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Modified double brackets and

a conjecture of S. Arthamonov

Maxime Fairon

Abstract. Around 20 years ago, M. Van den Bergh introduced double Poisson brack-
ets as operations on associative algebras inducing Poisson brackets under the repre-
sentation functor. Weaker versions of these operations, called modified double Pois-
son brackets, were later introduced by S. Arthamonov in order to induce a Poisson
bracket on moduli spaces of representations of the corresponding associative alge-
bras. Moreover, he defined two operations that he conjectured to be modified double
Poisson brackets. The first case of this conjecture was recently proved by M. Gon-
charov and V. Gubarev motivated by the theory of Rota-Baxter operators of nonzero
weight. We settle the conjecture by realising the second case as part of a new family
of modified double Poisson brackets. These are obtained from mixed double Poisson
algebras, a new class of algebraic structures that are introduced and studied in the
present work.
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1 Introduction

A guiding principle for developing noncommutative algebraic geometry was formulated
by Kontsevich and Rosenberg [9]. Their idea consists in introducing new structures on
associative algebras such that, under each representation functor

RepN : AssK → ComAssK, A 7→ K[Rep(A,N)], N ∈ N,

we recover some well-known classical structure. This principle shaped a facet of non-
commutative Poisson geometry following the work of Van den Bergh [13]. Indeed, the
notion of double Poisson brackets (cf. Definition 2.1) on noncommutative algebras was
introduced by Van den Bergh to induce a (usual) Poisson bracket on any representation
scheme Rep(A,N). Interestingly, Rep(A,N) is naturally equipped with a GLN(K) action
that acts by Poisson automorphisms with respect to the Poisson structure induced by a
double Poisson bracket. Hence, Van den Bergh’s theory also induces a Poisson bracket on
the moduli space of representations Rep(A,N)//GLN (K). This led to a second direction
of research, where one wants to induce a Poisson bracket directly on Rep(A,N)//GLN (K)
that may not have any special property on Rep(A,N). The weakest such instance is given
by the H0-Poisson structures of Crawley-Boevey [4] (cf. Definition 2.5). Another instance
is provided by Arthamonov’s modified double Poisson brackets [1, 2] (cf. Definition 2.6).
The latter have the advantage of being “computable” since the operation enjoys derivation
rules and, therefore, it only needs to be defined on generators of A. However, extra ax-
ioms are difficult to verify and only a single example could be fully treated [1, §3.4]. Two
additional examples were conjectured to exist, as the following shows.
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Conjecture A ([2]). On A = K〈x1, x2, x3〉, the following operations define modified double
Poisson brackets:

{{x1, x2}}
I = −x2x1 ⊗ 1, {{x2, x1}}

I = x1x2 ⊗ 1,

{{x2, x3}}
I = −x2 ⊗ x3, {{x3, x2}}

I = x2 ⊗ x3,

{{x3, x1}}
I = −1⊗ x3x1, {{x1, x3}}

I = 1⊗ x1x3,

(1)

and
{{x1, x2}}

II = −x1 ⊗ x2, {{x2, x1}}
II = x1 ⊗ x2,

{{x2, x3}}
II = x3 ⊗ x2, {{x3, x2}}

II = −x3 ⊗ x2,

{{x3, x1}}
II = x1 ⊗ x3 − x3 ⊗ x1,

(2)

where the remaining omitted terms involving pairs of generators are assumed to be zero.

The motivation for this manuscript is to establish the following.

Theorem A. Conjecture A holds true.

Proof. The case {{−,−}}II goes back to Gubarev and Goncharov [7], see Theorem 2.11 or
§A.3 for an independent proof. The case {{−,−}}I is treated in Theorem 6.6.

After the first version of this manuscript appeared on arXiv, we were informed by
Vsevolod Gubarev that Andrey Savel’ev independently proved the result under his super-
vision at Novosibirsk State University [12]. Hence, we should emphasize that the present
manuscript settles the conjecture as part of a general classification, not a study of the par-
ticular case {{−,−}}I . To achieve such a classification, we are led to introduce a new class
of algebraic structures, defined as follows. Consider the free K-algebra A = K〈v1, . . . , vd〉
equipped with a linear map {{−,−}} : A ⊗ A → A ⊗ A satisfying the Leibniz rules (7).
Assume that there exists λ = (λ1, . . . , λd) ∈ K

d such that the mapping {{−,−}} satisfies
for any 1 ≤ i, j ≤ d,

{{vi, vj}}+ {{vj, vi}}
◦ =

λi + λj

2
(vi ⊗ vj − vj ⊗ vi) +

λi − λj

2
(1⊗ vivj − vjvi ⊗ 1) , (3)

together with the Poisson property given by (24). The pair (A, {{−,−}}) is called a mixed
double Poisson algebra. Our main result is the following.

Theorem B. If (A, {{−,−}}) is a mixed double Poisson algebra of weight λ, then {{−,−}}
is a modified double Poisson bracket.

Proof. The 3 conditions of Definition 2.6 of a modified double Poisson bracket (viz. Leibniz
rules, H0-skew-symmetry and Jacobi identity) are satisfied by definition and Corollary 3.5
together with Proposition 4.3.

The importance of Theorem B is to reduce the complicated task of showing that an
operation is a modified double Poisson bracket to checking a finite number of identities
given by (3) and (24). In particular, we shall deduce Theorem A by showing that both of
Arthamonov’s operations (1) and (2) are mixed double Poisson algebras.
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Layout

In § 2, we gather the necessary definitions and properties to make Conjecture A pre-
cise. Of importance, we include the recent notion of λ-double Lie algebras of Goncharov-
Gubarev [7], which provided a framework to prove the second case of Conjecture A. In § 3
and § 4, we work towards generalising the approach of Goncharov-Gubarev. We introduce
mixed double Poisson algebras of some weight valued in K

d, and show that the operation
that equips these algebras is a modified double Poisson bracket, thus establishing The-
orem B. In § 5, we prove that one can extend a mixed double Poisson algebra structure
on a free algebra to the corresponding algebra of noncommutative Laurent polynomials.
Finally, we present several families of examples in § 6 (based on a classification given in
the appendix), which allow us to deduce the validity of Conjecture A.

Notation

Throughout the manuscript, K is an algebraically closed field of characteristic zero.
Algebras are finitely generated associative unital algebras over K. Unadorned tensor prod-
ucts are over K. We only work with K-linear maps, and therefore we shall denote an
element u ∈ A⊗ A using the Sweedler-type notation u′ ⊗ u′′, even if it not a pure tensor.

2 Noncommutative Poisson geometry

2.1 The approaches of Van den Bergh, Crawley-Boevey and Arthamonov

Let us fix an algebra A and endow A ⊗ A with its natural multiplication given by
(a′ ⊗ a′′)(b′ ⊗ b′′) = a′b′ ⊗ a′′, b′′, where a′, a′′, b′, b′′ ∈ A. We focus on linear operations of
the form

{{−,−}} : A⊗ A → A⊗ A, a⊗ b 7→ {{a, b}}. (4)

(It is equivalent to bilinear maps with domain A × A, as the notation suggests). These
can be extended to operations A⊗3 → A⊗3 as follows

{{a, b⊗ c}}L = {{a, b}} ⊗ c, (5a)

{{a, b⊗ c}}R = b⊗ {{a, c}}, (5b)

{{b⊗ c, a}}L = {{b, a}} ⊗1 c, (5c)

for any a, b, c ∈ A, where we write (a⊗ b)⊗1 c = a⊗ c⊗ b = c⊗1 (a⊗ b). Then, we define
the double Jacobiator DJac : A⊗3 → A⊗3 by

DJac(a, b, c) = {{a, {{b, c}}}}L − {{b, {{a, c}}}}R − {{{{a, b}}, c}}L . (6)

Van den Bergh’s notion of double Poisson brackets [13] is given as follows.
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Definition 2.1. A linear map {{−,−}} : A ⊗ A → A ⊗ A satisfying for any a, b, c ∈ A the
Leibniz rules

{{a, bc}} = (b⊗ 1){{a, c}}+ {{a, b}}(1⊗ c) , (7a)

{{ab, c}} = (1⊗ a){{b, c}}+ {{a, c}}(b⊗ 1) , (7b)

is called a double bracket if the following cyclic skew-symmetry rule holds:

{{a, b}} = −{{b, a}}◦ , a, b ∈ A . (8)

When a double bracket has vanishing double Jacobiator, i.e. DJac(a, b, c) = 0 for (6), we
call it a double Poisson bracket.

Remark 2.2. The above definition is closely related to that given by De Sole, Kac and
Valeri [5], which reformulates [13, §§2.2-2.3]. The Leibniz rules, according to Van den
Bergh, are stated in terms of the A-bimodule structures on A⊗A:

c1 · (a⊗ b) · c2 = (c1 ⊗ 1)(a⊗ b)(1⊗ c2) , (outer bimodule) (9a)

c1 ∗ (a⊗ b) ∗ c2 = (1⊗ c1)(a⊗ b)(c2 ⊗ 1) . (inner bimodule) (9b)

Due to cyclic skew-symmetry (8), the form of DJac (6) is equivalent to Van den Bergh’s
original triple bracket, see [5, Rem. 2.2].

Let us point out the following useful property.

Lemma 2.3. If the Leibniz rules (7) hold, the operation DJac : A⊗3 → A⊗3 is a derivation
in the second and third arguments as follows:

DJac(a, b, c1c2) = (c1 ⊗ 1⊗ 1)DJac(a, b, c2) + DJac(a, b, c1)(1⊗ 1⊗ c2) ,

DJac(a, b1b2, c) = (1⊗ 1⊗ b1)DJac(a, b2, c) + DJac(a, b1, c)(1⊗ b2 ⊗ 1) ,
(10)

for the multiplication (a′ ⊗ a′′ ⊗ a′′′)(b′ ⊗ b′′ ⊗ b′′′) = a′b′ ⊗ a′′b′′ ⊗ a′′′b′′′ in A⊗3. Moreover,

DJac(a1a2, b, c) = (1⊗ a1 ⊗ 1)DJac(a2, b, c) + DJac(a1, b, c)(a2 ⊗ 1⊗ 1)

− {{a2, c}}
′ ⊗ ({{b, a1}}+ {{a1, b}}

◦){{a2, c}}
′′ .

(11)

(Recall the Sweedler-type notation {{a2, c}} = {{a2, c}}
′⊗{{a2, c}}

′′). Hence DJac is a deriva-
tion in the first argument only when cyclic skew-symmetry (8) holds.

Proof. This is a direct computation. For the first identity, cf. [5, (3.11)] with λ = µ = 0.
The second case is similar. For (11), we refer to [2, §7.1].

A prominent feature of double Poisson algebras is the following result.

Theorem 2.4 ([13], §7.5). If {{−,−}} is a double Poisson bracket on A, it induces a Poisson
bracket on the N-th representation space Rep(A,N). Furthermore, the natural action of
GLN (K) on Rep(A,N) is by Poisson automorphisms, and the induced Poisson bracket
descends to the GIT quotient Rep(A,N)//GLN(K).
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In parallel1 to Van den Bergh’s work, Crawley-Boevey introduced the notion of H0-
Poisson structures [4], which are a family of weaker structures inducing a Poisson bracket
on the moduli space Rep(A,N)//GLN(K) (see [4, Thm. 1.6] for a precise statement). Let
[A,A] be the vector space of commutators in A, and set H0(A) := A/[A,A], the zero-th
Hochschild homology of A. Denote by A → H0(A), a 7→ ā, the corresponding linear
quotient map. Remark that any derivation δ on A induces a linear map on H0(A).

Definition 2.5 ([4]). A linear map {−,−}H0
: H0(A) ⊗H0(A) → H0(A) is a H0-Poisson

structure on A if it is a Lie bracket on H0(A) such that for all a ∈ A, the linear map
{ā,−}H0

: H0(A) → H0(A) is induced by a derivation on A.

Any double Poisson bracket leads to a H0-Poisson structure through the composition
m ◦{{−,−}} with the multiplication map m : A ⊗ A → A, before restricting to H0(A),
cf. [13, Lem. 2.6.2]. The converse is far from being true, as H0-Poisson structures are
much more general. Nevertheless, Crawley-Boevey’s notion has a big shortcoming: it
is difficult to construct or characterise H0-Poisson structure. Arthamonov attempted to
rectify this problem by building a class of “computable” H0-Poisson structures.

Definition 2.6 ([1, 2]). A linear map {{−,−}} : A ⊗ A → A ⊗ A satisfying the Leibniz
rules (7) for any a, b, c ∈ A is called a modified double bracket if the following H0-skew-
symmetry rule holds:

{a, b}+ {b, a} ∈ [A,A] , (12)

where {−,−} = m ◦{{−,−}} for the multiplication m : A⊗A → A on A. When a modified
double bracket satisfies the Jacobi identity

{a, {b, c}} − {b, {a, c}} − {{a, b}, c} = 0 , (13)

we call it a modified double Poisson bracket.

It is clear that a modified double Poisson bracket induces a H0-Poisson structure by
restriction of {−,−} to H0(A), in analogy with the case of double Poisson brackets. Our
previous discussions entail the following generalisation of Theorem 2.4.

Theorem 2.7 ([2], §3 & [4], §4). Any H0-Poisson structure on A uniquely induces a Poisson
bracket on the GIT quotient Rep(A,N)//GLN(K). In particular, any modified double
Poisson bracket on A uniquely induces a Poisson bracket on Rep(A,N)//GLN (K).

A modified double (Poisson) bracket has the advantage of only requiring to be de-
fined on generators due to the Leibniz rules. Yet again, such structures are challenging
to find because it is not simple to verify the rules (12) and (13). In fact, if we exclude
Van den Bergh’s double Poisson brackets (easily seen to satisfy Definition 2.6), Artha-
monov only managed to fully check the axioms of a modified double Poisson bracket in

1While published in 2011 [4], a preprint containing these ideas under the name of “noncommutative
Poisson structures” appeared on the arXiv in 2005. We also draw the attention of the reader to the related
notion of Hamiltonian operators on free algebras by Mikhailov and Sokolov [10].
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a single case [1, §3.4], and he conjectured the existence of the two extras cases featured
in Conjecture A. Therefore, an important open problem consists in building new exam-
ples of modified double Poisson brackets. A breakthrough in that direction has recently
occurred [7], which we describe in the next subsection.

2.2 The approach of Goncharov-Gubarev

The manuscript [7] is based on the following observations. Firstly, for V := ⊕d
i=1Kvj ,

consider a double Poisson bracket on the free algebra Ass(V ) generated by V such that
{{vi, vj}} ∈ V ⊗V for all 1 ≤ i, j ≤ d. Given dual bases (ek) and (ek) of End(V ) ≃ Matd(K)
under the trace pairing, define

R : End(V ) → End(V ) (14)

uniquely through the following decomposition:

{{u, v}} =
∑

1≤k≤d2

ek(u)⊗R(ek)(v) , u, v ∈ V . (15)

One can check [8] that the operation R (14) hence obtained is a skew-symmetric Rota-
Baxter operator on End(V ), meaning that R = −R∗ (dual for the trace pairing) and

R(e)R(f) = R(R(e)f + eR(f)) , e, f ∈ End(V ). (16)

Secondly, the theory of Rota-Baxter operators extends to non-zero weight λ ∈ K
×, where

the right-hand side of (16) contains the extra term +λR(ef). Using this generalised
notion and the λ-skew-symmetry R = −R∗+λ tr(−)1End(V )−λ1End(V )(−), Goncharov and
Gubarev [7] made the following definition still based on (15).

Definition 2.8 ([7], Def. 4). A λ-double Lie algebra structure on a vector space V is a
linear map {{−,−}} : V ⊗ V → V ⊗ V such that for any u, v, w ∈ V ,

{{u, v}}+ {{v, u}}◦ = λ (u⊗ v − v ⊗ u) , (17a)

DJac(u, v, w) = −λ v ⊗1 {{u, w}} . (17b)

Remark 2.9. We stress that a λ-double Lie algebra is not endowed with an associative mul-
tiplication compatible with {{−,−}}, as opposed to the (modified) double Poisson brackets
as in § 2.1. Up to rescaling, there are two unequivalent cases: λ = 0 and λ = 1. The λ = 0
case corresponds to a double Lie algebra as introduced e.g. in [5].

The main results of Goncharov and Gubarev are the following.

Theorem 2.10 ([7], Thm. 10). Consider a λ-double Lie algebra structure {{−,−}} on a
finite-dimensional vector space V . Then its extension to A = Ass(V ) through the Leibniz
rules (7) is a modified double Poisson bracket.

Theorem 2.11 ([7], Cor. 4). The operation {{−,−}}II (2) on A = K〈x1, x2, x3〉 is a modified
double Poisson bracket.
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In particular, this settled the second case of Conjecture A. Forgetting about the con-
jecture, Goncharov and Gubarev’s work allowed to define a new class of structures that
sits between double Poisson brackets and modified double Poisson brackets. The present
work aims at introducing and studying the new notion of mixed double Poisson algebras
of weight λ = (λ1, . . . , λd) ∈ K

d (cf. Definition 4.1), which is related to the previous
structures as follows when A := Ass(V ) for V = ⊕d

i=1Kvj :

{extended double Lie algebras}

{double Poisson algebras} {extended λ-double Lie algebras}

{mixed double Poisson algebras of weight λ}

{modified double Poisson algebras}

restricts to V ⊗2→V ⊗2 case λ=0

case λ=(0, . . . , 0) restricts to V ⊗2→V ⊗2

with λ=(λ, . . . , λ)

special cases

The inclusion on the right of the second line will be explained in Example 4.4. The
upshot is that all these families provide examples of the weakest structure : H0-Poisson
structures. Indeed, this is a consequence of Theorem B, which can be seen as a generali-
sation of Theorem 2.10.

3 Mixed double algebras

For d ≥ 1, we let A = K〈v1, . . . , vd〉. We aim at generalising the skew-symmetry rule
(17a) of Goncharov and Gubarev.

3.1 First definition

We fix two matrices Λ,M ∈ Matd(K) where Λ is symmetric, whileM is skew-symmetric.
In terms of the entries (λij)

d
i,j=1 and (µij)

d
i,j=1 of Λ and M , this means that for 1 ≤ i, j ≤ d

with i 6= j:
λij = λji; µij = −µji, µii = 0 . (18)

Definition 3.1. Given a linear map {{−,−}} : A⊗ A → A⊗ A satisfying the Leibniz rules
(7), we say that the pair (A, {{−,−}}) is a mixed double algebra of type (Λ,M) if, for any
1 ≤ i, j ≤ d,

{{vi, vj}}+ {{vj, vi}}
◦ = λij(vi ⊗ vj − vj ⊗ vi) + µij 1⊗ vivj + µji vjvi ⊗ 1 . (19)

We make the following observations:

1. The condition (19) is well-defined since it is preserved by applying the permutation
of tensor factors (−)◦, which amounts to swapping the indices i, j.

8
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2. The type (Λ,M) of a mixed double algebra depends on the chosen presentation of
the free algebra. E.g. permuting generators amounts to conjugating the pair (Λ,M)
by the corresponding permutation matrix. Furthermore, we can always replace Λ by
Λ +D, for D a diagonal matrix.

3. Multiplying {{−,−}} by a factor ν ∈ K changes the type to (νΛ, νM). This is
analogous to the fact that we can multiply (modified) double (Poisson) brackets,
and that a λ-double Lie algebra becomes a νλ-double Lie algebra.

4. Taking i = j in (19) yields the cyclic skew-symmetry {{vi, vi}} = −{{vi, vi}}
◦. Thus

the case d = 1 just restricts to Van den Bergh’s definition of a double bracket [13],
and we will assume that d ≥ 2 hereafter.

5. If M = 0d and if all entries of Λ are equal to a fixed λ ∈ K, we recover the condition
(17a) of Goncharov-Gubarev [7].

Let us introduce some convenient notation. Since A = K〈v1, . . . , vd〉, any element can
be written as a constant term ν ∈ K added to a linear combination of terms of the form

a = vi1 · · · vir , where i1, . . . , ir ∈ {1, . . . , d}, r ≥ 1 .

For such a term a ∈ A, we set for any 1 ≤ α, γ ≤ r,

a−α := vi1 · · · viα−1
, a+α := viα+1

· · · vir , a∼α,γ :=

{
viα · · · viγ , α ≤ γ,
1, α > γ,

(20)

so that a = a−αviαa
+
α and a = a−αa

∼
α,γa

+
γ if α ≤ γ.

Proposition 3.2. Let (A, {{−,−}}) be a mixed double algebra of type (Λ,M). If the following
conditions are satisfied

λij − λkl = µil − µkj , 1 ≤ i, j, k, l ≤ d, (21)

then the H0-skew-symmetry rule (12) holds for any a, b ∈ A.

Proof. By linearity, it suffices to verify (12) for a, b ∈ A of the form a = vi1 · · · vir and
b = vj1 · · · vjs with indices in {1, . . . , d} and r, s ≥ 1. Using the Leibniz rules (7), the mixed
double algebra condition (19) and the notation (20), we can write

{{a, b}}+ {{b, a}}◦ =
r∑

α=1

s∑

β=1

(b−β ⊗ a−α )({{viα, vjβ}}+ {{vjβ , viα}}
◦)(a+α ⊗ b+β )

=

r∑

α=1

s∑

β=1

λiαjβ(b
−
β viαa

+
α ⊗ a−αvjβb

+
β − b−β vjβa

+
α ⊗ a−αviαb

+
β )

+

r∑

α=1

s∑

β=1

(µiαjβ b
−
β a

+
α ⊗ a−αviαvjβb

+
β + µjβiα b

−
β vjβviαa

+
α ⊗ a−α b

+
β ) .

9
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Multiplying the tensor factors, we get modulo commutators

{a, b}+{b, a}◦ =
r∑

α=1

s∑

β=1

λiαjβ(viαa
+
αa

−
αvjβb

+
β b

−
β − a+αa

−
αviαb

+
β b

−
β vjβ)

+

r∑

α=1

s∑

β=1

(µiαjβ a
+
αa

−
αviαvjβb

+
β b

−
β + µjβiα viαa

+
αa

−
α b

+
β b

−
β vjβ)

=

r∑

α=1

s∑

β=1

(λiαjβ − λiα−1jβ−1
+ µiα−1jβ + µjβ−1iα)viαa

+
αa

−
α vjβb

+
β b

−
β mod [A,A].

Note that we consider indices modulo r or s; this is how we used a+αa
−
αviα = viα+1

a+α+1a
−
α+1

for any 1 ≤ α ≤ r and did the same for b. By skew-symmetry of M , this reads
r∑

α=1

s∑

β=1

(λiαjβ − λiα−1jβ−1
+ µiα−1jβ − µiαjβ−1

) Vα,β = 0 mod [A,A], (22)

for Vα,β := viαa
+
αa

−
α vjβb

+
β b

−
β . Each summand in (22) is identically zero by (21).

Remark 3.3. It is clear from (19) that the choice of diagonal entries λii can be arbitrary
as the first two terms cancel out for i = j. Accordingly, one can prove Proposition 3.2
under weaker assumptions than (21), which omit the cases i = j and k = l. We shall not
use this more general formalism, and we skip the proof. (The interested reader may find
that general case as Lemma 3.1 in v1 of the arXiv version of this manuscript).

3.2 Refining the definition

Assume that (21) is satisfied by (Λ,M). We can deduce

µil =
1

2
(λii − λll), λil =

1

2
(λii + λll), 1 ≤ i, l ≤ d . (23)

Furthermore, given (λ11, . . . , λdd) ∈ K
d, we can define matrices (Λ,M) through (23) and

the conditions (18),(21) are automatically satisfied. We get the next simpler definition.

Definition 3.4. Let λ = (λ1, . . . , λd) ∈ K
d. Given a linear map {{−,−}} : A⊗ A → A⊗ A

satisfying the Leibniz rules (7), we say that the pair (A, {{−,−}}) is a mixed double algebra
of weight λ if (3) is satisfied for any 1 ≤ i, j ≤ d.

We can interpret Proposition 3.2 as follows.

Corollary 3.5. A mixed double algebra of weight λ ∈ K
d is equipped with a modified double

bracket.

Remark 3.6. As suggested by a referee, a basis-free version of (3) can be given as follows.
Define the subspace Vλ = span

K
{vi | λi = λ, 1 ≤ i ≤ d} for any λ ∈ K. Then, for any

λ, λ′ ∈ K, x ∈ Vλ and y ∈ Vλ′, we have

{{x, y}}+ {{y, x}}◦ =
λ+ λ′

2
(x⊗ y − y ⊗ x) +

λ− λ′

2
(1⊗ xy − yx⊗ 1) .
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4 Jacobi identity

Fix d ≥ 2 and A = K〈v1, . . . , vd〉. Recall Definition 3.4.

Definition 4.1. A mixed double algebra (A, {{−,−}}) of weight λ ∈ K
d is Poisson when,

for any 1 ≤ i, j, k ≤ d,

DJac(vi, vj , vk) = −
λi + λj

2
vj ⊗1 {{vi, vk}}+

λi − λj

2
1⊗1 (vj ∗ {{vi, vk}}). (24)

We call (24) the Poisson property of {{−,−}}.

By Lemma 2.3, we get in the Poisson case for any 1 ≤ i, j ≤ d and c ∈ A,

DJac(vi, vj, c) = −
λi + λj

2
vj ⊗1 {{vi, c}}+

λi − λj

2
1⊗1 (vj ∗ {{vi, c}}) . (25)

Remark 4.2. With the notation of Remark 3.6, an index-free expression is given for any
λ, λ′, µ ∈ K, x ∈ Vλ, y ∈ Vλ′ and z ∈ Vµ by

DJac(x, y, z) = −
λ + λ′

2
y ⊗1 {{x, z}}+

λ− λ′

2
1⊗1 (y ∗ {{x, z}}).

We shall prove the following result in § 4.2, as a generalisation of [7, Thm. 9].

Proposition 4.3. Fix (A, {{−,−}}) a mixed double Poisson algebra of weight λ ∈ K
d. Then

the Jacobi identity (13) is satisfied for any a, b, c ∈ A.

Example 4.4. Fix λ ∈ K, and let (A, {{−,−}}) be a mixed double Poisson algebra of weight
(λ, . . . , λ). The conditions (3) and (24) then read

{{vi, vj}}+ {{vj, vi}}
◦ = λ (vi ⊗ vj − vj ⊗ vi) ,

DJac(vi, vj, vk) = −λ vj ⊗1 {{vi, vk}} .

By linearity, these identities yield (17a) and (17b) for any u, v, w ∈ V :=
⊕d

i=1Kvi. Hence
we have that a mixed double Poisson algebra of weight (λ, . . . , λ) that restricts to a map
V ⊗ V → V ⊗ V (when considered on the K-linear span V of generators) is the extension
to Ass(V ) of a λ-double Lie algebra structure on V .

4.1 Preparation

We start by simply assuming that A = K〈v1, . . . , vd〉 is equipped with a linear map
{{−,−}} : A⊗2 → A⊗2 satisfying the Leibniz rules (7). We work with the associated
operation {−,−} := m ◦{{−,−}} : A⊗A → A. Fix

a = vi1 . . . vir , b = vj1 . . . vjs, r, s ≥ 1, 1 ≤ i1, . . . , ir, j1, . . . , js ≤ d . (26)

Recall the notation (20). We present formulas that can be found in [7, pp.24-25].

11
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Lemma 4.5. The following holds:

{a, {b, c}} =

r∑

α=1

s∑

β=1

{{viα, {{vjβ , c}}
′}}′a+αa

−
α{{viα, {{vjβ , c}}

′}}′′b+β b
−
β {{vjβ , c}}

′′ (27a)

+

r∑

α=1

s∑

β,ǫ=1
β<ǫ

{{vjβ , c}}
′b∼β+1,ǫ−1{{viα, vjǫ}}

′a+αa
−
α{{viα, vjǫ}}

′′b+ǫ b
−
β {{vjβ , c}}

′′ (27b)

+
r∑

α=1

s∑

β,ǫ=1
ǫ<β

{{vjβ , c}}
′b+β b

−
ǫ {{viα, vjǫ}}

′a+αa
−
α{{viα, vjǫ}}

′′b∼ǫ+1,β−1{{vjβ , c}}
′′ (27c)

+
r∑

α=1

s∑

β=1

{{vjβ , c}}
′b+β b

−
β {{viα, {{vjβ , c}}

′′}}′a+αa
−
α{{viα, {{vjβ , c}}

′′}}′′ . (27d)

Proof. For the reader’s convenience, we prove this case. It suffices to use the Leibniz rules
(7) for {{−,−}} before applying the multiplication map. Thus,

{b, c} =
∑

β

m({{vjβ , c}}
′b+β ⊗ b−β {{vjβ , c}}

′′) =
∑

β

{{vjβ , c}}
′b+β b

−
β {{vjβ , c}}

′′ .

Hence, we get

{a, {b, c}} =
∑

β

[

{a, {{vjβ , c}}
′}b+β b

−
β {{vjβ , c}}

′′ + {{vjβ , c}}
′{a, b+β }b

−
β {{vjβ , c}}

′′

+ {{vjβ , c}}
′b+β {a, b

−
β }{{vjβ , c}}

′′ + {{vjβ , c}}
′b+β b

−
β {a, {{vjβ , c}}

′′}
]

,

and these four terms will give (27a)–(27d), respectively. To see this, note for example that
in the second term we can use the following expansion:

{a, b+β } =
∑

α

{{viα, b
+
β }}

′a+αa
−
α{{viα, b

+
β }}

′′ =
∑

α

∑

ǫ>β

b∼β+1,ǫ−1{{viα, vjǫ}}
′a+αa

−
α{{viα, vjǫ}}

′′b+ǫ ,

since b+β = b∼β+1,ǫ−1vjǫb
+
ǫ .

12
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Exchanging the roles of a and b in the previous lemma, we find:

{b, {a, c}} =

r∑

α=1

s∑

β=1

{{vjβ , {{viα, c}}
′}}′b+β b

−
β {{vjβ , {{viα, c}}

′}}′′a+αa
−
α{{viα, c}}

′′ (28a)

+

r∑

α,γ=1
α<γ

s∑

β=1

{{viα, c}}
′a∼α+1,γ−1{{vjβ , viγ}}

′b+β b
−
β {{vjβ , viγ}}

′′a+γ a
−
α{{viα, c}}

′′ (28b)

+
r∑

α,γ=1
α>γ

s∑

β=1

{{viα, c}}
′a+αa

−
γ {{vjβ , viγ}}

′b+β b
−
β {{vjβ , viγ}}

′′a∼γ+1,α−1{{viα, c}}
′′ (28c)

+

r∑

α=1

s∑

β=1

{{viα, c}}
′a+αa

−
α{{vjβ , {{viα, c}}

′′}}′b+β b
−
β {{vjβ , {{viα, c}}

′′}}′′ . (28d)

Lemma 4.6. The following holds:

{{a, b}, c} =
r∑

α=1

s∑

β,ǫ=1
ǫ<β

{{vjǫ, c}}
′b∼ǫ+1,β−1{{viα, vjβ}}

′a+αa
−
α{{viα, vjβ}}

′′b+β b
−
ǫ {{vjǫ, c}}

′′ (29a)

+
r∑

α=1

s∑

β=1

{{{{viα, vjβ}}
′, c}}′a+αa

−
α{{viα, vjβ}}

′′b+β b
−
β {{{{viα, vjβ}}

′, c}}′′ (29b)

+

s∑

α,γ=1
γ>α

s∑

β=1

{{viγ , c}}
′a+γ a

−
α{{viα, vjβ}}

′′b+β b
−
β {{viα, vjβ}}

′a∼α+1,γ−1{{viγ , c}}
′′ (29c)

+
s∑

α,γ=1
γ<α

s∑

β=1

{{viγ , c}}
′a∼γ+1,α−1{{viα, vjβ}}

′′b+β b
−
β {{viα, vjβ}}

′a+αa
−
γ {{viγ , c}}

′′ (29d)

+
r∑

α=1

s∑

β=1

{{{{viα, vjβ}}
′′, c}}′b+β b

−
β {{viα, vjβ}}

′a+αa
−
α{{{{viα, vjβ}}

′′, c}}′′ (29e)

+

r∑

α=1

s∑

β,ǫ=1
ǫ>β

{{vjǫ, c}}
′b+ǫ b

−
β {{viα, vjβ}}

′a+αa
−
α{{viα, vjβ}}

′′b∼β+1,ǫ−1{{vjǫ, c}}
′′ . (29f)

Proof. Direct computation using {a, b} =
∑

α,β b
−
β {{viα, vjβ}}

′a+αa
−
α{{viα, vjβ}}

′′b+β .

The next result requires further assumptions.

Lemma 4.7. Assume that (A, {{−,−}}) is a mixed double Poisson algebra of weight λ ∈ K
d.

For 1 ≤ i, j ≤ d and c ∈ A, we have

− {{vj, {{vi, c}}}}L + {{vi, {{vj, c}}}}R − {{{{vi, vj}}
◦, c}}L

=
λj + λi

2
vj ⊗1 {{vi, c}}+

λj − λi

2
1⊗1 ({{vi, c}} ∗ vj) .

(30)

13
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Proof. We can write the left-hand side of (30) as

− DJac(vj , vi, c)−
λj + λi

2
{{vj ⊗ vi − vi ⊗ vj , c}}L +

λj − λi

2
{{vivj ⊗ 1, c}}L

=− DJac(vj , vi, c)−
λj + λi

2
vi ⊗1 {{vj, c}}+

λj + λi

2
vj ⊗1 {{vi, c}}

+
λj − λi

2
1⊗1 (vi ∗ {{vj, c}}) +

λj − λi

2
1⊗1 ({{vi, c}} ∗ vj) ,

where we used (3) to obtain the first line, and then the Leibniz rules (7). Due to (25), the
first, second and fourth term cancel out.

4.2 Proof of Proposition 4.3

We adapt the proof of [7, Thm. 9] to our more general setting. For a, b, c ∈ A, we want
to check that (13) holds. By linearity, we can assume that a, b are of the form (26). Then,
the Jacobi identity (13) amounts to checking

(27)− (28)− (29) = 0 .

We directly see that (27b)− (29a) = 0 and (27c)− (29f) = 0. Next, by introducing

m3 : A⊗A⊗A → A, a1 ⊗ a2 ⊗ a3 7→ a1a2a3 ,

and recalling (5), we can write

(27a) =

r∑

α=1

s∑

β=1

m3

(
(1⊗ a+αa

−
α ⊗ b+β b

−
β ) {{viα, {{vjβ , c}}}}L

)
,

(28d) =

r∑

α=1

s∑

β=1

m3

(
(1⊗ a+αa

−
α ⊗ b+β b

−
β ) {{vjβ , {{viα, c}}}}R

)
,

(29b) =
r∑

α=1

s∑

β=1

m3

(
(1⊗ a+αa

−
α ⊗ b+β b

−
β ) {{{{viα, vjβ}}, c}}L

)
.

Thus, (6) and the condition (25) yield

(27a)− (28d)− (29b) =
r∑

α=1

s∑

β=1

m3

(
(1⊗ a+αa

−
α ⊗ b+β b

−
β ) DJac(viα , vjβ , c)

)

=−
r∑

α=1

s∑

β=1

λiα + λjβ

2
m3

(
(1⊗ a+αa

−
α ⊗ b+β b

−
β )({{viα, c}}

′ ⊗ vjβ ⊗ {{viα, c}}
′′)
)

+

r∑

α=1

s∑

β=1

λiα − λjβ

2
m3

(
(1⊗ a+αa

−
α ⊗ b+β b

−
β )({{viα, c}}

′ ⊗ 1⊗ vjβ{{viα, c}}
′′)
)

=−

r∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a+αa
−
α b

+
β b

−
β vjβ{{viα, c}}

′′ . (31)
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To obtain the last equality, we used

vjβb
+
β b

−
β = b+β−1b

−
β−1vjβ−1

, (32)

to sum over β − 1 in the first sum. Here and below, the index β is understood modulo s,
and the identity (32) holds with β = 1 since vj1b

+
1 = b = b−s vjs; we do the same with the

indices α, γ modulo r. With the same reasoning, we can write

(27d) =

r∑

α=1

s∑

β=1

m3

(
(1⊗ b+β b

−
β ⊗ a+αa

−
α ) {{viα, {{vjβ , c}}}}R

)
,

(28a) =

r∑

α=1

s∑

β=1

m3

(
(1⊗ b+β b

−
β ⊗ a+αa

−
α ) {{vjβ , {{viα, c}}}}L

)
,

(29e) =
r∑

α=1

s∑

β=1

m3

(
(1⊗ b+β b

−
β ⊗ a+αa

−
α ) {{{{viα, vjβ}}

◦, c}}L
)
.

Therefore, we obtain from (30) that

(27d)− (28a)− (29e)

=

r∑

α=1

s∑

β=1

λjβ + λiα

2
m3

(
(1⊗ b+β b

−
β ⊗ a+αa

−
α ) ({{viα, c}}

′ ⊗ vjβ ⊗ {{viα, c}}
′′)
)

+
r∑

α=1

s∑

β=1

λjβ − λiα

2
m3

(
(1⊗ b+β b

−
β ⊗ a+αa

−
α ) ({{viα, c}}

′vjβ ⊗ 1⊗ {{viα, c}}
′′)
)

=
r∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′b+β b
−
β vjβa

+
αa

−
α{{viα, c}}

′′ , (33)

where we used (32). Thus, our aim reduces to checking

(31) + (33)− (28b)− (28c)− (29c)− (29d) = 0 .

Lemma 4.8. The following holds:

−(28b)− (29d) =−

r∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′b+β b
−
β vjβa

+
αa

−
α{{viα, c}}

′′ (34a)

+
r∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a+α b
+
β b

−
β vjβa

−
α{{viα, c}}

′′ . (34b)
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Proof. Notice that (3) entails

(28b) + (29d) =

r∑

α,γ=1
α<γ

s∑

β=1

{{viα, c}}
′a∼α+1,γ−1

(

{{vjβ , viγ}}
′b+β b

−
β {{vjβ , viγ}}

′′

+ {{viγ , vjβ}}
′′b+β b

−
β {{viγ , vjβ}}

′
)

a+γ a
−
α{{viα, c}}

′′

=
r∑

α,γ=1
α<γ

s∑

β=1

λjβ + λiγ

2
{{viα, c}}

′a∼α+1,γ−1vjβb
+
β b

−
β viγa

+
γ a

−
α{{viα, c}}

′′ (35a)

−

r∑

α,γ=1
α<γ

s∑

β=1

λjβ + λiγ

2
{{viα, c}}

′a∼α+1,γ−1viγb
+
β b

−
β vjβa

+
γ a

−
α{{viα, c}}

′′ (35b)

+
r∑

α,γ=1
α<γ

s∑

β=1

λjβ − λiγ

2
{{viα, c}}

′a∼α+1,γ−1b
+
β b

−
β vjβviγa

+
γ a

−
α{{viα, c}}

′′ (35c)

−
r∑

α,γ=1
α<γ

s∑

β=1

λjβ − λiγ

2
{{viα, c}}

′a∼α+1,γ−1viγvjβb
+
β b

−
β a

+
γ a

−
α{{viα, c}}

′′ . (35d)

We can write thanks to (32)

(35a) + (35c) =

r∑

α,γ=1
α<γ

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a∼α+1,γ−1b
+
β b

−
β vjβviγa

+
γ a

−
α{{viα, c}}

′′

=
r−1∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′b+β b
−
β vjβa

+
αa

−
α{{viα, c}}

′′

+
r−1∑

α=1

r−1∑

γ=α+1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a∼α+1,γb
+
β b

−
β vjβa

+
γ a

−
α{{viα, c}}

′′ ,

where we separated the case γ = α + 1 from the rest (which is then summed over γ − 1)
to get the second equality. Similarly,

(35b) + (35d) = −

r∑

α,γ=1
α<γ

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a∼α+1,γ b
+
β b

−
β vjβa

+
γ a

−
α{{viα, c}}

′′

= −

r−1∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a+α b
+
β b

−
β vjβa

−
α{{viα, c}}

′′

−

r−1∑

α=1

r−1∑

γ=α+1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a∼α+1,γ b
+
β b

−
β vjβa

+
γ a

−
α{{viα, c}}

′′ .
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Gathering these expressions, we get after cancellations

− (28b)− (29d) = −

r−1∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′b+β b
−
β vjβa

+
αa

−
α{{viα, c}}

′′

+

r−1∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a+α b
+
β b

−
β vjβa

−
α{{viα, c}}

′′ .

We find precisely (34a)–(34b) if we can add α = r in the above sums. This is true since
a+r = 1 entails b+β b

−
β vjβa

+
r a

−
r = a+r b

+
β b

−
β vjβa

−
r .

Lemma 4.9. The following holds:

−(28c)− (29c) =−

r∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a+α b
+
β b

−
β vjβa

−
α{{viα, c}}

′′ (36a)

+

r∑

α=1

s∑

β=1

λjβ + λjβ+1

2
{{viα, c}}

′a+αa
−
α b

+
β b

−
β vjβ{{viα, c}}

′′ . (36b)

Proof. Direct computation similar to Lemma 4.8.

We can now conclude since the remaining terms cancel out as follows:

(34b) + (36a) = 0, (31) + (36b) = 0, (33) + (34a) = 0.

5 Localisation

In this section, A is arbitrary. This means for us that A comes equipped with a
projection

π : K〈v1, . . . , vd〉 −→ A

which provides d generators for A. Of course, there may be relations given by elements in
ker π. Assuming from now on that such a choice of generators is fixed and that we have a
linear map {{−,−}} : A⊗2 → A⊗2, we can talk about the pair (A, {{−,−}}) being a mixed
double (Poisson) algebra of some weight λ ∈ K

d, by considering Definitions 3.4 and 4.1
with the ordered generators v1, . . . , vd provided by π.

Remark that the proofs of Propositions 3.2 and 4.3 only require the existence of gener-
ators v1, . . . , vd for A such that (3) and (24) hold. In particular, these statements are valid
for an arbitrary K-algebra A. Hence Theorem B still holds, i.e. a mixed double Poisson
algebra (A, {{−,−}}) is naturally equipped with a modified double bracket.

The next result allows to construct examples on algebras of noncommutative Laurent
polynomials by localisation. It relies on the fact that the Leibniz rules (7) allow to define
{{−,−}} on inverses: for a ∈ A and for b ∈ A invertible, we must have

{{a, b−1}} = −b−1 · {{a, b}} · b−1 , {{b−1, a}} = −b−1 ∗ {{b, a}} ∗ b−1 , (37)

because {{a, 1}} = 0 = {{1, a}} by K-linearity. (We use the notation (9)).
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Theorem 5.1. Fix I = (i1, . . . , ir) a sequence of distinct indices in {1, . . . , d}, such that
1 ≤ r ≤ d. Let A = K〈v1, . . . , vd, v

−1
i1
, . . . , v−1

ir
〉 be given by the projection

π : K〈v1, . . . , vd, vd+1, . . . , vd+r〉 → A , π(vj) =

{
vj j ≤ d,
v−1
iα

j = d+ α, 1 ≤ α ≤ r,
(38)

whose kernel is the two-sided ideal (viαvd+α − 1, vd+αviα − 1 | 1 ≤ α ≤ r).
If {{−,−}} is a mixed double (Poisson) algebra structure of weight λ = (λ1, . . . , λd) ∈ K

d

on K〈v1, . . . , vd〉, then it uniquely extends to A into such a structure of weight

(λ1, . . . , λd,−λi1 , . . . ,−λir) ∈ K
d+r .

Proof. We use the presentation given by (38) for the proof, so that

λd+α := −λiα , 1 ≤ α ≤ r .

The operation {{−,−}} uniquely extends to A by the Leibniz rules (7) as (cf. (37))

{{a, vd+α}} = −vd+α · {{a, viα}} · vd+α , {{vd+α, a}} = −vd+α ∗ {{viα, a}} ∗ vd+α . (39)

First, we need to check that (3) holds; this is clear if 1 ≤ i, j ≤ d by assumption. If
i = d+ α and 1 ≤ j ≤ d, one has

{{vd+α, vj}}+ {{vj, vd+α}}
◦ = −vd+α ∗ ({{viα, vj}}+ {{vj, viα}}

◦) ∗ vd+α

=−
λiα + λj

2
(1⊗ vd+αvj − vjvd+α ⊗ 1)−

λiα − λj

2
(vd+α ⊗ vj − vj ⊗ vd+α)

=
λd+α + λj

2
(vd+α ⊗ vj − vj ⊗ vd+α) +

λd+α − λj

2
(1⊗ vd+αvj − vjvd+α ⊗ 1)

where we used (39) and that (3) holds for the pair (viα, vj). If 1 ≤ i ≤ d and j = d + α,
this holds by applying (−)◦ to the previous case. For the last case, we obtain using (39),
and (3) in the same way

{{vd+α, vd+β}}+ {{vd+β, vd+α}}
◦ = vd+α ∗ (vd+β · ({{viα, viβ}}+ {{viβ , viα}}

◦) · vd+β) ∗ vd+α

=
λiα + λiβ

2
(vd+β ⊗ vd+α − vd+α ⊗ vd+β) +

λiα − λiβ

2
(vd+βvd+α ⊗ 1− 1⊗ vd+αvd+β)

=
λd+α + λd+β

2
(vd+α ⊗ vd+β − vd+β ⊗ vd+α) +

λd+α − λd+β

2
(1⊗ vd+αvd+β − vd+βvd+α ⊗ 1) ,

which completes the verification.
In the Poisson case, we need to check (24). This is clear if 1 ≤ i, j, k ≤ d by assumption.

Let us then consider 1 ≤ i, j ≤ d and k = d+ α. By Lemma 2.3 and K-linearity,

DJac(vi, vj, vd+α) = −(vd+α ⊗ 1⊗ 1)DJac(vi, vj, viα) (1⊗ 1⊗ vd+α) .
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Since (24) holds in the case 1 ≤ i, j, iα ≤ d, we find by (39)

DJac(vi, vj, vd+α) =
λi + λj

2
vj ⊗1 (vd+α · {{vi, viα}} · vd+α)

−
λi − λj

2
1⊗1 (vj ∗ vd+α · {{vi, viα}} · vd+α)

=−
λi + λj

2
vj ⊗1 {{vi, vd+α}}+

λi − λj

2
1⊗1 (vj ∗ {{vi, vd+α}}) .

Therefore (24) holds for 1 ≤ i, j ≤ d and any 1 ≤ k ≤ d + r. In turn, we get that (24)
holds for 1 ≤ i ≤ d and any 1 ≤ j, k ≤ d+ r by analogous computations using the second
derivation rule mentioned in Lemma 2.3.

It remains to check (24) when i = d+ α. By (11), note that we can write

DJac(vd+α, vj , vk) = −(1 ⊗ vd+α ⊗ 1)DJac(viα, vj , vk)(vd+α ⊗ 1⊗ 1)

+
(
1⊗ ({{vj, vd+α}}+ {{vd+α, vj}}

◦)
)
({{viα, vk}}

′vd+α ⊗ 1⊗ {{viα, vk}}
′′) .

(40)

Write the two terms appearing on the right-hand side of (40) as T1 and T2. Using (24)
(with the first index in {1, . . . , d}), we rewrite T1 as

T1 =
λiα + λj

2
(vd+αvj)⊗1 ({{viα, vk}} ∗ vd+α)−

λiα − λj

2
vd+α ⊗1 (vj ∗ {{viα, vk}} ∗ vd+α)

= −
λd+α − λj

2
(vd+αvj)⊗1 ({{viα, vk}} ∗ vd+α) +

λd+α + λj

2
vd+α ⊗1 (vj ∗ {{viα, vk}} ∗ vd+α).

As we already noticed that (3) holds, we also get

T2 =
λj + λd+α

2
vj ⊗1 (vd+α ∗ {{viα, vk}} ∗ vd+α)−

λj + λd+α

2
vd+α ⊗1 (vj ∗ {{viα, vk}} ∗ vd+α)

+
λj − λd+α

2
1⊗1 (vjvd+α ∗ {{viα, vk}} ∗ vd+α)−

λj − λd+α

2
(vd+αvj)⊗1 ({{viα, vk}} ∗ vd+α).

Summing T1 and T2, we obtain

DJac(vd+α, vj , vk) =
λj + λd+α

2
vj ⊗1 (vd+α ∗ {{viα, vk}} ∗ vd+α)

+
λj − λd+α

2
1⊗1 (vjvd+α ∗ {{viα, vk}} ∗ vd+α)

=−
λd+α + λj

2
vj ⊗1 {{vd+α, vk}}+

λd+α − λj

2
1⊗1 (vj ∗ {{vd+α, vk}}),

where the second equality holds by (39).

Corollary 5.2. If {{−,−}} defines a mixed double Poisson algebra structure (of some weight)
on K〈v1, . . . , vd〉, then it uniquely extends to such a structure on the algebra of noncom-
mutative Laurent polynomials A = K〈v±1

1 , . . . , v±1
d 〉. In particular, this defines a modified

double Poisson bracket on A.
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Example 5.3. Take λ = 1 in Proposition A.2. The case ρ = −λ with α = 0, β = λ reads

{{v, v}} = 0, {{w,w}} = 0, {{v, w}} = −wv ⊗ 1, {{w, v}} = vw ⊗ 1, (41)

which defines a mixed double Poisson algebra structure of weight (1, 1) on K〈v, w〉. Hence
(41) also defines a mixed double Poisson algebra structure on K〈v±1, w±1〉 by localisa-
tion, and therefore a modified double Poisson bracket, cf. Corollary 5.2. The weight is
(1, 1,−1,−1) with respect to the generators v, w, v−1, w−1. This is Arthamonov’s first ex-
ample [1, §3.4] (with v, w respectively standing for u, v) of modified double Poisson bracket,
constructed in relation to the Kontsevich system [6].

6 Examples and Arthamonov’s conjecture

Recall the notion of a mixed double Poisson algebra of weight λ ∈ K
d as in Definition

4.1 with A = K〈v1, . . . , vd〉. We will focus on quadratic mixed double Poisson algebras,
i.e. for any 1 ≤ i, j ≤ d, {{vi, vj}} ∈ A ⊗ A has degree +2, where the degree is such that
|fg| = |f |+ |g| for f, g ∈ A⊗ A homogeneous and |vk ⊗ 1| = |1⊗ vk| = 1 for all k.

For the trivial weight (0, . . . , 0), we get back Van den Bergh’s cyclic skew-symmetry
(8) and the vanishing of DJac (6); this means that we are in the case of a quadratic double
Poisson bracket [13] on a free algebra. These were classified by Odesskii, Rubtsov and
Sokolov [11].

Next, consider a homogeneous weight (λ, . . . , λ), λ ∈ K
×. If {{−,−}} restricts to a map

V ⊗V → V ⊗V , V = ⊕d
k=1Kvk, we explained in Example 4.4 that this is an extension of a

λ-double Lie algebra. Explicit examples can be found in [7]. To get new interesting cases,
we need to assume that some of the weights (λj) are distinct. We shall investigate their
classification in the Appendix. Below, we report on consequences of this classification, and
we deduce that Arthamonov’s conjecture is true.

6.1 Families of mixed double Poisson algebras

Example 6.1. The algebra K〈v, w〉 is a mixed double Poisson algebra of weight (1,−1) if
it is equipped with the operation {{−,−}} satisfying one of the following four conditions

{{v, w}} = 0, {{w, v}} = − 1⊗ wv + vw ⊗ 1; (42a)

{{v, w}} = 1⊗ vw, {{w, v}} = − 1⊗ wv; (42b)

{{v, w}} = −wv ⊗ 1, {{w, v}} = vw ⊗ 1; (42c)

{{v, w}} = 1⊗ vw − wv ⊗ 1, {{w, v}} = 0. (42d)

This follows from the first part of Proposition A.2.

Write Ad = K〈v1, . . . , vd〉, d ≥ 3.
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Example 6.2. We can view A3 as a mixed double algebra of weight (1, 1,−1) by considering
the operation {{−,−}} uniquely defined by

{{v1, v1}} = 0, {{v2, v2}} = 0, {{v3, v3}} = 0,

{{v1, v2}} = α̃3 v1 ⊗ v2 − β̃3 v2 ⊗ v1,

{{v2, v1}} = (−1 + β̃3) v1 ⊗ v2 + (1− α̃3) v2 ⊗ v1 ,

{{v1, v3}} = α2 1⊗ v1v3 − β2 v3v1 ⊗ 1,

{{v3, v1}} = (−1 + β2) 1⊗ v3v1 + (1− α2) v1v3 ⊗ 1 ,

{{v2, v3}} = α1 1⊗ v2v3 − β1 v3v2 ⊗ 1,

{{v3, v2}} = (−1 + β1) 1⊗ v3v2 + (1− α1) v2v3 ⊗ 1 .

(43)

for α1, α2, α̃3, β1, β2, β̃3 ∈ K. Furthermore, {{−,−}} is Poisson when the triples (α1, α2, β̃3)
and (β1, β2, α̃3) take one of the following 6 values

(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1). (44)

These cases follow from the classification of Proposition A.9.

Next, assume that d > 3. We introduce for 0 ≤ δ ≤ d,

1δ,d := (1, . . . , 1
︸ ︷︷ ︸

δ

,−1, . . . ,−1
︸ ︷︷ ︸

d−δ

) . (45)

The next two results will be proved in §A.2.1 and §A.2.2.

Proposition 6.3. Fix d ≥ 4 and 0 ≤ δ ≤ d. The following defines a mixed double Poisson
algebra structure on Ad of weight 1δ,d:

{{vi, vi}} = 0, for 1 ≤ i ≤ d,

{{vi, vj}} = vi ⊗ vj − vj ⊗ vi, {{vj, vi}} = 0 , for 1 ≤ i < j ≤ δ ,

{{vi, vk}} = 1⊗ vivk − vkvi ⊗ 1, {{vk, vi}} = 0 , for 1 ≤ i ≤ δ < k ≤ d ,

{{vk, vl}} = −vk ⊗ vl + vl ⊗ vk, {{vl, vk}} = 0 , for δ < k < l ≤ d .

(46)

In particular, (46) defines a modified double Poisson bracket on Ad.

Proposition 6.4. Fix d ≥ 4 and 0 ≤ δ ≤ d. The following defines a mixed double Poisson
algebra structure on Ad of weight 1δ,d:

{{vi, vi}} = 0, for 1 ≤ i ≤ d,

{{vi, vj}} = vi ⊗ vj, {{vj, vi}} = −vi ⊗ vj , for 1 ≤ i < j ≤ δ ,

{{vi, vk}} = −vkvi ⊗ 1, {{vk, vi}} = vivk ⊗ 1 , for 1 ≤ i ≤ δ < k ≤ d ,

{{vk, vl}} = −vk ⊗ vl, {{vl, vk}} = vk ⊗ vl , for δ < k < l ≤ d .

(47)

In particular, (47) defines a modified double Poisson bracket on Ad.

Remark 6.5. The case δ = d in Propositions 6.3 and 6.4 can be found, respectively, as
Examples 1 and 2 in [7, §4].
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6.2 The second instance of Arthamonov’s conjecture

If we look at the operation {{−,−}}I defined in (1), we see that

{{x1, x2}}
I + ({{x2, x1}}

I)◦ = 1⊗ x1x2 − x2x1 ⊗ 1,

{{x2, x3}}
I + ({{x3, x2}}

I)◦ = −(x2 ⊗ x3 − x3 ⊗ x2),

{{x3, x1}}
I + ({{x1, x3}}

I)◦ = −(1⊗ x3x1 − x1x3 ⊗ 1).

This defines a mixed double algebra of type

ΛI =





λ1 0 0
0 λ2 −1
0 −1 λ3



 , M I =





0 1 1
−1 0 0
−1 0 0



 . (48)

Furthermore, it is easily seen to be of weight (1,−1,−1) as (23) holds.

Theorem 6.6. The operation {{−,−}}I (1) on K〈x1, x2, x3〉 is a modified double Poisson
bracket.

Proof. Up to multiplying {{−,−}}I by −1 and setting v1 := x3, v2 := x2, v3 := x1, we get
a mixed double algebra structure of weight (1, 1,−1) that reads:

{{v1, v2}} = −v2 ⊗ v1, {{v2, v1}} = v2 ⊗ v1,

{{v1, v3}} = 1⊗ v1v3, {{v3, v1}} = −1 ⊗ v3v1,

{{v2, v3}} = −v3v2 ⊗ 1, {{v3, v2}} = v2v3 ⊗ 1,

(49)

where zero brackets are omitted. If we take in (43) the constants

(α1, α2, β̃3) = (0, 1, 1), (β1, β2, α̃3) = (1, 0, 0),

we reproduce (49). By Proposition A.9, this is a mixed double Poisson algebra; hence
{{−,−}}I is a modified double Poisson bracket by Theorem B.

6.3 Open problems

Based on the constructions carried out in the previous subsections, let us list some
questions that require further investigation.

Problem 1. Put Ad = K〈v1, . . . , vd〉.

(a) Does there exist a mixed double Poisson algebra structure on A2 of weight (λ, ρ) with
λ 6= ±ρ?

(b) Does there exist a mixed double Poisson algebra structure on Ad of some weight λ
where the self-brackets of generators can be nonzero? (I.e. find examples where
{{vi, vi}} 6= 0 for vi a generator of Ad in the considered presentation).
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(c) For d ≥ 2 and any λ ∈ K
d, does there exist a mixed double Poisson algebra structure

on Ad of that weight?

Problem 2. Find examples of mixed double Poisson algebras that are not simply obtained
by localisation/quotient of such a structure on a free algebra.

Problem 3. Can one define analogous structures yielding modified double Poisson brackets
where the failure to satisfy the cyclic skew-symmetry, cf. (19), is homogeneous but not
quadratic?

Problem 4. Reformulate the conditions (19) and (24) in terms of an operator R (cf. (14))
in such a way that, for the case (λ, . . . , λ), R is a λ-skew-symmetric Rota-Baxter operator
of weight λ.

A Some classification results

A.1 Case d = 2

Fix λ, ρ ∈ K and A2 = K〈v, w〉. A mixed double algebra of weight (λ, ρ) must satisfy
{{v, v}} = −{{v, v}}◦, {{w,w}} = −{{w,w}}◦, and

{{v, w}}+ {{w, v}}◦ =
λ + ρ

2
(v ⊗ w − w ⊗ v) +

λ− ρ

2
(1⊗ vw − wv ⊗ 1) . (50)

Furthermore, it is Poisson when the following Poisson conditions hold:

DJac(v, v, v) = −λ v ⊗1 {{v, v}} , DJac(w,w, w) = −ρ w ⊗1 {{w,w}} , (51a)

DJac(v, v, w) = −λ v ⊗1 {{v, w}} , DJac(w,w, v) = −ρ w ⊗1 {{w, v}} , (51b)

DJac(v, w, v) = −
λ+ ρ

2
w ⊗1 {{v, v}}+

λ− ρ

2
1⊗1 (w ∗ {{v, v}}) , (51c)

DJac(v, w, w) = −
λ + ρ

2
w ⊗1 {{v, w}}+

λ− ρ

2
1⊗1 (w ∗ {{v, w}}) , (51d)

DJac(w, v, w) = −
λ + ρ

2
v ⊗1 {{w,w}} −

λ− ρ

2
1⊗1 (v ∗ {{w,w}}) , (51e)

DJac(w, v, v) = −
λ+ ρ

2
v ⊗1 {{w, v}} −

λ− ρ

2
1⊗1 (v ∗ {{w, v}}) . (51f)

To get interesting new examples, we assume that (λ, ρ) 6= (0, 0).
A first classification on A2 is possible when

{{v, v}} = 0, {{w,w}} = 0, (52)

so that (51a) holds directly. We shall make the additional assumption that the mixed
term {{v, w}} is a linear combination of the 4 quadratic expressions appearing in (50). This
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yields by (50),

{{v, w}} = −
γ1
2
v ⊗ w +

γ2
2
w ⊗ v −

γ3
2
1⊗ vw +

γ4
2
wv ⊗ 1 , (53a)

{{w, v}} = −
λ + ρ+ γ2

2
v ⊗ w +

λ+ ρ+ γ1
2

w ⊗ v

−
λ− ρ+ γ4

2
1⊗ wv +

λ− ρ+ γ3
2

vw ⊗ 1 , (53b)

for some Γ = (γ1, . . . , γ4) ∈ K
4.

Lemma A.1. Assume that {{−,−}} is nonzero and satisfies (52) and (53). Then the Pois-
son condition (51b) holds if and only if we are in one of the following cases:

1. ρ = −λ and Γ = (0, 0,−2λ,−2λ), or (0, 0,−2λ, 0), or (0, 0, 0,−2λ), or (0, 0, 0, 0);

2. ρ = +λ and Γ = (−2λ,−2λ, 0, 0), or (−2λ, 0, 0, 0), or (0,−2λ, 0, 0), or (0, 0, 0, 0);

3. ρ = ±λ and Γ = (0,−2λ,−2λ, 0) or (−2λ, 0, 0,−2λ).

Proof. Let us examine the first equality in (51b). To write the left-hand side, we compute
thanks to (5), (52) and (53a):

{{v, {{v, w}}}}L =−
γ1γ2
4

v ⊗ w ⊗ v +
γ2
2

4
w ⊗ v ⊗ v −

γ3γ2
4

1⊗ vw ⊗ v +
γ4γ2
4

wv ⊗ 1⊗ v

−
γ1γ4
4

v ⊗ wv ⊗ 1 +
γ2γ4
4

w ⊗ v2 ⊗ 1−
γ3γ4
4

1⊗ vwv ⊗ 1 +
γ2
4

4
wv ⊗ v ⊗ 1 ,

{{v, {{v, w}}}}R =
γ2
1

4
v ⊗ v ⊗ w −

γ2γ1
4

v ⊗ w ⊗ v +
γ3γ1
4

v ⊗ 1⊗ vw −
γ4γ1
4

v ⊗ wv ⊗ 1

+
γ1γ3
4

1⊗ v2 ⊗ w −
γ2γ3
4

1⊗ vw ⊗ v +
γ2
3

4
1⊗ v ⊗ vw −

γ4γ3
4

1⊗ vwv ⊗ 1 ,

and {{{{v, v}}, w}}L = 0. So (6) gives for the right-hand side

DJac(v, v, w) = +
γ2
2

4
w ⊗ v ⊗ v +

γ4γ2
4

(wv ⊗ 1⊗ v + w ⊗ v2 ⊗ 1) +
γ2
4

4
wv ⊗ v ⊗ 1

−
γ2
1

4
v ⊗ v ⊗ w −

γ3γ1
4

(v ⊗ 1⊗ vw + 1⊗ v2 ⊗ w)−
γ2
3

4
1⊗ v ⊗ vw .

By (53a), we get for the right-hand side

−λ v ⊗1 {{v, w}} =
λγ1
2

v ⊗ v ⊗ w −
λγ2
2

w ⊗ v ⊗ v +
λγ3
2

1⊗ v ⊗ vw −
λγ4
2

wv ⊗ v ⊗ 1 .

Matching coefficients, the first equality in (51b) holds if and only if

γ1γ3 = 0, γ2γ4 = 0, γi

(

λ+
γi
2

)

= 0, 1 ≤ i ≤ 4 ,
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which holds if and only if Γ is one of the following quadruples:

(0, 0, 0, 0), (−2λ, 0, 0, 0), (0,−2λ, 0, 0), (0, 0,−2λ, 0), (0, 0, 0,−2λ),

(−2λ,−2λ, 0, 0), (−2λ, 0, 0,−2λ), (0,−2λ,−2λ, 0), (0, 0,−2λ,−2λ).
(54)

(So far, there is no condition on λ, ρ). Analogous computations entail that the second
equality in (51b) holds if and only if

(λ+ ρ+ γ2)(λ− ρ+ γ3) = 0, (λ+ ρ+ γ1)(λ− ρ+ γ4) = 0,

(λ+ ρ+ γi)(λ− ρ+ γi) = 0, 1 ≤ i ≤ 4 .
(55)

As γi ∈ {0,−2λ}, the last condition yields λ2 − ρ2 = 0. To conclude, it remains to check
when ρ = λ or ρ = −λ which of the cases from (54) satisfy the first two equalities in (55);
we end up with the different cases (1)-(3) from the statement.

Proposition A.2. Let (A2, {{−,−}}) be a mixed double algebra of weight (λ, ρ) such that
(52) and (53) hold. It is Poisson in the following situations:

1. ρ = −λ and (53) reads for some α, β ∈ {0, λ}

{{v, w}} = α 1⊗ vw− β wv⊗ 1, {{w, v}} = (−λ+ β) 1⊗wv+ (λ− α) vw⊗ 1; (56)

2. ρ = +λ and (53) reads for some α̃, β̃ ∈ {0, λ}

{{v, w}} = α̃ v ⊗ w − β̃ w ⊗ v, {{w, v}} = (−λ+ β̃) v ⊗ w + (λ− α̃)w ⊗ v. (57)

Proof. Note that (56) and (57) correspond respectively to cases (1) and (2) in Lemma A.1.
Let us verify that (51c) is satisfied in those two cases, but that case (3) must be discarded.

The right-hand side of (51c) identically vanishes as {{v, v}} = 0. The left-hand side of
(51c) becomes by (5), (52) and (53a):

DJac(v, w, v) =−
(λ+ ρ+ γ1)γ1

4
v ⊗ w ⊗ v −

(λ+ ρ+ γ1)γ3
4

1⊗ vw ⊗ v

−
(λ− ρ+ γ3)γ1

4
v2 ⊗ w ⊗ 1−

(λ− ρ+ γ3)γ3
4

v ⊗ vw ⊗ 1

+
(λ+ ρ+ γ2)γ2

4
v ⊗ v ⊗ w +

(λ+ ρ+ γ2)γ4
4

v2 ⊗ 1⊗ w

+
(λ− ρ+ γ4)γ2

4
1⊗ v ⊗ wv +

(λ− ρ+ γ4)γ4
4

v ⊗ 1⊗ wv .

(58)

If ρ = −λ, vanishing of (58) amounts to:

γ2
1 = 0, γ2

2 = 0, γ1γ3 = 0, γ2γ4 = 0,

γ3(γ3 + 2λ) = 0, γ4(γ4 + 2λ) = 0, γ1(γ3 + 2λ) = 0, γ2(γ4 + 2λ) = 0,
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This is satisfied when γ1 = γ2 = 0 and γ3, γ4 ∈ {0,−2λ} (i.e. case (1) in Lemma A.1) but
this fails for Γ = (0,−2λ,−2λ, 0), (−2λ, 0, 0,−2λ) (i.e. case (3) in Lemma A.1).

If ρ = +λ, vanishing of (58) amounts to:

γ2
3 = 0, γ2

4 = 0, γ1γ3 = 0, γ2γ4 = 0,

γ1(γ1 + 2λ) = 0, γ2(γ2 + 2λ) = 0, γ3(γ1 + 2λ) = 0, γ4(γ2 + 2λ) = 0,

This is satisfied when γ3 = γ4 = 0 and γ1, γ2 ∈ {0,−2λ} (i.e. case (2) in Lemma A.1) but
this fails for Γ = (0,−2λ,−2λ, 0), (−2λ, 0, 0,−2λ) (i.e. case (3) in Lemma A.1).

We leave to the reader the standard but tedious task of checking that (51d)–(51f) also
hold for cases (1) and (2) from Lemma A.1.

Corollary A.3. The 8 operations considered in Proposition A.2 define modified double Pois-
son brackets.

Proof. This follows from Theorem B.

Remark A.4. The 8 operations considered in Proposition A.2 are members of a (conjec-
tural) classification by Arthamonov [3] of 12 modified double Poisson brackets on K〈v, w〉
stable under the (K×)2-action by automorphisms

(ζ1, ζ2) · (v, w) = (ζ1v, ζ2w) , ζ1, ζ2 ∈ K
× . (59)

The remaining 4 structures defined by Arthamonov are mixed double algebras, hence they
define mixed double brackets by Corollary 3.5. However, they do not satisfy our double
Jacobi identity (24), hence we can not prove that the Jacobi identity (13) always hold for
these modified double brackets.

A.2 Case d ≥ 3

For d ≥ 3, fix λ1, . . . , λd ∈ K and Ad = K〈v1, . . . , vd〉.

Lemma A.5. Let (Ad, {{−,−}}) be a mixed double algebra of weight (λ1, . . . , λd). If

{{vi, vi}} = 0, {{vj, vj}} = 0 ,

{{vi, vj}} = −
γ1
2
vi ⊗ vj +

γ2
2
vj ⊗ vi −

γ3
2
1⊗ vivj +

γ4
2
vjvi ⊗ 1 ,

{{vj, vi}} = −
λi + λj + γ2

2
vi ⊗ vj +

λi + λj + γ1
2

vj ⊗ vi

−
λi − λj + γ4

2
1⊗ vjvi +

λi − λj + γ3
2

vivj ⊗ 1 ,

(60)

for some distinct i, j ∈ {1, . . . , d} and Γ = (γ1, . . . , γ4) ∈ K
4, then λ2

i −λ2
j = 0, and we are

in one of the following two situations:

1. γ1 = γ2 = 0, γ3, γ4 ∈ {0,−2λi} and λj = −λi;
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2. γ3 = γ4 = 0, γ1, γ2 ∈ {0,−2λi} and λj = λi.

Proof. This is a reformulation of Proposition A.2 with v := vi and w := vj .

If we assume that (60) holds for all 1 ≤ i < j ≤ d, we are either in the case of a double
Poisson bracket (when λj = 0 for some j, hence for all), or the weight is of the form

λ (1, ǫ2, . . . , ǫd) , λ ∈ K
×, ǫ2, . . . , ǫd = ±1.

Combining Observations (3) and (4) after Definition 3.1, up to rescaling and permutations
of generators, the weight must be of the form 1δ,d (45) with 1 ≤ δ ≤ ⌊d/2⌋+ 1. For d = 3,
we therefore have 2 distinct cases to analyze: the weights (1, 1, 1) and (1, 1,−1).

d = 3, weight (1, 1, 1)

Proposition A.6. Let (A3, {{−,−}}) be a mixed double algebra of weight (1, 1, 1) such that
(60) holds for any 1 ≤ i < j ≤ 3. Then it is Poisson when it is given by

{{v1, v1}} = 0, {{v2, v2}} = 0, {{v3, v3}} = 0,

{{v1, v2}} = α̃3 v1 ⊗ v2 − β̃3 v2 ⊗ v1,

{{v2, v1}} = (−1 + β̃3) v1 ⊗ v2 + (1− α̃3) v2 ⊗ v1 ,

{{v1, v3}} = α̃2 v1 ⊗ v3 − β̃2 v3 ⊗ v1,

{{v3, v1}} = (−1 + β̃2) v1 ⊗ v3 + (1− α̃2) v3 ⊗ v1 ,

{{v2, v3}} = α̃1 v2 ⊗ v3 − β̃1 v3 ⊗ v2,

{{v3, v2}} = (−1 + β̃1) v2 ⊗ v3 + (1− α̃1) v3 ⊗ v2 ,

(61)

for α̃i, β̃i ∈ {0, 1} subject to the following 2 conditions:

α̃1α̃2 + α̃2α̃3 − α̃1α̃3 − α̃2 = 0 , (62a)

β̃1β̃2 + β̃2β̃3 − β̃1β̃3 − β̃2 = 0 . (62b)

Remark A.7. As we should expect from the second observation made after Definition 3.1,
the conditions (62a)–(62b) are invariant under permutations of the 3 generators v1, v2 and
v3. Indeed, swapping v1 with v2 or v2 with v3 (which generate any permutation) amounts
to changing constants according to

(α̃1, α̃2, α̃3) 7→ (α̃2, α̃1, 1− α̃3) under v1 ↔ v2,

(α̃1, α̃2, α̃3) 7→ (1− α̃1, α̃3, α̃2) under v2 ↔ v3;

these are transformations preserving (62a). (The same holds for (62b) if one uses β̃i in
place of α̃i). In particular, the triples (α̃1, α̃2, α̃3) and (β̃1, β̃2, β̃3) satisfying (62a)–(62b)
can be given explicitly as in (44).
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Proof of Proposition A.6. By the second case in Proposition A.2, (24) is satisfied when
i, j, k range over a subset of 2 indices provided that (61) holds for any α̃i, β̃i ∈ {0, 1}. It
remains to check that (24) (with all λi = 1) holds under the conditions (62a)–(62b) when
the 3 indices are distinct; there are 6 cases.

Let us compute (24) for (i, j, k) = (1, 2, 3), the other cases being completely analogous.
To write the left-hand side, we use (5) and (61):

{{v1, {{v2, v3}}}}L = α̃1α̃3 v1 ⊗ v2 ⊗ v3 − α̃1β̃3 v2 ⊗ v1 ⊗ v3

− α̃2β̃1 v1 ⊗ v3 ⊗ v2 + β̃1β̃2 v3 ⊗ v1 ⊗ v2 ,

−{{v2, {{v1, v3}}}}R =− α̃1α̃2 v1 ⊗ v2 ⊗ v3 + α̃2β̃1 v1 ⊗ v3 ⊗ v2

+ β̃2(−1 + β̃3) v3 ⊗ v1 ⊗ v2 + β̃2(1− α̃3) v3 ⊗ v2 ⊗ v1 ,

−{{{{v1, v2}}, v3}}L = − α̃2α̃3 v1 ⊗ v2 ⊗ v3 + α̃3β̃2 v3 ⊗ v2 ⊗ v1

+ α̃1β̃3 v2 ⊗ v1 ⊗ v3 − β̃1β̃3 v3 ⊗ v1 ⊗ v2 ,

which yield

DJac(v1, v2, v3) =− (α̃1α̃2 + α̃2α̃3 − α̃1α̃3) v1 ⊗ v2 ⊗ v3 + β̃2 v3 ⊗ v2 ⊗ v1

+ (β̃1β̃2 + β̃2β̃3 − β̃1β̃3 − β̃2) v3 ⊗ v1 ⊗ v2 .
(63)

Meanwhile, the right-hand side reads:

−v2 ⊗1 {{v1, v3}} =− α̃2 v1 ⊗ v2 ⊗ v3 + β̃2 v3 ⊗ v2 ⊗ v1 . (64)

The expressions (63) and (64) coincide precisely when (62a)–(62b) hold.

Corollary A.8. Under the conditions (62a)–(62b), the operation (61) defines:

1. a 1-double Lie algebra structure on V := Kv1 ⊕Kv2 ⊕Kv3;

2. a modified double Poisson bracket on A3.

Proof. The first part follows from Definition 2.8 and Proposition A.6 (cf. Example 4.4).
The second part follows from Proposition A.6 and Theorem B.

d = 3, weight (1, 1,−1)

Proposition A.9. Let (A3, {{−,−}}) be a mixed double algebra of weight (1, 1,−1) such
that (60) holds for any 1 ≤ i < j ≤ 3. Then it is Poisson when it is given by (43) for
α1, α2, α̃3, β1, β2, β̃3 ∈ {0, 1} subject to the following 2 conditions:

α1α2 + α2β̃3 − α1β̃3 − α2 = 0 , (65a)

β1β2 + β2α̃3 − β1α̃3 − β2 = 0 . (65b)

Remark A.10. Conditions (65a)–(65b) are invariant under the permutation v1 ↔ v2 which
preserves the weight (1, 1,−1). In particular, we deduce from (65a)–(65b) that the triples
(α1, α2, β̃3) and (β1, β2, α̃3) can only take the 6 values collected in (44).
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Proof of Proposition A.9. This is an explicit computation similar to Proposition A.6. For
the reader’s convenience, let us nevertheless check (24) for (i, j, k) = (1, 3, 2) (recall the
weight (1, 1,−1)). To write the left-hand side, we use (5), (7) and (43):

{{v1, {{v3, v2}}}}L = (1− α1)α̃3 v1 ⊗ v2v3 ⊗ 1− (1− α1)β̃3 v2 ⊗ v1v3 ⊗ 1

+ (1− α1)α2 v2 ⊗ v1v3 ⊗ 1− (1− α1)β2 v2v3v1 ⊗ 1⊗ 1 ,

−{{v3, {{v1, v2}}}}R =− α̃3(−1 + β1) v1 ⊗ 1⊗ v3v2 − α̃3(1− α1) v1 ⊗ v2v3 ⊗ 1

+ β̃3(−1 + β2) v2 ⊗ 1⊗ v3v1 + β̃3(1− α2) v2 ⊗ v1v3 ⊗ 1 ,

−{{{{v1, v2}}, v3}}L = β2α̃3 v1 ⊗ 1⊗ v3v2 − β2β̃3 v2 ⊗ 1⊗ v3v1

+ β2(−1 + β1) v1 ⊗ 1⊗ v3v2 + β2(1− α1) v2v3v1 ⊗ 1⊗ 1 ,

which yield

DJac(v1, v2, v3) =− (α1α2 + α2β̃3 − α1β̃3 − α2) v2 ⊗ v1v3 ⊗ 1− β̃3 v2 ⊗ 1⊗ v3v1

+ (β1β2 + β2α̃3 − β1α̃3 − β2 + α̃3) v1 ⊗ 1⊗ v3v2 .
(66)

Meanwhile, the right-hand side reads:

1⊗1 (v3 ∗ {{v1, v2}}) =α̃3 v1 ⊗ 1⊗ v3v2 − β̃3 v2 ⊗ 1⊗ v3v1 . (67)

The expressions (66) and (67) coincide precisely when (65a)–(65b) hold.

Corollary A.11. Under the conditions (65a)–(65b), the operation (43) defines a modified
double Poisson bracket on A3.

Combining Propositions A.6 and A.9, we can construct many new modified double
Poisson brackets. This is how we found Propositions 6.3 and 6.4, which are proved now.

A.2.1 Proof of Proposition 6.3

By checking (3) for any 1 ≤ i ≤ j ≤ d, it is clear that (46) defines a mixed double algebra
of weight 1δ,d. Hence it remains to verify (24).

Pick 1 ≤ a < b < c ≤ d. If c ≤ δ, the mixed double brackets involving va, vb, vc corre-
spond to taking all constants equal to +1 in (61) with (va, vb, vc) relabelled as (v1, v2, v3).
Thus (24) is satisfied by Proposition A.6 whenever vi, vj, vk ∈ {va, vb, vc}.

Similarly, if b ≤ δ and c > δ, the mixed double brackets involving va, vb, vc are of
weight (1, 1,−1) and correspond to taking all constants equal to +1 in (43) (with (va, vb, vc)
relabelled as (v1, v2, v3)), hence (24) is satisfied on these generators by Proposition A.9.

If a ≤ δ and b > δ, the mixed double brackets involving va, vb, vc are of weight
(1,−1,−1). Up to multiplying {{−,−}} by −1, the weight is (−1, 1, 1) and they corre-
spond to

(α1, α2, α̃3) = (0, 0, 1), (β1, β2, β̃3) = (0, 0, 1),

in (43) after relabelling (va, vb, vc) as (v3, v1, v2). Hence (24) is satisfied on these generators
by Proposition A.9.
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Finally, if a > δ, the mixed double brackets involving va, vb and vc are of weight
(−1,−1,−1). Up to multiplying {{−,−}} by −1, these are of weight (1, 1, 1) and correspond
to taking all constants equal to +1 in (61) (with (va, vb, vc) relabelled as (v1, v2, v3)), hence
(24) is satisfied on these generators by Proposition A.6.

The last part follows from Theorem B.

A.2.2 Proof of Proposition 6.4

This is similar to the proof of Proposition 6.3. The only changes are as follows:

• If c ≤ δ, we use the constants (α̃1, α̃2, α̃3) = (1, 1, 1) and (β̃1, β̃2, β̃3) = (0, 0, 0). If
a > δ, we take the same constants.

• If b ≤ δ and c > δ, we use the following constants (α1, α2, β̃3) = (0, 0, 0) and
(β1, β2, α̃3) = (1, 1, 1). If a ≤ δ and b > δ, we use the same constants (recalling
that we need a different relabelling in that case).

A.3 Proof of the first instance of Arthamonov’s conjecture (Theorem 2.11)

If we look at the operation {{−,−}}II defined in (2) on K〈x1, x2, x3〉, we see that

{{x1, x2}}
II + ({{x2, x1}}

II)◦ = −(x1 ⊗ x2 − x2 ⊗ x1),

{{x2, x3}}
II + ({{x3, x2}}

II)◦ = −(x2 ⊗ x3 − x3 ⊗ x2),

{{x3, x1}}
II + ({{x1, x3}}

II)◦ = −(x3 ⊗ x1 − x1 ⊗ x3).

This defines a mixed double algebra of weight (−1,−1,−1).
Up to multiplying {{−,−}}II by −1 and setting vi := xi, we get a mixed double algebra

structure of weight (1, 1, 1) that reads:

{{v1, v2}} = v1 ⊗ v2, {{v2, v1}} = −v1 ⊗ v2,

{{v2, v3}} = −v3 ⊗ v2, {{v3, v2}} = v3 ⊗ v2,

{{v3, v1}} = −v1 ⊗ v3 + v3 ⊗ v1,

(68)

where zero brackets are omitted. If we take in (61) the constants

(α̃1, α̃2, α̃3) = (0, 0, 1), (β̃1, β̃2, β̃3) = (1, 0, 0),

we reproduce (68). By Proposition A.6, this is a mixed double Poisson algebra, hence
{{−,−}}II is a modified double Poisson bracket by Corollary A.8.
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