition 2.8. If A is a 4-dimensional 3-generated algebra of Jordan type 1
2
with a trivial

radical, then one of the following assertions holds:

1. A ≃ S6 ≃ F⊕ JForm2(F);

2. A ≃ S7 ≃M+
2 (F).

Proof. The algebra M+
2 (F) is a simple Jordan algebra (see [7, Chapter 1.11]). The algebra

F⊕ JForm2(F) contains non-trivial ideals. Therefore M+
2 (F) ̸≃ F⊕ JForm2(F). Hence,

to prove this proposition, it suffices to show that S6 ≃ F⊕ JForm2(F) and S7 ≃M+
2 (F).

Thus the Proposition follows from Lemmas 8 and 9.

Lemma 2.9. S8
∼= H(M3(F), j).

Proof. Consider the following matrices in H(M3(F), j) and the map f : S8 → H(M3(F), j)
defined by f(a) = A, f(b) = B, f(c) = C, where

A =

 1 0 0
0 0 0
0 0 0

B =


0 0 0

0
1+
√

1−4λ2b
2

λb

0 λb
1−
√

1−4λ2b
2

C =


1+
√

1−4λ2c
2

0 λc
0 0 0

λc 0
1−
√

1−4λ2c
2

 .

The scalars λa, λb, λc ∈ F \ {0} are the invariant by θ parameters which are defined later
from conditions imposed on α, β, γ and ψ.

We show that the mapping f is an isomorphism between the algebras S8 andH(M3(F), j).
It is easy to see that A2 = A, B2 = B, and C2 = C. We check that

f(⟨⟨a, b, c⟩⟩) = L⟨A,B,C,A ◦ C,B ◦ C,A ◦ (B ◦ C)⟩.

Thus, dimL⟨A,B,C,A ◦ C,B ◦ C,A ◦ (B ◦ C)⟩ = 6. Hence ⟨⟨A,B,C⟩⟩ and H(M3(F), j)
are isomorphic as vector spaces.
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A map (·, ·) : H(M3(F), j)2 → F such that (X, Y ) = tr(XY ) = tr(X ◦ Y ), where
X, Y ∈ H(M3(F), j) is a symmetric bilinear form on H(M3(F), j) [7, Chapter 1.6]. This
form associates with the product ◦. Clearly, we have tr(A◦A) = tr(B ◦B) = tr(C ◦C) = 1.
Furthermore, we see that

tr(A ◦B) = 0,

tr(B ◦ C) = 1

4
(1−

√
1− 4λ2b)(1−

√
1− 4λ2c) = β,

tr(A ◦ C) =
1 +

√
1− 4λ2c
2

= γ, and

tr(A ◦ (B ◦ C)) = tr(B ◦ (A ◦ C)) = tr(C ◦ (A ◦B)) = 0.

So, we have conditions on λb, λc.
Take the basis {a, b, c, b ·c, a ·c, a ·(b ·c)} for S8. The multiplication table for f(⟨⟨a, b, c⟩⟩)

coincides with multiplication table for S8
3.

We also use computer calculations to check that R(f(⟨⟨a, b, c⟩⟩)) = {0} and relations
between α, β, γ, ψ hold 4.

We have that {A,B,C,B ◦ C,A ◦ C,A ◦ (B ◦ C)} is a basis of the algebra H(M3(F), j)
and hence the kernel of f is trivial. Thus f is an isomorphism of the algebras S8 and
H(M3(F), j).

Lemma 2.10. Algebras S8 and S9 are isomorphic.

Proof. Assume that α = β = γ = 1, but then ψ = 1 and we obtain a contradiction.

Let α ̸= 1, take d = xa(b) =
2ab− αa− b

α− 1
. It is known from [4], that d is a primitive

idempotent in S9 with ad = 0 and so d is an axis because S9 is a Jordan algebra.
Assume that (c, d) ̸= 0. It can be proved via computer calculations that the set

{a, c, d, ac, cd, a(cd)} is an additive basis of B = ⟨⟨a, c, d⟩⟩. In particular, B = S9. Define a
homomorphism f from S9 to S8 given by f(a) = ā, f(d) = b̄, f(c) = c̄. We have (ā, b̄) = 0,
(ā, b̄c̄) = 0, (ā, c̄) = β̄ ≠ 0 and (b̄, c̄) = γ̄ ̸= 0. The relation β̄ + γ̄ = 2ψ−β−αγ

α−1
+ γ ̸= 1 is

equivalent to α + β + γ ̸= 2ψ + 1, so f is an isomorphism between S8 and S9 iff (c, d) ̸= 0.
Now assume that (c, d) = 0. We will prove that γ ̸= 1 in this case. We have that

0 = (c, (α− 1)d) = (c, 2ab− αa− b, c)

= (2ab− b, c)− α = (2ab, c)− (b, c)− α

= 2ψ − β − α.

If γ = 1, then 2ψ + 1 = β + α + γ, a contradiction. Therefore, γ ̸= 1.

3Computer calculations for the multiplication table in S8 can be found in https://github.com/

RavilBildanov/3gen-axial-algebras/blob/main/S8multiplicationtable.nb, see paragraph Tables.
4Computer calculations for this proof can be found in

https://github.com/RavilBildanov/3gen-axial-algebras/blob/main/H3+(S8).nb
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On 3-generated axial algebras of Jordan type 1
2

Put d′ =
2ac− γa− c

γ − 1
. Note that (b, d′) ̸= 0. Indeed, if (b, d′) = 0, we have

0 = (b, 2ac− γa− c) = (b, 2ac)− (b, γa)− (b, c)

= 2ψ − γα− β

Using these equalities, we obtain α = γα and so γ = 1 or α = 0, a contradiction.
We then take a, b, d′ as the new generating set of S9 and, using the same computer

calculations, prove that {a, b, x, ab, ax, b(ax)} is an additive basis of B′ = ⟨⟨a, b, d′⟩⟩. Define
a homomorphism f ′ from S9 to S8 given by f(a) = ā′, f(d′) = b̄′, and f(b) = c̄′. We
have (ā′, b̄′) = 0, (ā′, b̄′c̄′) = 0, (ā′, c̄′) = β̄′ ̸= 0 and (b̄′, c̄′) = γ̄′ ̸= 0. The relation
β̄′ + γ̄′ = 2ψ−β−αγ

γ−1
+ α ̸= 1 is equivalent to α + β + γ ̸= 2ψ + 1, so f ′ is an isomorphism

between S8 and S9 iff (b, d′) ̸= 0.
We can also check that the multiplication table for a, c, d, ac, cd, a(cd) coincides with

the multiplication table for the standard basis a, b, c, bc, ac, a(bc) of S8. This means that S9

contains a 6-dimensional subalgebra isomorphic to S8
5.

∗ a b c bc ac a(bc)

a a * * * * *

b 0 b * * * *

c ac bc c * * *

bc a(bc) 1
2 (bβ + bc) 1

2 (cβ + bc) β
4 (b+ c+ 2bc) * *

ac 1
2 (γa+ ac) a(bc) 1

2 (γc+ ac)
γ
4 bc+

β
4 ac

+ 1
2a(bc)

γ
4 (a+ c

+2ac)
*

a(bc) 0 1
4 (βac+ 2a(bc)) 1

4 (γbc+ βac)

βγ
8 b+

β
8 ac

+β
4 a(bc)

βγ
8 a+

γ
8 bc

+γ
4a(bc)

βγ
16 (a+ b)

Table 3: Multiplication table for S8

Proposition 2.11. If A is a 6-dimensional 3-generated algebra of Jordan type 1
2
with a

trivial radical, then A ≃ S8 ≃ S9 ≃ H(M3(F), j), where j(X) = XT .

Proof. The proposition follows from Lemmas 10 and 11.
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