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A δ-first Whitehead Lemma for Jordan algebras

Arezoo Zohrabi and Pasha Zusmanovich

Abstract. We compute δ-derivations of simple Jordan algebras with values in irre-
ducible bimodules. They turn out to be either ordinary derivations (δ = 1), or scalar
multiples of the identity map (δ = 1

2). This can be considered as a generalization
of the “First Whitehead Lemma” for Jordan algebras which claims that all such or-
dinary derivations are inner. The proof amounts to simple calculations in matrix
algebras, or, in the case of Jordan algebras of a symmetric bilinear form, to more
elaborated calculations in Clifford algebras.
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Introduction

Let A be a (generally, nonassociative) algebra, and M an A-bimodule, with the bimod-
ule action denoted by •, and δ an element of the ground field. Recall that a δ-derivation
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of A with values in M is a linear map D : A → M such that

D(xy) = δD(x) • y + δx •D(y) (1)

for any x, y ∈ A. Obviously, the ordinary derivations are 1-derivations, and in the case
where M = A, the regular bimodule, elements of the centroid are the special cases of
1
2
-derivations. Despite being seemingly a straightforward generalization of derivations, δ-

derivations appear in different situations and are proved to be a useful and interesting
invariant. For example, in Lie algebras context, they are related, for various values of δ,
to commutative 2-cocycles, arise in description of (ordinary) derivations of certain current
Lie algebras, and can be used to construct non-semigroup gradings; see [7] for further
references.

There are quite a lot of investigations of δ-derivations of various algebras with values in
itself, i.e., in the regular module — see, for example, in addition to the already mentioned
[7], also [3] and [6], and references therein — but very little has been done concerning
δ-derivations with values in more general modules.

In [5] we computed δ-derivations of simple finite-dimensional Lie algebras of character-
istic zero with coefficients in finite-dimensional modules. The motivation of doing this was
twofold: first, to establish a “δ-analog” of the classical First Whitehead Lemma, that is,
to prove that δ-derivations of a finite-dimensional simple Lie algebra of characteristic zero
with values in a finite-dimensional module are just inner derivations, with the exception
of peculiar cases related to sl(2). Second, to provide an alternative route to computation,
done in [6], of δ-derivations of algebras of skew-Hermitian matrices over octonions, an
interesting series of anticommutative nonassociative algebras.

The purpose of this note is to establish a “Jordan analog” of this result: we prove
that any δ-derivation of a finite-dimensional simple Jordan algebra with values in a finite-
dimensional unital irreducible bimodule is, in a sense, trivial, i.e., it is either an ordinary,
and hence inner, derivation (δ = 1), or is a scalar multiple of the identity map on the
underlying Jordan algebra, in which case the bimodule is the regular bimodule (δ = 1

2
).

(Note that, unlike in the Lie algebras case, there are no exceptional cases related to Jor-
dan algebras of small dimension). This can be considered as a generalization of the “First
Whitehead Lemma” for Jordan algebras, that is, the classical result that (ordinary) deriva-
tions of a finite-dimensional simple Jordan algebra with values in an irreducible bimodule
are inner.

As a corollary, we also present an alternative proof of the result, established in [6], that
δ-derivations of the algebra of Hermitian n×n matrices over octonions are trivial (which, in
its turn, helped to determine symmetric invariant bilinear forms on these algebras). These
octonionic matrix algebras generalize the 3 × 3 case of the 27-dimensional exceptional
simple Jordan algebra, and the 4 × 4 case appears in modern physical theories. (Note,
however, that for n ≥ 4 these algebras are neither Jordan, nor belong to any known variety
of nonassociative algebras studied in the literature). The proof uses the fact that the n×n
octonionic matrix algebra contains the simple Jordan subalgebra M+

n (K) of symmetric
matrices, and restricting a δ-derivation to that particular subalgebra gives a δ-derivation
of M+

n (K) with values in the whole octonionic matrix algebra.
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Notation and conventions

Unless stated otherwise, the ground field K is assumed to be arbitrary of characteristic
different from 2, a usual assumption in the (classical) Jordan structure theory. As we
deal simultaneously with Jordan algebras and associative algebras (as their associative en-
velopes), the multiplication in the former (or, more generally, in an arbitrary commutative
nonassociative algebra, like in Lemma 3.1 below) will be (traditionally) denoted by ◦, while
multiplication in the latter will be denoted by juxtaposition. Action of a Jordan algebra
on its bimodule is denoted by •. The action of an algebra on itself by multiplication is
called the regular representation.

For an associative algebra A, Aop denotes the “opposite” algebra, i.e., the same vector
space A subject to multiplication x · y = yx, and A(+) denotes its “plus” Jordan algebra,
i.e., the same vector space A subject to multiplication x ◦ y = 1

2
(xy + yx). Assuming

an algebra A has an involution (i.e., an antiautomorphism of order 2) a 7→ aJ, define
S+(A, J) = {a ∈ A | aJ = a} and S−(A, J) = {a ∈ A | aJ = −a}, the vector spaces
of J-symmetric and J-skew-symmetric elements, respectively. If A is associative, then
S+(A, J) is a Jordan subalgebra of A(+). Mn(A) denotes the matrix algebra of degree n
over the algebra A.

1 Recapitulation on Clifford algebras

Here we recall some facts related to Clifford algebras which will be used below, when
dealing with Jordan algebras of a symmetric bilinear form.

Let V be a finite-dimensional vector space equipped with a nondegenerate symmetric
bilinear form f , and C(V, f), or just C(V ) if there is no ambiguity what f is, a correspond-
ing Clifford algebra.

If W is a subspace of V , then, denoting by abuse of notation the restriction of f to W
by the same letter f , we have that C(W, f) is a subalgebra of C(V, f).

Fix an orthogonal, with respect to f , basis {u1, . . . , un} of V . Then the basis of C(V )
can be chosen to consist of elements

ui1ui2 . . . uik , where 1 ≤ i1 < i2 < · · · < ik ≤ n, 0 ≤ k ≤ n (2)

(as usual in such situations, we tacitly assume that the above product for k = 0, i.e., with
the zero number of factors, is equal to 1).

Let C(V )(k) be the
(
n

k

)
-dimensional subspace of C(V ) spanned by elements of the form

(2) for a fixed k. (Thus, C(V )(0) is just the one-dimensional space K1, and C(V )(1) = V ).
Then C(V ) is decomposed as the vector space direct sum

⊕n

k=0C(V )(k).

Lemma 1.1. In the Clifford algebra C(V, f) the following equality holds for any x, y1, . . . , yk ∈
V :

y1 · · · ykx = (−1)kxy1 · · · yk + 2

k∑

i=1

(−1)k+if(x, yi)y1 · · · yi−1ŷiyi+1 · · · yk (3)

(as usual, ̂ means that the corresponding element is omitted in the product).
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Proof. This is implicit in the corresponding Clifford-algebraic calculations in [1] and [2,
Chapter VII, §1]. Since we failed to find an explicit proof in the literature, we provide the
proof here.

We perform induction on k. For k = 1 the equality (3) reduces to xy1+y1x = 2f(x, y1),
the defining relation in the Clifford algebra. Now assume (3) holds for a certain k. Then

y1 · · · ykyk+1x = y1 · · · yk
(
− xyk+1 + 2f(x, yk+1)

)

= − y1 · · · ykxyk+1 + 2f(x, yk+1)y1 · · · yk

= −
(
(−1)kxy1 · · · yk + 2

k∑

i=1

(−1)k+if(x, yi)y1 · · · yi−1ŷiyi+1 · · · yk

)
yk+1

+ 2f(x, yk+1)y1 · · · yk

= (−1)k+1xy1 · · · yk+1 + 2

k+1∑

i=1

(−1)k+1+if(x, yi)y1 · · · yi−1ŷiyi+1 · · · yk+1,

as desired.

Corollary 1.2.

ui(u1 · · ·uk)ui =

{
(−1)k+if(ui, ui)u1 · · ·uk, if i ∈ {1, . . . , k}

(−1)k f(ui, ui)u1 · · ·uk, if i /∈ {1, . . . , k}.

Proof. Multiplying both sides of (3) with x from the left, and using the fact that x2 = f(x, x)1,
we get

xy1 · · · ykx = (−1)kf(x, x)y1 · · · yk + 2

k∑

i=1

(−1)k+if(x, yi)xy1 · · · yi−1ŷiyi+1 · · · yk.

Substituting in the last equality the appropriate ui’s instead of x and yi’s, and using
the fact that ui and uj anticommute for i 6= j, we get the required equalities.

2 Recapitulation on simple Jordan algebras and their irreducible bi-

modules

Here we briefly review the necessary facts about Jordan algebras and their modules.
The main sources are [1] and [2], Chapters II, V, and VII.

If J is a simple Jordan algebra, the associative universal envelope U(J) (called universal
associative algebra for the unital representations in [1], and universal unital multiplication
envelope in [2]) is semisimple, and unital irreducible J-bimodules are in a bijective corre-
spondence with simple components of U(J) (note, however, that since not every Jordan
algebra is special, J is not necessarily embedded into U(J)(+)).

Let us recall the isomorphism types of finite-dimensional simple Jordan algebras, their
associative universal envelopes, and their irreducible bimodules.
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(i) The ground field K. The associative universal envelope coincides with K, and any
unital irreducible K-bimodule is isomorphic to K itself.

(ii) The algebra J(V, f) = K1 ⊕ V of nondegenerate symmetric bilinear form f defined
on a vector space V of dimension ≥ 2. The multiplication between elements x, y ∈ V
is defined by x ◦ y = f(x, y)1. Define the vector space V ev as follows:

(a) If dimV is even, set V ev = V ;

(b) If dimV is odd, set V ev = V ⊕Ku, and extend f to V ev by setting f(u, u) = 1
and f(u, V ) = f(V, u) = 0.

The associative universal envelope is isomorphic to the so-called meson algebra; this
is the unital subalgebra of the algebra of linear endomorphisms of the Clifford alge-
bra C(V ev, f), generated by Jordan multiplications on the elements of J(V, f), i.e.,
by the maps x 7→ 1

2
(ax + xa), where a ∈ J(V, f). The Jordan algebra J(V, f) is

embedded into the algebra C(V ev, f)(+), and the action of J(V, f) on C(V ev, f) is
the restriction to J(V, f) of the regular representation of C(V ev, f)(+). Below we
describe the decomposition of C(V ev, f) into the direct sum of subspaces invariant
with respect to the action of J(V, f). The unital irreducible J(V, f)-bimodules are
in one-to-one correspondence with these subspaces. The precise description, in terms
of a fixed orthogonal basis of V , depends on the parity (more exactly, on the residue
modulo 4) of n.

Case (a): n = 2m. The irreducible J(V, f)-invariant subspaces are:

C(V )(0)⊕C(V )(1), C(V )(2)⊕C(V )(3), . . . , C(V )(2m−2)⊕C(V )(2m−1), C(V )(2m).

Case (b): n = 2m − 1. Extend the chosen orthogonal basis of V to an orthogonal
basis of V ev by adding u to it.

Case (b1): m is even. The irreducible J(V, f)-invariant subspaces are:

C(V )(0) ⊕ C(V )(1), C(V )(2) ⊕ C(V )(3), . . . , C(V )(m−2) ⊕ C(V )(m−1),

C(V )(0)u, C(V )(1)u⊕ C(V )(2)u, . . . , C(V )(m−3)u⊕ C(V )(m−2)u.

In addition to that, the subspace C(V )(m−1)u ⊕ C(V )(m)u decomposes as the direct
sum of two irreducible J(V, f)-invariant subspaces of the same dimension 1

2

(
2m
m

)
.

Case (b2): m is odd. The irreducible J(V, f)-invariant subspaces are:

C(V )(0) ⊕ C(V )(1), C(V )(2) ⊕ C(V )(3), . . . , C(V )(m−3) ⊕ C(V )(m−2),

C(V )(0)u, C(V )(1)u⊕ C(V )(2)u, . . . , C(V )(m−2)u⊕ C(V )(m−1)u.

In addition to that, the subspace C(V )(m−1)⊕C(V )(m) decomposes as the direct sum
of two irreducible J(V, f)-invariant subspaces of the same dimension 1

2

(
2m
m

)
.
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(iii) The algebra A(+), where A is a central simple associative algebra. The associative
universal envelope is A⊕ AJ, where J is an involution interchanging A and AJ. The
unital irreducible A(+)-bimodules are as follows. First, A (the regular bimodule),
with the action a • b = 1

2
(ab + ba) (here and below, we assume a belongs to the

Jordan algebra in question, and b to the corresponding bimodule); then, assuming A
has an involution K, there are additionally the following four bimodules:

(a) S+(A,K), a • b = 1
2
(ab+ baK);

(b) S+(A,K), a • b = 1
2
(aKb+ ba);

(c) S−(A,K), a • b = 1
2
(ab+ baK);

(d) S−(A,K), a • b = 1
2
(aKb+ ba).

(iv) S+(A, J), where A is a central simple associative algebra with an involution J of
the first kind. The associative universal envelope is A, and the unital irreducible
S+(A, J)-bimodules are S+(A, J) (the regular bimodule) and S−(A, J), both with the
action a • b = 1

2
(ab+ ba).

(v) S+(A, J), where A is a simple associative algebra whose center Z(A) is a quadratic
extension of the base field K, J is an involution of the second kind on A, and A over
Z(A) has an involution K commuting with J. The associative universal envelope is
A, and the unital irreducible S+(A, J)-bimodules are:

(a) S+(A, J), a • b = 1
2
(ab+ ba) (the regular bimodule);

(b) S+(A,K), a • b = 1
2
(ab+ baK);

(c) S−(A,K), a • b = 1
2
(ab+ baK).

(vi) The 27-dimensional algebra of 3 × 3 Hermitian matrices over octonions. The asso-
ciative universal envelope is isomorphic to the full 27 × 27 matrix algebra M27(K),
and the only unital irreducible bimodule is the regular one.

The algebras specified in (i)–(v) are special, while the last one, in (vi), is exceptional.
To summarize the special cases: any unital irreducible bimodule of a special simple

Jordan algebra J is a submodule of the restriction to J either of the regular representation
of U(J)(+), or of the representation of U(J)(+) in itself with one of the following actions:

a • b =
1

2
(ab+ baK) (4)

or

a • b =
1

2
(aKb+ ba), (5)

where a, b ∈ U(J)(+), and K is an involution on U(J). Note, however, that for an arbitrary
associative algebra A with an involution K, the action of type (5) coincides with the action
of type (4) for the algebra Aop (with the same involution K).

6



A δ-first Whitehead Lemma for Jordan algebras

3 δ-derivations, simple case

Lemma 3.1. Let D be a nonzero δ-derivation of a commutative algebra A with unit with
values in a unital symmetric A-bimodule M . Then either δ = 1 (i.e., D is a derivation),
or δ = 1

2
and D(x) = x •m for a certain element m ∈ M such that

(x ◦ y) •m =
1

2

(
x • (y •m) + y • (x •m)

)

for any x, y ∈ A.

Proof. An elementary proof consists of a repetitive substitution of 1 in the equation (1),
and is an almost verbatim repetition of the proof of Lemma 9 from [6] which treats the
case M = A (which, in its turn, is just a slight reformulation of Theorem 2.1 from [3]).

Lemma 3.2. Let J be a special Jordan algebra with unit, embedded into an algebra A(+)

for an associative algebra A. Let M be a submodule of the restriction to J of the regular
A(+)-bimodule, and D : J → M a nonzero δ-derivation. Then either δ = 1, or δ = 1

2
and

D(x) = 1
2
(xm+mx) for a certain element m ∈ M such that

xym+ yxm+mxy +myx− 2xmy − 2ymx = 0 (6)

for any x, y ∈ J .

Lemma 3.3. Let J be a special Jordan algebra with unit, embedded into an algebra A(+)

for an associative algebra A with involution K. Let M be a submodule of the restriction
to J of the A(+)-bimodule with the action a • b = 1

2
(ab + baK), and D : J → M a nonzero

δ-derivation. Then either δ = 1, or δ = 1
2
and D(x) = 1

2
(xm+mxK) for a certain element

m ∈ M such that

xym+ yxm+mxKyK +myKxK − 2xmyK − 2ymxK = 0 (7)

for any x, y ∈ J .

Proof. The proof of Lemma 3.2 (resp. Lemma 3.3), amounts to application of Lemma 3.1
to the situation where x ◦ y = 1

2
(xy + yx) and x • m = 1

2
(xm + mx) (resp. x • m =

1
2
(xm+mxK)).

In what follows it will be useful the rewrite the condition (6) in equivalent forms.
Substituting y = x in (6), we get the equality

x2m+mx2 − 2xmx = 0, (8)

valid for any x ∈ J (actually, this is equivalent to (6) via linearization). The last equality,
in its turn, can be rewritten as

[[m, x], x] = 0, (9)

7
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where [a, b] = ab− ba is the commutator of two elements.
Similarly, (7) can be written in an equivalent form by setting y = x:

x2m+m(x2)K − 2xmxK = 0, (10)

valid for any x ∈ J .

Theorem 3.4. Let D be a nonzero δ-derivation of a finite-dimensional simple Jordan al-
gebra with values in a finite-dimensional unital irreducible bimodule M . Then either δ = 1
and D is an inner derivation, or δ = 1

2
, M is the regular bimodule, and D is a scalar

multiple of the identity map.

Proof. If δ = 1 then D is an ordinary derivation and hence is inner, so suppose δ 6= 1.
We proceed case-by-case according to §2. Note that since our problem – computation of
δ-derivations – does not change under an extension of the ground field (see the remark
after Theorem 8 in [6, §3]), we may assume that the ground field K is algebraically closed
whenever appropriate.

(i) Obvious.

(ii) As x2 = f(x, x)1 for any x ∈ V , the equality (8) reduces to

xmx = f(x, x)m (11)

for any x ∈ V .
We have that either m ∈ C(V )(k) ⊕ C(V )(k+1), or, in the case of odd-dimensional V ,

m ∈ C(V )(k)u⊕C(V )(k+1)u for certain k. Decomposem as a linear combination of the basic
elements of the form (2), and let ui1 · · ·uik , or ui1 · · ·uiku in the case of odd-dimensional
V , be one of those basic elements entering this sum with a nonzero coefficient. Assuming
k ≥ 2, Corollary 1.2 and equality (11) for x = ui1 coupled together, yield

f(ui1, ui1)ui1 · · ·uik = ui1(ui1 · · ·uik)ui1 = (−1)k+1f(ui1, ui1)ui1 · · ·uik

and
f(ui2, ui2)ui1 · · ·uik = ui2(ui1 · · ·uik)ui2 = (−1)k+2f(ui2, ui2)ui1 · · ·uik ,

whence
ui1 · · ·uik = (−1)k+1ui1 · · ·uik = (−1)k+2ui1 · · ·uik = 0,

a contradiction. The same reasoning holds when applied to the element of the form
ui1 · · ·uiku.

Hence, in both cases, k ≤ 1, i.e., m belongs either to the regular bimodule K ⊕ V , or
to the module Ku, or m ∈ V u. These remaining cases can be processed in the similar
way as the generic case above, just the calculations are even simpler. Namely, in the case
of the regular module we can either refer to [3, Lemma 2.3], or, assuming ui is a nonzero
component of m, consider the expression ujuiuj with j 6= i, and apply Corollary 1.2 again
to get a contradiction. A similar reasoning works in the case m = λu for some λ ∈ K,

8
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and in the remaining case m ∈ V u, assuming uiu is a nonzero component of m, we get a
contradiction in a similar fashion by considering expression ui(uiu)ui. Therefore, the only
remaining possibility is m ∈ K1.

(iii) For the case of the regular A(+)-bimodule we can either refer to [3, Theorem 2.5],
or proceed as follows. Assume that the ground field K is algebraically closed. Then A
is isomorphic to the full matrix algebra over K, and substituting in (9) the matrix units
Eii instead of x, we get that m should be a diagonal matrix, with diagonal elements, say,
λ1, . . . , λn. Then, for example, substituting in (9) again the matrix having 1’s in the first
row and the first column, and zeros elsewhere, we get at the left-hand side the matrix
whose first row, beginning from the 2nd element, consists of elements λ1−λi. This proves
that all λi’s are equal, and m is a scalar multiple of the identity matrix.

Very similar reasonings will do in the case of bimodule S+(A,K) or S−(A,K) (i.e., the
space of symmetric or skew-symmetric matrices in the case of algebraically closed ground
field) with the action a • b = 1

2
(ab + baK), utilizing the equality (10). In these cases it is

enough to substitute there the matrix units Eij instead of x, to get m = 0.
The remaining two cases can be reduced to the already considered cases by passing to

the algebra Aop with the opposite multiplication (which does not change the associated
Jordan algebra A(+)), as noted at the end of §2.

(iv) Over an algebraically closed field the Jordan algebra S+(A, J) is isomorphic either
to the algebra of n × n symmetric matrices, or to the algebra of 2n × 2n matrices of the
form (

A B
C A⊤

)
(12)

where A is an arbitrary n× n matrix, and B and C are skew-symmetric n× n matrices.
We are again in the realm of Lemma 3.2, and in the first case (symmetric matrices)

exactly the same reasonings as in case (iii) will do. Indeed, when deriving from (9) the
necessary conclusion about m by substituting various matrices instead of x, we used only
symmetric matrices. Thus the same conclusion holds in this case, i.e., m is a scalar multiple
of the identity matrix.

In the second case (matrices of type (12)) we proceed by “doubling” the reasoning in
the previous case. Namely, substituting in (9) the matrices

(
Eii 0
0 Eii

)

instead of x, we get that m should be a diagonal matrix, and then substituting in (9) the
matrix (

M 0
0 M

)

where M has 1’s in the first row and the first column and zeros elsewhere (so M⊤ = M),
we get that m is a scalar multiple of the identity matrix.

Thus, in both cases m is a scalar multiple of the identity matrix, and this is possible
only in the case when the bimodule coincides with S+(A, J), i.e., is the regular bimodule.

9
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(v) Being extended to an algebraic closure of the ground field, these algebras and
bimodules are isomorphic to those of the case (iii).

(vi) As in this case the question is reduced entirely to δ-derivations of simple exceptional
Jordan algebra with values in itself, we can refer to [3, Theorem 2.5], or, to a more general
case of Hermitian matrices over octonions of arbitrary size covered in [6, Theorem 8]. (Note
that below, in §5, we outline a proof, different from those given in [6], of the triviality of δ-
derivations of these algebras using Theorem 3.4. This does not lead to circular arguments,
as in §5 we are using the part of Theorem 3.4 dealing with special matrix Jordan algebras).

To summarize: in all the cases we have proved that in the context of Lemma 3.1, M is
the regular bimodule and m is a scalar multiple of 1, and hence D is a scalar multiple of
the identity map on the underlying Jordan algebra.

4 δ-derivations, semisimple case

As an immediate corollary of the just proved theorem, we get a description of δ-
derivations of a finite-dimensional semisimple Jordan algebra J with values in an arbitrary
finite-dimensional unital bimodule M . For that, we need first the following two simple
lemmas, valid for an arbitrary nonassociative algebra A. By Derδ(A,M) we denote the
vector space of all δ-derivations of an algebra A with values in an A-bimodule M .

Lemma 4.1. Suppose M is decomposed as the direct sum of A-submodules: M =
⊕

i Mi.
Then

Derδ(A,M) ≃
⊕

i

Derδ(A,Mi). (13)

Proof. The elementary proof of the Lie algebra case given in [5, Lemma 1] is valid for
arbitrary algebras, and repeats the proof of the similar statement for ordinary derivations.

Lemma 4.2. Suppose A is decomposed as the direct sum of ideals: A =
⊕n

i=1Ai, and
δ 6= 0. Then

Derδ(A,M) ≃

{
(D1, . . . , Dn) ∈

n⊕

i=1

Derδ(Ai,M)

∣∣∣∣

Di(x) • y + x •Dj(y) = 0, for any x ∈ Ai, y ∈ Aj i, j = 1, . . . , n, i 6= j

}
.

Proof. Again, a verbatim repetition of the proof of the Lie algebra case in [5, Lemma 2].

Now, assume first that J is simple (and M arbitrary). Since any finite-dimensional
representation of J is completely reducible, M is decomposed as the direct sum of ir-
reducible submodules: M =

⊕
i Mi. If Derδ(J,M) does not vanish, then, according to

10
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Theorem 3.4, either δ = 1 and then Der1(J,M) consists of inner derivations, or δ = 1
2
and

the only nonzero summands in (13) are those for which Mi is isomorphic to the regular
J-bimodule, in which cases Der 1

2

(J,Mi) ≃ Der 1

2

(J, J) is the one-dimensional vector space
linearly spanned by idJ .

If J is semisimple, then J is decomposed into the direct sum of simple ideals, and
Lemma 4.2 reduces the situation to simple cases.

To give a precise statement describing δ-derivations of a semisimple Jordan algebra with
values in a finite-dimensional module, by using combination of Theorem 3.4, Lemma 4.1,
and Lemma 4.2, similar to Main Theorem in [5] in the Lie algebra case, would be somewhat
cumbersome. The main reason for this is the absence of the tensor product construction
for bimodules over Jordan algebras. However, the scheme described above allows to settle
the question effectively in each concrete case.

5 δ-derivations, octonionic matrix algebras

Theorem 3.4 (or, more exactly, reasoning in the preceding section based on it), al-
lows to give a somewhat streamlined proof of the result established in [6]: triviality of
δ-derivations of the algebra S+(Mn(O), J) of Hermitian n × n matrices over octonions.
Here O is the algebra of octonions, J is the composition of the matrix transposition and
the standard involution on O, and the multiplication in S+(Mn(O), J) is defined according
to the “Jordan” rule:

A ◦B =
1

2
(AB +BA). (14)

The streamlined proof we present here is based on the following general simple obser-
vation which can be of independent interest as a tool to derive triviality of δ-derivations of
algebras from those of their subalgebras. Let us call a (not necessarily Jordan) algebra A
δ-challenged if it satisfies the conclusion of Theorem 3.4, i.e., if for any finite-dimensional
irreducible bimodule over A, Derδ(A,M) 6= 0 implies that either δ = 1, or δ = 1

2
, M is the

regular bimodule, and Der 1

2

(A,M) = Der 1

2

(A,A) is linearly spanned by the identity map
on A.

Lemma 5.1. Let A be a commutative algebra with unit, S a simple unital δ-challenged
subalgebra of A such that A is decomposed into the direct sum of irreducible components
as an S-bimodule, and among those components the only one isomorphic to the regular
S-bimodule is S itself. If D is a nonzero δ-derivation of A with values in the regular
bimodule, then either δ = 1, or δ = 1

2
and D is a scalar multiple of the identity map.

Proof. Let δ 6= 1. Restriction of D to S is a δ-derivation of S with values in A, and
Lemma 4.1 together with the assumption that S is δ-challenged, implies that δ = 1

2
and

D(x) = λx for some λ ∈ K and any x ∈ S; in particular, D(1) = λ1. But according to
Lemma 3.1, D(x) = xD(1) for any x ∈ A, whence D(x) = λx for any x ∈ A.
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Theorem 5.2 ( [6, Theorem 8]). Let D be a nonzero δ-derivation of S+(Mn(O), J) with
values in the regular bimodule. Then either δ = 1, or δ = 1

2
and D is a scalar multiple of

the identity map.

In the proof below we will use the following shorthand notation:

M+
n (K) = S+(Mn(K), ⊤),

the Jordan algebra of n×n symmetric matrices; M−

n (K) = S−(Mn(K), ⊤), the vector space
of n × n skew-symmetric matrices; and O− = S−(O, −), the 7-dimensional vector space
of octonions skew-symmetric with respect to the standard conjugation − in O (of course,
the latter two “minus” vector spaces are a Lie algebra and a Malcev algebra respectively,
but, in our entirely commutative “Jordan” setting here, we do not need these nice and
important facts).

Proof. As noted in [6], the algebra S+(Mn(O), J) can be represented as the vector space
direct sum M+

n (K)⊕ (M−

n (K)⊗O−), where M+
n (K) is a (Jordan) subalgebra, the multi-

plication between M+
n (K) and M−

n (K)⊗O− is performed by the action of M+
n (K) on the

first tensor factor M−

n (K) via the formula (14), leaving the second tensor factor O− intact.
(M−

n (K)⊗O− is not a subalgebra, but the exact nice formula for multiplication of elements
in this subspace will not concern us here; the interested reader can consult [6] for details).
Therefore, as an M+

n (K)-bimodule, the whole algebra S+(Mn(O), J) is decomposed into
the direct sum of 8 irreducible components: M+

n (K), the regular bimodule, and 7 copies of
the bimodule M−

n (K) (parametrized by O−). By Theorem 3.4, the Jordan algebra M+
n (K)

is δ-challenged, and thus Lemma 5.1 is applicable.

The same idea – restriction of a δ-derivation to an appropriate subalgebra – can be
used to present a somewhat alternative proof of Theorem 3.4. Namely, by a judicial choice
of subalgebras of a simple (special) Jordan algebra (see [4]), one can employ an induction
by the dimension of an algebra, reducing the proof to the case of simple Jordan algebras
not having a proper simple subalgebra. Over an algebraically closed field, such algebras
are exhausted by the 1-dimensional algebra, and the 3-dimensional algebras J(V, f) (where
V is 2-dimensional) and M+

2 (K). For the latter two algebras, the proof may go the same
way as in §3.
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