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Abstract. We describe σ-matching, interchangeable and, as a consequence, totally
compatible products on some classes of associative algebras, including unital algebras,
the semigroup algebras of rectangular bands, algebras with enough idempotents, free
non-unital associative algebras and free non-unital commutative associative algebras.
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Introduction

Let n be a positive integer and A a variety of algebras with one n-linear operation
[·, . . . , ·]. Consider two n-linear operations [·, . . . , ·]1 and [·, . . . , ·]2 on the same vector space
V , such that the algebras (V, [·, . . . , ·]1) and (V, [·, . . . , ·]2) belong to A. Then [·, . . . , ·]1 and
[·, . . . , ·]2 are said to be compatible if (V, [·, . . . , ·]1 + [·, . . . , ·]2) belongs to A. In this case,
the triple (V, [·, . . . , ·]1, [·, . . . , ·]2) is called a compatible A-algebra. For example, there are
compatible associative algebras [6, 17], compatible Lie algebras [12], compatible pre-Lie
algebras [1], compatible Leibniz algebras [16] and so on. If the signature of a variety A has
several operations (of possibly different types), one can consider the compatibility with
respect to some fixed operation, for example, compatible Poisson brackets [3], compatible
Hom-Lie algebras [8], compatible Hom-Lie triple systems [21] and so on, or with respect
to all the operations at the same time as in [20, Definition A].

The notion of a pair of compatible Poisson or Lie brackets seems to have firstly ap-
peared in mathematical physics [3,15,19] and has been studied in this context for a couple
of decades [4, 6, 12, 13]. A pair of compatible associative products was introduced (under
the name “quantum bi-Hamiltonian system”) and investigated from the purely algebraic
point of view in [6], where some general examples of such products were given. Odesski and
Sokolov observed in [17] that the description of pairs of compatible associative structures
can be an interesting mathematical problem on its own. Thus, they managed to character-
ize in [17] the compatible associative products on the matrix algebra Mn(C) in terms of the
so-called n-dimensional representations of M -algebras, and in the subsequent paper [18]
they used these products to construct a solution to the classical Yang-Baxter equation. Re-
cently, there has appeared an interest in the algebraic classification of nilpotent compatible
algebras of small dimensions [1, 14].

At a more abstract level, compatible operations have been studied by specialists in
operad theory. Dotsenko and Khoroshkin calculated in [10] the dimensions of the graded
components of the operads of a pair of compatible Lie brackets and compatible Poisson
brackets. For the operad of a pair of compatible associative products, the corresponding
dimensions have been calculated by Dotsenko in [9]. Strohmayer [20] gave a general way
to construct the (binary quadratic) operad of two compatible structures from the (binary
quadratic) operad of a single structure. He also pointed out in [20, p. 2525] three other
kinds of compatibilities, the first of which corresponds to the interchangeability of the
structures, the second one is a part of the matching compatibility and the third one is
the total compatibility. Algebras with two matching associative products (called matching
dialgebras) and their connection to other classes of algebras were studied in [26], while
totally compatible associative products and the corresponding operads were investigated
in [25, 27]. The notions of compatibility, matching compatibility and total compatibility
were generalized to families of specific algebras (including the associative ones) in [28] and
to families of algebras over an arbitrary (unary binary quadratic/cubic) operad in [24].
Finally, even more general matching compatibilities were introduced and studied in [23].

Observe that, given an associative algebra (A, ·), the compatible (with ·) products on
A are exactly the associative Hochschild 2-cocycles of A with values in A. However, even
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knowing HH2(A,A), it is difficult to characterize the associativity of the corresponding
2-cocycles in simple terms (for example, see the case HH2(A,A) = 0 in [17]). Nevertheless,
the description of matching and interchangeable products on A seems to be a manageable
task. Moreover, it turns out that for unital associative algebras such structures admit
simple descriptions. In the non-unital case there are still interesting algebras to consider.

In Section 1 we specify the definitions of σ-matching (σ ∈ S2), interchangeable and
total compatibility to the case of a pair of associative products and give examples showing
the difference between the compatibilities. As often happens, nilpotent algebras are a
good source of such examples. The case of unital products is considered in Section 2 (see
Propositions 2.2 and 2.6) as a motivation for Section 3, where we prove some general results
on idempotent algebras (see Propositions 3.1 and 3.2) and proceed to more specific classes
of such algebras: the semigroup algebras of rectangular bands and algebras with enough
idempotents (the latter class includes some algebras of infinite matrices, path algebras and
infinite direct sums of unital algebras). The descriptions of σ-matching and interchangeable
products on these algebras are given in Propositions 3.3, 3.8, 3.18 and 3.23. Section 4 is
devoted to free non-unital associative algebras. We first prove a general result valid for
all algebras without zero divisors (Proposition 4.1) and then treat separately the cases of
non-commutative and commutative non-unital free algebras (see Propositions 4.2, 4.6, 4.9
and 4.12).

1 Definitions and preliminaries

All the algebras and vector spaces will be over a field K and all the products will be
binary and bilinear.

1.1 Compatible structures

Given two bilinear binary operations ·1 and ·2 on a vector space V , their sum ⋆ = ·1+ ·2
is defined by

a ⋆ b = a ·1 b+ a ·2 b.

Recall that two associative products ·1 and ·2 on V are called compatible, if ·1 + ·2 is also
associative. This is equivalent to the following equality:

(a ·1 b) ·2 c+ (a ·2 b) ·1 c = a ·1 (b ·2 c) + a ·2 (b ·1 c) (1)

for all a, b, c ∈ V . As it was observed in [6, Remark on p. 4801] and can be seen directly,
·1 and ·2 are compatible if and only if ·1 is a Hochschild 2-cocycle of (V, ·2) with values in
V (or, symmetrically, ·2 is a Hochschild 2-cocycle of (V, ·1) with values in V ).

Let us consider the following particular cases of (1).

Definition 1.1. Adopting the terminology of [23] we say that two associative products ·1
and ·2 on V are
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(i) σ-matching (where σ ∈ S2 = {id, (12)}), if

(a ·1 b) ·2 c = a ·σ(1) (b ·σ(2) c) and (a ·2 b) ·1 c = a ·σ(2) (b ·σ(1) c), (2)

(ii) totally compatible, if

(a ·1 b) ·2 c = (a ·2 b) ·1 c = a ·1 (b ·2 c) = a ·2 (b ·1 c), (3)

for all a, b, c ∈ V .

Usually id-matching ·1 and ·2 are simply called matching in the literature. Observe that
in this case (V, ·1, ·2) is a matching dialgebra [26], also known as As(2)-algebra [29]. We will
consider one more “compatibility-type” condition which makes sense for not necessarily
associative products.

Definition 1.2. We say that two (not necessarily associative) products ·1 and ·2 on V are
interchangeable if

(a ·1 b) ·2 c = (a ·2 b) ·1 c and a ·1 (b ·2 c) = a ·2 (b ·1 c). (4)

Remark 1.3. For two associative products ·1 and ·2 on V the following are equivalent:

(i) ·1 and ·2 are totally compatible;

(ii) ·1 and ·2 are interchangeable and at least one of the two equalities (2) holds for some
σ ∈ S2;

(iii) ·1 and ·2 are σ-matching for some σ ∈ S2 and at least one of the two equalities (4)
holds;

(iv) ·1 and ·2 are σ1-matching for some σ1 ∈ S2 and at least one of the two equalities (2)
holds for σ ̸= σ1;

If char(K) ̸= 2, then each of the conditions (i)–(iv) is also equivalent to

(v) ·1 and ·2 are interchangeable and compatible.

Let (A, ·) be an associative algebra. By a compatible (resp. σ-matching, interchangeable
or totally compatible) structure on A we mean an associative product ∗ on A that is
compatible (resp. σ-matching, interchangeable or totally compatible) with ·.

The following examples show that the classes of id-matching, (12)-matching and inter-
changeable structures on (A, ·) are different and no class is in general contained in another
one (although all of them contain the totally compatible structures).
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Example 1.4. Let A be the 3-dimensional nilpotent associative algebra with a basis
{ei}3i=1 and the multiplication table e1 · e2 = e3.

The product ∗ on A given by e1 ∗ e1 = e1 and e1 ∗ e2 = e2 is clearly associative
(observe that (A, ∗) is isomorphic to the direct sum of a 1-dimensional algebra with zero
multiplication and the subalgebra of M2(K) generated by the matrix units {E11, E12}).
Then (ei ∗ ej) · ek ̸= 0 ⇔ ei · (ej ∗ ek) ̸= 0 ⇔ (i, j, k) = (1, 1, 2), in which case (ei ∗ ej) · ek =
ei · (ej ∗ ek) = e3. Moreover, (A · A) ∗ A = A ∗ (A · A) = {0}. Thus, the product ∗
is (12)-matching with ·, but it is neither id-matching nor interchangeable with · because
(A ∗ A) · A ̸= {0}.

On the other hand, consider the associative product ⋆ on A given by e1 ⋆ e1 = e1 and
e1 ⋆ e3 = e3. Then,

(ei ⋆ ej) · ek ̸= 0 if and only if ei ⋆ (ej · ek) ̸= 0 if and only if (i, j, k) = (1, 1, 2),

in which case (ei⋆ej)·ek = ei⋆(ej ·ek) = e3. Moreover, (A·A)⋆A = A·(A⋆A) = {0}. Thus,
the product ⋆ is id-matching with ·, but it is neither (12)-matching nor interchangeable
with · because (A ⋆ A) · A ̸= {0}.

Example 1.5. Let A be the algebra with a basis {ei}6i=1 and multiplication table

e1 · e2 = e4, e1 · e5 = e6, e4 · e3 = e6, e2 · e3 = e5.

It is a nilpotent associative algebra isomorphic to the subalgebra of M4(K) generated by
the matrix units {E12, E23, E34}.

The product ∗ on A given by e1 ∗ e2 = e5, e1 ∗ e4 = e6 is clearly associative because
(A ∗ A) ∗ A = A ∗ (A ∗ A) = {0}. Furthermore,

ei ∗ (ej · ek) ̸= 0 ⇔ ei · (ej ∗ ek) ̸= 0 ⇔ (i, j, k) = (1, 1, 2),

in which case ei ∗ (ej · ek) = ei · (ej ∗ ek) = e6. Moreover, (A ∗ A) · A = (A · A) ∗ A = {0}.
Thus, ∗ is interchangeable with ·, but it is neither id-matching nor (12)-matching with ·
because A ∗ (A · A) ̸= {0}.

Given two structures ∗1 and ∗2 on A that are compatible with ·, we say that ∗1 and ∗2
are isomorphic, if there exists an automorphism ϕ of (A, ·) such that

ϕ(a ∗1 b) = ϕ(a) ∗2 ϕ(b)

for all a, b ∈ A (i.e. if (A, ·, ∗1) and (A, ·, ∗2) are isomorphic).

2 σ-matching and interchangeable structures on unital associative
algebras

Although unital associative algebras are a subclass of algebras with enough idempotents
considered in Section 3, we begin with this particular case to motivate the choice of the
context for Section 3. We also introduce here some notions that will be used below.
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For any associative algebra (A, ·) and fixed x ∈ A, one defines the mutation [11] of ·
by x to be the product ·x on A given by a ·x b = a · x · b for all a, b ∈ A. The following
should be well-known (cf. [6, Formula (9)] and [17, Example 2.2]), but we couldn’t find an
explicit proof.

Lemma 2.1. Let (A, ·) be an associative algebra. For any x ∈ A the product ·x is associa-
tive and id-matching with ·.

Proof. For a, b, c ∈ A we have (a·xb)·c = a·x·b·c = a·x(b·c) and (a·b)·xc = a·b·x·c = a·(b·xc).
Moreover, (a ·x b) ·x c = a · x · b · x · c = a ·x (b ·x c).

For unital associative algebras the converse also holds.

Proposition 2.2. Let (A, ·) be a unital associative algebra. Then the id-matching struc-
tures on A are exactly the mutations of ·.

Proof. Let 1 be the identity element of (A, ·) and ∗ an id-matching associative product on
A. Then, for all a, b ∈ A we have

a ∗ b = (a · 1) ∗ b = a · (1 ∗ b) = a · (1 ∗ (1 · b)) = a · ((1 ∗ 1) · b) = a ·1∗1 b.

Let (A, ·) be a (not necessarily associative) algebra. Recall that the centroid of A is
the space Γ(A) of linear maps φ : A → A such that

x · φ(y) = φ(x · y) = φ(x) · y

for all x, y ∈ A.

Lemma 2.3. Let (A, ·) be a (not necessarily associative) algebra. Given φ ∈ Γ(A), the
product

a ∗φ b := φ(a · b) (5)

is interchangeable with ·. Moreover, if · is associative, then ∗φ is also associative and
totally compatible with ·.

Proof. For all a, b, c ∈ A we have

(a ∗φ b) · c = φ(a · b) · c = φ((a · b) · c) = (a · b) ∗φ c and
a ∗φ (b · c) = φ(a · (b · c)) = a · φ(b · c) = a · (b ∗φ c).

The second statement follows from [27, Proposition 2.7].

Definition 2.4. The product of the form (5) is said to be determined by φ ∈ Γ(A).

In the associative case any element c of the center C(A) of A defines φ ∈ Γ(A) by
means of φ(a) = c · a. If, moreover, A is unital, then this gives an isomorphism of K-
spaces C(A) ∼= Γ(A), whose inverse maps φ ∈ Γ(A) to φ(1). Thus, we have the following.
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Lemma 2.5. Let (A, ·) be a unital associative algebra. Then the products ∗ determined by
elements of Γ(A) are exactly the mutations of · by elements of C(A).

Proposition 2.6. Let (A, ·) be a unital associative algebra and ∗ be an associative product
on A. Then the following are equivalent:

(i) ∗ is (12)-matching with ·;

(ii) ∗ is interchangeable with ·;

(iii) ∗ is totally compatible with ·;

(iv) ∗ is determined by an element of Γ(A) ∼= C(A).

Proof. (i)⇒ (iv). Let ∗ be (12)-matching with ·. Then for all a ∈ A we have

1 ∗ a = (1 ∗ a) · 1 = 1 · (a ∗ 1) = a ∗ 1.

It follows that

(1 ∗ 1) · a = 1 · (1 ∗ a) = 1 ∗ a = a ∗ 1 = (a ∗ 1) · 1 = a · (1 ∗ 1),

so 1 ∗ 1 ∈ C(A). Using these equalities, we also have

a ∗ b = (a ∗ b) · 1 = a · (b ∗ 1) = a · ((1 ∗ 1) · b) = a ·1∗1 b

for all a, b ∈ A.
(ii)⇒ (iv). Let ∗ be interchangeable with ·. Then for all a ∈ A we have

1 ∗ a = (1 · 1) ∗ a = (1 ∗ 1) · a, and a ∗ 1 = a ∗ (1 · 1) = a · (1 ∗ 1).

Now, 1 ∗ a = (1 ∗ a) · 1 = (1 · a) ∗ 1 = a ∗ 1, whence (1 ∗ 1) · a = a · (1 ∗ 1), i.e. 1 ∗ 1 ∈ C(A).
Thus,

a ∗ b = (a · 1) ∗ b = (a ∗ 1) · b = a · (1 ∗ 1) · b = a ·1∗1 b
for all a, b ∈ A.

The implications (iv)⇒ (iii), (iii)⇒ (ii) and (iii)⇒ (i) are obvious.

Corollary 2.7. Let A be a non-commutative unital associative algebra. Then there exist
products on A that are id-matching with ·, but not totally compatible with ·.

Proof. Let x be a non-central element of A. Then ·x is id-matching with · by Lemma 2.1.
If ·x was totally compatible with ·, then by Proposition 2.6 there would be c ∈ C(A) such
that ·x = ·c, whence x = 1 ·x 1 = 1 ·c 1 = c, a contradiction.

Remark 2.8. Let (A, ·) be a unital associative algebra and x, y ∈ A. Then the structures
·x and ·y are isomorphic if and only if there is ϕ ∈ Aut(A) such that ϕ(x) = y.

For, given ϕ ∈ Aut(A), one has

ϕ(a ·x b) = ϕ(a) ·y ϕ(b) ⇔ ϕ(a) · ϕ(x) · ϕ(b) = ϕ(a) · y · ϕ(b).

The latter holds for all a, b ∈ A if and only if ϕ(x) = y (take a = b = 1).
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Remark 2.9. Whenever Γ(A) = K, there are only two non-isomorphic structures of the
form (5): the original product · and the zero product.

For, in this case a ∗φ b = λ(a · b) for some λ ∈ K, so, if λ ̸= 0, the map λ−1id is an
isomorphism between · and ∗φ.

Remark 2.10. For non-unital algebras the result of Proposition 2.6 may be false. For
example, if A is an algebra with zero multiplication, then any associative product ∗ on A
is totally compatible with · since all the mixed monomials in (3) are zero. However, all
the mutations of · and all the products on A determined by elements of Γ(A) are zero.

3 σ-matching and interchangeable structures on certain idempo-
tent associative algebras

In this section we are going to see to which extent the results of Section 2 generalize to
several classes of associative algebras that are in some sense close to being unital. Recall
that a (not-necessarily associative) algebra (A, ·) is said to be idempotent1 if A · A = A.

Proposition 3.1. Let (A, ·) be an idempotent associative algebra and ∗ be an associative
product on A. Then the following are equivalent:

(i) ∗ is interchangeable with ·;

(ii) ∗ is totally compatible with ·.

Proof. We only need to prove (i)⇒ (ii). Let ∗ be interchangeable with ·. Then, for all
a, b, c ∈ A with b = b1 · b2 we have

a · (b ∗ c) = a · ((b1 · b2) ∗ c) = a · ((b1 ∗ b2) · c) = (a · (b1 ∗ b2)) · c = (a ∗ (b1 · b2)) · c = (a ∗ b) · c.

Since A ·A = A, then by linearity a · (b ∗ c) = (a ∗ b) · c for all a, b, c ∈ A. Thus, ∗ is totally
compatible with · by Remark 1.3 (ii).

It is natural to ask if one can replace interchangeable products by σ-matching ones in
Proposition 3.1. For σ = id the answer is “no” even in the case of unital algebras, as we
saw in Corollary 2.7. For σ = (12) there are classes of idempotent algebras containing the
unital ones for which the answer is positive and those for which it is negative. We first
point out a class admitting the positive answer.

Proposition 3.2. Let (A, ·) be an associative algebra with a left or right unit and ∗ be an
associative product on A. Then the following are equivalent:

(i) ∗ is (12)-matching with ·;

(ii) ∗ is totally compatible with ·.
1In the context of Lie algebras one prefers to use the term “perfect” rather than “idempotent”.
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Proof. We only need to prove (i)⇒ (ii). Assume that A has a left unit e. Let ∗ be
(12)-matching with ·. Then for all a, b, c ∈ A we have

(a ∗ b) · c = e · ((a ∗ b) · c)
= (e · (a ∗ b)) · c
= ((e ∗ a) · b) · c
= (e ∗ a) · (b · c)
= e · (a ∗ (b · c))
= a ∗ (b · c).

It follows that ∗ is totally compatible with · by Remark 1.3 (iv). If A has a right unit e,
then we symmetrically have

a · (b ∗ c) = (a · (b ∗ c)) · e
= a · ((b ∗ c) · e)
= a · (b · (c ∗ e))
= (a · b) · (c ∗ e)
= ((a · b) ∗ c) · e = (a · b) ∗ c.

3.1 The semigroup algebra of a rectangular band

Given arbitrary non-empty sets I and J , one easily sees that S := {eij | (i, j) ∈ I × J}
is a semigroup under the multiplication

eij · ekl = eil (6)

for all (i, j), (k, l) ∈ I×J . It is called a rectangular band [7], and it is a classical example of
a semigroup in which every element is idempotent. Let (A, ·) be the semigroup K-algebra
of S. Thus, A is an associative algebra admitting a basis consisting of the idempotents
eij, (i, j) ∈ I × J . We are going to describe the σ-matching structures on (A, ·).

Proposition 3.3. The id-matching structures on (A, ·) are exactly the products ∗ of the
form

eij ∗ ekl = λjkeil, (7)

where λjk ∈ K and (i, j), (k, l) ∈ I × J .

Proof. Let ∗ be id-matching with ·. Then for all (i, j), (k, l) ∈ I × J we have

eij ∗ ekl = (eij · eij) ∗ ekl = eij · (eij ∗ ekl) = eij · (eij ∗ (ekl · ekl)) = eij · (eij ∗ ekl) · ekl,

which equals µij,kleil for some µij,kl ∈ K by (6). Moreover, for any (p, q) ∈ I × J we have

µij,kleiq = (eij ∗ ekl) · epq = eij ∗ (ekl · epq) = eij ∗ ekq = µij,kqeiq,

9
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whence µij,kl = µij,kq. Similarly,

µij,klepl = epq · (eij ∗ ekl) = (epq · eij) ∗ ekl = epj ∗ ekl = µpj,klepl,

whence µij,kl = µpj,kl. Thus, µij,kl does not depend on i and l, so denoting it by λjk, we
get (7).

Conversely, let ∗ be given by (7). Then for all (i, j), (k, l), (p, q) ∈ I × J we have

(eij ∗ ekl) ∗ epq = λjkeil ∗ epq = λjkλlpeiq and eij ∗ (ekl ∗ epq) = λlpeij ∗ ekq = λlpλjkeiq,

so that ∗ is associative. Since

(eij ∗ ekl) · epq = λjkeil · epq = λjkeiq = eij ∗ ekq = eij ∗ (ekl · epq)

and similarly

(eij · ekl) ∗ epq = eil ∗ epq = λlpeiq = eij · λlpekq = eij · (ekl ∗ epq),

the product ∗ is id-matching with ·.

Remark 3.4. The product (7) is a mutation of · if and only if λjk does not depend on j
and k.

Indeed, given a =
∑

p,q apqepq with apq ∈ K, we have eij ·a ekl = eij · a · ekl = λeil, where
λ =

∑
p,q apq. Conversely, if λjk = λ for all j and k in (7), then eij ∗ ekl = λeil = eij ·a ·ekl,

where a = λepq for some fixed arbitrary (p, q) ∈ I × J .

Lemma 3.5. Let ∗ be an associative product on A. If ∗ is (12)-matching with ·, then

eij ∗ ekl = eil ∗ eil (8)

for all (i, j), (k, l) ∈ I × J .

Proof. We have

eij ∗ ekl = (eij · eij) ∗ ekl
= eij ∗ (eij · ekl)
= eij ∗ eil
= eij ∗ (eil · eil)
= (eij · eil) ∗ eil
= eil ∗ eil.

Denote by Ann(A) the (two-sided) annihilator of A, i.e. the ideal of A consisting of
a ∈ A such that a · b = b · a = 0 for all b ∈ A.

Lemma 3.6. For arbitrary (i, j) ∈ I × J the centralizer of eij in A coincides with
spanK{eij} ⊕ Ann(A).

10
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Proof. It is obvious that spanK{eij} ∩ Ann(A) = {0} and that any element of the sum
spanK{eij}+Ann(A) commutes with eij, so we only need to prove that the centralizer of
eij is contained in spanK{eij} + Ann(A). Let a =

∑
k,l aklekl ∈ A with akl ∈ K. Then

a · eij =
∑

k,l aklekj =
∑

k∈I
(∑

l∈J akl
)
ekj and eij · a =

∑
k,l akleil =

∑
l∈J
(∑

k∈I akl
)
eil.

Thus,

a · eij = eij · a ⇔


∑

l∈J akl = 0 for all k ̸= i,∑
k∈I akl = 0 for all l ̸= j,∑
l∈J ail =

∑
k∈I akj.

(9)

Assuming that a · eij = eij · a, for all (p, q) ∈ I × J by (9) we have

a · epq =
∑
k∈I

(∑
l∈J

akl

)
ekq = λeiq

and

epq · a =
∑
l∈J

(∑
k∈I

akl

)
epl = λepj,

where λ =
∑

l∈J ail =
∑

k∈I akj. Then (a−λeij) ·epq = a ·epq−λeiq = 0 and epq ·(a−λeij) =
epq · a− λepj = 0, so that a− λeij ∈ Ann(A).

Lemma 3.7. Let ∗ be an associative product on A. If ∗ is (12)-matching with ·, then there
exist λ ∈ K and rij ∈ Ann(A), such that

eij ∗ eij = λeij + rij (10)

for all (i, j) ∈ I × J .

Proof. Since eij ·(eij∗eij) = (eij∗eij)·eij, by Lemma 3.6 there are λij ∈ K and rij ∈ Ann(A),
such that eij∗eij = λijeij+rij. Now, on the one hand (eij∗eij)·eil = (λijeij+rij)·eil = λijeil,
and on the other hand using (8) we have

(eij ∗ eij) · eil = eij · (eij ∗ eil) = eij · (eil ∗ eil) = eij · (λileil + ril) = λileil,

whence λij = λil for all i ∈ I and j, l ∈ J . Similarly, ekj ·(eij∗eij) = ekj ·(λijeij+rij) = λijekj
and

ekj · (eij ∗ eij) = (ekj ∗ eij) · eij = (ekj ∗ ekj) · eij = (λkjekj + rkj) · eij = λkjekj

imply λij = λkj for all i, k ∈ I and j ∈ J . Thus, λij = λkl for all (i, j), (k, l) ∈ I × J ,
and (10) follows.

Proposition 3.8. A bilinear product ∗ on A is a (12)-matching structure on (A, ·) if and
only if ∗ is associative and, for all (i, j), (k, l) ∈ I × J ,

eij ∗ ekl = λeil + ril, (11)

where λ ∈ K and ril ∈ Ann(A).

11
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Proof. By Lemmas 3.5 and 3.7 any (12)-matching structure on (A, ·) has the form (11).
Conversely, let ∗ be a product on A given by (11). Then for all (i, j), (k, l), (p, q) ∈ I × J
we have (eij ∗ ekl) · epq = (λeil + ril) · epq = λeiq and eij · (ekl ∗ epq) = eij · (λekq + rkq) = λeiq.
Moreover, (eij ·ekl)∗epq = eil ∗epq = λeiq+ riq and eij ∗ (ekl ·epq) = eij ∗ekq = λeiq+ riq.

Corollary 3.9. The totally compatible structures on (A, ·) are exactly the products ∗ of
the form

eij ∗ ekl = λeil, (12)

where λ ∈ K and (i, j), (k, l) ∈ I × J .

Proof. Let ∗ be totally compatible with ·. In particular, ∗ is (12)-matching with ·. Then for
all (i, j) ∈ I×J by (11) we have (eij∗eij)·eij = λeij, while eij∗(eij ·eij) = eij∗eij = λeij+rij.
Thus, rij = 0 for all (i, j) ∈ I × J in (11), and we get (12). Conversely, the product (12)
is ∗φ, where φ = λid ∈ Γ(A), so ∗ is totally compatible with · by Lemma 2.3.

Corollary 3.10. We have Γ(A) = K.

Proof. Let φ ∈ Γ(A) and consider the totally compatible product ∗φ on A as in Lemma 2.3.
By Corollary 3.9 there exists λ ∈ K such that φ(eij) = φ(eij · eij) = eij ∗φ eij = λeij for all
(i, j) ∈ I × J . By linearity, φ = λid.

We summarize the results on totally compatible structures on A in the following.

Proposition 3.11. Let ∗ be an associative product on A. Then the following are equiva-
lent:

(i) ∗ is interchangeable with ·;

(ii) ∗ is totally compatible with ·;

(iii) ∗ is determined by some φ ∈ Γ(A).

Proof. This is a consequence of Proposition 3.1, Lemma 2.3, and Corollary 3.9.

In general, the annihilator part of (11) may be non-trivial, which makes it difficult
to characterize explicitly the associativity of (11) in terms of λ and ril. So, we just give
an example of such an associative product below, which also provides a (12)-matching
structure on A that is not totally compatible with ·, showing that one cannot replace
interchangeable structures by (12)-matching ones in Proposition 3.1.

Example 3.12. Let I = J = {1, 2} and A be the semigroup algebra of the rectangular
band I × J . Then Ann(A) = spanK{e11 − e12 − e21 + e22}. Indeed, if a =

∑
i,j aijeij

with aij ∈ K belongs to Ann(A), then 0 = a · e11 = (a11 + a12)e11 + (a21 + a22)e21 and
0 = e11 · a = (a11 + a21)e11 + (a12 + a22)e12, whence a11 = −a12 = −a21 = a22, so
that a ∈ spanK{e11 − e12 − e21 + e22}. Conversely, e11 − e12 − e21 + e22 ∈ Ann(A) by a
straightforward calculation.

12
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Consider the product ∗ on A given by

eij ∗ ekl =

{
e11 − e12 − e21 + e22, (i, l) = (1, 2),

0, otherwise.

Then (A ∗ A) ∗ A = A ∗ (A ∗ A) = {0}, so that (A, ∗) is associative. Observe that ∗ is of
the form (11) for λ = 0 and ril = e11 − e12 − e21 + e22 ∈ Ann(A) for (i, l) = (1, 2) and
ril = 0 otherwise. Thus, ∗ is (12)-matching with ·, but it is not totally compatible with ·
by Corollary 3.9.

However, in some cases Ann(A) = {0} and we have the following result.

Proposition 3.13. Let |I| = 1 or |J | = 1 (so that S is a right zero or a left zero semigroup,
respectively). For an associative product ∗ on A the following are equivalent:

(i) ∗ is (12)-matching with ·;

(ii) ∗ is interchangeable with ·;

(iii) ∗ is totally compatible with ·;

(iv) ∗ is determined by some φ ∈ Γ(A).

Proof. In view of Propositions 3.1 and 3.11 we only need to show (i)⇔ (iii). If I = {i0},
then ei0j · ei0k = ei0k for all j, k ∈ J , whence ei0j · a = a for all a ∈ A, so that each ei0j is
a left unit of A, and the result follows by Proposition 3.2 (or from Corollary 3.9, since the
existence of a left unit implies Ann(A) = {0}). Whenever J = {j0}, each eij0 is a right
unit of A, and we apply Proposition 3.2 again.

3.2 Algebras with enough idempotents

An associative algebra A is said to have enough idempotents [22] if there is a family
E of orthogonal idempotents {ei}i∈I ⊆ A such that A =

⊕
i∈I eiA =

⊕
i∈I Aei. It follows

that A =
⊕

i,j∈I eiAej. Observe that A is an idempotent algebra, and it is unital if and
only if |I| < ∞, in which case

∑
i∈I ei is the unit of A.

Example 3.14. The following non-unital associative K-algebras have enough idempo-
tents.

(i) The algebra of infinite matrices over K with a finite number of nonzero entries. The
corresponding idempotents are the matrix units Eii.

(ii) The path algebra of a quiver with infinite number of vertices. The corresponding
idempotents are the trivial paths ex, where x is a vertex.

(iii) The direct sum of an infinite family of unital algebras. The corresponding idempo-
tents are the units of the direct summands. Any algebra with enough idempotents
such that E ⊆ C(A) is of this form.

13
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Let (A, ·) be an algebra with enough idempotents. Given a ∈ A, we write a =
∑

i,j∈I aij,
where aij = eiaej ∈ eiAej. Define M to be the K-space

∏
i,j∈I eiAej whose elements will

be denoted by m =
∏

i,j∈I mij with mij ∈ eiAej. We will identify A with the subspace of
M consisting of m ∈ M with finite supp(m) := {(i, j) ∈ I2 | mij ̸= 0}.

Proposition 3.15. The algebra structure on A extends to an A-bimodule structure on M
by means of

am =
∏
i,j∈I

(∑
k∈I

aikmkj

)
and ma =

∏
i,j∈I

(∑
k∈I

mikakj

)
(13)

for all a ∈ A and m ∈ M . Moreover, AMA = A.

Proof. The operations (13) are clearly well-defined and bilinear. For all a, b ∈ A and
m ∈ M we have

(a(bm))ij =
∑
k∈I

aik(bm)kj =
∑
k∈I

∑
l∈I

aikbklmlj

=
∑
l∈I

∑
k∈I

aikbklmlj =
∑
l∈I

(ab)ilmlj = ((ab)m)ij,

and similarly one proves that ((ma)b)ij = (m(ab))ij. Finally,

(a(mb))ij =
∑
k∈I

∑
l∈I

aikmklblj =
∑
l∈I

∑
k∈I

aikmklblj = ((am)b)ij. (14)

Since I1 := {i ∈ I | ∃k ∈ I : aik ̸= 0} and I2 := {j ∈ I | ∃l ∈ I : blj ̸= 0} are finite,
then supp(amb) is finite as a subset of I1 × I2 by (14). Thus, AMA ⊆ A. The converse
inclusion is obvious because ai = ei ·ei ·ai for all ai ∈ eiA, so that A = A·A·A ⊆ AMA.

Lemma 3.16. Let ∗ be an associative product on A. If ∗ is id-matching with ·, then
ei ∗ ej ∈ eiAej for all i, j ∈ I.

Proof. Since ei · ei = ei, then ei ∗ ej = (ei · ei) ∗ ej = ei · (ei ∗ ej). Similarly, ej · ej = ej
yields ei ∗ ej = ei ∗ (ej · ej) = (ei ∗ ej) · ej. Hence ei ∗ ej = ei · (ei ∗ ej) · ej ∈ eiAej.

We thus define

x =
∏
i,j∈I

(ei ∗ ej) ∈ M. (15)

Lemma 3.17. Let ∗ be an associative product on A. If ∗ is id-matching with ·, then for
all aij ∈ eiAej and akl ∈ ekAel we have aij ∗ akl = aijxakl.

Proof. By (14) and (15)

aij ∗ akl = (aij · ej) ∗ akl = aij · (ej ∗ akl) = aij · (ej ∗ (ek · akl))
= aij · ((ej ∗ ek) · akl) = aij · xjk · akl = aijxakl.

14
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Proposition 3.18. The id-matching structures on (A, ·) are exactly the products ∗ on A
of the form

a ∗ b = axb (16)

for all a, b ∈ A.

Proof. The fact that any id-matching with · product ∗ on A has form (16) is a consequence
of Lemma 3.17. Conversely, let ∗ be given by (16). Then

(a ∗ b) · c = (axb) · c = ax(b · c) = a ∗ (b · c)

and similarly
a · (b ∗ c) = a · (bxc) = (a · b)xc = (a · b) ∗ c.

Lemma 3.19. Let φ : A → A be a linear map. Then φ ∈ Γ(A) if and only if there exists
m ∈ M such that

φ(a) = ma = am (17)

for all a ∈ A.

Proof. Let φ ∈ Γ(A). Then φ(ei) = φ(ei · ei) = eiφ(ei) = φ(ei)ei, so that φ(ei) ∈ eiAei.
Define m =

∏
i∈I φ(ei) ∈ M . For any aij ∈ eiAej we have

φ(aij) = φ(ei · aij) = φ(ei)aij = miiaij = maij.

On the other hand,

φ(aij) = φ(aij · ej) = aijφ(ej) = aijmjj = aijm.

Thus, (17) holds for all a ∈ A.
Conversely, assume (17). Then

φ(a) · b = (ma) · b = m(a · b) = φ(a · b) and a · φ(b) = a · bm = (a · b)m = φ(a · b),

for all a, b ∈ A, so φ ∈ Γ(A).

Lemma 3.20. Let ∗ be an associative product on A. If ∗ is (12)-matching with ·, then
ei ∗ ej = 0 for all i ̸= j and ei ∗ ei ∈ eiAei for all i ∈ I.

Proof. Let i ̸= j. Then ei ∗ ej = (ei · ei) ∗ ej = ei ∗ (ei · ej) = 0. It follows that
(ei ∗ ei) · ej = ei · (ei ∗ ej) = 0 and ej · (ei ∗ ei) = (ej ∗ ei) · ei = 0, so that ei ∗ ei ∈ eiAei.

We thus define as in (15)

x =
∏
i∈I

(ei ∗ ei) ∈ M. (18)

15
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Lemma 3.21. Let ∗ be an associative product on A. If ∗ is (12)-matching with ·, then

xa = ax (19)

for all a ∈ A.

Proof. We have ek ·(ei∗aij) = (ek ∗ei) ·aij = 0 for all aij ∈ eiAej and k ̸= i by Lemma 3.20,
so that

ei ∗ aij = ei · (ei ∗ aij) = (ei ∗ ei) · aij = xiiaij = xaij. (20)

Similarly, (aij ∗ ej) · ek = aij · (ej ∗ ek) = 0 for all aij ∈ eiAej and k ̸= j, so that

aij ∗ ej = (aij ∗ ej) · ej = aij · (ej ∗ ej) = aijxjj = aijx. (21)

But ei ∗ aij = ei ∗ (aij · ej) = (ei · aij) ∗ ej = aij ∗ ej, whence (19) by (20) and (21).

Lemma 3.22. Let ∗ be an associative product on A. If ∗ is (12)-matching with ·, then
there exists φ ∈ Γ(A) such that for all aij ∈ eiAej and akl ∈ ekAel we have

aij ∗ akl = φ(aij · akl). (22)

Proof. Let φ(a) = xa, where x is given by (18). By Lemmas 3.19 and 3.21 we have
φ ∈ Γ(A). We are left to prove (22). If j ̸= k, then

aij ∗ akl = (aij · ej) ∗ akl = aij ∗ (ej · akl) = 0 = φ(aij · akl).

Now, by (19) and (21) we conclude that

aij ∗ ajk = aij ∗ (ajk · ek) = (aij · ajk) ∗ ek = (aij · ajk)x = φ(aij · ajk).

Proposition 3.23. Let ∗ be an associative product on A. Then the following are equiva-
lent:

(i) ∗ is (12)-matching with ·;

(ii) ∗ is interchangeable with ·;

(iii) ∗ is totally compatible with ·;

(iv) ∗ is determined by some φ ∈ Γ(A).

Proof. The implications (iv)⇒ (iii) and (iii)⇒ (i) are obvious. The implication (i)⇒ (iv)
is a consequence of Lemma 3.22 and the equivalence (ii)⇔ (iii) is Proposition 3.1.
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4 σ-matching and interchangeable structures on free non-unital
associative algebras

We begin with a general result.

Proposition 4.1. Let (A, ·) be an associative algebra without zero divisors. Then for an
associative product ∗ on A the following are equivalent:

(i) ∗ is (12)-matching with ·;

(ii) ∗ is interchangeable with ·;

(iii) ∗ is totally compatible with ·.

Proof. (i)⇒ (iii). Let ∗ be (12)-matching with ·. Then for all a, b, c ∈ A we have

a · (a ∗ (b · c)) = (a ∗ a) · (b · c) = ((a ∗ a) · b) · c = (a · (a ∗ b)) · c = a · ((a ∗ b) · c).

Since (A, ·) has no zero divisors, a · (a ∗ (b · c)) = a · ((a ∗ b) · c) implies a ∗ (b · c) = (a ∗ b) · c.
Thus, ∗ is totally compatible with · by Remark 1.3 (iv).

(ii)⇒ (iii). Let ∗ be interchangeable with ·. Then for all a, b, c ∈ A we have

a · ((a · b) ∗ c) = a ∗ ((a · b) · c) = a ∗ (a · (b · c)) = a · (a ∗ (b · c)).

As above, a · ((a · b) ∗ c) = a · (a ∗ (b · c)) yields (a · b) ∗ c = a ∗ (b · c), because (A, ·) has no
zero divisors. Thus, ∗ is totally compatible with · by Remark 1.3 (ii).

The implications (iii)⇒ (i) and (iii)⇒ (ii) are trivial.

Clearly, id-matching structures on an algebra without zero divisors are not in general
totally compatible: as a counterexample it is enough to take a non-commutative associative
unital division algebra (see Corollary 2.7).

Free algebras are a classical example of algebras with no zero divisors. In view of
Proposition 2.6, we will only be interested in the non-unital case.

4.1 The free non-unital associative algebra

Fix a set of variables X with |X| > 1. Let X∗ (resp. X+) be the free monoid (resp. free
semigroup) over X. The elements of X∗ (resp. X+) are all the words (resp. non-empty
words) over X, where the product of any two words w1 and w2 is their concatenation w1w2.
Let (K⟨X⟩, ·) (resp. (K⟨X⟩+, ·)) be the free associative (resp. free non-unital associative)
K-algebra over X. Observe that K⟨X⟩ (resp. K⟨X⟩+) is the semigroup K-algebra of X∗

(resp. X+). Recall from [5, 6.1] that K⟨X⟩ is a domain. Clearly, K⟨X⟩+ is an ideal in
K⟨X⟩ and

K⟨X⟩+ =
⊕
x∈X

x ·K⟨X⟩ =
⊕
x∈X

K⟨X⟩ · x. (23)

17
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Proposition 4.2. The id-matching structures on (K⟨X⟩+, ·) are in a one-to-one corre-
spondence with maps ⋆ : X ×X → K⟨X⟩+,

(x, y) 7→ x ⋆ y =
∑
u∈X

u ·Rx,y,u =
∑
v∈X

Lx,y,v · v, (24)

where Rx,y,u, Lx,y,v ∈ K⟨X⟩ and∑
v∈X

Lx,y,v · (v ⋆ z) =
∑
u∈X

(x ⋆ u) ·Ry,z,u (25)

for all x, y, z ∈ X.

Proof. Let ∗ be an id-matching structure on (K⟨X⟩+, ·).
Given x, y ∈ X, write x ∗ y =

∑
u∈X u ·Rx,y,u =

∑
v∈X Lx,y,v · v according to (23). Then

(x ∗ y) ∗ z =
∑
v∈X

(Lx,y,v · v) ∗ z =
∑
v∈X

Lx,y,v · (v ∗ z)

and
x ∗ (y ∗ z) =

∑
u∈X

x ∗ (u ·Ry,z,u) =
∑
u∈X

(x ∗ u) ·Ry,z,u

for all x, y, z ∈ X. Thus, defining ⋆ to be the restriction of ∗ to X × X, we get (24)
and (25) by the associativity of ∗.

Conversely, let ⋆ : X ×X → K⟨X⟩+ satisfying (24) and (25). Given a, b ∈ X+, there
are unique x, y ∈ X and a1, b1 ∈ X∗, such that a = a1x and b = yb1. Then define

a ∗ b = a1 · (x ⋆ y) · b1. (26)

In particular, x∗y = x⋆y for all x, y ∈ X. The product (26) uniquely extends to a bilinear
product ∗ on the whole K⟨X⟩+. Taking additionally c ∈ X+, since bc = yb1c, by (26) we
have

(a ∗ b) · c = (a1 · (x ⋆ y) · b1) · c = a1 · (x ⋆ y) · (b1c) = a ∗ (bc). (27)

Moreover, if b = b2u and c = zc1 with u, z ∈ X and b2, c1 ∈ X∗, then

(ab) ∗ c = (ab2u) ∗ (zc1) = (ab2) · (u ⋆ z) · c1 = a · (b2 · (u ⋆ z) · c1) = a · (b ∗ c). (28)

Thus, we are left to prove that ∗ is associative. Observe from (24), (27) and (28)
that (25) is equivalent to

(x ⋆ y) ∗ z = x ∗ (y ⋆ z) (29)

for all x, y, z ∈ X. Let a = a1x, b = yb1 and c = zc1 with x, y, z ∈ X and a1, b1, c1 ∈ X∗.
Then by (27) and (28) we have

(a ∗ b) ∗ c = (a1 · (x ⋆ y) · b1) ∗ c = a1 · (((x ⋆ y) · b1) ∗ z) · c1. (30)
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Case 1. b1 is empty. Then using (26) and (28)–(30) we have

(a ∗ b) ∗ c = a1 · ((x ⋆ y) ∗ z) · c1 = a1 · (x ∗ (y ⋆ z)) · c1 = (a1x) ∗ ((y ⋆ z) · c1) = a ∗ (b ∗ c).

Case 2. b1 = b2u for some u ∈ X and b2 ∈ X∗. Then using (26)–(28) and (30) we have

(a ∗ b) ∗ c = a1 · (((x ⋆ y) · b2u) ∗ z) · c1 = a1 · ((x ⋆ y) · b2 · (u ∗ z)) · c1
= (a1 · (x ⋆ y)) · (b2 · (u ⋆ z) · c1) = (a ∗ y) · (b1 ∗ c)
= a ∗ (y · (b1 ∗ c)) = a ∗ ((yb1) ∗ c) = a ∗ (b ∗ c).

Remark 4.3. We are unable to describe the maps ⋆ : X × X → K⟨X⟩+ satisfying (24)
and (25) in simpler terms, so let us just give some natural examples. Any associative
product ⋆ : X ×X → X, i.e. a semigroup structure on X, is of this form. On the other
hand, any mutation x ⋆ y = x ·p y, where p ∈ K⟨X⟩, is also of this form. We suspect that
there also exist examples of more complicated maps ⋆.

Lemma 4.4. Let ∗ be a totally compatible structure on (K⟨X⟩+, ·). Then there exists
λ ∈ K such that x ∗ y = λ(x · y) for all x, y ∈ X.

Proof. For all x ̸= y in X we have

x · (x ∗ y) = (x ∗ x) · y, (31)

so x ∗ y ∈ K⟨X⟩ · y and x ∗ x ∈ x ·K⟨X⟩. Similarly,

x · (y ∗ y) = (x ∗ y) · y (32)

implies x ∗ y ∈ x ·K⟨X⟩ and x ∗ x ∈ K⟨X⟩ · x. Thus, there exist px,y ∈ K⟨X⟩, x ̸= y, such
that

x ∗ y = x · px,y · y, (33)

and px, qx ∈ K⟨X⟩ such that

x ∗ x = px · x = x · qx. (34)

It follows from (x ∗ x) · x = x · (x ∗ x) that px = qx, which commutes with x by (34).
By Bergman’s centralizer theorem [2] (or directly by induction on the degree of px) one
concludes that px ∈ K⟨x⟩. Now, (31) gives

x · px,y = qx (35)

and (32) gives

px,y · y = py, (36)

so that px,y ∈ K⟨x⟩ ∩ K⟨y⟩ = K. It also follows from (35) that px,y = px,v for all
y, v ̸= x. Similarly, (36) gives px,y = pu,y for all x, u ̸= y. Let u ̸= v and x ̸= y. If
u ̸= y, then pu,v = pu,y = px,y. If v ̸= x, then pu,v = px,v = px,y. If (u, v) = (y, x), then
(x ∗ y) · x = x · (u ∗ v) yields px,y · y = y · pu,v, whence px,y = pu,v because px,y, pu,v ∈ K.
Thus, px,y is a scalar λ ∈ K that does not depend on x and y, so the result follows by
(33)–(35).
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The result of the next corollary is probably well-known, but we couldn’t find a reference.

Corollary 4.5. We have Γ(K⟨X⟩+) = K.

Proof. Let φ ∈ Γ(K⟨X⟩+) and ∗φ be the corresponding totally compatible product as in
Lemma 2.3. Then there exists λ ∈ K such that φ(x·y) = x∗φy = λ(x·y) for all x, y ∈ X by
Lemma 4.4. On the other hand, φ(x·y) = φ(x)·y, whence φ(x) = λx for all x ∈ X. Let now
a = xa1 ∈ X+, where x ∈ X and a1 ∈ X+. Then φ(a) = φ(xa1) = φ(x) ·a1 = λx ·a1 = λa.
By linearity, φ = λid.

Proposition 4.6. Let ∗ be an associative product on K⟨X⟩+. Then the following are
equivalent:

(i) ∗ is (12)-matching with ·;

(ii) ∗ is interchangeable with ·;

(iii) ∗ is totally compatible with ·;

(iv) ∗ is determined by some φ ∈ Γ(K⟨X⟩+).

Proof. In view of Proposition 4.1 and Lemma 2.3 we only need to prove (iii)⇒ (iv). Let ∗
be totally compatible with ·. By Lemma 4.4 there exists φ = λid ∈ Γ(K⟨X⟩+), such that
x ∗ y = φ(x · y) for all x, y ∈ X. Then, given a = a1x and b = yb1 with x, y ∈ X and
a1, b1 ∈ X∗, we have

a ∗ b = a1x ∗ yb1
= a1 · (x ∗ y) · b1
= a1 · λ(x · y) · b1
= λ(a1x · yb1)
= λ(a · b)
= φ(a · b).

4.2 The free non-unital commutative associative algebra

Fix a non-empty set of variables X. Let (K[X], ·) (resp. (K[X]+, ·)) be the free
commutative (resp. free non-unital commutative) associative K-algebra over X. Observe
that K[X] is the algebra of polynomials in x ∈ X over K and K[X]+ is its ideal of
polynomials with zero constant term. It is clear that K[X] is an integral domain and
K[X]+ =

∑
x∈X xK[X] (the sum is not direct for |X| > 1).

Lemma 4.7. Let φ : K[X]+ → K[X]+ be a linear map. Then φ ∈ Γ(K[X]+) if and only
if there exists p ∈ K[X] such that

φ(a) = pa (37)

for all a ∈ K[X]+.
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Proof. It is obvious that a map of the form (37) belongs to Γ(K[X]+). Conversely, let
φ ∈ Γ(K[X]+).

Case 1. X = {x}. Then defining p := φ(x)
x

∈ K[X] we have

φ(xn) = xn−1φ(x) = xn−1 · xp = xnp

for all n ∈ Z+, whence (37) by linearity.
Case 2. |X| > 1. Then choosing x ̸= y in X we have

xφ(y) = φ(xy) = yφ(x). (38)

Since x ̸= y, it follows that φ(x) is divisible by x (in K[X]), i.e. there exists px ∈ K[X]
such that φ(x) = xpx. Then (38) gives xypy = xypx, so px = py, which will be denoted by
p. We thus obtain (37) for a being a variable. Now, for any x ∈ X and a1 ∈ K[X]+ we
have φ(xa1) = φ(x)a1 = pxa1, so (37) holds for monomials of higher degree and thus for
all a ∈ K[X]+ by linearity.

Lemma 4.8. Let ∗ be an id-matching structure on (K[X]+, ·). Then for all x, y ∈ X and
a1, b1 ∈ K[X] we have

(xa1) ∗ (yb1) = (x ∗ y)a1b1.

Proof. We have (xa1)∗(yb1) = (a1x)∗(yb1) = a1 ·(x∗(yb1)) = a1 ·(x∗y)·b1 = (x∗y)a1b1.

Proposition 4.9. Let X = {x} and ∗ be an associative product on K[X]+. Then the
following are equivalent:

(i) ∗ is id-matching with ·;

(ii) ∗ is (12)-matching with ·;

(iii) ∗ is interchangeable with ·;

(iv) ∗ is totally compatible with ·;

(v) there exists p ∈ K[X]+ such that

a ∗ b = a · b
x2

· p (39)

for all a, b ∈ K[X]+.

Proof. (i)⇒ (v). Let ∗ be id-matching with ·. Then by Lemma 4.8 we have

xm ∗ xn = (x ∗ x)xm+n−2 =
xm · xn

x2
(x ∗ x).

Denoting p := x ∗ x, we get (39) by bilinearity of ∗ and ·.

21



Mykola Khrypchenko

(v)⇒ (iv). Suppose that ∗ is given by (39). Then (a ∗ b) ∗ c = a ∗ (b ∗ c) = a·b·c
x4 · p2 and

(a ∗ b) · c = a ∗ (b · c) = (a · b) ∗ c = a · (b ∗ c) = a · b · c
x2

· p

for all a, b, c ∈ K[X]+.
(iv)⇒ (i) is trivial. The remaining equivalences are Proposition 4.1.

Remark 4.10. Observe by Lemma 4.7 that the product (39) from Proposition 4.9 (v) is
determined by some φ ∈ Γ(K[X]+) if and only if deg(p) ≥ 2.

Lemma 4.11. Let |X| > 1 and ∗ be an id-matching structure on (K[X]+, ·). Then there
exists φ ∈ Γ(K[X]+) such that for all x, y ∈ X:

x ∗ y = φ(x · y). (40)

Proof. For all x ̸= y in X we have x · (y ∗ y) = (xy) ∗ y = y · (x ∗ y). It follows that x ∗ y
is divisible by x and y ∗ y is divisible by y (in K[X]). Similarly, changing the brackets in
x ∗ (yx) = x ∗ (xy), we get

(x ∗ y) · x = (x ∗ x) · y, (41)

which shows that x ∗ y is divisible by y (in K[X]). Thus, for all x ∈ X there is px ∈ K[X]
and for all x, y ∈ X, x ̸= y, there is px,y ∈ K[X] such that

x ∗ x = xpx and x ∗ y = xypx,y.

Choosing another pair u ̸= v in X, we have

(xu) ∗ (yv) = x · (u ∗ (yv)) = x · (u ∗ v) · y = xyuvpu,v

and similarly
(xu) ∗ (yv) = u · (x ∗ y) · v = xyuvpx,y.

Thus,

px,y = pu,v =: p,

and (40) holds for x ̸= y and φ(x) = px. Moreover, (41) shows that xypx = x2yp, whence

px = xp,

and (40) holds for x = y and the same φ too.

Proposition 4.12. Let |X| > 1 and ∗ be an associative product on K[X]+. Then the
following are equivalent:

(i) ∗ is id-matching with ·;
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(ii) ∗ is (12)-matching with ·;

(iii) ∗ is interchangeable with ·;

(iv) ∗ is totally compatible with ·;

(v) ∗ is determined by some φ ∈ Γ(K[X]+).

Proof. (i)⇒ (v). Let ∗ be id-matching with ·. In view of Lemmas 4.8 and 4.11 there exists
φ ∈ Γ(K[X]+) such that

(xa1) ∗ (yb1) = (x ∗ y)a1b1 = φ(x · y) · a1b1 = φ(xa1 · yb1)

for all x, y ∈ X and a1, b1 ∈ K[X]. Then (v) follows by bilinearity.
The implications (v)⇒ (iv) and (iv)⇒ (i) hold in any associative algebra.
The remaining equivalences are Proposition 4.1.
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