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The Pell tower and Ostronometry

Robbert Fokkink

Abstract. Conway and Ryba considered a table of bi-infinite Fibonacci sequences
and discovered new interesting patterns. We extend their considerations to tables
that are defined by the recurrence Xn+1 = dXn + Xn−1 for natural numbers d. In
our search for new patterns we run into a Red Wall and exotic numeration systems.
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The Fibonacci sequence (Fn) = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . and its companion, the
Lucas sequence (Ln) = 2, 1, 3, 4, 7, 11, 18, 29, 47, . . . have been examined inside out. A few
years ago, John Conway and Alex Ryba managed to find a surprising new shape in the
Fibonacci recurrence Xn+1 = Xn + Xn−1, which they called the Empire State Building.
We will explain what that is in Section 1. In this paper we adopt their point of view and
look for similar shapes in the recurrence Xn+1 = dXn +Xn−1 for general d. We call them
Pell Towers, since the linear recurrence for d = 2 produces the Pell numbers. The analysis
of Conway and Ryba depends on relations between Fibonacci numbers which they called
Fibonometry, since they can be derived from trigonometric relations. We extend this to
the recursion Xn+1 = dXn +Xn−1 and call it Ostronometry.
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Robbert Fokkink

1 The Wythoff array and the Empire State building

The starting point of Conway and Ryba in [8] is Table 1 of Fibonacci recurrent se-
quences.

0 1 1 2 3 5 8 13 21 34 · · ·

1 3 4 7 11 18 29 47 76 123 · · ·

2 4 6 10 16 26 42 68 110 178 · · ·

3 6 9 15 24 39 63 102 165 267 · · ·

4 8 12 20 32 52 84 136 220 356 · · ·

5 9 14 23 37 60 97 157 254 411 · · ·

6 11 17 28 45 73 118 191 309 500 · · ·

7 12 19 31 50 81 131 212 343 555 · · ·

8 14 22 36 58 94 152 246 398 644 · · ·

9 16 25 41 66 107 173 280 453 733 · · ·
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Table 1: The first ten rows of the Garden State. If we ignore the first two columns (called the
seed and the wall by Conway and Ryba), then we get the Wythoff array in which each natural
number occurs exactly once.

They call it the Garden State, since the table grows like a garden of numbers from two
initial columns. In this section we review their results.

The table had been encountered before, without the initial two columns. Morrison [17]
found it first, modifying an earlier array of Stolarsky [21]. He proved that each Fibonacci
recurrent sequence with positive terms occurs exactly once in the array (after deleting or
adding some initial terms to Stolarsky’s array). He also proved that the rows consist of
losing positions in Wythoff’s game, which is why he called it the Wythoff array. The study
of this game and its associated numeration systems is a world of its own [10].

Kimberling [15] found a neat connection between the Wythoff array and Zeckendorf
numeration. In this numeration system, each natural number N is written as a sum of
non-consecutive Fibonacci numbers

N =
∑

2≤j≤i

djFj (1)

with Fi the largest Fibonacci number bounded by N and dj ∈ {0, 1} and dj−1 = 0 if
dj = 1. Each number can be represented by a binary word d2d3 · · · di, starting with the
digit of F2. For instance, the binary word of 15 is 010001 in lsd representation. This is the
least significant digit first, or lsd representation of N . Note that it runs in the opposite
direction that we are all used to in our decimal notation (the msd representation). The
expansion of Equation (1) can be found by repeatedly subtracting the largest possible
Fibonacci number. This process produces the digits in msd order.

If we arrange the words that start and end with a 1 in increasing length, and within
constant length in increasing lexicographic order, then we get

1, 101, 1001, 10001, 10101, 100001, 101001, 100101, . . . . (2)

This is known as the radix order. These words represent the initial column of the Wythoff
array, next to the wall in Table 1. The second column has prefix 01, the third have
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The Pell tower and Ostronometry

prefix 001, and so forth. To locate a number in the array, simply determine its Zeckendorf
expansion. The prefix of zeros determines the column. The suffix determines the row.

Conway and Ryba extended the Wythoff array by two columns, called the seed and the
wall. The seed 0, 1, 2, 3, . . . numbers the floors of the Empire State Building, counting from
the top. A seed term and a wall term determine the state and the recurrent sequence grows
from there. Conway and Ryba introduced the operation n 7→ out(n), which prepends a
zero. If n is represented by w then out(n) is represented by 0w. In the Wythoff array out

takes a step to the right. It has a hiccup for the extended array with the seed and the wall.
If we apply out to the seed, then we get 0, 2, 3, 5, 7, 8, . . . which is the wall minus one. If
we apply out to the wall, then we get the sequence 2, 5, 7, 10, 13, 15, . . . which is the first
column of the Wythoff array plus one. From then on, the operation runs smoothly.

· · · 13 −8 5 −3 2 −1 1 0 1

· · · 18 −11 7 −4 3 −1 2 1 3

· · · 10 −6 4 −2 2 0 2 2 4

· · · 15 −9 6 −3 3 0 3 3 6

· · · 20 −12 8 −4 4 0 4 4 8

· · · 12 −7 5 −2 3 1 4 5 9

· · · 17 −10 7 −3 4 1 5 6 11

· · · 9 −5 4 −1 3 2 5 7 12

· · · 14 −8 6 −2 4 2 6 8 14

· · · 19 −11 8 −3 5 2 7 9 16

.
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Table 2: Extending the recurrence to the left. The wall reappears, with positive terms, and
so does the seed in front of it, with negative terms. The order is shuffled. For instance, the
seed 5 (sixth row) appears two rows down (eighth row) next to the left wall term as -5. It
is a longstanding open problem whether there is an algorithm to decide if a bi-infinite linear
recurrence sequence has only non-negative terms, see [14].

The Fibonacci recurrence extends to negative indices. Conway and Ryba consider the
extension of Table 1 to the left and call it the ExtraFib array. The numbers that appear
here are alternating in sign. If we take absolute values Y = |X|, then we retrieve the
Fibonacci recurrence Y−n−1 = Y−n+Y−n+1, which now grows to the left. Each sequence of
the Wythoff array reappears on the left with alternating signs, possibly at a different level.
If it reappears at the same level, then the bi-infinite sequence is palindromic (ignoring the
signs). Since sequences reappear at the left there is another wall (and another seed) on
the left, see Table 2. The left wall extends ever further to the left.

Conway and Ryba prove that the number of terms between the walls is odd, which is
why it is natural to center the table around the middle term (the pillar). The resulting
figure in Table 3 has the outline of a skyscraper, made up of blocks of constant width
(number of terms between the walls) which get longer and longer as we go down the
table. The palindromic sequences are evenly spaced within each block. By underlining
these rows within the walls, the structure gets even more likeliness to the Empire State
Building. Within a block, the palindromes are either multiples of the Fibonacci numbers
or of the Lucas numbers. That is why Conway and Ryba call them Fifi blocks and Lulu
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blocks. They show in [8] that the Empire State Building has lots of structure. What types
of buildings do we get for other recursions? We consider this question for the recursion
Xn+1 = dXn +Xn−1.

· · · −8 5 −3 2 −1 1 0 1 1 2 3 5 8 · · ·

· · · 18 −11 7 −4 3 −1 2 1 3 4 7 11 18 · · ·

· · · −16 10 −6 4 −2 2 0 2 2 4 6 10 16 · · ·

· · · −24 15 −9 6 −3 3 0 3 3 6 9 15 24 · · ·

· · · −32 20 −12 8 −4 4 0 4 4 8 12 20 32 · · ·

· · · 31 −19 12 −7 5 −2 3 1 4 5 9 14 23 · · ·

· · · 44 −27 17 −10 7 −3 4 1 5 6 11 17 28 · · ·

· · · 23 −14 9 −5 4 −1 3 2 5 7 12 19 31 · · ·

· · · 36 −22 14 −8 6 −2 4 2 6 8 14 22 36 · · ·

· · · 49 −30 19 −11 8 −3 5 2 7 9 16 25 41 · · ·

· · · 28 −17 11 −6 5 −1 4 3 7 10 17 27 44 · · ·

· · · 41 −25 16 −9 7 −2 5 3 8 11 19 30 49 · · ·

· · · 54 −33 21 −12 9 −3 6 3 9 12 21 33 54 · · ·

· · · −53 33 −20 13 −7 6 −1 5 4 9 13 22 35 · · ·

· · · −74 46 −28 18 −10 8 −2 6 4 10 14 24 38 · · ·

· · · −40 25 −15 10 −5 5 0 5 5 10 15 25 40 · · ·

· · · −61 38 −23 15 −8 7 −1 6 5 11 16 27 43 · · ·

· · · −82 51 −31 20 −11 9 −2 7 5 12 17 29 46 · · ·

· · · −48 30 −18 12 −6 6 0 6 6 12 18 30 48 · · ·

· · · −69 43 −26 17 −9 8 −1 7 6 13 19 32 51 · · ·

· · · −35 22 −13 9 −4 5 1 6 7 13 20 33 53 · · ·

· · · −56 35 −21 14 −7 7 0 7 7 14 21 35 56 · · ·

· · · −77 48 −29 19 −10 9 −1 8 7 15 22 37 59 · · ·

· · · −43 27 −16 11 −5 6 1 7 8 15 23 38 61 · · ·

· · · −64 40 −24 16 −8 8 0 8 8 16 24 40 64 · · ·

· · · −85 53 −32 21 −11 10 −1 9 8 17 25 42 67 · · ·

· · · −51 32 −19 13 −6 7 1 8 9 17 26 43 69 · · ·

· · · −72 45 −27 18 −9 9 0 9 9 18 27 45 72 · · ·

· · · −38 24 −14 10 −4 6 2 8 10 18 28 46 74 · · ·

· · · −59 37 −22 15 −7 8 1 9 10 19 29 48 77 · · ·

· · · −80 50 −30 20 −10 10 0 10 10 20 30 50 80 · · ·

· · · −46 29 −17 12 −5 7 2 9 11 20 31 51 82 · · ·

· · · −67 42 −25 17 −8 9 1 10 11 21 32 53 85 · · ·

· · · −88 55 −33 22 −11 11 0 11 11 22 33 55 88 · · ·
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Table 3: The top five blocks of the Empire State. A larger figure with more details is given in [8].
The additional red decoration is defined in the next section. Every non-zero integer appears once
to the left of the red wall. Every number between the red wall and the left wall appears with an
opposite sign to the left of the left wall.

2 Ostrowski arrays and the Pell Tower

The array Am,n can be defined for any recursion Xn+1 = dXn +Xn−1 and d ≥ 1. We
call it an Ostrowski array. For d = 1 the Ostrowski array is the Wythoff array. The array
extends to the left and we shall see that it contains a building. For d = 2 the recursion
produces the Pell numbers and that is why we call the building a Pell tower.

We limit our attention to d > 1, since d = 1 was fully covered in [8]. Starting from
0, 1 the recursion Xn+1 = dXn +Xn−1 produces a sequence that forms the backbone of a
numeration system. If d = 1 we get the Fibonacci numbers and Zeckendorf numeration.
If d = 2 we get the Pell numbers (Pn) = 0, 1, 2, 5, 12, 29, 70, 169, . . .. More generally, let
(Dn) = 1, d, d2 + 1, . . . be the sequence for a fixed d. It is known [1, p. 106] that every
natural number N can be represented uniquely in the form

N =
∑

1≤j≤i

djDj (3)
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The Pell tower and Ostronometry

where Di is the largest denominator less than N and the digits dj satisfy

1. 0 ≤ d1 < d.

2. 0 ≤ di ≤ d for i > 1.

3. If di = d then di−1 = 0.

This numeration system is a particular case of the more general Ostrowski α-numeration
system, which is defined from the continued fraction expansion (cfe) of α > 1. The
denominators of the convergents in its cfe form the backbone of the numeration system.
Ostrowski numeration is particularly nice for quadratic irrationals [11]. In our case we

have α = d+
√
d2+4
2

. We say that the word d1d2 · · · dN in Equation (3) is an Ostrowski word,
without mentioning α. Ostrowski words have letters {0, 1, . . . , d} and each d is preceded
by 0.

We say that an Ostrowski word is trimmed if it cannot be written as 0v for an Ostrowski
word v. The array Am,n for the Fibonacci recursion has rows labelled by words in the radix
order of Equation (2). We order the Ostrowski array for the recursion Xn+1 = dXn+Xn−1

in the same way. Its rows correspond to trimmed Ostrowski words in radix order. Any
number n can therefore be located from its Ostrowski representation. This is the d-
Ostrowski array, but we shall often suppress d in our notation. The case d = 2 is given in
Table 4.

0 1 2 5 12 29 70 169 408 · · ·

1 3 7 17 41 99 239 577 1393 · · ·

2 4 10 24 58 140 338 816 1970 · · ·

2 6 14 34 82 198 478 1154 2786 · · ·

3 8 19 46 111 268 647 1562 3771 · · ·

4 9 22 53 128 309 746 1801 4348 · · ·

4 11 26 63 152 367 886 2139 5164 · · ·

5 13 31 75 181 437 1055 2547 6149 · · ·

6 15 36 87 210 507 1224 2955 7134 · · ·

.
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Table 4: The first ten rows of the Pell array (the 2-Ostrowski array), with an additional first
column of wall terms. The table is seedless. Within a column, there are only three differences.
For instance, in the second column the differences are 5, 3, 4, 5, 3, 4, . . . and in the third column
they are 12, 7, 10, 12, 7, 10, . . ..

For a fixed d, let w1, w2, w3, . . . be the trimmed Ostrowski words in radix order, starting
from w1 = 1. Then Am,n is represented by 0n−1wm. The out operation moves from one
column to the next in the d-Ostrowski array. It is defined in terms of words, but it is also
possible to give a numerical description, as in the lemma below. Let β = d−

√
d2+4
2

be the
algebraic conjugate of α. Note that αβ = −1 and α+ β = d (also known as the norm and
the trace of α).

Lemma 2.1. For every natural number n, out(n) = ⌊αn+ 1
α
⌋.

Proof. The denominators satisfy

Dn =
αn − βn

α− β
(4)
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from which Dn+1 − αDn = βn follows. If n =
∑

1≤j≤i djDj then

out(n)− αn =
∑

1≤j≤i

djβ
j . (5)

Even powers of β are positive, odd powers are negative. The first digit is bounded by d−1
since d needs to be preceded by 0. It follows that

d
∞
∑

k=1

β2k−1 − β < out(n)− αn < d
∞
∑

k=1

β2k,

which is equal to
dβ

1− β2
− β < out(n)− αn <

dβ2

1− β2
.

Now β2 = dβ + 1 and β = − 1
α
. Therefore, out(n) is the unique integer in the interval

(αn+ 1
α
− 1, αn+ 1

α
). In other words,

out(n)− αn ∈
(

1− 1

α
,
1

α

)

, (6)

and the proof is finished.

An inspection of Table 4 shows that if we move to the right along a fixed row, then the
ratio of consecutive numbers converges to α. The following corollary makes this precise.

Corollary 2.2. For a fixed m and running index n, the differences Am,n+1 − αAm,n have
alternating signs and diminish in absolute value by a factor 1

α
.

Proof. According to Equation (5)

Am,n+1 − αAm,n = βn−1
k

∑

i=1

diβ
k,

if w = d1 · · ·dk is the m-th trimmed word. Therefore the next difference Am,n+2−αAm,n+1

diminishes by a factor β = −1/α.

We shall say that two sequences (Xn) and (Yn) are tail equivalent if there exists an
integer j such that Xn = Yn+j for sufficiently large n. Morrison defined a table (Am,n) of
Fibonacci recursive sequences to be a Stolarsky array if it contains every natural number
once, and if each Fibonacci recurrent sequence is tail equivalent to a row in the table.
Extending this to our recursion, we say that the table is a d-Stolarsky array if satisfies the
following properties:

1. Each row satisfies the recurrence Xn+1 = dXn +Xn−1.

2. Each natural number occurs once in the table.

6
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3. For every positive recurrent sequence (Bn) there exists an m such that (Am,n) and
(Bn) are tail equivalent.

Morrison proved that the Wythoff array is a Stolarsky array [17]. His result extends to
Ostrowski arrays.

Theorem 2.3. The d-Ostrowski array is a d-Stolarsky array.

Proof. Properties 1 and 2 follow immediately from the definition of the d-Ostrowski array.
There exists a > 0 and b such that Xn = aαn+ bβn. For every ǫ > 0 there exists an k such
that |Xk+1 − αXk| < ǫ. In particular, we may choose ǫ = −β. By Property 2 there exists
an Am,n that is equal to Xk and by Lemma 2.1 Am,n+1 = Xk+1. Therefore, Am,n and Xn

are tail equivalent.

The irrational number α > 1 and a real number γ > 1−α generate the non-homogeneous
Beatty sequence

Bα,γ = {⌊α + γ⌋, ⌊2α+ γ⌋, ⌊3α + γ⌋, . . .} .
If α = α/(α− 1) and δ is real then Bα,δ is complementary to Bα,γ, as a subset of N, if

γ

α
+

δ

α
= 0,

provided that α > 2 and none of the nα + γ are integral, see [13].

Corollary 2.4. The first column A1,n of the Ostrowski array is the non-homogeneous Beatty
sequence

⌊

n · α

α− 1
− 1

α(α− 1)

⌋

. (7)

Proof. By Lemma 2.1 the numbers that can be written as out(n) form the non-homoge-
neous Beatty sequence ⌊nα + 1

α
⌋. The first column contains the numbers that cannot be

written in this form, i.e., the complementary Beatty sequence. It is equal to Bα,−α/α2 .

The first column of an Ostrowski array appears in the OEIS only for d = 1, as the
upper Wythoff sequence A001950. For d = 2 the first column does not occur in the
OEIS, although it is very close to A081031, the positions of the white keys on a piano
keyboard, given by ⌊12n−3

7
⌋. The reason is that the fraction 12

7
is a convergent of α

α−1
. The

complementary Beatty sequence of the first column appears in the OEIS for d = 1 (lower
Wythoff) and for d = 2, sequence A082845.

We added a column Am,0 of wall terms to the Ostrowski array. If w = jv represents
Am,1, then v represents Am,0. It may not be an Ostrowski word.

Corollary 2.5. For d > 1 the sequence Am,0 of wall terms is equal to ⌊ mα
α+1
⌋.

7
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Proof. A wall term is represented by the word that labels its row, with the initial digit
deleted. This is either an Ostrowski word (indeed, all w occur since 1w is trimmed) or
a word with prefix d, which is a non-Ostrowski word. Since all Ostrowski words occur,
the wall terms contain all non-negative integers. Some integers are repeated by the non-
Ostrowski words. These non-Ostrowski words are given by dw for an Ostrowski word w,
if we allow the empty word w = ǫ for the first row. The repetitions occur at out(w) + d,
which by Lemma 2.1 is equal to

⌊

(n− 1)α+
1

α

⌋

+ d = ⌊nα⌋.

Here we put n − 1 to start the count at zero, to include the empty word w. The number
of repetitions up to but not including k is equal to ⌊ k

α
⌋. Therefore, at index m = k + ⌊ k

α
⌋

we have Am,0 = k. Expressing k in terms of m we find that k = (m+ǫ)α
1+α

for some 0 < ǫ < 1.
Thus, if k occurs first at index m, then

Am,0 =

⌊

mα

α + 1

⌋

.

If k repeats at the next index m+1, then k = nα− ǫ for some n and 0 < ǫ < 1. Therefore
⌊ k
α
⌋ = n−1 = k

α
+ ǫ

α
−1. Now by the same argument as above, m+1 = k+⌊ k

α
⌋+1 = k+ k

α
+ ǫ

α
.

We get Am+1,0 =
⌊

(m+1)α
α+1

⌋

.

For d = 2 we have sequence A049472. For d = 3 it agrees up to the thirtieth term with
A093700, which is ⌊nγ⌋ for γ = − log10 (3−

√
8). This is because α/(α + 1) is very close

to γ.
The differences Am+1,1 − Am,1 between consecutive entries in the first column of the

Ostrowski array are either equal to ⌊α⌋ or ⌈α⌉. If we code these differences by zeros
and ones, then we get a Sturmian sequence. This relation between Beatty sequences and
Sturmian sequences is well studied and there is an algorithm to convert one into the other,
see [2]. Differences between terms of a non-homogeneous Beatty sequence ⌊mx+ y⌋ follow
from the rotation of the circle over x, starting from y. The first column of the Ostrowski
array is non-homogeneous by Equation (7), but the reader may check that −1

α(α−1)
is in the

forward orbit of zero of the rotation (it is the (d− 1)-th iterate).
From the second column on, the differences Am+1,k −Am,k all seem to follow the same

pattern in Table 4. Furthermore, if we apply the out operation to differences in the k-th
column, then we seem to get the differences in the (k + 1)-th column. This follows from
the following additive property of the out operator.

Corollary 2.6. If i, j, k are such that

out(i) + k = out(j),

then
out

2(i) + out(k) = out
2(j)

8
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Proof. By Equation (6)

out(n)− αn ∈
(

1

α
− 1,

1

α

)

.

By Corollary 2.2 under out we get

out
2(n)− αout(n) ∈

(

− 1

α2
,
1

α
− 1

α2

)

.

We write out2(p) = αout(p)+ ǫp for p = i, j and out(k) = αk+ ǫk. We need to prove that

αout(i) + ǫi + αk + ǫk = αout(j) + ǫj,

which reduces to
ǫi + ǫk = ǫj .

Since both sides of the equation are integral ǫi + ǫk − ǫj ∈ Z. From the equations above
we find that ǫi + ǫk ∈

(

−1 + 1
α
− 1

α2 ,
2
α
− 1

α2

)

and that ǫj ∈
(

− 1
α2 ,

1
α
− 1

α2

)

. It follows that
neither ǫj + 1 not ǫj − 1 are in

(

−1 + 1
α
− 1

α2 ,
2
α
− 1

α2

)

. Therefore, ǫi + ǫk − ǫj = 0.

We remark that the out operator is not additive on the natural numbers, but nearly:
out(i + j) − out(i) − out(j) ∈ {−1, 0, 1}. This is called the linearity defect in [5]. This
defect is zero if i, j, i+ j are in out(N).

The recurrence extends to negative indices under X−n−1 = −dX−n + X−n+1, which
produces the bi-infinite array Am,n for n ∈ Z (the ExtraFibs are now ExtraPells or ExPells).
As in the case of ExtraFibs, the signs alternate and the absolute values form satisfy the
recursion, if we read from left to right. The wall therefore reappears on the left. It is the
index from which the absolute values form a row in Am,n for positive n. We again get
a building, but its structure is not as regular as that of the Empire State Building. We
depict the building for d = 2 in Table 5 and we call this the Pell Tower. It is a terrace
building that displays the following patterns:

1. The distance between the walls is either |w| or |w|+1, where |w| denotes the length
of the word that generates the row. Distance |w|+ 1 appears to be prevalent. This
is illustrated by the red wall at distance |w| from the right wall, where we chose red
since this is the color for negative numbers.

2. Columns on the left of the red wall contain positive and negative numbers. The sign
depends on whether w starts with 02 or not.

3. All integers (positive and negative, but not zero) appear to the left of the red wall.
If a number has a negative sign left of the left wall, then it has a positive sign in
between the red wall and the left wall, and vice versa.

4. If the left wall and the red wall coincide, then the term next to it is positive.

9
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w

· · · −70 29 −12 5 −2 1 0 1 · · · 1

· · · −41 17 −7 3 −1 1 1 3 · · · 11

· · · 58 −24 10 −4 2 0 2 4 · · · 02

· · · −82 34 −14 6 −2 2 2 6 · · · 101

· · · −53 22 −9 4 −1 2 3 8 · · · 111

· · · 46 −19 8 −3 2 1 4 9 · · · 021

· · · −94 39 −16 7 −2 3 4 11 · · · 102

· · · −65 27 −11 5 −1 3 5 13 · · · 1001

· · · −36 15 −6 3 0 3 6 15 · · · 1101

· · · −63 −26 11 −4 3 2 7 16 · · · 0201

· · · −77 32 −13 6 −1 4 7 18 · · · 1011

· · · −48 20 −8 4 0 4 8 20 · · · 1111

· · · 51 −21 9 −3 3 3 9 21 · · · 0211

· · · −89 37 −15 7 −1 5 9 23 · · · 1021

· · · −60 25 −10 5 0 5 10 25 · · · 1002

· · · −31 13 −5 3 1 5 11 27 · · · 1102

· · · 68 −28 12 −4 4 4 12 28 · · · 0202

· · · −72 30 −12 6 0 6 12 30 · · · 10001

· · · −43 18 −7 4 1 6 13 32 · · · 11001

· · · 56 −23 10 −3 4 5 14 33 · · · 02001

· · · −84 35 −14 7 0 7 14 35 · · · 10101

· · · −55 23 −9 5 1 7 15 37 · · · 11101

· · · 44 −18 8 −2 4 6 16 38 · · · 02101

· · · −96 40 −16 8 0 8 16 40 · · · 10201

· · · −67 28 −11 6 1 8 17 42 · · · 10011

· · · −38 16 −6 4 2 8 18 44 · · · 11011

· · · 61 −25 11 −3 5 7 19 45 · · · 02011

· · · 79 33 −13 7 1 9 19 47 · · · 10111

· · · −50 21 −8 5 2 9 20 49 · · · 11111

· · · 49 −20 9 −2 5 8 21 50 · · · 02111

· · · −83 38 −15 8 1 10 21 52 · · · 10211

· · · −62 26 −10 6 2 10 22 54 · · · 10021

· · · −33 14 −5 4 3 10 23 56 · · · 11021

· · · 66 −27 12 −3 6 9 24 57 · · · 02021

· · · −74 31 −12 7 2 11 24 59 · · · 10002

· · · −45 19 −7 5 3 11 25 61 · · · 11002

· · · 54 −22 10 −2 6 10 26 62 · · · 02002

· · · −86 36 −14 8 2 12 26 64 · · · 10102

· · · −57 24 −9 6 3 12 27 66 · · · 11102

· · · 42 −17 8 −1 6 11 28 67 · · · 02102

· · · −98 41 −16 9 2 13 28 69 · · · 10202

· · · −69 29 −11 7 3 13 29 71 · · · 100001

· · · −40 17 −6 5 4 13 30 73 · · · 110001

· · · 59 −24 11 −2 7 12 31 74 · · · 020001

· · · −81 34 −13 8 3 14 31 76 · · · 101001

· · · −52 22 −8 6 4 14 32 78 · · · 111001

· · · 47 −19 9 −1 7 13 33 79 · · · 021001

· · · −93 39 −15 9 3 15 33 81 · · · 102001

· · · −64 27 −10 7 4 15 34 83 · · · 100101

· · · −35 15 −5 5 5 15 35 85 · · · 110101

· · · 64 −26 12 −2 8 14 36 86 · · · 020101

· · · −76 32 −12 8 4 16 36 88 · · · 101101

· · · −47 20 −7 6 5 16 37 90 · · · 111101

.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Table 5: The Pell Tower and its irregular left wall. On the right we added a final column that
contains the trimmed words w that generate the rows. Palindromic rows are underlined (blue
if it contains zero) and they clearly do not occur at regular distances as they do in the Empire
State Building, although their number of occurrences in blocks can be specified. The distance
between the right wall and the red wall is equal to |w|.

We shall see that these observations can be made concrete for all d ≥ 2 by using the dual
Ostrowski numeration system, see [12, p. 181]. The recursionXn+1 = dXn+Xn−1 generates
the denominators Dn which are the backbone of the Ostrowski system in Equation (3).
This is a numeration system for N. If we extend the recursion Xn+1 = dXn + Xn−1 to
a bi-infinite sequence, then we get the negative denominators D−n = (−1)n+1Dn. They
are the backbone of the dual Ostrowski system, which is a numeration system for Z. The
following is a special case of Proposition 6.4.19 from [12]. It applies to all α > 1, but we
only formulate it for d > 1. The case d = 1 was covered by Bunder who proved that the
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negative Fibonacci numbers F−1, F−2, . . . form a numeration system [4].

Proposition 2.7. Let d > 1 be fixed. Every integer N (positive or negative) can be repre-
sented uniquely in the form

N =
∑

1≤j≤i

djD−j (8)

with digits dj ∈ {0, 1, . . . , d} such that di+1 = 0 if di = d. The length of w = d1 · · · di
determines the sign of N , which is equal to (−1)|w|+1.

In an Ostrowski word, each d is preceded by zero. For the dual Ostrowski representa-
tion, each d is followed by zero unless it is the final digit. If we switch from lsd to msd
representation, then the dual Ostrowski representation is again an Ostrowski word. Unless
the msd representation starts with a d. That is why in this case, we replace w by 0w,
which represents the same number and is an Ostrowski word. For the msd representation
of the dual Ostrowski numeration systems, the initial digit is either equal to 0 < j < d, or
its initial two digits are 0d. This has the pleasing effect that the words that label the rows
in Table 5 can also be read as msd representations in the dual system, representing terms
Am,n left of the red wall.

Lemma 2.8. Each integer occurs exactly once to the left of the red wall.

Proof. The rows are labelled by Ostrowski words w. Each integer has a unique msd
representation w0k. To get to the red wall, we need to take |w| steps to the left of the
right wall. The number immediately to the left of the red wall has msd representation w
in the dual numeration system. If we take k further steps, we get to w0k. The length of
the word determines the sign. This partly explains observations 2 and 3.

The Ostrowski array Am,n with m,n ≥ 1 starts from the right wall. Its counterpart, the
negative Ostrowski array, starts from the red wall. The red wall term in the row labelled
by w is Am,r with r = 1 − |w| (in which we suppress that it depends on m) then we say
that

Ām,n = Am,r−n (9)

is the negative Ostrowski array for m,n ≥ 1. Inhabitants of the Pell Tower enjoy the
view of these two gardens. The number of terms inside the building on level m is equal to
1− r = |w|, where w is the m-th Ostrowski word in the radix order.

The operation n→ out(n) moves one step to the right in the Ostrowski array. Its coun-
terpart n→ nut(n), the negative out, takes one step to the left in the negative Ostrowski
array. If u is the msd dual representation of n, then u0 is the msd dual representation of
nut(n). It appends a zero. The observations on the Pell tower that we made above are all
consequences of the following lemma.

Lemma 2.9. For any integer n we have nut(n) = ⌈−nα⌉.

11
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Proof. The Equation (4) holds for all integers and as in the proof of Lemma 2.1 we find
D−n−1 + αD−n = α−n. If n =

∑

1≤j≤i djD−j then

nut(n) + αn =
∑

1≤j≤i

djα
−j ≥ 1

α
. (10)

The sum
∑

1≤j≤i djα
−j is maximized by taking all digits equal to d at odd indices and zero

at even indices. Since d(α−1 + α−3 + · · · ) = 1 we get nut(n) + αn < 1.

This expression for nut is simpler than the one for out in Lemma 2.1. It implies that
the lsd dual representation can be determined by a simple divide and round. Indeed, to
find the lsd representation of N1, compute N2 = ⌈−N1/α⌉ and put x1 = N1−⌈−N2α⌉. The
lemma implies that N1−x1 = nut(N2), hence the representation of N1 has least significant
digit x1. Continue with N2 to find its digit x2, etc. Terminate as soon as 0 < Nk ≤ d
and put xk = Nk. This is a standard digit generating procedure known as the greedy beta
expansion [9]. To see that it produces Ostrowski words, observe that digit d occurs only if
N1 ∈ [−N2α+ d,−N2α+α) which has length α−d = 1

α
. In particular −N2α = N1−d− ǫ

for some ǫ < 1
α
. Therefore

−N2

α
= −N2α + dN2 = N1 − d− ǫ+ dN2,

which rounds up to N3 = N1 − d+ dN2 with digit

x2 = N2 − ⌈−N3α⌉ < ǫα

If x1 = d then x2 = 0. The greedy beta expansion produces Ostrowski words.

Corollary 2.10. For a fixed m and running index n, the sums Ām,n+1 +αĀm,n are positive
and diminish by a factor 1

α
. Furthermore Ām,1 + αĀm,0 > 1. Therefore, the largest index

n in the m-th row such that Am,n−1+αAm,n < 1 is at r− 1. This is the initial term of the
negative Ostrowski array.

Proof. Let w = d1 · · · di be the word that represents the m-th row. Then the msd repre-
sentation of Ām,n = Am,r−n is w0n−1. According to Equation (10)

Am,−n−1+r + αAm,−n+r =
1

αn−1

∑

1≤j≤i

djα
−j.

Thus the next sum Am,n+2+αAm,n+1 diminishes by a factor 1/α andAm,r−1+αAm,r ∈ (0, 1).
Equation (4) holds for all n and therefore Am,n+1 + αAm,n increases by a factor α if n
increases by one, for the entire row. The index r − 1, the first column of the negative
Ostrowski array, is the unique index such that the sum is in [ 1

α
, 1).

Corollary 2.11. For every row Am,n in the Ostrowski array (fixed m) there exists a row Āk,n

in the negative Ostrowski array (fixed k) and a number i ∈ {0, 1} such that Am,n = |Āk,i+n|.

12
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If i = 0 then the left wall and the right wall coincide. If i = 1 then there is a space of
one, a terrace, between the red wall and the left wall.

Proof. Let N = Am,1 be the first term of the row. Both −N and N occur somewhere in
the negative Ostrowski array defined in Equation (9). The next terms are, respectively,
nut(−N) = ⌈Nα⌉ and nut(N) = ⌈−Nα⌉. In absolute value these terms are ⌈Nα⌉ and
⌊Nα⌋. One and only one of these two absolute values is equal to Am,2. Two recursive
sequences are equal if they have two identical consecutive terms. Therefore Am,n occurs
(possibly as a tail) in a unique row of the negative Ostrowski array.

Now we know that the row Am,n occurs in a row Āk,n of the negative array, we want to
locate where it starts. Signs in the negative array are alternating, and therefore Āk,2 and
Āk,3 have opposite signs. It follows that

− 1

α
| < |Āk,2| − α|Āk,3| <

1

α
.

By Lemma 2.1 it follows that out
(

|Āk,2|
)

= |Āk,3|. Therefore the row |Āk,n| running from
index n = 2 onward occurs as a (tail of a) row in the Ostrowski array, which must be row
m by uniqueness. We conclude that i = 0 or i = 1.

All integers occur left of the red wall. The left wall marks where an alternating copy
of the Ostrowski array starts. From each pair {−n, n} it contains one. The other occurs
on the terraces, between the left wall and the red wall.

Corollary 2.12. If the red wall and the left wall coincide, then the number left of it is
positive. Indeed, a natural number N is next to these two coinciding walls if and only if
αN − ⌊αN⌋ ∈

[

1
α
, 1− 1

α

]

.

Proof. All non-zero integers appear once left of the red wall. Half of the integers, one from
each pair {−N,N}, appears left of the left wall. The other half is on the terrace, the space
between the left wall and the red wall. If the left wall and the red wall coincide, then the
term next to it is one from a pair {−N,N}. In other words, the walls coincide if and only
if both N and −N are in the first column of the negative Ostrowski array.

A number N is in the first column of the negative Ostrowski array if and only if
out(N) +αN = ⌈−αN⌉+αN ∈

[

1
α
, 1
)

. Both numbers −N and N are in the first column
if and only if

αN − ⌊αN⌋ ∈
[

1

α
, 1− 1

α

]

.

It follows from the unique ergodicity of the rotation that the fraction of numbers with this
property is equal to the length of the interval

[

1
α
, 1− 1

α

]

, which is approximately 0.172.. if
d = 2. This is why most numbers in the first column are on the terrace in Table 5.

Which of the two {−N,N} is on the terrace? Consider the positive number N . Its
neighbor nut(N) = ⌈−αN⌉ has absolute value ⌊αN⌋ ≥ αN − 1

α
. Therefore

out(N) =

⌊

αN +
1

α

⌋

= ⌊αN⌋ = |nut(N)|.
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The number N has the same neighbor (in absolute value) in both the Ostrowski array and
the negative Ostrowski array. The left wall and the red wall coincide at N .

The numbers that are not on the terrace in Table 5 are sequence A276879 in the OEIS.
This sequence has density 0.172.. as we have seen but for larger d, the density of the natural
numbers that are not on the terrace increases to one.

We extend the notion of a Stolarsky array to include recursive sequences that contain
negative numbers:

1. Each row satisfies the recurrence Xn+1 = −dXn +Xn−1.

2. Each non-zero integer occurs once in the table.

3. For every recurrent sequence (Bn) there exists anm such that (Am,n) is tail equivalent
to (Bn) or to (−Bn).

Our previous results imply:

Theorem 2.13. The negative Ostrowski array is a Stolarsky array.

The sequence of denominators (Dn) is palindromic and so is the sequence (En) given
by · · · , d2 + 2,−d, 2, d, d2 + 2, · · · . These are the so-called companion numbers [3] which
satisfy

En = αn + β ∗ n. (11)

It is not hard to prove that all palindromic sequences are multiples of (Dn) or (En), if we
allow multiples of the companion numbers to be halves if d is even. Following the Fifis
and Lulus from [8], let’s call the multiples of (Dn) Deedees and call the multiples of (En)
Edees.

The Empire State Building is divided in blocks, counting from zero, where block k
consists of all rows that are labelled by words of length |w| = 2k or |w| = 2k + 1. Fifis
occur in the even blocks and Lulus occur in the odd blocks. We modify this definition
for the Pell Tower and define block k to contain the rows labelled by words of length
|w| = 2k − 1 or |w| = 2k. The initial word of block k is 102k−31 (or 1 if k = 1) and the
final word is (0d)k. Both rows are palindromes. The distribution of Deedees and Edees
over these blocks is not as nice as for the Empire State Building, but we can still count
how many there are per block.

Theorem 2.14. The number of Deedees in block k is equal to the number of times k occurs
in the sequence ⌊logα(n)⌋ + 1. The number of Edees in block k is equal to the number of
times k occurs in ⌊logα(n(α− β))⌋+ 1 where the n are halves if d is even.

Proof. Consider (jDn) for some fixed j. The first term of this sequence in the negative
Ostrowski array occurs at index −i such that jD−i−1+αjD−i < 1 ≤ jD−i+αjD−i+1. We
have jD−i−1 + αjD−i =

j
αi and so i − 1 ≤ logα(j) < i, or equivalently i = ⌊logα(j)⌋ + 1.

We determined the entry that is in the first column of the negative array. What is the
entry in the first column of the Ostrowski array? If the red wall and the left wall coincide,

14
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it is jDi and if not then it is jDi+1. The number of entries inside the Pell tower is either
2i− 1 or 2i. Hence (jDn) is in block ⌊logα(j)⌋+ 1.

The computation for the Edees is identical. The first term of (jEn) (the j are halves if
d is even) in the negative Ostrowski array occurs at index −i such that

jE−i−1 + αjE−i < 1 ≤ jE−i + αjE−i+1.

We have jE−i−1+αjE−i =
j(α−β)

αi and so i = ⌊logα(j(1+α))⌋+1. We conclude that (jEn)
is in block ⌊logα(j)⌋+ 1.

So where do we find 100Dn in Table 5? It is in block 6 = ⌊logα(100)⌋+1. The first entry
in the negative Ostrowski array is 100D−6 = −7000. The first entry in the Ostrowski array
is 16900 which in Pell numeration is given by 110101110101. This word represents −7000
in msd dual Pell numeration. It is possible to compute the location of the palindromes in
the table, but there does not seem to be a nice formula for these locations. Conway and
Ryba were able to find nice formulas for the palindromes of the Empire State Building
using Fibonometry, which we will consider in the next section.

We conclude this section with some remarks on the case of Fibonacci numbers. We
do not supply proofs, as they are either very similar to the proofs above or they are
consequences of the results of Conway and Ryba. Bunder proved that each integer can
be written as N =

∑

1≤j≤i djF−j for digits dj ∈ {0, 1} such that dj+1 = 0 if dj = 1.
Bunder’s algorithm Z to determine the expansion is not very complicated, but it involves
a few different operations and the proof of its correctness requires a bit of work. There is a
simpler algorithm! The analogue of our Lemma 2.9 holds for the negative base −γ, where
γ = 1+

√
5

2
is the golden ratio. To determine the negative Zeckendorf representation, divide

and round by −γ and terminate at one. We can also put a red wall within the Empire
State Building. Since the array involves a seed, which is absent for Ostrowski arrays for
d > 1, the distance between the red wall and the left wall is either 1 or 2. The n-th block
(counting blocks from zero) is divided into two parts, starting with F2n rows of distance
2 and ending with F2n+1 rows of distance 1. The negative Wythoff array is a Stolarsky
array.

3 Ostronometry

The Fibonacci numbers and the Lucas numbers satisfy many interesting identities. The
oldest seems to be Cassini’s identity from 1680, if not earlier:

Fn+1Fn−1 − F 2
n = (−1)n.

This was only the start of an ever growing list. Bicknell [3] observed that these identities
all extend to our denominators Dn, and we retrace her footsteps. For instance, Cassini’s
identity extends to

Dn+1Dn−1 −D2
n = (−1)n.
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In these generalized identities the companion numbers En take the role of the Lucas num-
bers.

This conversion depends on a trick involving trigonometry, which is why Conway and
Ryba call it Fibonometry [7]. The trick is apparently due to Vajda [22] and extends to Dn

and En and it seems natural to call this Ostronometry. By definition

sin(nz) =
einz − e−inz

2i
, cos(nz) =

einz + e−inz

2
.

The recursive sequence that starts with 2 and d produces the companion numbers (En).
We write ∆ = d2 + 4. Vajda’s trick puts z = π

2
− i log(α). By Equations (4) and (11) we

find

sin(nz) =
Dn

√
∆

2
· in−1 , cos(nz) =

En

2
· in. (12)

If d = 1 then Dn and En are the Fibonacci and Lucas numbers. Now trigonometric equa-
tions transform into Cassini-like identities. Fibonacci identities transform into Ostrowski
identities under Fn → Dn ·

√
d2 + 4/

√
5 and Ln → En. For instance, the fundamental

equation cos2(nz) + sin2(nz) = 1 becomes

E2
n −∆D2

n = (−1)n4,

and we see that (Dn, En) solves a Pell equation. Cassini’s identity follows from

sin2(x)− sin2(y) = sin(x+ y) sin(x− y),

if x = nz and y = z. The trigonometric Jacobi identity from [8] is equal to

sin(a) sin(b− c) + sin(b) sin(c− a) + sin(c) sin(a− b) = 0.

It should be read in terms of az, bz, cz and transforms to

(−1)cDaDb−c + (−1)aDbDc−a + (−1)bDcDa−b = 0.

Cassini’s identity is the special case in which a, b, c is equal to n+1, n, 1. A generalization
of Cassini’s identity, which is sometimes named after d’Octagne, is

FmFn+1 − Fm+1Fn = (−1)nFm−n.

It is another consequence of the trigonometric Jacobi equation. By Ostronometry we get

DmDn+1 −Dm+1Dn = (−1)nDm−n. (13)

Ostronometry can also be used to demonstrate divisibility properties of the denomina-
tors. It is well known that Fd divides Fn if d divides n. By Fibonometry, this follows from
the fact that by De Moivre sin(nz) is a sum of sinj(z) cosn−j(z) for odd j. More can be
said. If we take m = n+1 in Equation (13) then we find that two consecutive denominators
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are relatively prime. Therefore gcd(Dm, Dn) = gcd(Dm−n, Dn) and by a run of the lazy
Euclidean algorithm, which subtracts one n at a time instead of a multiple, we conclude
that gcd(Dm, Dn) = Dgcd(m,n). In particular, Dn divides Dm if and only if n divides m,
which is a well known fact for Fibonacci numbers. Another fun fact is Carmichael’s The-
orem, which says that the product of any n consecutive Fibonacci numbers is divisible by
F1 · · ·Fn. It is a consequence of d’Octagne’s identity [22, p 74] and hence extends to Dn.

Vajda’s trick replaces eiz by a fundamental solution of the Pell equation |X2−∆Y 2| = 1.

cos(z) + i sin(z)←→ E1 +D1

√
∆

2
· i.

The reason why this works is its stability under n-th powers

cos(nz) + i sin(nz)←→ En +Dn

√
∆

2
· in.

The left-hand side follows from De Moivre’s identity. The right-hand side follows from the
fact that solutions of the Pell equation form a cyclic group. Vajda uses the hyperbolic sine
and cosine, which give cleaner formulas, but their identities are less familiar.

It is possible to adapt Vajda’s trick to other rows in the Ostrowski table, although it
gets a little cumbersome. Pick a row m in the Ostrowski table and write Yn = Am,n. The
generalized Binet formula gives

Yn =

(

a+
b√
∆

)

αn +

(

a− b√
∆

)

βn

for 2a = Y0 and ad+b = Y1. The numbers Yn need companions Xn to solve a Pell equation
X2

n−∆Y 2
n = (−1)nC for some constant C. Asymptotically, Xn needs to be equal to

√
∆Yn

and so
Xn =

(

a
√
∆+ b

)

αn +
(

−a
√
∆+ b

)

βn.

We have that

Xn + Yn

√
∆ = (X0 + Y0

√
∆) · En +Dn

√
∆

2
. (14)

By taking the norm it follows that the pairs (Xn, Yn) solve the Pell equation above with
C = X2

0 − Y 2
0 ∆. Choose φ such that

sin(φ) =
Y0

√
∆

i
√
C

, cos(φ) =
X0√
C
.

Vajda’s trick in Equation (12) combined with Equation (14) gives

Xn + Yn

√
∆√

C
= (cos(φ) + i sin(φ))(cos(nz) + i sin(nz))i−n.
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According to Equation (14) we have Yn = X0Dn+Y0En, which corresponds to the compu-
tation of the imaginary part of (cos(φ) + i sin(φ))(cos(nz) + i sin(nz)). From this we find
Yn and hence Xn. Vajda’s trick for Ostrowski rows is

sin(nz + φ) =
Yn

√
∆√

C
· in−1 , cos(nz + φ) =

Xn√
C
· in. (15)

It is a little more cumbersome since it has an extra angle φ and a constant C. For
instance, if we read a as az + φ, b as bz + φ and c as z, then the trigonometric Jacobi
identity transforms to

YbYa−1 − YaYb−1 = (−1)bDa−b ·
C

4
.

4 Concluding remarks

Negative numbers were never considered to be satanic, this is a modern myth [18], but it
is fair to say that they have not received as much attention as positive numbers. We should
treat all numbers, negative and positive, odd and even, with equal respect, regardless of
orientation or parity. Our understanding of the combinatorial and dynamical properties
of negative beta-expansions has progressed tremendously thanks to works of Charlier,
Frougny, Ito, Pelantová, Steiner, and many others. An overview of the literature with
open problems is given in [20, Ch 2]. Negative bases have recently been implemented in the
automatic theorem prover Walnut, which already devoured its first conjectures [19]. Labbé
and Lepšová recently found an interesting new type of negative Zeckendorf numeration
from Wang tiles [16].

We restricted our attention to the recursion Xn+1 = dXn + Xn−1. How about other
recursions? A natural choice is the Tribonacci recursion Xn+1 = Xn +Xn−1 +Xn−2 that
was considered in [6]. It turns out that it is very difficult to find Conway-Ryba type of
results for this recursion. It would be nice if there is some sort of Tribonometry, but it
may not exist. However, it is possible to define the bi-infinite Ostrowski array for arbitrary
α > 1 by using the dual Ostrowski numeration system. I am grateful to one of the referees
for pointing that out. Is its first column again a non-homogeneous Beatty sequence for all
α > 1? What can be said about the building inside a general Ostrowski array?

Overt nationalism has regained respectability once again, so let me highlight the abun-
dance of Dutch mathematicians in this paper. Maarten Bunder, Gerrit Lekkerkerker (who
preceded Edouard Zeckendorf), John Pell, and Willem Wythoff all studied or worked at
the University of Amsterdam, just like me. The Empire State Building is located in the for-
mer New Amsterdam in what was then the colonial province of New Netherland. Edouard
Zeckendorf grew up near Liège, where he studied medicine, but his parents were from
Amsterdam. This city is infamous for various reasons, yet its uncanny connection with
recursion has so far gone unnoticed.
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