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The geometric classification of non-associative algebras:
a survey

Tvan Kaygorodov, Mykola Khrypchenko and Pilar Pdez-Guilldan

Abstract. This is a survey on the geometric classification of different varieties of alge-
bras (nilpotent, nil-, associative, commutative associative, cyclic associative, Jordan,
Kokoris, standard, noncommutative Jordan, commutative power-associative weakly
associative, terminal, Lie, Malcev, binary Lie, Tortkara, dual mock Lie, €9-, com-
mutative €®-, anticommutative €9-, symmetric Leibniz, Leibniz, Zinbiel, Novikov,
bicommutative, assosymmetric, antiassociative, left-symmetric, right alternative, and
right commutative), n-ary algebras (Fillipov (n-Lie), Lie triple systems and anticom-
mutative ternary), superalgebras (Lie and Jordan), and Poisson-type algebras (Pois-
son, transposed Poisson, Leibniz-Poisson, generic Poisson, generic Poisson-Jordan,
transposed Leibniz-Poisson, Novikov-Poisson, pre-Lie Poisson, commutative pre-Lie,
anti-pre-Lie Poisson, pre-Poisson, compatible commutative associative, compatible
associative, compatible Novikov, compatible pre-Lie). We also discuss the degenera-
tion level classification.
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Introduction

Given a complex n-dimensional vector space V, the set Hom(V@ V., V) X V*@ V*®@V
is a complex vector space of dimension n3. This space has the structure of the affine
variety C"*. Indeed, if we fix a basis {ej,...,e,} of V, then any p € Hom(V ® V,V) is
determined by n® structure constants cfj € C such that pu(e; ®ej) => 1, cfjek. A subset
of Hom(V ® V,V) is Zariski-closed if it is the set of solutions of a system of polynomial
equations in the variables cfj (1<i,5,k<n).

Let T be a set of polynomial identities. Every algebra structure on V satisfying poly-
nomial identities from 7" forms a Zariski-closed subset of the variety Hom(V ® V, V). We
denote this subset by LL(T"). The general linear group GL(V) acts on IL(7") by conjugation:

1

(g*p)(z®@y) =gulg 'z ® g "y)

for x,;y € V, p € L(T) C Hom(V® V,V) and g € GL(V). Thus, L(7") decomposes into
GL(V)-orbits that correspond to the isomorphism classes of the algebras. We shall denote
by O(u) the orbit of © € L(T) under the action of GL(V) and by O(u) its Zariski closure.

Let A and B be two n-dimensional algebras satisfying the identities from 7', and let
p, A € L(T) represent A and B, respectively. We say that A degenerates to I3, and write
A — B, if A € O(u). Note that this implies O(A) C O(u). Hence, the definition of a
degeneration does not depend on the choice of © and . If A 2 B, then the assertion
A — B is called a proper degeneration. Following Gorbatsevich [30], we say that A has
level m if there exists a chain of proper degenerations of length m starting in 2l and there
is no such chain of length m + 1. Also, in [31] it was introduced the notion of infinite level
of an algebra A as the limit of the usual levels of A & C™.

Let A be represented by € L(T'). Then A is rigid in L(T") if O(u) is an open subset
of L(T"). Recall that a subset of a variety is called irreducible if it cannot be represented as
a union of two non-trivial closed subsets. A maximal irreducible closed subset of a variety
is called an wrreducible component. It is well known that any affine variety can be uniquely
represented as a finite union of its irreducible components. Note that the algebra A is
rigid in I(T) if and only if O(pu) is an irreducible component of IL(7").

In this survey, we discuss the following problems:
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Problem 1 (Geometric classification). Let U™ be a variety of n-dimensional algebras defined
by a family of identities T. What are the irreducible components of 0" ¢

Problem 2 (Level classification). Let U™ be a variety of n-dimensional algebras defined by
a family of identities T'. Which algebras from 0™ have level m ¢

Although we will not deal with the infinite level of algebras in this survey, some refer-
ences that address this issue are [31,32,61,70].

We shall use a lot of papers on algebraic classification throughout the text without
giving a precise reference. In such a situation we mention only the authors and the year
of publication — the precise references can be easily found in the articles on geometric
classification, on MathSciNet, or in the references of [50].

In all the multiplication tables, the first column contains our notations for algebras, the
second column is reserved for the original notation (from the original paper), and in the
last column we have the multiplication law. In particular, some authors prefer to denote
the direct product of a finite number of algebras using the symbol x, while some other
algebraists use the direct sum operation @. In such a case, in the second column, we follow
the original authors’ notation.

1 The geometric classification of algebras

Throughout this section, we summarize the geometric classification of different varieties
of (not necessarily associative) algebras over the field C. In what follows, we will not refer
to the base field anymore.

We will use the following notations:

[z,y] = zy—yx
roy = Y+ Yxr
(T, y,2)s = (xxy)*xz—xx*(yx*2),
J(x,y,2)s = (xxy)*z+ (y*x2)xx+ (z%xx)*Yy.

We will define any n-dimensional algebra via its multiplication table in a fixed basis
{e1,...,e,}, omitting the products that are zero. Moreover, in the commutative case
we will write only the products e;e; with ¢ < j, and in the anticommutative case only
the products e;e; with 7 < j. On the left of the multiplication table we will write the
name given to the algebra in the paper where the corresponding geometric classification
was established.

Let U be the class of algebras defined by a family of polynomial identities. We denote:

the variety of n-dimensional U-algebras by U";

the variety of n-dimensional nilpotent U-algebras by J1U0™;

the variety of n-dimensional commutative U-algebras by €U";

the variety of n-dimensional anticommutative U-algebras by A0".
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1.1 Non-associative algebras

The first case to be considered is the variety of all algebras. It is easy to prove that the
variety of all n-dimensional algebras (as well as the varieties of n-dimensional commutative
and anticommutative algebras) has only one irreducible component defined by an algebra
or a family of algebras. For example, in [60] such a family of algebras

A Multiplication table
Wi, B,7,6) | E1(a,3,7,6) | ere1 =e1 erea = aey + Bea  ese; = yer +dea  ezea = e

was found in the variety of all 2-dimensional algebras, whose algebraic classification has
been obtained in different ways by Ananin and Mironov (2000), Petersson (2000), Goze and
Remm (2011), and also in [60]. In the case of 2-dimensional commutative algebras (see [60]

for both an explicit list and the geometric classification), the irreducible component is
defined by

A Multiplication table
Ui (a, B) | E1(a, B, B) | erer = €1 erea = aer + Bez  egen = €3

The variety of 2-dimensional anticommutative algebras has one non-zero algebra [60]:

A Multiplication table
AA; | Bs | e1e2 = ey

The variety of 3-dimensional anticommutative algebras has been classified algebraically
and geometrically in [43], and its irreducible component is defined by

A Multiplication table
AA () | AT | erea =e3 ere3=e1 +e3  erez = aey

1.1.1 Nilpotent algebras

First of all, let us recall the definition of nilpotent algebras. Given an arbitrary algebra 1,
we consider the series
N = n, i+l — 2221 mkmi+1—k’ i>1.

We say that 0 is nilpotent if 9T = 0 for some 7 > 1.
There is only one non-trivial 2-dimensional nilpotent algebra. The algebraic classifi-
cation of all nilpotent algebras of dimension 3 was given in a paper by Calderén Martin,
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Ferndndez Ouaridi and Kaygorodov (2022). Using this result, in [28] the authors con-
structed all the degenerations in the variety Dl® of nilpotent algebras of dimension 3,
showing that it has only one irreducible component defined by

A Multiplication table
‘Itif Ng €1€1 = €9 €2€1 = €3 €o2€9 = €3

The present result was generalized in [53].

Theorem 1.1 (Theorem A, [53]). For any n > 2, the variety of all n-dimensional nilpotent
n(n 1?2(n+1) '

Let n > 3. Denote by M, the family of nilpotent algebras with basis (e;)! ;, whose
structure constants (c};)7; ,—,, satisfy ¢j; = 0, Yk < max{i,j}, and e} = e;4, for all
1<i<n-—-1,¢, =1 ¢ =0 foral 2 <i<n—1, and with the remaining struc-
ture constants cfj being arbitrary independent complex parameters, for all k& > max{i, j}
and 1 < i # j < n. It was shown that the family 2, is generic in the variety of n-
dimensional nilpotent algebras and inductively gives an algorithmic procedure to obtain
any n-dimensional nilpotent algebra as a degeneration from R, [53].

algebras is irreducible and has dimension

1.1.2 Nilpotent commutative algebras

Let 91€om be the variety of nilpotent commutative algebras. Thanks to [28] we have the
description of the geometry of the varieties M€om® and MCom*. While the complete list
of 3-dimensional nilpotent commutative algebras can be extracted from Calderén Martin,
Ferndndez Ouaridi and Kaygorodov (2018), in dimension 4 the algebraic classification was
made in [28].

The irreducible component of the variety 91€om?® is defined by

A Multiplication table
‘n@f Cog €1€1 = €9 €2€9 — €3

The irreducible component of the variety Mt€om* is defined by

A Multiplication table
NEH(a) | Cro(a) [ eter =ea ere3 = ey eses =e3 esez3 =eq e3e3 = ey

The complete graph of degenerations can be found in [28]. The present result was
generalized in [53].
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Theorem 1.2 (Theorem B, [53]). For any n > 2, the variety of all n-dimensional commau-

tative nilpotent algebras is irreducible and has dimension w.

Let n > 4. Denote by &,, the family of commutative nilpotent algebras with basis
(€:)i=1, whose structure constants (cj;)7'; ,_;, satisfy ¢f; = 0, Yk < max{i,j}, and €] = ;14
forall1<i<n-—1,chs=1,¢cly #0and ¢! =0 forall 2 <i <n — 1. The remaining
structure constants cfj are arbitrary. As above, it was shown that the family &,, is generic
in the variety of n-dimensional commutative nilpotent algebras and inductively gives an
algorithmic procedure to obtain any n-dimensional nilpotent commutative algebra as a

degeneration from &,, [53].

1.1.3 Nilpotent anticommutative algebras

Let 9MACom be the variety of nilpotent anticommutative algebras.
The irreducible component of the variety M2ACom?® is defined by the unique nilpotent
anticommutative algebra of dimension 3:

A Multiplication table
leQ‘f Ql(]l €1€2 = €3

The classifications, up to isomorphism, of all 4- and 5-dimensional nilpotent anticom-
mutative algebras can be found in Calderon Martin, Fernandez Ouaridi and Kaygorodov
(2019) and in [28], respectively; their geometric description was studied in [28,52].

The irreducible component of the variety MA¢om* is defined by

A Multiplication table
‘Ith@‘ll 9[02 €1€9 = €3 €1€3 = €4

The irreducible component of the variety MACom® is defined by

A Multiplication table
m%t@? Qlll €1€9 = €3 €1€3 = €4 €3€4 = €5

The complete graph of degenerations can be found in [28]. Dimension 6 was stud-
ied in [52] both algebraically and geometrically. This paper yields that the irreducible
component of NMACom® is defined by
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A Multiplication table
NACT () | Asa(a) | erea =e3 ere3 =eq eses = aeg  ezeq = es5 eze5 = €5 eqe5 = €6

The present result was generalized in [53].

Theorem 1.3 (Theorem C, [53]). For any n > 2, the variety of all n-dimensional anticom-
(n—2)(n?+2n+3)
e

Let n > 6 (in case n = 6, the condition cjs = 1 is to be ignored). Denote by T, is
the family of n-dimensional complex anticommutative algebras whose structure constants

(cfy)?yk relative to the basis (e;)f, satisfy ¢f; = 0, Vk < max{i, j} and such that:

mutative nilpotent algebras is irreducible and has dimension

® €611 = €42 for all 1 S 1 S n — 27

o P =0=cf? forall4d <i<n-—2

5 5 _ 6 6 6 _
® (3 =0Cjy = Cy =Cl5 = Cys =CJ3 =0
i 0?37&02

i 0352046:

The remaining structure constants cfj are arbitrary, subject only to the anticommutativ-
ity constraint. As above, it was shown that the family ¥, is generic in the variety of
n-dimensional anticommutative nilpotent algebras and inductively gives an algorithmic
procedure to obtain any n-dimensional nilpotent anticommutative algebra as a degenera-
tion from ¥, [53].

1.1.4 2-step nilpotent algebras

Among the nilpotent algebras, those satisfying 9> = 0 have been studied more in detail.
They are called 2-step nilpotent algebras and will be denoted by 291.

Selecting the 2-step nilpotent algebras from the 3-dimensional nilpotent algebras listed
in [28], we have the following list:

A Multiplication table
z‘ﬁ‘f Nﬁ €1€1 = €3 €96 = €3
ng N5 €1€1 = €2
ng N7 €1€2 = €3 €9€e1 = —eg3
203 () | Ne(a) | erer = aes  ege; = e3 €€y = €3

The geometric classification of the variety 291> follows from the graph of degenerations
of 3-dimensional nilpotent algebras of [28].
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Irr(297%) = {o (z‘ﬂi’)} U {U @ (zmj(a))} :

The list of all 4-dimensional 2-step nilpotent algebras altogether appeared in [57]. In
the same paper, it was proved that the variety 20t* has two irreducible components:

2

Irr(2) = {U o(zm;*(a))} :

i=1

where

A Multiplication table
2N (@) | Na() [ erer =e3 eren = ey €9€] = —(e3 €9y = —€4
2N (a) | N3(a) | erer =es erea = aey ese; = —aeq egen = ey ese3 = ey

The present result was generalized in [39]. For & < n consider the (algebraic) subset
2N, . of the variety 22" of 2-step nilpotent n-dimensional algebras defined by

M, ={A€2MN":dim A% <k, dim Ann A > k}.
It is easy to see that 20" = U}_,2M,, ;.
Theorem 1.4 (Theorem A, [39]). The sets 22N, are irreducible and

1—+v4 1
zm”:UPﬁmm for 1§k§{n+—n+J

k

2
is the decomposition of 201" into irreducible components. Moreover,
dim 20, = (n—k)%k+ (n —k)k.

1.1.5 2-step nilpotent commutative algebras

Let 22M€ denote the variety of 2-step nilpotent commutative algebras. Checking the list
of [28], we obtain that there are only two 3-dimensional 2-step nilpotent algebras:

A Multiplication table
Z‘ﬁQ:i Nﬁ €11 — €3 €9€2 — €3
2NES | N5 | erer = eo

Again from [28], it follows that the variety 201€? is irreducible and it is defined by the
rigid algebra 2913,

The following list of 2-step nilpotent commutative algebras of dimension 4 is based on
the classification of 4-dimensional nilpotent commutative algebras from [28].
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A Multiplication table
ZWQ:% C()ﬁ €1€1 = €3 €269 — €4
ZWQ:% Cog €1€1 = €4 €2€3 = €4
z*ﬁ@é C()l €11 = €9
29’1@:3 C()4 €169 = €3
2%@% C()7 €1€1 — €3 €1€9 = €4

Analyzing the graph of degenerations of 4-dimensional nilpotent algebras from [28], we

obtain that 291¢? has two irreducible components:
N2
Irr(2met) = {(9 (2976?)}4

Regarding dimension 5, the variety 201¢° was algebraically and geometrically classified
in [55] based on the classifications of 5-dimensional nilpotent associative commutative
algebras.

In particular, the variety 291¢€” has three irreducible components:

Irr(20¢”) = {O (2‘)?@?)}3 )

=1

where

A Multiplication table
z‘ﬁ@? A07 €1 = €4 + €5 €163 =€4 €263 = €5
Z‘ﬁQ:g A16 €1€1 = €3 €162 = €4 €32€9 = €5
z‘ﬁ@% A21 e1e4 = €5 €9€3 = €5

The present result was generalized in [39]. For & < n consider the (algebraic) subset
2N, . of the variety 291€" of 2-step nilpotent commutative n-dimensional algebras defined
by

2NE, . = {A € 20¢" : dim A? <k, dim Ann A > k}.

It is easy to see that 2MC" = U}_,2MNC,, .

Theorem 1.5 (Theorem A, [39]). The sets 20C,, ;. are irreducible and

2NC" = Uz‘ﬁQﬁn,k, for1 <k< {n—i— WJ ,

k

2

is the decomposition of 20E" into irreducible components. Moreover,
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dim2Me,;, = @ROFUE (k)

1.1.6 2-step nilpotent anticommutative algebras

The variety of 2-step nilpotent anticommutative algebras will be denoted by 291. The
unique 2-step nilpotent anticommutative algebra of dimension 3 is

A Multiplication table
ng[‘f N7 €1€9 = €3

and in dimension 4 there is also only one:

A Multiplication table
z‘ﬁQ{‘f N7 €1€9 = €3

The notation is taken from [28§].
As for dimension 5, the list can be extracted from the general list of the 5-dimensional
nilpotent anticommutative algebras of [28].

A Multiplication table
29”(2@ Qlog €12 = €4 €1€3 = €5
nglg Ql05 €1y = €5 €364 = €5
z‘)”(ng le €12 = €3

The irreducible components of 202A° are deduced, again, from [28].
N2
I (2NA°) = {0 (z‘)@l?)}
i=1
To determine all the 6-dimensional 2-step nilpotent anticommutative algebras, we select
them from the list of [68] of 6-dimensional nilpotent Lie algebras. Note that every 2-step
nilpotent anticommutative algebra verifies Jacobi identity and is therefore a Lie algebra.

A Multiplication table
2NAT | g3 x g3 | eres=e5 ereq=ces
20U | go,24 e1eg = ey e1e3 =e5 €363 = €g
25 | g1 e1ey = €5 €13 = €5 €364 = €5

nglg gs52 X C €16 = €5 €364 = €5
nglg g55 X C €163 = €4 €13 = é5
z‘)”(ng gz X (C3 €162 = €3

It follows from the general graph of degenerations of [68] that 202° has two irreducible
components:
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I (2nA%) = {O (z‘)@l?)}% 1

Dimensions 7 and 8 have been studied with the aim of contributing to the knowledge of
the varieties of 7- and 8-dimensional nilpotent Lie algebras. The irreducible components of
2NA” were determined in [13], employing the algebraic classification of all 7-dimensional
nilpotent Lie algebras by Gong (1998). Note that the rigid algebras had already been
identified in [12].

The variety 201" has three irreducible components:

Irr (2027) = {O(z‘ﬁﬂ;)}g )

1=1

where

A Multiplication table
Z‘ﬁQq (17) €1y = €7 €364 — €7 €566 — €7
29&[; (273) €1€2 = €6 €165 = €7 €263 = €7 €364 = €¢
meg (37D) €163 = €5 €163 = €6 €264 = €7 €364 = €5

The complete graph of degenerations can be found in [13].

The algebraic classification of the 2-step nilpotent Lie algebras of dimension 8 was
made by Yan and Deng in 2013. Their graph of degenerations was constructed in [14],
although [12] had already shown that the variety 2012°* has three irreducible components:

Irr (292°) = {(’)(z‘ﬁmf)}g )

i=1
where
A Multiplication table
B2
z‘ﬁ?lléf N{"" | etea = e7 ezeq =eg eseg = €7 + €
ng[g Nf’4 €169 = €5 €963 = €5 €364 = €7 €461 = eg
33
z‘ﬁng Ny | etea = €5 e1e3 =e7 ereq =eg €0€3 = €8 €65 = €7 €e4€5 = €4

The present result was generalized in [39]. For k < n consider the (algebraic) sub-
set 2912, ,, of the variety 291" of 2-step nilpotent commutative n-dimensional algebras

defined by
2N, = {A € 291" : dim A? <k, dim Ann A > k}.

It is easy to see that 20A™ = U}_2MNA,, .
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Theorem 1.6 (Theorem A, [39]). The sets 20U, ;. are irreducible and

1—+/ 1
2NA" = Uzmﬁlmk, for1+(n+1)mod2 <k < Ln+$

k

5 J forn > 3,

is the decomposition of 20MA" into irreducible components. Moreover,
dim 202, = RO E 4 )k

1.1.7 Noncommutative Heisenberg algebras

An algebra 2l is a noncommutative Heisenberg algebra if dim A% < 1 and 4?20 + 2% = 0.
Let 91$ denote the variety of noncommutative Heisenberg algebras. 91§ is a special sub-
variety in the variety of 2-step nilpotent algebras. It is easy to see that 91$" is irreducible.
The full graph of degenerations of the variety 91$° was obtained in [63]. The variety 9$)°
is determined by following family of algebras

A Multiplication table

5 a?
MNH1 (o, B) 5313[3 elea = e5 exe) = Pes eseq =e5 ege3 = aes

1.2 Nilalgebras

An element z is nil with nilindex n, if for each k > n we have ¥ = 0'. An algebra is
called a nilalgebra with nilindex n if each element is nil and n is the maximal nilindex of
elements from the algebra. The variety of nilalgebras with nilindex n will be denoted by

Mil(n).

1.2.1 3-dimensional nilalgebras with nilindex 3

The algebraic and geometric classification of 3-dimensional nilalgebras with nilindex 3 can
be found in [59]. In particular, it is proven that the variety 9l(3)* has two irreducible

components:
Trr(Mil(3)%) = {o(mu } {U(’) (Mil(3 )}

where algebras are defined as follows:

A Multiplication table
. 3
9&[(3)1 N5 €1€1 = €9 €1€e3 = €3 €3€1 — —€3 €3€3 = €9
. 3
Nil(3)5(a) ¢ | erea =e3 ere3 =e1 +e3 ese3 = ey
€21 = —€3 €3] — —€1 — €3 €362 = —QEy

1By 2* we mean all possible arrangements of non-associative products.
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1.2.2 3-dimensional nilalgebras with nilindex 4

The algebraic and geometric classification of 3-dimensional nilalgebras with nilindex 4 can
be found in [59]. In particular, it is proven that the variety 9%il(4)* has three irreducible
components:

Trr(Nil(4)*) = {o(mu } {Uo (Mil(4 )}3 ,

=2

where algebras are defined as follows:

A Multiplication table
gﬁi[(4)f N5 €1€1 = €2 €1€3 = €3 €3e] — —e€3 €33 = €9
9”(1[(4);( ) ¢ | ere2 =e3 eres = e1 + e3 eose3 = e
€2€1 — —€3 €3€1 — —€1 — €3 €369 — —(en
Nil(4)5(c) [ NS [ erer =ex  erea=ey ege] = ey

1.2.3 3-dimensional nilalgebras with nilindex 5

The algebraic and geometric classification of 3-dimensional nilalgebras with nilindex 5 can
be found in [59]. In particular, it is proven that the variety 91il(5)* has three irreducible
components:

e (Mil(5)%) = {O(%[ } {UO (Mil(5 )}

where algebras are defined as follows:

A Multiplication table
9&[(5)‘; N5 €1€1 = €2 €1€3 = €3 €3] = —e€3 €3€3 = €9
9&[(5)‘; N2 €1e1 = €9 €9€1 = €3 €2€9 = €3
sﬁi[(5)‘§(o¢) ¢ | erea =e3 ere3 =e1 + eg €93 = Qey
€21 = —€3 €3] — —€1 — €3 €362 = —Qey

1.3 Associative algebras

An algebra 2 is called associative if it satisfies the identity
(ry)z = x(yz).
The variety of associative algebras will be denoted by 2Ass.

1.3.1 2-dimensional associative algebras
The variety of 2-dimensional associative algebras has three irreducible components:

Irr(Ass®) = {W}S E

1=
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where

A Multiplication table
Q@ €161 = €1 €9€9 = €9
Q[% €1e1 = €1 €169 = €9
Q@)’ €161 = €1 €9€1 = €9

1.3.2 3-dimensional nilpotent associative algebras

The algebraic and geometric classification of 3-dimensional nilpotent associative algebras
can be obtained from the classification and description of degenerations of 3-dimensional
nilpotent algebras given in [28]. Hence, we have that the variety DM2ss® has two irreducible
components:

Irr(MAss®) = {o (mﬁ’)} U {U O (‘mi’(a))} ,

where

A Multiplication table
‘ItQ[f N4(1) €1€e1 = €3 €1€9 = €3 €2€1 — €3
NAS(a) | Ns(a) | eter = aes eze; =e3  esen = e3

1.3.3 4-dimensional nilpotent associative algebras

The algebraic classification of 4-dimensional nilpotent associative algebras can be found in
a paper by Karimjanov (2021) and the geometric classification was given in [39].
In particular, it is proven that the variety MAss* has four irreducible components:

9 4

U {U o(mmﬁ(a))} :

Trr(MAss?) = {o(smljf)}

¢ i=3
where
A Multiplication table
‘)T?Z[‘ll ,u‘ol eje] = ey ejeg = €3 el1es = ey eoe] = €3 €96y = €4 €361 = €4
‘ﬁil[% Aég) €1€1 = €9 €1€y = €4 €1€3 = €4 €21 = €4 €33 = €4
‘ﬁng(oz) Mo(a) | e1e1 =e3  erea = ey e9e] = —ae3 ege3 = —ey
NAL(a) | N3(a) | eter =es e1ea =aeq ege; = —aey  egeq = ey eses = ey

1.3.4 5-dimensional nilpotent associative algebras

The algebraic classification of 5-dimensional nilpotent associative algebras can be found in
a paper by Karimjanov (2021) and the geometric classification was given in [39].
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In particular, it is proven that the variety D91ss® has eleven irreducible components:

Irr(N2Ass”)
- 7 9
_ 5 5 5 5 (—
= {o(ma)} v {U O(MA: (a))} U {U O(mmm(a,ﬁ))} U {U o(mmu(u))} ,
= i=8
where
A Multiplication table
5 5 — — — —
MNAT 10 e1e1 = €y e1ey = €3 e1e3 = ey e1e4 = €5
€261 = €3 €262 = €4 €2€3 = €5
€3€1 = €4 €3€2 = €5 €4€1 = €5
5 5 — — — —
A5 Uia | €161 =é€2 e1ey = €3 e1e3 = ey e1e5 = €4
€oe1 = €3 €2€9 = €4 €31 = €4 €55 = €4
5
N2A3 p11 | erer = ez e1ez = e3 €164 = e;
ese] = eg eqeq4 = €3 + €5
5
Ay p1s | erer = ez erez = e3 e1eq = e; eze1 = e3
€4€1 = €2 + €5 eqeo = 2e3 eqeq = €3+ 2e5 ese] = ez
5
A3 pi7 | erer = ez erez = e3 e1eq = e; eze1 = e3
eqe] = e3 + ej €464 = €3 €465 = €3 €564 = €3
5
NAg H1g | erer = e e1es = e3 e1e4 = €5 eg€1 = €3
€41 = —¢€5 €44 = €9 €qey = —€3 €zeq = €3
5
NA7 H2o | er1e1 = e2 e1es = e3 e1e4 = €5 eg€1 = €3
eqe1 = e3 + e; eqeqy = —eg + 2e; eqe5 = €3 esey = —e3
‘)”(ng(a) G e1e1 = ey e1ex = e3 ege] = €3
€4q€5 = €3 €s€eq4 = Q€3
5
MA () 1Sy | erer = e e1es = e3 e1eq = es
ege1 = e3 eqe1 = (1 — a)ey + aes
eqes = (1 —a?)es eqeq = —aes + (1 + e
eqes = —ales ese1 = (1 —a)es eseq = —aes
5
NATp (v, B) | Vg1 | erea = e eze1 = aes e3e4 = e eqe3 = fes
I5) —
N2AT, (1) V3.2 | €161 = €4 e1e2 = fi1€; e1e3 = p2es
€2€1 = H3es €2€2 = [4€5 €2€3 = U5€5
€361 = H6Cs €3e2 = [lpeq + [i7€5 €363 = €5

1.4 Commutative associative algebras

We consider now the associative algebras €2( which are also commutative. This variety
will be denoted by €ss. To study the varieties €ss™, n = 2,3,4, we rely on results
for Jordan algebras, selecting the associative ones among them. The varieties €2ss”,
n = 2,3,4, are irreducible.
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1.4.1 2-dimensional commutative associative algebras

For the variety €2ss®, we rely on the classification from [36]. It is determined by the rigid
algebra:

A Multiplication table
@Q@ s34 €1€1 = €1 €9€9 = €2

1.4.2 3-dimensional nilpotent commutative associative algebras

The algebraic and geometric classification of 3-dimensional nilpotent commutative associ-
ative algebras can be obtained from the classification and description of degenerations of
3-dimensional nilpotent algebras given in [28]. Hence, we have that the variety Q€Ass” is
irreducible, defined by the rigid algebra:

A Multiplication table
91022[‘{ g)/14(1) €11 — e3 €19 = €3

1.4.3 3-dimensional commutative associative algebras

Again, we employ the classification of [36] to see that the variety €2ss® is determined by
the rigid algebra:

A Multiplication table
Q:Ql‘f TOI €1e1 = €1 €9€9 = €9 €3€3 — €3

1.4.4 4-dimensional nilpotent commutative associative algebras

Also, from [21] and [28] (where some of the results of [21] were corrected) we can extract
that the variety 91€ss” is irreducible, defined by the rigid algebra:

A Multiplication table
gﬁQ:lell ¢1 €161 = €9 €169 = €3 €13 = €4 €2€9 = €4

Note that we are employing the notation of [21].

1.4.5 4-dimensional commutative associative algebras

The degenerations of Jordan algebras of dimension 4 were studied in [47], but the authors
did not present a complete graph of degenerations. However, they did prove that every
associative Jordan algebra degenerates from €2A]. We deduce that the variety €2ss* is
determined by the rigid algebra:
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A Multiplication table
Q:Qlil 33 €1e1 = e1 €2€9 = €9 €33 = €3 €414 = €4

1.4.6 5-dimensional nilpotent commutative associative algebras

In dimension 5, we will first focus on nilpotent algebras, whose algebraic classification was
given in [66], and whose degenerations were established in [55]. The variety 91€2ss” is
determined by the rigid algebra:

A Multiplication table
‘ﬁ@%l‘i’ A1 €11 = €9 €1€9 = €3 €1€3 = €4 €1€4 = €5 €2€9 = €4 €2€3 = €5

The complete graph of degenerations can be found in [55].

1.5 Cyclic associative algebras

We now consider the associative algebras which also satisfy the cyclic identity
(ry)z = (y2).
This variety will be denoted by €hRss.

1.5.1 2-dimensional cyclic associative algebras

Thanks to [8], each 2-dimensional cyclic associative algebra is commutative associative.
The variety €y2ss” is determined by the rigid algebra:

A Multiplication table
Q:UQ[EE% ./401 €e1€1 = €1 €269 = €9

1.5.2 3-dimensional nilpotent cyclic associative algebras

The algebraic and geometric classification of 3-dimensional nilpotent cyclic associative
algebras can be found in [8]. In particular, it is proven that the variety 9€nAss® has two
irreducible components:

[rr(MCyAss®) = {O(me:qmssi’)} U {U o(me:gatssg(a))} ,

where the algebras MEyAss; and NEYAsss(a) are defined as follows:
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A Multiplication table
‘ﬁ(’:o%sf .A06 e1e1 = ey e1eg = e3 €9e1 = €3
NEYAsss(a) | afy, | ere1 =e3 e1e2=e3 eze1 = —e3  e2e2 = ey

1.5.3 3-dimensional cyclic associative algebras

The algebraic and geometric classification of 3-dimensional cyclic associative algebras can
be found in [8]. In particular, it is proven that the variety €yAss® has two irreducible
components:

Irr(€yAss®) = {O(Qﬁn&lss‘l’)} U {U O(Qﬁ\jﬂssg(oz))} :

where the algebras €y2ss: and €y2sss(a) are defined as follows:

A Multiplication table
Qtljglﬁﬁf .A()g €161 = €] €926y = €9 €9€e3 = €3
CyAssy(a) | af, | erer =e3 erea=e3 eser = —e3  esen = ey

1.5.4 4-dimensional nilpotent cyclic associative algebras

The algebraic and geometric classification of 4-dimensional nilpotent cyclic associative
algebras can be found in [8]. In particular, it is proven that the variety 9€y2Ass* has four
irreducible components:

4

Irr(MNCh2Ass?) = {o(mo%g‘f)} U {U o(megatss;*(a))} ,

1=2

where the algebras 9€y2Ass; and NEYAss; () are defined as follows:

A Multiplication table
mQ:Umﬁﬁil A16 e1e1 = ez ejey = e3 e|1es = eq
€2€1 = €3 €263 = €4 €3€1 = €4
‘T(Ct)?l[ﬁﬁ%(a) agy | e1er =e3  ejex = e3 ege] = —e3 e9€y = aes
‘ﬁ@lﬂ[ﬁﬁ%(a) afy | ete1 =e3 ejea =e3+es eze; =eq—e3 exex = qes
mQUlesji(a) a13 €161 = €4 €162 = €3 €g€e1 = —e3
€269 = €3 €14 = €3 €qe1 = €3

1.5.5 4-dimensional cyclic associative algebras

The algebraic and geometric classification of 4-dimensional cyclic associative algebras can
be found in [8]. In particular, it is proven that the variety €yss® has three irreducible
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components:

Irr(CyAss?) = {0(609155‘1‘)} U {U O(eyAss; () }3 ,

1=2

where the algebras €yss; and €y2Ass; () are defined as follows:

A Multiplication table
‘JT(’JUles‘f Ai7 | ete1 = e1 eges = eg esez = €3 €464 = €4
NEyAssy () afy |ele1 =e3 ejeg=e3+es ege; =eq4—e3  egxen = aes
NEyAsss () afy, | ere1 =e3 ejex =e3 ege1 = —e3 €96y = QI3 €464 = €4

1.6 Jordan algebras

A commutative algebra J is called a Jordan algebra if it satisfies the identity

2*(yr) = (a%y)w.
Let Jord be the variety of Jordan algebras.

1.6.1 2-dimensional Jordan algebras

The algebraic classification of 2-dimensional Jordan algebras was made between 1975 (a
result by Gabriel, who described the associative ones) and 1989 (a result by Sherkulov for
the non-associative ones). The graph of degenerations can be deduced from [60] and is
explicitly given in [36]. In particular, it is proven that the variety Jord® has two irreducible
components:

Irr(Jord?) = {@}117

where the algebras J2 and J3 are defined as follows:

A Multiplication table

~2 — — 1
JI | B | erer1 =e€1  ereg = €9

~2 — —
J5 | By | eteg =e1 ezea = e

1.6.2 3-dimensional nilpotent Jordan algebras

The nilpotent Jordan algebras of dimension 3 were classified algebraically and geometrically
in [21]. The variety MJord? is irreducible, determined by the rigid algebra:

A Multiplication table
NI} | ¢1 | erer =ex eren =e3
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1.6.3 3-dimensional Jordan algebras

Also in [36], the geometric classification in dimension 3 (initiated in [49] together with the
algebraic classification) was completed. We will refer to the notation of [36]. There exist
five irreducible components in Jotrd®:

5

o) = {07}

i=1

where

A Multiplication table

I | Toi | ere1=e1 ezep=e3  ege3 =e3

35 | To2 | ere1 =€ ejes = ge3 esea=es  ese3 = 3€3  eges = eg + €
33 | Tos | erer =e1 ere3 = ze3  exer = e

| Tw | erer=e1 erea=zes ere3=e3  exeg = e3

3 | Tz [ erer =e1 erea=ges ere3 = geg

The complete graph of degenerations can be found in [36].

1.6.4 4-dimensional nilpotent Jordan algebras

The variety 9Jord* was studied in [21] both algebraically and geometrically. It has two
irreducible components:

Irr(MJord*) = {W};l’

where

A Multiplication table
~1

NJT | &1 | e1e1 =e2 ejea =e3 eje3=eq4 €23 =€y
~1

NIy | ¢2 | erer =e3 ejez3 =eq egex =e3

1.6.5 4-dimensional Jordan algebras
Regarding Jotd?*, the algebraic classification was made by Martin in 2013, and the ten
irreducible components were found later in [47]:

10

Irr(Jord*) = {m} ;

i=1

where



206 Ivan Kaygorodov, Mykola Khrypchenko and Pilar Paez-Guillan

A Multiplication table

~71 ~ T 1

Ji |31 |elen=e1  eje3=g5e3 egeg =€y  ege3 =5€3 e€3€3 =€+ € eqeq = €4
~ T~ T i T i T

Js | J2 | ele3 =s5e3 ereq = 5eq4 ege3 = 5€3 €264 = 5€4 €364 = 5(e1 + €2)

J3z | J3 | e1er =¢€r €262 = €2 €3€3 = €3 €464 = €4
1

Jg | Js | e1e1=¢€1 €162 = 5
1

Js | Ji12 | e1e1 =€ €162 = 5

~ [~ — — 1 — 1

Jg | Y13 | e1e1 =¢€1 €162 = 563 €363 = €3 €364 = 5€4
1 T

J7 | Ji16 | €1€3 = g€3 €164 = ?64 €2€3 = 3€3
2
1
2
1
2

€2 €363 = €3 €464 = €4

T
€2 €163 = 3€3 €464 = €4

Jg | Joa | e1e1 = €1 €1€3 = 563 €]1€3 = €3 €2e = €3 €464 = €4
Jg | U33 | €162 = 5€2  e1€3
Jio | J59 | €1€2 = €3 e1e3 =

_ 1
€3 €164 = 564

1
€3 €164 = 564 €364 = €2 €464 = €2

1.6.6 5-dimensional nilpotent Jordan algebras

In dimension 5 there is no complete algebraic classification of Jordan algebras yet. However,
nilpotent algebras were classified thanks to [66] and the work of Abdelwahab and Hegazi
(2016). The geometric classification is given in [48]. The authors found that the variety
MJord® has five irreducible components:

Irr(MJord®) = {(’) (m?)};l U {U O (mg(a,ﬁ))} ;

where
A Multiplication table
Ny; €1 |ele1 =€y ejeg=e€3 ele3=e4 €164 =€5 €263 =€4 €23 = €5
N3 Jo1 | e1e1 =e5 e1eg =e4  egey =e€5 €363 =€4 €364 = €5
NI3 J22 | e1e1=ex ejeg =eq4 ejeg=e€5 €363 =€y €363 = ¢4
NI, Jio | ere1=e5 ejeg=e3 e1e3=e4 €263 =€4 €263 = €5
NI2(a, B) ‘ﬁ;ﬁ €1€] = €3 €1€3 = (€5 €1€4 = €5 €23 = €4 €23 = €5 €264 = [3e;5

1.7 Kokoris algebras
An algebra R is called a Kokoris algebra if it satisfies the identities
(ZIZ', Y, Z)O = 07 (ZE’, Y, Z) = _(Za Y, ZIZ')
Let R be the variety of Kokoris algebras.

1.7.1 2-dimensional Kokoris algebras

The algebraic and geometric classification of 2-dimensional Kokoris algebras can be found
in [1]. In particular, it is proven that the variety &2 has two irreducible components:

Irr(8?) = {W}Z ,

i=1
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where
A Multiplication table
2 — —
R | Aog | ere1 =e1 ezex = e
2 0 — —
ﬁ2 A22 €1€9 = €2 €2€1 — —€9

1.7.2 3-dimensional Kokoris nilpotent algebras

The algebraic and geometric classification of 3-dimensional nilpotent Kokoris algebras can
be obtained from the classification and description of degenerations of 3-dimensional nilpo-
tent algebras given in [28]. Hence, we have that the variety 9&” has two irreducible
components:

Irr(MK%) = {O (mﬁi’)} U {U @ (‘ﬁﬁi(a))} :

where

A Multiplication table
‘ﬁil[‘f N4(1) €1e1 = e3 €19 = €3 €oe1 = €3
NAS(a) | Ns(a) | eter = aes eze; =e3  egen = e3

1.7.3 3-dimensional Kokoris algebras

The algebraic and geometric classification of 3-dimensional Kokoris algebras can be found
in [1]. In particular, it is proven that the variety &2 has five irreducible components:

() = {O(R) ) {W}

)

5

=4
where
A Multiplication table
.ﬁ% A04 €1€1 = €1 €2€9 = €9
ﬁ% A29 e1e;p = ex €1€2 = €2 €oe1 = €9 €1e3 = €3
€361 = €3 €2€3 = €3 €3 €2 = —¢€3
3 — — —
.ﬁg A30 €1€1 = €1 €2€3 = €3 €39 — —€3
3 — _
Ri(a) | Afy | erea=(1+a)es eze1 = (1 —a)es
R () [ AGy | ere2 = e3 ejez =e1 +e3 €261 = —€3
€23 = (€9 €31 =— —€1 — e3 €3y = —(QEy

1.7.4 4-dimensional nilpotent Kokoris algebras

The variety 9R* was studied in [1] both algebraically, and geometrically. It has five
irreducible components:

5

e (N/Y) = {0 (mﬁ?)}; U {UO (‘ﬁﬁ?‘(a))} ,

=4
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where
A Multiplication table
N/ Jo3 e1e] =€y e1ep =€y €201 = €4 e3e1 =€y ezez3 =ey
NA/Y J7 €1€] = €4 ejeg =e3  ege] = —e€3
€1€3 = €4 €263 = €4 €3€1 = —€4
NA/Y Jis8 €161 = ez ejeg =e€3  €1€3 =€y
€2€]1 = €3 €263 = €4 €3€1 = €4
*ﬁﬁﬁ(a) ‘ﬁg(a) €161 = €3 €163 = €4 €261 = —(Q€3 €263 = —€4
NAs(a) | N3(a) | ere1 =eq erea =aes ege; = —aey egen = ey

1.8 Standard algebras
An algebra & is called a standard algebra if it satisfies the identities
(7,9,2) + (z,2,9) = (2,2,9), (z,y,wz2) + (w,y,22) + (2,y, wx) = 0.
Let & be the variety of standard algebras.

1.8.1 2-dimensional standard algebras

The algebraic and geometric classification of 2-dimensional standard algebras can be found
in [1]. It is proven that the variety &2 has four irreducible components:

(&%) = {W};l’

where

A Multiplication table

) — —
ST | Apg | e1e1 =e1  egex = e

2 — 1 1
62 A(l]S €1€1 = €1 €1€9 = 562 €o€1 — 562

6% A128 €1€1 = €1 €169 = €9

6421 A1_82 €1€1 = €1 €2€1 = €9

1.8.2 3-dimensional nilpotent standard algebras

Thanks to [1], the varieties of 3-dimensional nilpotent standard and nilpotent noncommu-
tative Jordan algebras coincide. The geometric classification of 3-dimensional nilpotent
noncommutative Jordan algebras is given in [44]. Hence, MG® has two irreducible compo-

nents:
r(NS?) = {O(sn@?;)} U {U O(WGZ’(a))} :

where
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A Multiplication table
3

‘J‘(Gl jogl €1€1 = €2 €1y — €3 €961 — €3
3

NGS5 () j(?f(a) e1e1 = ez  ege] = e3  egey = €3

1.8.3 3-dimensional standard algebras
The algebraic and geometric classification of 3-dimensional standard algebras can be found

in [1]. In particular, it is proven that the variety & has fourteen irreducible components:
I 3y — 3 3
(&%) {(’)(62)}‘ v {l |(9(614(oz))} ,

1=

where
A Multiplication table
3 — —
61 A04 e1ep = eq €2€9 = €9
3 _ _ 1 _ _ 1
62 A12 €1€1 = €1 €1€3 = 3¢€3 €2€9 = €2 €2€3 = 3€3
1 1
€3¢1 = 5¢3 ese3 = €] + e e3ez = ;€3
3 0,0 _ _ 1 _ 1
63 A14 €1€1 = €1 €1€2 = 3€2 €2€1 = 35€2
1 1
€1€3 = 3€3 €3€1 = 35€3
11
6?1 qu e1e;p = ex €1€2 = €2 €1e3 = €3
_1_1
6% A142’ 2 e1e;p = e1 €20€1 = €9 €3e1 = €3
0.1
3 ) — _ 1 _1 —
66 Al 2 e1e;p = ex €1€2 = 562 €oe] = 562 €1e3 = €3
0.—1
3 ) — _ 1 _1 —
Sy A’ €161 = €1 €162 = 5€3 €2€1 = 5€3 €361 = €3
11
6% 124 ° €11 = €1 €169 = €3 e9€e] = €9 ese] = e3
3 — _ 1 —
69 A16 e1e;p = ex €1€2 = 562 €1e3 = €3
1
€2€1 = 5€2 €2€2 = €3 €361 = €3
T
3 2 — — — —
Sy 7 elel = el ezep = €3 cle3 =e3  ezep =e3
3 [9] — _ _ 1 _ 1
&1 Ajy eje; = e €sey = €9 ele3 = se3  ezel = ey
T
3 2 — — —
Sy 1o €1 =€ €1€2 = €2 €3€3 = €3
3 o2 — — —
613 A192 e1e;p = ex €2€1 = €9 €3e3 = €3
3 — —
Syy(a) 02 et =(1+a)es eze1=(1—a)es

1.8.4 4-dimensional nilpotent standard algebras
Thanks to [1], the varieties of 4-dimensional nilpotent standard and noncommutative Jor-
dan algebras coincide. Hence, G&* has five irreducible components:

5

mr(me?) = {0 (mef)}jzl U {Uo (m@?(a))} ,

=4

where



210 Ivan Kaygorodov, Mykola Khrypchenko and Pilar Paez-Guillan

A Multiplication table
T
NG; j047 ejea = €3 eje3 =ey ege] =e3+eq
€2€3 = €4 €3€] = €4 €3€2 = €4
T
‘JtGl j147 €161 = €4 €1€9 = €3 €o€1 — —€3
€1€3 = €4 €263 = €4 €3€1 = —€4
I
‘JtGl j148 €11 = €9 €1€9 = €3 €1€3 = €4
€2€1 = €3 €263 = €4 €3€1 = €4
NGi(a) | Ma(a) | eter =e3 eres = ey ege1 = —aeg €9y = —ey
‘ﬁGé(a) M3(ar) | e1e1 =eq4 er1ea = ey ege1 = —aey esey = €y

1.9 Noncommutative Jordan algebras

An algebra J is called a noncommutative Jordan algebra if it satisfies the identities
(zy)z = 2(y2), 2*(yz) = («%y)a.
Let 9M€Jord be the variety of noncommutative Jordan algebras.

1.9.1 2-dimensional noncommutative Jordan algebras

The algebraic and geometric classification of 2-dimensional noncommutative Jordan alge-
bras can be found in [44]. In particular, it is proven that the variety M€Jord* has two
irreducible components:

Irr(MEFord?) = {o(mm?)} U {U o(mmg(a))} :

where the algebras ME€JT and NEJ5(a) are defined as follows:

A Multiplication table
NEJ; E;(0,0,0,0) | eje; = e eaes = €9

mm%(a) Es5(a) €1e1 = €1 erea = (1 —a)e; + aer
ege; = aer + (1 —a)es  eges = eg

1.9.2 3-dimensional nilpotent noncommutative Jordan algebras

The algebraic and geometric classification of 3-dimensional nilpotent noncommutative Jor-
dan algebras can be found in [44]. In particular, it is proven that the variety JIM€Jord®
has two irreducible components:

rr(MNeord’) = { O@MNET]) | U {U O(mmmé(a))} :

where the algebras MINEF? and NMNEFE (o) are defined as follows:
1 2
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A Multiplication table
NNEYY Ton eje] =ey  ejeg =e3 ege] =e3
‘ﬁ‘ﬁ(’j‘;(a) j(?f(a) e1e] = qe3 €961 = €3 €96y = €3

1.9.3 3-dimensional noncommutative Jordan algebras

The algebraic and geometric classification of 3-dimensional noncommutative Jordan alge-
bras can be found in [1]. In particular, it is proven that the variety 9€Jord® has eight
irreducible components:

5 8
Irr(NEFord?) = {o(mmi)} U {U O(maf(a))} ,
=1 i=6
where
A Multiplication table
NEJ; Aps | ere; = e €262 = €3
Nneys A | erer1 = e er1e3 = €3 €2€2 = €3 exe3 = €3
e3e] = %63 e3e3 = €1 + €9 €3y = %63
NEJ3 A | erer = e er1e2 = €2 e1es = e3
€g€e1 = %62 €2€9 = €3 €3€1 — €3
RITORH Ajzp | erer = e €2€3 = €3 €3y = —eg
gﬁ@:jg A32 €1e1 = €1 €1€2 = %62 + e3 €1€3 = %63 €ege1 = %62 — €3
€2€3 = €2 €3€1 = 3¢€3 €3€2 = —€2
NET2 () & | erer = e e1e3 = (% +a)es egex = eg
egey = (% —a)es ege; = (% —a)es egey = (% + a)es
NEI2 () %y | ere1 = e e1e3 = (% +a)es  egeq = ey ese] = (% —a)es
NEF3 () 94 | erea = e3 e1e3 = e + e3 ese] = —e3
€2€3 = €y €3€1 — —€1 — €3 €369 — —(QEn

1.9.4 4-dimensional nilpotent noncommutative Jordan algebras

The variety MMNEJord* was studied in [44] both algebraically, and geometrically. It has
five irreducible components:

5

Irr (NMNCTord?) = {o (mme:s;*)}jzl U {U O (mmmﬁ(a))} ;

1=4

where
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A Multiplication table
‘ﬁ‘m’l&‘f jél7 €16y = €3 e1e3 = ey e2€e1 = €3 + €4
€2€3 = €4 €361 = €4 €36y = €4
%ﬁ@% j147 eje] =e4 ejex = e3 ege] = —eg3
€1€3 = €4 €263 = €4 €3€1 = —€4
*n*ne::;é jf“g €11 = €2 €1€3 = €3 €1€3 = €4
€2€] = €3 €263 = €4 €3€1 = €4
NMNETi (o) | Na(a) | erer = ez erea = ey ege] = —aes €9e9 = —e4
NNET5 (@) [ M3(a) | ere1 =es erea =aey eger = —aeq  egey = ey

1.10 Commutative power-associative algebras

A commutative algebra € is called commutative power-associative if it satisfies the
identity
2r? = (2%r)x.

We will denote the variety of commutative power-associative algebras by €2l.

1.10.1 2-dimensional commutative power-associative algebras

The variety of Jordan algebras is a proper subvariety of the variety of commutative power-
associative algebras. In dimension 2, these two varieties coincide [67]. The graph of
degenerations can be deduced from [60] and is explicitly given in [36]. In particular, it is
proven that the variety €322 has two irreducible components:

A Multiplication table
Q:&BQ[% ‘32 €1€1 = €1 €169 = %62
Q:&BQ[; s34 €1€1 = €1 €9€g = €2

1.10.2 3-dimensional nilpotent commutative power-associative algebras

The nilpotent commutative power-associative algebras of dimension 3 are coincides with
the nilpotent Jordan algebras [67], that were classified algebraically and geometrically
n [21]. The variety MEPA® is irreducible, determined by the rigid algebra

A Multiplication table
NEPAT | @1 | ere1 =ex eren = e3

1.10.3 3-dimensional commutative power-associative algebras

The variety of Jordan algebras is a proper subvariety of the variety of commutative power-
associative algebras. In dimension 3, these two varieties coincide [67]. Hence, in [36],
the geometric classification in dimension 3 (initiated in [49] together with the algebraic
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classification) was completed. We will refer to the notation of [36]. There exist five
irreducible components in EPA>:

where

Irr(EPA°) = {O(@‘Bﬂf)r ;

i=1
A Multiplication table
Qﬁ%&l‘f TOl €1e1 = e1 €2€9 = €9 €33 = €3
6‘132[‘3 TOQ €1€1 = €1 e1€e3 = %63 €2€9y = €2 €2€3 — %63 ezez = €] + €
Qﬁ‘Bng T05 €11 = €1 e€e1e3 = %63 €2€2 = €2
6‘132[2 TlO €1e1 = e1 €169 = %62 €13 = €3 €€y = €3
6‘132[‘; Tlg €1€1 = €1 €e1€9 = %62 €1e3 = %63

The complete graph of degenerations can be found in [36].

1.10.4 4-dimensional nilpotent commutative power-associative algebras

The variety of nilpotent Jordan algebras is a proper subvariety of the variety of nilpotent
commutative power-associative algebras. In dimension 4, these two varieties coincide [67].
The variety MEPA? was studied in [21] both algebraically and geometrically. It has two
irreducible components:

where

I (NEPA) = {0 (epA?) }2

i=1

)

A Multiplication table
NEPAT | ¢1 | ere1 =e2 erea=e3 erez=es exer = ey
‘ﬁ@’ﬂl‘z‘ ¢2 €1€e1 = €3 €1€3 = €4 €o€9 = €3

1.10.5 4-dimensional commutative power-associative algebras

Regarding @P2A*, the algebraic classification was made in [67], and the twelve irreducible
components were found in [67]:

where

12

Irr(&PpA?) = {(’)(Q:‘Bﬂf)} ;

i=1
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A Multiplication table
CPAT [ J1 | erer =e1  erez = zes ezeg = €3
€263 = %63 e3e3 =e€1+e2 €464 =2¢€4
CPA; | J2 | eres =ze3  eres = 3eq eg€3 = g€3 egey = ze4  ezeq = 5(e1 + ea)
C‘Bﬂg 33 €1e1 = e €2€9 = €9 €3e3 = €3 €464 = €4
C‘BQ& 36 €1e1 = e €169 = %62 €3e3 = €3 €44 = €4
CPA; | Jio | erer=e1  erea =360 ere3 = ge3 eqeq = €4
CPA; | Jiz | erer=e1  erer = ze eze3 = €3 eses = 5ey
CPAT | Jig | ere3 = ge3  e1es = 5eq ese3 = 5e3
CPAS | Joa | ere1 =€1  e1e2 = 569 eie3 = e3 €€y = €3 eqeq = ey
CPA; | Jaz | erea = 562 eres = ses ereq = ey
CPAL) | Jso | e1e2 =2 e1e3 = 3e3 er1es = 5e4 €3y =€y eqeq = €
C‘Bﬂ%l A7 €1e1 = e €162 = %62 €1e3 = €3 + €4 €269 = €3 €963 = €4
Q:&BQGLQ Ag €1€1 = €1 €1y = %62 €1€3 = €3
€164 = €4 €269 = €3 €2€3 = €4

1.11 Weakly associative algebras

An algebra 202 is called weakly associative if it satisfies the identity

(zy)z — 2(yz) + (y2)r — y(22) = (yr)2 — y(r2).

We will denote the variety of weakly associative algebras by 20%2(.

1.11.1 2-dimensional weakly associative algebras

The variety of weakly associative algebras is a proper subvariety of the variety of flexi-
ble algebras defined by the following identity (zy)z = x(yx). In dimension 2, these two
varieties coincide. Therefore, the algebraic and geometric classification of 2-dimensional
weakly associative algebras follows from [60, Section 7.1]. Hence, 202 has two irreducible
components, namely:

Irr (WA%) = {o(mm@(a))} U {U o(ﬁnmg(a,ﬁ))} :

where
A Multiplication table
WA (a) E;5(a) erel = eq erea = (1 —a)e; + e
ege; = aer + (1 —a)es  eges = eg
WA (o, B) | Erla, B0, B) | erer = e ereg = el + fes
ese1 = aeq + Pes €€y = €9
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1.11.2 3-dimensional nilpotent weakly associative algebras

The list of 3-dimensional nilpotent weakly associative algebras can be found in [19]. Em-
ploying the graph of degenerations of [28], we obtain that the variety DM2U* has two
irreducible components and is defined by the following family of algebras

A Multiplication table
*ﬁﬂﬁﬂ‘f Cog €11 = €9 €2€9 — €3
NWA () b | e1e1 =e3 ege; =e3  ezex =e3

1.11.3 4-dimensional nilpotent weakly associative algebras

The algebraic and geometric classification of 4-dimensional weakly associative algebras are
given in a paper by Alvarez and Kaygorodov [19]. The variety 902" has five irreducible
components:

3

Trr(NWA*) = {O (mwm‘;)} U {UO (mwmﬁ(a))} ,

i=2
where
A Multiplication table
‘)TQBQ[% 301 €1€1 = €4 €1€2 = €3 €oe1 = —e€3
€2€9 = €4 €2€3 = €4 €369 — —€4
NWAZ () 66 e1e1 = ey e1eg =e3+eq €61 = €3 egeg = €4 €363 = €4
NWA3 () | Cro(a) | erer = es e1e3 = ey €96y = €3 ege3 = €4 €363 = ey

1.12 Terminal algebras
An algebra ¥ is called terminal if it satisfies the identity

ba(zy) — (ax)y — 2(ay)) — a((bx)y) + (a(bz))y + (bx)(ay) — a(z(by)) + (az)(by) + x(a(by))

__ <§ab+ %m) (2y) + <<§ab+ %m) a:> y+a <<§ab—|— %ba) y> .

Note that there exists a simpler definition in terms of the product of bilinear maps. We
will denote the variety of terminal algebras by Tet.

1.12.1 2-dimensional terminal algebras

The complete list of algebras and the graph of degenerations of the variety Ter? were
constructed in [25]. Basing on the general classification of [60], it was proven that Ter?
has four irreducible components, namely:

n(Ter?) = {O(T) } U {W}

4
Y
i=

=2
where
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A Multiplication table
T% Sog e1ep = eq €€y = €9
T3(a) | Tor(a) | eter =e1  eren = ey
() | Tos(a) | erer =e1  ereq = ey eze; = (3 —2a)eq
Ti(a) | Tio(a) | eter =e1 erea = (1 —a)e; +aey eze; = e + (1 —a)es ezeq = e

1.12.2 3-dimensional nilpotent terminal algebras

The list of 3-dimensional nilpotent terminal algebras appeared in [54]. Their degenera-
tions can be extracted from the classification of all the nilpotent algebras of dimension 3
(see [28]). In the variety MTer”, there are two irreducible components:

Irr(MTer?) = {W} U {UO (’55’(04))} :

where

A Multiplication table
SﬁTf ‘ng €1€1 — €9 €92€1 = €3
NT5(a) | Ma(@) [ erer =€y erea =e3 eger = aes

1.12.3 4-dimensional nilpotent terminal algebras

The algebraic and geometric classifications of 4-dimensional nilpotent terminal algebras
were obtained in [54]. It was shown that the variety MTer" has three irreducible compo-
nents, namely

Irr (NTer?) = {U O(mz;*(a))} U {U O(m"s;*(a,ﬁ))} v {U O(‘ﬁ“fé(oz,ﬁ,v))} :

where
A Multiplication table

NTi () T3 () e1e1 = e e1e9 = ey e1e3 = —ey
€oe1 = €3 €2€3 = €4 €3e] = 364

NT5(a, B) Tﬁig(a, B) e1e] = es erea =aeg ejes = (Bla—1)+1)ey
€oe1 = €3 €€ = €4 €3€e1 = 3,864

NT3(e, B,7) | D, B,7) | erer = aes +es  ere3 = Pes  ezer =e3
€2€2 = €3 €2€3 = 7Y€4 €361 = €4

1.13 Lie algebras

An anticommutative algebra £ is called a Lie algebra if it satisfies the identity
J(x,y,2) =0.

Let Lie be the variety of Lie algebras.
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1.13.1 2-dimensional Lie algebras

For the variety £ie?, we rely on the classification from [60]. It is determined by the rigid
algebra:

A Multiplication table
E% %3 €169 = €9

1.13.2 3-dimensional nilpotent Lie algebras

For the variety 91€ie®, we rely on the classification from [28]. It is determined by the rigid
algebra:

A Multiplication table
‘Itﬁ‘f N7 €1€2 = €3

1.13.3 3-dimensional Lie algebras

The classification of the Lie algebras of dimension 3 is well-known and can be found
in numerous books; for example, Lie algebras of Jacobson (1962). The four irreducible
components of £ie® were found in [24]:

Trr (Lie) = {@}: U {U O(SZ(Q))} :

where

A Multiplication table
2;’ 'L‘Q((C) ©® C €1eg9 = €1
2% tg((C) €1ea = €9 e1e3 = €9+ €3
Sg 5[2(@) €1€p = €3 e€e1€e3 = —261 €9€3 = 262
£3(a) | 13.4(C) e1eg = ey e1e3 = aes

1.13.4 4-dimensional nilpotent Lie algebras

For the variety M&ie*, we rely on the classification from [28]. It is determined by the rigid
algebra:

A Multiplication table
‘nf&l ./42 €1€9 = €3 €1€3 = €4
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1.13.5 4-dimensional Lie algebras

Lie algebras of dimension 4 were classified up to isomorphism by Steinhoff in 1997, and
their degenerations were studied in [24]. The variety £ie* has seven irreducible components:

e (gie?) — {W}: U {m}; U {UO (zé(a,ﬁ))} :

where
A Multiplication table
2411 'L‘Q((C) D ‘CQ(C) e1eg = e1 ezeq = e3
2% 'L‘Q((C) e C eleg =e3 ejez = —2e; ese3 = 2e9
2§ g4 €1€2 = €3 €163 = €4 €1€4 = €3
£1(a) t3,(C) & C e1eg = ey eje3 = qes
£3() g3() e1ea = e3 e1e3 = ey ereq = afeg + e3)
£6() gs() e16g = €3 e1e3 = —aey +e3  e1e4 = ey ege3 = ey
£, B) | g2(c, B) e1ea = e3 e1e3 = ey e1e4 = ey — Bes + ey

1.13.6 5-dimensional nilpotent Lie algebras

In her thesis (1966), Vergne obtained the list of nilpotent Lie algebras up to dimension 6.
The degenerations of the variety 91€ie® were studied in [37]. The authors found out that
the variety is irreducible: it consists of the orbit closure of the Lie algebra

A Multiplication table
Sﬁﬁ? gg’ €169 = €3 €1€3 = €4 €1€4 = €5 €2€3 = €5

The complete graph of degenerations can be found in [37].

1.13.7 6-dimensional nilpotent Lie algebras

The study of the degenerations of the variety D€ie® was initiated in [38], and corrected
and completed in [68]. However, it was known since [69] that this variety is irreducible,
defined by the Lie algebra M£% with product

A Multiplication table
)
NLY | go6 | €162 =€3 €163 =€4 e€1e4 =€5 €263 =€5 €265 =€5 €364 = —€4

The complete graph of degenerations can be found in [68].
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1.14 Malcev algebras

An anticommutative algebra 91 is called a Malcev algebra if it satisfies the identity
J(z,y,x2) = J(z,y, 2)x.

We will denote by 9al the variety of Malcev algebras.
Every Lie algebra is a Malcev algebra. All Malcev algebras of dimension < 3 are Lie
algebras.

1.14.1 4-dimensional Malcev algebras

In 1970, Kuzmin proved that there exists only one non-Lie Malcev algebra of dimension 4.
The graph of degenerations of all 4-dimensional Malcev algebras can be extracted from [58].
In particular, the variety 9tal* has five irreducible components:

Irr(9Malt) = {W}: U {UO (imii(a))} U {UO (imé(a’ﬁ))} :

where

A Multiplication table
S)ﬁzll 8l2 ©® C €1€9 = €9 €13 = —€3 €o€3 = €1
S)ﬁ% 2 D 2 €1€9 = €9 €364 — €4
f)ﬁg gg(—l) €1eg — €9 e1€3 — €3 €14 = —€4 €23 = €4
M7 () g5() eleg = ey eje3 =ex+aes ejes = (a+1)egs egeg =ey
M (a,B) | ga(a, B) | erea =ex ejeg =ex+aes ejeq = ez + PBey

1.14.2 5-dimensional nilpotent Malcev algebras
Also in 1970, Kuzmin classified the Malcev algebras of dimension 5 up to isomorphism.
Combining his results with [37], the list of 5-dimensional nilpotent Malcev algebras is easily
obtained (see [58]). Also in [58], the authors constructed the graph of degenerations of
MMal®, variety which has two irreducible components:

2

e (momar’) = {O(m7) }

1=

where

A Multiplication table

5 — — — —
M7 | gs6 | e162 =€3 e1e3 =e4 e1e4 =e€5 €363 = €5
zmg Ms | ejea = e4 e3eq = e5
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1.14.3 6-dimensional nilpotent Malcev algebras
The 6-dimensional nilpotent Malcev algebras were also studied in [58], employing the
algebraic classification obtained by Kuzmin in 1970.

The variety Mt9al® has two irreducible components:

- N2
e (omat’) = {O(M) |
i=1
where

A Multiplication table

5 — — — — _ _
RS} g6 €1€2 = €3 €1€3 = €4 €164 = €5 €263 = €5 €265 = €5 €364 = —€g
S)ﬁg(a) Mg | etea =e3 eje3 =e5 ejes =eg €64 = Q€5 €364 = €6

The graph of degenerations can be seen in [58].

1.15 Binary Lie algebras

Recall that an algebra 2 is said to be binary Lie if all its 2-generated subalgebras are
Lie algebras. Let us denote this variety by BLie. It was shown by Gainov in 1957 that A
is a binary Lie algebra if and only if it is anticommutative and satisfies the identity

J(z,y,zy) = 0.

In particular, all Lie and Malcev algebras are binary Lie.
It is straightforward that every 2-dimensional binary Lie algebra is a Lie algebra. In
1963, Gainov proved that the same holds in dimension 3.

1.15.1 4-dimensional binary Lie algebras

The algebraic classification of 4-dimensional binary Lie algebras was obtained in the works
of Gainov (1963) and Kuzmin (1998), and in [58], the authors constructed the graph of
degenerations. In particular, this variety B &ie* has five irreducible components:

Irr (B Lie!) = {W}; U {U 0(%23@))} U {U O(%s‘;(a,ﬁ))} ,

where
A Multiplication table
‘BE‘% slo®C | ereg = ey e1e3 = —e3 ege3 = €1
‘BS% 9 D 1o €1y = €2 €364 = €4
Continued on next page
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continued from previous page

A Multiplication table
‘Bﬁé(a) g3(a) e1ea = €3  e1e3 = e3 e1eq = ey ese3 = ey
BLI(a) g5() e1ea =€y ejez3 =es+aez ejeq = (a+1l)eg ege3 =ey
BLI(, B) | gala, B) | erea =es ere3 =ea +ae3 ereq = e3 + Bey

1.15.2 5-dimensional nilpotent binary Lie algebras
Every 5-dimensional nilpotent binary Lie algebra is a nilpotent Malcev algebra.

1.15.3 6-dimensional nilpotent binary Lie algebras
The algebraic and geometric classification of the variety 9B Lie® can be found in [4]. In
particular, B Lie has two irreducible components:

2

e (MBie®) = {oMBL]) }

i=1
where
A Multiplication table
‘JT‘BE? B673 €1€2 — €3 €364 — €5 €1€3 = € €4€5 = €4
NBLS | g6 €1€2 = €3 €163 = €4 €1€4 = €5 €263 = €5 €285 =€ €384 = —€g

1.16 Tortkara algebras
An anticommutative algebra 2 is called a Tortkara algebra if it satisfies the identity
(zy)(2y) = J(2,y,2)y.
We will denote this variety by Tor.

1.16.1 2-dimensional Tortkara algebras

Checking the classification of 2-dimensional algebras [60], we have that the variety Tot?
has only one non-trivial algebra

A Multiplication table
T% B3 €169 = €9

so it is irreducible.
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1.16.2 3-dimensional nilpotent Tortkara algebras

For the variety MTot®, we rely on the classification from [28]. The rigid algebra determines
it:

A Multiplication table
‘ﬁf‘f N7 | erea = e3

1.16.3 3-dimensional Tortkara algebras

In [33], 3-dimensional Tortkara algebras were selected from the list of 3-dimensional an-
ticommutative algebras of [43]. A consequence of the graph of degenerations of the anti-
commutative algebras (see [43]) is that Tor® is irreducible [33], defined by the rigid algebra

A Multiplication table
fi’ Ql? €1eg = e3 ej1e3 =e1 + €3

1.16.4 4-dimensional nilpotent Tortkara algebras

In the variety MTotr* there are only two non-trivial algebras and one irreducible compo-
nent [35] determines by the rigid algebra:

A Multiplication table
‘)TT{ T(5)2 €1 — €3 €1€3 = €4

1.16.5 5-dimensional nilpotent Tortkara algebras

The algebraic and geometric classifications of the variety 91%ot® were given in [35]. Again,
there is a unique irreducible component defined by

A Multiplication table
mf? T?O €1€9 = €3 €1€3 = €4 €2€4 = €5

1.16.6 6-dimensional nilpotent Tortkara algebras

More recently, in [34], it was provided the geometric classification of 6-dimensional nilpo-
tent Tortkara algebras, which is based on the description of all 6-dimensional nilpotent
Tortkara algebras by Gorshkov, Kaygorodov and Khrypchenko (2019) and on the descrip-
tion of all degenerations of 6-dimensional nilpotent Malcev algebras [58]. In particular,
there exist three irreducible components in the variety 9Tot’:

I (MTor’) = {OMT) |

3
=1
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where

A Multiplication table
Sﬁiﬁ’ T?O €1€e9 = €3 €1€3 = €¢ €1€4 = €5 €2€3 = €5 €4€5 = €g
ng T% e1eg = €3 €13 =e€4 €1€4 =€5 €963 =65 €265 = €4
‘)”(Sg T(fg e1€g = €3 €13 =e4 €165 =€ €964 = €5 €364 = €4

1.17 Dual mock-Lie algebras

An anticommutative algebra © is called a dual mock-Lie algebra if it satisfies the
identity
(zy)z = —x(yz).

Let 0L denote the variety of dual mock-Lie algebras. The main subclass of dual mock-
Lie algebras is 2-step nilpotent Lie algebras. The first example of non-Lie dual mock-Lie
algebra appears in dimension 7.

1.17.1 7-dimensional dual mock-Lie algebras

In [26], the authors determined all the 7-dimensional dual mock-Lie algebras up to iso-
morphism and found the degenerations between them. This variety D9£" has three
irreducible components:

3

Y

I (ome”) = {0 (1)}

1=

where

A Multiplication table
CDZ CDSQ e1es = eg €165 = ey €963 = €7 e3e4 = €4
CD; CDZ?) e1es = €5 €163 =eg €964 = €7 €364 = €5
:Dg :DZ4 €1€2 = €4 €1€3 = €5 €1t — €7 €9€3 — €g €9€5 — —e7 €34 = €7

1.17.2 8-dimensional dual mock-Lie algebras
Also in [26], the authors obtained the algebraic and geometric classifications of the 8-
dimensional dual mock-Lie algebras. This variety ®0£® has four irreducible components:
4

)

nr(@met) = {0(27) }

=1

where
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A Multiplication table
@Ef 5351;7 e1ex = ey e3eq4 = €eg ereg = e7 + €8
”}33 CD%O eijes = €eg ejes =€y e1e4 = eg €03 = €3 €9€5 = €7 €465 = €4
@g 923 €1€2 = €5 €2€3 = € €3€4 = €7 €4€1 = €8
”}32 53%6 e1eg = ey eles3 =e5 ejeg = eg ese3 = €g
€265 = —€g €364 = €3 €367 = €3

1.18 ¢&®-algebras

The class of €®-algebras is defined by the property that the commutator of any pair of
multiplication operators is a derivation; namely, an algebra 2 is a €®-algebra if and only
if

T, T,] € Der(A),
for all x,y € A, where T, € {R,,L,}. Here we use the notation R, (resp. L,) for the
operator of right (resp. left) multiplication in 2. We will denote the variety of €D-algebras
by €®. In terms of identities, the class of €®-algebras is defined by the following three:

((zy)a)b — ((zy)b)a = ((xa)b — (xb)a)y + z((ya)b — (yb)a),
(a(zy))b — a((zy)b) = ((ax)b — a(xb))y + z((ay)b — a(yb)),
a(b(zy)) — bla(zy)) = (a(br) — blax))y + z(alby) — b(ay)).
In the commutative and anticommutative cases, they are reduced to the first identity.

All Lie and Jordan algebras are €®-algebras. On the other hand, each anticommutative
¢9-algebra is a binary Lie algebra.

1.18.1 2-dimensional €®-algebras

Analyzing the table of all 2-dimensional algebras from [60], we obtain the classification of
all 2-dimensional €®-algebras:

A Multiplication table
Qt@% A2 €1€1 = €2 €169 = €9 €2€1 = —€9
Qt@é A3 €1€1 = €2
Q::Dé B3 €1€2 = €9 €261 = —€9
Q::D‘Zl DQ(O, O) e1e;p = ex
Qt@é Dg(l, 1) €1€1 = €1 €169 = €9 €2€1 = €9
Q::Dé El(O, 0, O, 0) e1ep = ex €2€9 = €9
CDZ(a) | Ai(a) elje; = e+ e e1e9 = (e ege; = (1 — a)eq
@@525(01) E5(Oé) ele] = ey €12 = (1 — 04)61 + aey
ege; = ey + (1 —a)ea  egeq = e

Basing on the full description of degenerations of 2-dimensional algebras [60], we con-
clude that

Irr (Qﬁ@z)

- {o@}u{o@y}u {Uo (c»:@g(a))} |
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1.18.2 3-dimensional nilpotent €®-algebras

It is easy to see that each 3-dimensional nilpotent algebra is a €®-algebra. The degenera-
tions of 3-dimensional nilpotent algebras were fully described in [28], where it was proved
that this variety is irreducible and determined by the rigid algebra

A Multiplication table
Qt@f ‘ng €1€1 = €2 €o2€1 — €3 €o€9 = €3

1.18.3 4-dimensional nilpotent €®-algebras

The classification of the nilpotent €®-algebras of dimension 4 is a result of the work
by Kaygorodov and Khrypchenko (2022). Later, their geometric classification appeared
in [51]. In particular, the variety 9€®D? has two irreducible components and is determined
by the following algebras

A Multiplication table
¢D7(a, ) €Dy(a, B) ejer = ey eteg =e3 erez3 = (8 —2)es
ege1 = fes eges = ey eze; = (1 —20)ey
D5 (a, B,7,9) | €D115(8,, B,7) | ere1 = deg +es eres = aes eze; = e3 + Pey
€2€2 = €3 €2€3 = Y€4 €363 = €4

1.19 Commutative €®-algebras

1.19.1 2-dimensional commutative €®-algebras
In dimension 2 we have the following commutative €®-algebras:

A Multiplication table
Q:Q:@f Q:@é €1€1 = €2
@@@5 @@i €1e1 = eq

@@@g @@g €1€e1 = €1 €19 = €9

Q:Q:@i Q:@é €1€1 = €1 €92€2 = €9

@C@g @@é(%) eje; =e; +ey ejeg = %62

@@@% @@g(%) eie] = ey €169 = %61 + %62 €262 = €2

Hence

I (€e9?) = {0 (@@@3)}5

=4
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1.19.2 3-dimensional nilpotent commutative ¢€®-algebras

Choosing the commutative algebras from the list of all nilpotent 3-dimensional alge-
bras [28], we obtain the next classification:

A Multiplication table
WQ:Q:@‘{ sﬁl €1€1 = €2 €9€9 = €3
‘ﬁ@@@é m4(1) €11 = €9 €1€9 = €3
m@@@g Sﬁ5 €11 = €9
‘)”(QiQi@ﬁ gﬁ(; €1€1 = €3 €9€9 = €3

It follows from the graph of degenerations of 3-dimensional nilpotent algebras [28] that
the variety MEED? is irreducible and it is determined by the rigid algebra NECD?.

1.19.3 4-dimensional nilpotent commutative ¢€®-algebras

By direct verification we see that only the algebras €5 — €9 and €51 — €yy from the list of
all 4-dimensional nilpotent commutative algebras [28] are not €9. Hence, the description
of all the degenerations of 4-dimensional nilpotent commutative algebras [28] implies that
the subvariety formed by €®-algebras is irreducible and determined by the rigid algebra

A Multiplication table
‘)T(’:QZD% Q:zg €1€1 — €4 €19 — €3 €262 = €4 €363 = €4

1.19.4 5-dimensional nilpotent commutative €®-algebras

The classification of the nilpotent commutative €9-algebras of dimension 4 is a joint result
of the works by Jumaniyozov, Kaygorodov and Khudoyberdiyev (2021)and Abdelwahab
and Hegazi (2016). Later, their geometric classification appeared in [45]. In particular,
the variety MEED® has ten irreducible components and is determined by the following
algebras

A Multiplication table
‘)?Qf(’:@? Jo1 e1e1 = e5 e1eg = ey egey = ex
€3€3 = €4 €3€4 = €5
NECD;(a) Q‘i’ﬁ(a) e1e1 = ey elex = ey eres = (a+ 1)es
€29 = €y €363 = €4
5 5 — — —
NECD3(a, B) | €36(c, B) | ere1 = aes e1es = e3 eses = fes
€163 = €4 + €5 €2€3 = €4 €3€3 = €5
Continued on next page
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continued from previous page

A Multiplication table

NECD; () Cig(a) eje; = e3 e1es = e5 ese2 = €4

€3e3 = €y €364 = €5 €44 = €5
NECD(a) () ere1 = ey4 e1ea = aes e1es3 = e

€2€9 = €5 €2€3 = €4 €4q€q4 = €5
‘)TQX’JCD% @?2 €1€1 = €4 €969 = €5 €263 = €4 + €5 €464 = €5
‘)T(’:QZD? ¢$6 €1€1 = €9 €1€2 = €4 €164 = €5

€9 = —265 e3e3 = eq4 + 365
‘)TQX’:CDQ @?7 €1€1 = €9 €1€2 = €4 €164 = €5

€2€3 = €5 €3€3 — €4
NECD(a) Cgo(a) e1e1 = ey e1es = e3 e1e3 = aey

e1e4 = e5 eges = (v +1)eg ege3 = (v + 3)es
‘n@@@?o Q:gl €1€1 = €2 €1€9 = €3 €1€3 = €4

€ty = 264 €2€4 = €5

1.20 Anticommutative €®-algebras

1.20.1 2-dimensional anticommutative ¢€®-algebras
There is only one 2-dimensional anticommutative €D-algebra:

A Multiplication table
QlQ@f Q:@é €1€92 = €2 €2€1 = —€9

1.20.2 3-dimensional anticommutative €®-algebras

It was proved that each 3-dimensional binary Lie algebra is a Lie algebra. Thus, the variety
of 3-dimensional anticommutative €0-algebras coincides with the variety of 3-dimensional
Lie algebras.

1.20.3 4-dimensional anticommutative €®-algebras

The full description of degenerations of all 4-dimensional binary Lie algebras was made
in [58]. Observe that almost all of such algebras are anticommutative €D-algebras, except
g3(B) for B & {0,2} and gs. It follows that

Irr (ACD?) = {W}: U {U 0 (aw:@i(a))} U {UO (ACD(a, 5))} ,

where
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A Multiplication table
ﬂ@@% slo®C | e1eg = ey eje3 = —es ege3 = €1
Q[Q:@% 9 D 1o €1€2 = €2 €364 = €4
Q[Q@g 93(0) €1eg = €2 €13 = €3 €2e3 = €4
22[6/}3?1(0[) 95(04) €162 = €9 e1e3 = ez + ez  ejeq = (Oé + 1)64 ege3 = €4
mQ@é(O@ 5) 94(047 5) €12 = €2 €1e3 = €9+ ey e1e4 = €3+ 564

1.20.4 5-dimensional nilpotent anticommutative €®-algebras

Using the algebraic classification of 5-dimensional nilpotent binary Lie algebras [4], we see
that all such algebras are anticommutative €9-algebras. Moreover, they are exactly all the
5-dimensional nilpotent Malcev algebras, so their geometric classification can be deduced
from the full description of degenerations of 5-dimensional nilpotent Malcev algebras [58]:
N2

I (n2e2?) = {0 (MueD]) |

’
=1

where

A Multiplication table
‘ﬁQlQﬁ@? g5,6 €1€9 = €3 €1€3 = €4 €1€4 = €5 €2€3 = €5
‘J‘(QLQ:CDS M5 €1€2 = €4 €364 = €5

1.20.5 6-dimensional nilpotent anticommutative €®-algebras
As it is explained in [4], checking the list of 6-dimensional nilpotent binary Lie algebras
yields that the 6-dimensional nilpotent anticommutative €®-algebras are exactly the 6-
dimensional nilpotent Malcev algebras and B ;. Then, the irreducible components of the
variety MACD® are deduced as a corollary [4] from those of DB LY:

nr(mAeD’) = {0 (M) }; U {U O(Wﬂ@@g(a))} ,

where
A Multiplication table
‘Ith@@‘l’ Jde €1€9 = €3 €1€3 — €4 €1€4 — €5 €9€3 — €5 €2€5 = €4
€364 = —Cp
‘Ith@BJS Bfli 1 €1€9 = €4 €1€3 — €5 €9€3 — €g €4€5 — €4
NACD () Mg¢ | erex =e3 e1e3 = €5 €165 = €5 €964 = Q€5 €364 = €4

check
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1.21 Symmetric Leibniz algebras

An algebra £ is called symmetric Leibniz if it satisfies the identities

(zy)z = (22)y + x(yz), =(y2) = (zy)z + y(x2).
Let GLeib denote the variety of symmetric Leibniz algebras.

1.21.1 2-dimensional symmetric Leibniz algebras
The algebraic classification of 2-dimensional symmetric Leibniz algebras can be found in
the work of Mohd Atan and Rakhimov (2012). Analyzing the the graph of degenerations
of all 2-dimensional algebras from [60], we obtain the geometric classification of all 2-
dimensional symmetric Leibniz algebras:

2

Y

I (S2eib?) = {0(6£7) }

=1

where

A Multiplication table
6£f A3 €161 = €9
623 B3 €1€p = €2 €2€1 — —€2

1.21.2 3-dimensional nilpotent symmetric Leibniz algebras

The full graph of degenerations of Leibniz algebras in dimension 3 was studied in [43].
The restriction to the nilpotent symmetric Leibniz case gives the geometric classification
of nilpotent symmetric Leibniz algebras. The variety & Leib® is irreducible:

Irr (MELeib?®) = {O(%GQ‘I’)} ;

where

A Multiplication table
mGST(O‘) 2% €€y = (X1 €3€3 = €1 €363 = €1

1.21.3 3-dimensional symmetric Leibniz algebras

The full graph of degenerations of Leibniz algebras in dimension 3 was studied in [43]. The
restriction to the symmetric Leibniz case gives the geometric classification of symmetric
Leibniz algebras. The variety &£eib® has four irreducible components:

4

Trr (Leib®) = {O(esi)}jzl U {U o(esf(a))} :

1=3

where
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A Multiplication table
3
Sy g4 | ere2 =e3 e1e3 = —ey  €pe] = —€3
€2€3 = €1 €3€1 — €9 €3y = —€1
623 22 €2€3 = €9 €369 — —€9 €3e3 = €1
6,25 « _ _ — _ _ — _
3(c) | g5 | erez=e1+ex ege3 =aey eze; = —e; —ey  ezen = —aey
GLi(a) | £F | eze2 = aey eseg = €1 eses3 = e

1.21.4 4-dimensional nilpotent symmetric Leibniz algebras

The classification of the nilpotent symmetric Leibniz algebras of dimension 4 can be found
in a paper by Alvarez and Kaygorodov [19]. Their geometric classification appeared in [19].
In particular, the variety Q& Leib* has three irreducible components:

- 3
ir (NS Leib’) = {O NS L) | U {UO (‘3162?(@))} ,
i=2
where
A Multiplication table
mGSil(Of) So1 €161 = €4 €162 = €3 €261 = —€3
€2€9 = €4 €2€3 = €4 €362 — —€4
NGLI(a) | Ma(a) | ere1 =e3 erea =eq4  ese; = —ae3  eses = —ey
NGL3(a) | My(a) | ere1 =es erea=aes ese1 = —aes exea=es  eze3=ey

1.21.5 4-dimensional symmetric Leibniz algebras

The classification of the symmetric Leibniz algebras of dimension 4 can be found in a
paper by Alvarez and Kaygorodov [19]. Their geometric classification appeared in [19]. In
particular, the variety &£eib? has five irreducible components:

I (Sgeib’) = {0 (6£])} U {Uo (62?(04))}5 ,

=2
where
A Multiplication table
62411(04) 202 €1€1 = €é4 €1€9 = —€9 €1€3 = €3 €9€1 = €2
€23 = €4 €3l =— —€3 €32 = —¢€4
62‘21(04) 5 ele] = aey e1eg = ey eles3 = —e3 €96y = €4 ese] = e3
62%(@) % e1e] = ey e1eg = —eg €163 = —Qe3 €961 = €3 ese] = aes
&Li(a) | Ma(a) | ere; = e3 e1ea = ey €9e] = —ae3 egey = —ey
GLi(a) | M(a) | erer = ey €169 = Qey €261 = —Qey €96y = €4 es3e3 = ey
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1.21.6 5-dimensional nilpotent symmetric Leibniz algebras

The classification of the nilpotent symmetric Leibniz algebras of dimension 5 can be found
in a paper by Alvarez and Kaygorodov [19]. Their geometric classification appeared in [19].
In particular, the variety MS Leib? has six irreducible components:

5

Irr (& Leib®) = {(9 (mgsi(a))}jzl U {U O (NGLX(a, 6))} U {U O (mezg(n))} ,

=4
where
A Multiplication table
NS L () % eje; = es e1ea = e3 e1e3 = ex ege] = —e3
€9€o = ey €9€q4 = €5 €31 — —e€5 €4€4 = €5
NG L5(a) S | ele1 =es eres = e3 ele3 = e ege] = —e3
€2€9 = €y €2€3 — €4 €2€4 = €5
€3€1 = —€5 €362 = —€4 €4€2 = —€5
NS L3 () Vo3 | eje; = ez +aes  ejex = e3 exe1 = €4 eses = €5
NGL3(a,B) | S57 | erer = aes erea = ez +eq+ fes  erez = es ege] = —e3
€2€2 = €5 €2€3 = €4 €3€1 = —€5 €3€x = —€4
5
NSL (o, B) | By | erez =es €261 = Qes €34 = €5 ese3 = Pes
5/—
NSL () Usio | €161 = €4 e1ez = ji1€s5 e1e3 = p2es
€2€1 = U3es €2€2 = 465 €2€3 = U5€E5
€3e1 = [46C5 esex = [oeq + [i7es €se3 = €5

1.22 Leibniz algebras
An algebra £ is called Leibniz if it satisfies the identity

(ry)z = (x2)y + x(y=2).
Let Leib denote the variety of Leibniz algebras.

1.22.1 2-dimensional Leibniz algebras

The algebraic classification of 2-dimensional Leibniz algebras can be found in the work
of Mohd Atan and Rakhimov (2012). Analyzing the the graph of degenerations of all 2-
dimensional algebras from [60], we obtain the geometric classification of all 2-dimensional
Leibniz algebras:

Irr (2eib2) = {0(22)}2 )

) i=1

where
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A Multiplication table
Q% BQ(O) €1y = €1
Q% B3 €1y = €9 €9€1 = —€9

1.22.2 3-dimensional nilpotent Leibniz algebras

The algebraic and geometric classification of 3-dimensional nilpotent Leibniz algebras can
be obtained from the classification and description of degenerations of 3-dimensional nilpo-
tent algebras given in [28]. Hence, we have that the variety 9£€eib® has two irreducible
components:

Irr(NAss?) = {(9 (med) }; U {U O (msg(a))} :

where

A Multiplication table
‘Itﬁ‘f Ng €1€e1 = €9 €2€1 = €3
‘ﬁﬂ‘é Nﬁ €1€1 = €3 €2€9 = €3
NE3(a) | Ng(a) | erer = aes ese; =e3  egen = e3

1.22.3 3-dimensional Leibniz algebras

Dimension 3 was studied in [43], employing the algebraic classification by Mohd Atan and
Rakhimov (2012). The variety £eib® has five irreducible components:

N5
N2
7 AN 3 3
I (2eit?) = {02} U {U o(c! m))} ,
= i=3
where
A Multiplication table
3 — — _
£1 g4 | €162 = €3 €13 = —€2 €2€] = —€3
€2€3 = €1 €3€1 = €3 €3€2 = —€1
3 — — — — —
22 ,25 €1€3 = 261 €oey = €1 €9€3 = €9 €3y = —€9 €33 = €1
3 — — — _
£3(a) | g5 | eteg =e1 +ex egez3 =aey e3ze; = —e] —ey €36 = —Qe
3 — — — _
Lila) | £7 | eres = aey €93 = €9 e3ey = —€g ese3 = ey
3 — —
L£2(a) | £8 | e1e3 = aeg e9e3 = €9

1.22.4 4-dimensional Leibniz algebras

The classification of the Leibniz algebras of dimension 4 is a joint result of the works
by Albeverio, Omirov, and Rakhimov (2006), Canete and Khudoyberdiyev (2013), and
Omirov, Rakhimov and Turdibaev (2013). Later, their geometric classification appeared
in [42]. In particular, the variety £eib® has seventeen irreducible components:
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\ N - 17
6
4 4 4 4
Trr (Leib") = {ow,.)}‘ uslJoteia)yt uilJoei )
=1 =7 i=14
where
A Multiplication table
,2‘11 5[2 o C €162 = €2 ejes = —es €g€e1 = —€3
€o€3 = €1 €3€e1 — €3 €39 — —€1
2% 9%1 €3€e1 — €3 €4€9 = €4
Sg 9%2 €1€9 = €2 €2€1 = —€9 €34 — €4
€qe3 = —¢€4
23 9%3 €2€4 = —€4 €3€1 — €3 €4€9 = €4
2%1 22 €1€1 = €4 €1€9 = —€9 €1€e3 = €3
€oe1 = €9 €23 = €4 €3e1 = —e3
€369 — —€4
1 — — —
26 244 €1€9 = —€9 €2€1 = €2 €o2€9 — €3
€3€1 = 263 €3€9 = €4 €4€1 = 364
7
£2(a) g5() e1ea = €9 eres = es + aes ereg = (a+ 1)ey
€2€1 = —€9 €2€3 = €4 €3€1 — —€9 — (€3
esey = —ey ese; = —(a+ 1)ey
£3(a) £9 e1e9 = —es ese1 = €9 ese; = aes
ezeg = €4 eqer = (1 + a)ey
Sg(a) £¢ e1ea = —es e1es = —aes ese] = eg
€23 = (xey €3e] = (eg €3y = €4
eqer = (a+ 1)ey
2‘110(&) £Y e1ea = —es e1es = —aes ese] = ey
€969 = €4 eze] = aes eqe1 = 2ey4
7
£11(a) % e1eg = —eg ege] = €9 €9y = €4
eser = aes eqe1 = 2ey4
1
£15(a) % e1e1 = aey €169 = ey e1e3 = —e3
€29 = €4 €3e1 = €3
1 — — —
L£i5() % e1e] = ey e1ea = ey eg€y = €4
€3e] = €3
1
Li4(a, B) | gala,B) | erea = ez eje3 = ez + aes e1eq = ez + fey
ege] = —e eze; = —eg — ez eqe; = —eg — fBey
4 a,B _ _ _
Li5(, B) | £9; €19 = —eg e1e3 = —aeg €9e] = €9
esze1 = aes eqe1 = Bey
4 a,B _ _ _
Li6(, B) | £95 e1ea = —es ese] = eg ese; = aes
eqe; = Bey
4 a,B _ _ _
Li7(a, B) | L£93 ese] = egy ese; = aes eser = Bey

Focusing on 4-dimensional nilpotent Leibniz algebras, whose algebraic classification was
ultimately given by Albeverio, Omirov and Rakhimov (2006), we find in [57] the following



234

Ivan Kaygorodov, Mykola Khrypchenko and Pilar Paez-Guillan

geometric classification:

I (Meeib’) = {O (M) }; U {U 0 (msi(a))} ,

where

ultiplication table
A Multiplication tabl
‘nﬂ% 22 €1€1 = €9 €o€1 = €3 €361 — €4
1
‘Itﬁz 25 €1€1 = €3 €o€1 — €3 €9€9 = €4 €3€1 — €4
‘ﬁ£§ 211 €11 = €4 €19 = —€3 €13 = —¢€4
€2€1 = €3 €267 = €4 €361 = €4
NEi(a) | N3(a) [ ere1 =eq erea =aeqs ege; = —aey egeg =e4 eze3 =ey

1.22.5 5-dimensional

nilpotent Leibniz algebras

The classification of nilpotent Leibniz algebras of dimension 5 is a result of the work by
Abdurasulov, Kaygorodov, and Khudoyberdiyev (2023). Their geometric classification
appeared in [9]. In particular, the variety MLeib® has ten irreducible components:

Irr (MELeib®) =
5 9
{fome}u{Uomsia} v{Uomeiem} u{Uomsim)}.
1=2 1=6
where
A Multiplication table
‘JU.}{? ng €1€1 = €2 €2€1 = €3 €3€1 — €4 €4€1 = €5
NLH () 9% e1e1 = e3 e1ex = e3 e1eq4 = aes esey = €5
‘J‘(Sg(a) %9 e1e1 = e3 e1e2 = ey ese] = e3 egey = €4 + €5
€361 = e4 + aes  eszey = ex eje1 = e
Ne; (o) % e1e1 = es e1ex = e3 eje3 = es ese] = —e3
€2€9 = €y €2€4 = €5 €3€1 — —¢€5 €4€q4 = €5
NE2(a) 4 eje; = es e1es = e3 e1es = e; ese] = —e3
€29 = €y €2€63 = €4 €2€4 = €5
€3€1 — —¢€5 €362 — —€4 €49 = —€5
N (e, B) | LY ele] = es erex = ey ege] = —aes
egey = —ey eze1 = es eqep = fes
‘ﬁﬁ?(a, B) | Lg; e1es = e3 e1e3 = —es e1eq = e5 ege1 = ey
ezes = fes ezey = —fes ese; = e;
e3e = e; eje] = aes eqez = fles
Continued on next page




The geometric classification of non-associative algebras 235

continued from previous page

A Multiplication table
Nei(e, B) | S5 | erer = aes ereg = e3+eq + Pes  ejez = es eze] = —eg3
€9€9 = €5 €2€3 = €4 €3€] = —¢€5 €32 = —€4
‘ﬁﬁg(a, ﬁ) Q]4+1 €1€9 = €5 €2€1 = A€y €3€4 = €5 c4q€3 = ﬁ€5
WS?O(ﬂ) %3+2 €1€1 = €4 €1€2 = U1€5 €1€3 = U265
€2€1 = u3és €2€9 = [4€5 €2€3 = U5€5
€361 = H6Es €362 = [lo€4 + [i7€5 €363 = €5

1.23 Zinbiel algebras
An algebra 3 is called Zinbiel if it satisfies the identity
(zy)z = 2(yz + 2y).
We will denote this variety by 3in.

1.23.1 2-dimensional Zinbiel algebras

Dzhumadildaev and Tulenbaev proved in 2005 that every finite-dimensional Zinbiel algebra
is nilpotent. Also, the lists of Zinbiel algebras of dimension 2 and 3 were given in that
paper. In fact, there is just one 2-dimensional Zinbiel algebra, namely 3% with e;e; = e.

1.23.2 3-dimensional Zinbiel algebras

Regarding dimension 3, the geometric classification can be extracted from [57]. We find
three irreducible components in 3in®:

Irr(3in®) = {W}ll U {U @ (33(04))} ,

where

A Multiplication table
37 37 ere] =€y ey =ie3  eg€] = €3
3% ‘Itg €1€1 = €3 €1€9 = €3 €2€1 = €3
3%(04) m(zc(a) €161 = €3 €163 = €3 €269 = Q€3

1.23.3 4-dimensional Zinbiel algebras

The algebraic classification of 4-dimensional Zinbiel algebras is given in a paper by Ada-
shev, Khudoyberdiyev and Omirov (2010). After that, it was constructed the graph of
degenerations of this variety 3in* in [57]. In particular, there exist five irreducible compo-
nents in 3in*:

)

5
1=4

Irr(3in') = {@}11 U {U 0(3?(‘3‘))}
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where
A Multiplication table
31 31 ele] = ey  eleg =e3  e1e3 = ey
€21 = 263 €2y = 364 €3e1 = 364
3 33 €1€] =e3 eje3=eq €2 =€y e3e1 = 2ey
3 35 €1€x = €3 e1€3 =eq €8] = —€3 €383 = €4
1) | M2(a) | erer1 =e3  erea =eq €961 = —e3 €989 = —€4
3@‘((1) MN3(a) | e1e1 =eq4  e1ea = ey ege1 = —qey €969 = €4 e3e3 = ey

1.23.4 5-dimensional Zinbiel algebras

The algebraic and geometric classification of 5-dimensional Zinbiel algebras is given in a
paper by Alvarez, Fehlberg Junior and Kaygorodov [18]. The variety 3in® has sixteen
irreducible components:

Irr(3in®) = {@}il U {U 0(3?(04))}

1

L {U o( %(mﬁ))} U {U 0(3?6@))} :

=12
where
A Multiplication table
37 [M]3s | erer = ea ejeg = €3 ejes = es
€2€1 = —€3 €2€2 = €4 €2€3 = €4
32 [m(ﬂ%ﬁ €1e1 = €9 €169 = e, e1e3 = eq + e;5
eoe] = 2ey esesz = e;
33 305 ere; = e3 e1esz = es ege = ey
€o2€4 = €5 €3e1 — 265 €q€9 = 265
33 322 eje; = e eje = €3 eze] = —e3
€2€2 = €5 €2€4 = €5 €4€3 = €5
33 323 erez = e3 eres = e;s €14 = —es €261 = €4
eoeg = —eg eo€3 = —e; eoey = €5 eses = —2esy
30 324 eje; = e3 e1eg = ey e1e4 = —e;
€2€1 = —€3 €2€3 = —€4 €2€4 = €5
€39 = —€5 €41 = —¢€5 €qeg = 265
32 327 ejeg = €3 eje3 = —es e1es = €5
€261 = €4 €2€3 = —€5 €2€4 = €5
33 334 ere; = e; ereg = ey ere3 = €5 261 = —3e4
€2€2 = €3 €2€3 = €5 €2€4 = —€5
€3€1 = —%65 €3€2 = 265 €4€2 = €5
33 335 e1€2 = €4 €164 = €5 e2€] = —ey
Continued on next page
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237

A Multiplication table
egey = €3 egse3 = €5 egeg = 2es
5 — — — —
3% 338 e1er = e e1es = €3 e1ez = es ege1 = 2e3
eoesy = ey ese] = 3ex eqeq4 = €5
5 — — 1 — —
3 340 eje; = ey e1e = 5€3 e1e3 = 2e4 e1e4 = €5
€2€1 = €3 €9€9 = 364 €o€3 — 865
ese; = Gey eses = 12e;5 eqe1 = 4des
5 — — —
37() 302 €1€1 = €2 €1€2 = €5 ege1 = 2es
€3€4 = €5 €4€3 = €y
5 — — —
313() % ele; = aes  ejey = e3 e1es = e
€2€] = —€3 €2€3 = €5 €4€4 = €5
5?4(04) 35 ejeg = ey eres = (a + 1)es €0e] = ey eg€y = €3
egey = 2ce;  ege; = 2a(a+ 1)es  egea = 2(a+ 1)es
5 — — — -
3i5(a, B) | Vay1 | erea =e5 €2€] = Qe €3eq = €5 eqe3 = fles
5 (— — — —
316(R) U3io | e1e1 =eq e1ex = fl1es e1e3 = p2es
€2€1 = U3es €2€2 = 465 €2€3 = U565
€3e] = [le€5 €32 = [lpe4 + 785 €363 = €5

1.24 Novikov algebras
An algebra 91 is called Nowikov if it satisfies the identities

(zy)z = (v2)y, (z,9,2) = (y,7,2).

The variety of Novikov algebras will be denoted by Dtov.

1.24.1 2-dimensional Novikov algebras

The algebraic classification of 2-dimensional Novikov algebras can be found in Burde
(1992), and their graph of degenerations was given in [22]. The variety Dlov® has three
irreducible components:

where

o) = {0} u{Jomu)}.

A Multiplication table
gﬁ% Ag €1e1 = e1 €2€9 = €9
‘T(% Bs e1es = €1 egey = €1 +eg
M(a) | Ba(a) | erea =caer ese; = (a—1)er  eses = aes
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1.24.2 3-dimensional nilpotent Novikov algebras

The algebraic and geometric classification of 3-dimensional nilpotent Novikov algebras
can be obtained from the classification and description of degenerations of 3-dimensional
nilpotent algebras given in [28]. Hence, we have that the variety 999tov” has two irreducible
components:

Ire(9MNov?) = {0 (mmi)} U {U o (‘ﬁ‘ﬁi(a))} ,

where

A Multiplication table
gﬁgﬁ‘f Ng €1€1 = €2 €2€1 = €3
%ﬁg(a) Ni(a) | erer =ex ejeg =e3  ese; = aes

1.24.3 3-dimensional Novikov algebras

The geometric classification in dimension 3 was obtained some years later in [23], although
the algebraic classification was known since the work of Bai and Meng (2001). The variety
Mov® has eleven irreducible components, namely:

inonon’) = (OO} u{Uotan} u{Jomie].

where
A Multiplication table
3 — — —

‘ﬁl A4 €1€1 = €1 €9€oy = €9 €3e3z = €3

‘It% By eijer = e1 €12 = €2 + €3 €1€3 = e3
€9€1 = €9 €2€9 = €3 €3€1 — €3

‘ﬁg Cl eje1 = —ej; + ey €9€1 = —€9 €363 = €3

‘ﬁi D1 eje1 = —ej +e3 €1€3 = €9 €961 = —e€2
€3€1 — —€3

‘Itg FEg eijer = —lel +e3 e1eg = %62 €163 = €2
€21 = —562 €3el = €9 — %63

‘ﬁ% E4 eje1 = —ejp +eg €1€3 = —%eg €961 = —e€2
€3€1 = —€3 €3€3 = €2

‘ﬁ%(a) Cs() ele] = aey erea = (a+1)eg  ege; = ey
€33 = €3

‘ﬁg(a) Dy (av) ele] = aey erea = (a+1)eg ejes =ea+ (a+ 1)es
€9€1 = €y €3€1 = Q€3

3 — — —
Ny () Es ere1 = —e;+ey  eres=(a—1)es eze; = —eo
Continued on next page
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A Multiplication table
€361 = —€3
N, () Es(a) | e1e1 = aeq erea = (a+1)ez  ere3 = (a+ 5)es
€2€1 = ey €3e1 = (eg €33 = €9
‘)T‘I’l(a,ﬁ) Ey g(a) | erer = PBeq erea = (B+1)ea eje3 = (a+ P)es
eze; = ey eser = e

The entire degeneration system is detailed in [23].

1.24.4 4-dimensional nilpotent Novikov algebras

The algebraic classification of 4-dimensional Novikov algebras has not been obtained yet.
However, in [46], the authors determined all the 4-dimensional nilpotent Novikov algebras
up to isomorphism and also studied the geometric decomposition. They proved that 919ton*
has two irreducible components, defined by two families of algebras:

2

Irr (MNNov?) = {UO (‘ﬁ‘ﬁ?(a))} :

i=1
where
A Multiplication table
T
NN () | MNoo() | ere1 = aeq  ejeg =e3  eje3 = ey es62 = €4 e9e3 = ey
€3€2 = —€4
7
NN () | Naa() | erer = ey erea =e3 eres = (2—a)es ege; = ey egey = aey
€3€1 = ey

1.25 Bicommutative algebras

An algebra B is called bicommutative if it satisfies the identities

(zy)z = (z2)y, x(yz) = y(z2).

We will denote this variety by Bic. Note that bicommutative algebras are also known as
LR algebras.

1.25.1 2-dimensional bicommutative algebras

The algebraic and geometric classifications of the 2-dimensional bicommutative algebras
can be found in [60]. This variety has two irreducible components:

2

Irr(Bic?) = {W}

where
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A Multiplication table
%% Dl(O, 0) €1€1 = €1 €169 = e
%% El(0,0, 0,0) €1e1 = e €2€9 = €9

1.25.2 3-dimensional nilpotent bicommutative algebras

For the algebraic classification of the 3-dimensional nilpotent bicommutative algebras,
consult [56]. The geometric one can be extracted from the graph of degenerations of all
the nilpotent algebras of dimension 3 [28]. In 91Bic®, there are two irreducible components:

I (9Bic%) = {o (sm%i’)} U {U o (‘ﬁ%i’(a))} :

where

A Multiplication table
gﬁ%f mg €1€1 = €2 €9€1 — €3
NB () | Mu(a) | erer =2 erea=e3 ezeq = aeg

1.25.3 4-dimensional nilpotent bicommutative algebras

The variety 9MBic! was classified in [56], both algebraically and geometrically. It has two
irreducible components:

Tre(OBict) = {O (smsit)} U {U O (‘ﬁ‘B;‘(a))} ,

where
A Multiplication table
Sﬁ%‘f %4110 €1€2 = €3 €1€3 = €4 €2€1 — €4 €32 = €4
NB3 () B, (a) | ere; = ez €16y = €3 e1€3 = €4 €2€] = (i3 €963 = (€4
€3€1 = ey

1.26 Assosymmetric algebras

An algebra 21 is called assosymmetric if it satisfies the identities:

(x,y,2) = (z,2,9),  (v,y,2) = (y,7,2).

Let Asso denote the variety of assosymmetric algebras.
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1.26.1 2-dimensional assosymmetric algebras

All associative algebras are assosymmetric. Also, every assosymmetric algebra of dimension
2 is associative. The variety of 2-dimensional assosymmetric algebras has three irreducible
components:

Irr(Asso?) = {O (AS?) }3 ,

i=1
where

A Multiplication table
Q[Gf €1€e1 = €1 €2€9 = €9
Q[G% €1€e1 = €1 €169 = €9
Q[Gé €1e1 = €1 €9€1 = €9

1.26.2 3-dimensional nilpotent assosymmetric algebras

The list of 3-dimensional nilpotent assosymmetric algebras can be found in [40]. Employ-
ing the graph of degenerations of [28], we see that in the variety MAsso® there are two
irreducible components:

Irr(MAsso’) = { O (MAST) } U {U 0 (m%%@))} ,

where

A Multiplication table
9”(2[6‘1‘ mg €1€1 = €2 €9€1 — €3
NAG () | Mu() | erer =ea  erea =e3  esey = aes

1.26.3 4-dimensional nilpotent assosymmetric algebras

In [40], the authors determined all the 4-dimensional nilpotent assosymmetric algebras up
to isomorphism and found all the degenerations between them. This variety DM2Asso” has
four irreducible components:

Trr(NAsso®) = {O(sm@‘;) }; U {UO (m%j(a))}

where
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A Multiplication table

9”(2[6% 2[‘111 eie] = ez e1e3 = ey ege] =e3+ ey
€262 = €3 €2€3 = €4 €362 = —€4

‘JthG% 9@2 €1€e1 = €3 €1€3 = €4 €2€1 = €3
exep = €3+ e4 ege3 = 1+T\/§i64 €3e1 = _1+T\/§’ie4
€369 = —€4

9”(2[6% QLZIL4 €1€1 = €3 €1€3 = €4 €2€1 = €3
€2€2 = €3+ €4 €9e3 = %64 ese] = —I—T\/gi&l
€362 — —€4

NASH (o) | Alg(a) | erer = e e1eg = e3 ere3 = (2 — a)ey
ese; = aes eger = (@2 —a+1)ey  eze; = (2a — 1)ey

1.27 Antiassociative algebras

An algebra 2 is called antiassociative if it satisfies the identity:

(zy)z = —x(2y),

Let 2A2( denote the variety of assosymmetric algebras.
All antiassociative algebras are nilpotent.

1.27.1 2-dimensional antiassociative algebras

For the variety A2, we rely on the classification from [60]. The rigid algebra determines
it:

A Multiplication table
AAT | As | erer = e

1.27.2 3-dimensional antiassociative algebras

The list of 3-dimensional antiassociative algebras can be found in [27]. Employing the
graph of degenerations of [28], we see that in the variety AA* there are two irreducible
components:

Trr(AA%) = {0 (mmi)} U {U @ (9&@(@))} ,

where
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A Multiplication table
A My(—1) | ete1 =ex  ejeg =e3  ege; = —e3
AU () | Ng(a) €161 = e3 €9e] = €3 €9e9 = €3

1.27.3 4-dimensional antiassociative algebras

In [27], the authors determined all the 4-dimensional antiassociative algebras up to iso-
morphism and found the geometric classification of them. This variety 2A2A* has three
irreducible components:

3
4 1 4
Tre(A2AY) = {0(2{9{1)} U {UO (22 (a))}
i=2
where
A Multiplication table

ng[il A473 €161 = ey €1y = €4 €21 = —€4 €363 = €4

AA5 () Qs | e1e1 =€3 erea =ey €91 = —e3 €6y = —ey

Qlﬂé(oz) To | €161 =€4 ejep =y ege; = —aeq eger = ey eses = ey

1.27.4 5-dimensional antiassociative algebras

In [27], the authors determined all the 5-dimensional antiassociative algebras up to iso-
morphism and found the geometric classification of them. This variety A2° has three
irreducible components:

Trr (AA°) =
N | 6
{(’)(Ql&lf)}i_l U {U 1% (mmi(a))} U {U (’)(Ql&l?()\,u))} U {U o(mg(ﬁ))} .
= i=5
where
A Multiplication table
A207 As10 | e1e1 = e e1ey = ey e1e3 = ey
€21 = —¢€4 €361 = €5 €3e3 = €5
Q[ng A5719 €161 = €9 €169 = €5 €13 = €5 €261 = —¢€5
€3€3 = €4 €3€4 = €5 €4€3 = —€5
Q[ng A5721 €169 = €3 + €5 €164 = €5 €2€1 = €4
€oeyg = —€3 €264 = —€5 €31 = —¢€5
Continued on next page
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continued from previous page

A Multiplication table
5
A7 As03 | e1e2 = e3 eres = es €21 = €4
€2€3 = €5 €3€1 = —€5 €4€2 = —€5
5
A2 () ASyy | erer = e2 e1ex = e5 ege] = —es5
€3€4 = €5 €4€3 = A€y
AA () AS g | €162 =€y e1es = e; e9e] = ey €9€9 = €3
€2€4 = €y €3€e1 — —Oé2€5 €469 — —€5
5
AA7 (N, 1) | Vyq1 | eres = e eger = Aes eseqy = es eqe3 = L5
5/—
RAA (72) Y30 | €161 = €4 e1eg = [l1€5 €1€3 = [i2€5
€2€1 = U3es €2€2 = l4€5 €2€3 = U565
e3e1 = [6€5 €3ep = [lpeq + [i7€5 €363 = €5

1.28 Left-symmetric algebras
An algebra £6 is called left-symmetric (or pre-Lie) when it satisfies the identity:
(@,9,2) = (y, %, 2).
The variety of left-symmetric algebras will be denoted by £6.

1.28.1 2-dimensional left-symmetric algebras

The algebraic classification of 2-dimensional left-symmetric algebras can be found in Burde
(1992). In [22], it was established that the variety £& has six irreducible components

4 6
nr (g6?) = {O(ee?)} U {U O(séf(a))} ,
=1 =5
where
A Multiplication table
26% Ag €1€1 = €1 €9€9 = €9
265 Bg €2€1 = —€1 €9€g = €1 — €9
£6§ B4 €1€1 = €2 €2€1 = —€1 €9€y = —262
mﬁi Bs ejex =e;  ege = €1 + €2
£6§(a) Bi(a) | e2e1 = —e1  ege9 = aey
EGé(a) By(a) | etea = ey ege; = (a—1)e;  egeq = ey

1.28.2 3-dimensional nilpotent left-symmetric algebras

The list of 3-dimensional nilpotent left-symmetric algebras can be found in [10]. Employing
the graph of degenerations of [28], we obtain that the variety €& is irreducible and
defined by the following family of algebras
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A Multiplication table
‘)TQG(’:‘f(a) L%g(a) e1e1 =€y €169 =e3 €9e] = Qe3

1.28.3 4-dimensional nilpotent left-symmetric algebras

The algebraic and geometric classifications of 4-dimensional left-symmetric algebras are
given in a paper by Adashev, Kaygorodov, Khudoyberdiyev, and Sattarov [11]. The variety
MNLS* has three irreducible components:

Ir(MNLE?!) = {o (‘3126?‘(04))}?:1 U {U(’) (msgg(a,ﬁ))} :

where
A Multiplication table

‘ﬁSG%(a) L‘llz(oz) e1e1 = aes  e1eg = ey ege1 = e3
€€y = €3 €2€3 = €4 €361 = ey

‘)?256‘21(04) L‘le(a) e1e1 = ey e1ey = ey e1e3 = aey
€o2€1 = €3 €2€3 = €4 €3] = —Qey

NLS3(a, B) L3, (8,a) | ere1 = ez e1ex = e3 e1e3 = ((2 - Ba+ 1)64
€9e1 = ,863 €9€9 = (ﬂa + 1)64 €3e1 = (ﬁa — 1)64

1.29 Right alternative algebras
Recall that an algebra is said to be right alternative if it satisfies the identity

(zy)y = x(yy).
We will denote this variety by SRILt.

1.29.1 2-dimensional right alternative algebras
It is easy to see that every 2-dimensional right alternative algebra is associative. The
variety of 2-dimensional right alternative algebras has three irreducible components:

3

)

Irr(RAIZ) = {o (smt?)}

=1

where

A Multiplication table
%Qlf €1€1 = €1 €9€9 = €9
D%Qlﬁ €1e1 = eq €169 = €9
D%ng €1e1 = eq €2€1 = €9
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1.29.2 3-dimensional nilpotent right alternative algebras

The list of 3-dimensional nilpotent right alternative algebras can be found in [41]. Em-
ploying the graph of degenerations of [28], we obtain that the variety QRUAIE® has two
irreducible components:

nr(mmae?) = {0 () | u {U 0 (mmtg’(a))} ,

where

A Multiplication table
‘R%Ql‘f N4(1) €1€1 = €2 €1€e9 = €3 €2€1 = €3
NRA(a) | Ns(a) | erer = ez exeg =e3  egen = e3

1.29.3 4-dimensional nilpotent right alternative algebras

The algebraic and geometric classifications of 4-dimensional right alternative algebras are
given in a paper by Ismailov, Kaygorodov and Mustafa [41]. The variety D9RA* has five
irreducible components:

[rr(MNRAAMY) = {0 () }; U {Uo (mmﬁ;(a))} ,

where
A Multiplication table
‘)TZRQL‘{ Ré €1€p = €3 €1€3 — €4 €21 = —€3
‘Itiﬁ%l% Ré €1€9 = €3 €1€3 = €4 €o€1 — —€3 €2€9 = €4
‘Itiﬁ%lg Ré €1€1 = €4 €o2€1 = €3 €o€9 = €3 €2€3 = €4 €369 — €4
‘)Ti)%&lﬁi Ré €161 = €2 €e1€e9 = €3 €13 = €4
€o2€1 = €3 €2€9 = €4 €361 — €4
NRAz () | N3() | ere1 =es erea = ey ege; = —aeq egea =4 e3ze3 = ey

1.30 Right commutative algebras
Recall that an algebra is said to be right commutative if it satisfies the identity
(zy)z = (z2)y.
We will denote this variety by RC.

1.30.1 2-dimensional right commutative algebras

The variety of 2-dimensional right commutative algebras is irreducible and defined by the
following family of algebras:
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A Multiplication table
R (o, B) | E1(,0,0,8) | erer =e1  ese; = aer  ese; = Bea  esen = eo

1.30.2 3-dimensional nilpotent right commutative algebras

The list of 3-dimensional nilpotent right commutative algebras can be found in [11]. Em-
ploying the graph of degenerations of [28], we obtain that the variety Q9RE? is irreducible
and defined by the following family of algebras:

A Multiplication table
NRET(a) | Rg(a) [ erer =ex erea =e3 ezer = aes

1.30.3 4-dimensional nilpotent right commutative algebras

The algebraic and geometric classifications of 4-dimensional right commutative algebras
are given in a paper by Adashev, Kaygorodov, Khudoyberdiyev, and Sattarov [11]. The
variety MMRAC* has five irreducible components:

Irr(MRCH) = {(9 (mmf(a))}; U {U O (MRE(a, 5))} ,

(2

where
A Multiplication table
NRCE)(a) R, (a) eje; = aes eres = €4 ege] =e3+eq egex =e3
‘)Tf)‘i@%(a) R‘llg(a) e1e3 = aey ese1] = e3+eq egey = €3
ese; = (1 —a)eqy eszea = (1 —a)ey
‘)Tf)‘i@%(a) Rég(a) e1e1 = ey e1es = €3 e1es3 = 2eq
€2€1 = ey €369 = €4
MRS (a) Nip(a) e1es = e3 ele] = ey eles = ey
€2€9 = €4 €2€3 = €4 €369 = —€4
‘ﬁﬂ‘i@é(a,ﬁ) R%?(ﬁ, a) | erer = e ejex = e3 eres = (2a —af — 1)ey
€2e1 = 563 €9y = (Oéﬁ + 1)64 €3€1 = (Oéﬁ + 1)64

1.31 Filippov algebras

An algebra § with an anticommutative n-ary multiplication is called a Filippov algebra
if it satisfies the identity

Hxla cee 7xn]>y27 s ayn] = Z?zl[xla ceey Ti—1, [xiay% s 7yn]>xi+1> cee >xn]-

Let us denote this variety by §il.
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1.31.1 (n + 1)-dimensional Filippov (n-Lie) algebras

In [62], the authors gave the geometric classification of the n-ary Filippov algebras of
dimension n + 1, namely the variety Fil'™'. For that purpose, they based on the algebraic
classification given in a paper by Filippov in 1985. The variety Fil’*! has two irreducible
components:

Irr(Fil+) = {o(szjl)} U {U o<sz,+;<a>)} :

where

A Multiplication table
32—‘51 Dn+1 [617"'7ei—17ei+17"'7en+1] =€
Szgl(a) Co(a) | [e2,- .-, ent1] = aer + €9 [e1,€3,. .. €ent1] = €2,

forl1<i<n-+1.

1.32 Lie triple systems
An algebra 2 with a 3-ary multiplication is called a Lie triple system if it satisfies the
identities
[z,y,2] = =ly. =, 2], [z,9,2]+ [y, 2, 2] + [2,2,9] = O,
[, v, [z, y, 2]) = [[w, v, 2]y, 2] + [, [u, 0, 9], 2] + [2,y, [u, v, 2]].
Let us denote this variety by £%6.

1.32.1 3-dimensional nilpotent Lie triple systems

The list of 3-dimensional nilpotent Lie triple systems can be found in [3]. The variety
MNLTS? is irreducible:

(MeTe?) = {0 (MeTSY) |,

where

A Multiplication table
‘ﬁﬂi@‘f Sg,z [61, €9, 61] = €3

1.32.2 4-dimensional nilpotent Lie triple systems

The list of 4-dimensional nilpotent Lie triple systems can be found in [3]. The variety
MLTS? has two irreducible components:

rr(NETEH) = {0 (‘ﬁﬂi@i‘)} U {0 (ms%;‘(a))} ,

where
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A Multiplication table
NLTS] a7 le1,e2,e1] = e3 le1,e2,e3] =es  [e1,e3,e2] =€y
WSTG%(Q) Tue() | [e1,e2,e3] = —(a+1)es [ez,e3,e1] = es [e3,e1,€2] = e

1.33 Anticommutative ternary algebras

An algebra 21 with a 3-ary multiplication is called a anticommutative if it satisfies the
identities
[Zlf,’y,Z] = —[y,llf,Z] = [’y,Z,ZIZ’].
Let us denote this variety by 2A%.

1.33.1 3-dimensional anticommutative ternary algebras

The list of 3-dimensional anticommutative ternary algebras can be found in [63]. The
variety A%T? is irreducible:

Ire(AT?) = {o (Mi’)} ,

where

A Multiplication table
AT le1,e2,e3] = e3

1.33.2 4-dimensional anticommutative ternary algebras

The list of 4-dimensional anticommutative ternary algebras can be found in [63]. The
variety AT* is irreducible:

Irr(ATH) = {O (915‘11(04,5))} ’

where

A Multiplication table

AT (a0, B) | 957 | e, e, e3] = —aes  [er,en,ea] = eq  [e1,e3,ea] = —Ber  [ea, e3,e4] = €2

1.34 Superalgebras

A superalgebra is a Zs-graded algebra A = Ay & A;. If dim Ay = m and dim A; = n,
we say that A has dimension (m,n). We define |a| = i for a € A;. We will denote by
{e1,...,en} a fixed basis of 2y and by {fi,..., fn} a fixed basis of ;.
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1.34.1 Lie superalgebras
A superalgebra A is a Lie superalgebra if it satisfies ab = —(—1)!%Plbg and

(=1)'liel(@b)e + (—1)' M (be)a + (—1)1Pl (ca)b = 0.

The variety of Lie superalgebras of dimension (m,n) will be denoted by &£ie™".
The algebraic and geometric classification of &£ie>* have been obtained in [15]:

Ir (&€ie>?) = {W}g Ny {U (9(62?’2(04))}% U {U 0(6£2%(a, 5))} ,

= =4
where
A Multiplication table
&Ly’ £619 |erea=e1 efo=fi efi=-fi fifo=el
fofo = 2ey
&L5” €61 | fii=e1  ffo=e
&Ly’ €65 |eh=hHh exfa=1f
6L7%(a) L6867 |eiea=e1 efi=afi efo=—(a+1)fs fifo=e
&L (@) £6% |eica=er  exfi=afi efo=—3/f Jafa=e1
6£7%(a) £6%s |erea=e1 efo=fi efi=afi eafo=(a+1)fa
6277 (0.B) | 263 [erea =1 esfr=afi_eafo = B2

The varieties NS Lie™" with m + n = 5 have been classified algebraically and geomet-
rically in [16]. We will not consider the cases (5,0) and (0, 5) since the first one gives usual
Lie algebras, and the second one gives an algebra with zero multiplication.

The variety MG Lie™! is irreducible, determined by the rigid superalgebra

A Multiplication table
mGS‘ll’l (4]1)6 | erea =e3 ejes=e4 fifi=ey

The variety MG Lie™*! has two irreducible components whose rigid superalgebras are

A Multiplication table
NG| (14)s | ifi=e1 fafa=e1 fsfs=e1 fafi=er
NSEYT | (14)7 [ esfo=fi eifs=fo eifs— fs

The number of irreducible components of MG Lie>? is also two. They are determined
by the rigid superalgebras
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A Multiplication table
NGEZ | (32)s | fifi=e2 fifa=e1 fofa=e3
NGLZ | (3213 | crea=es exfa=fi fifs=es fofa = 29

Finally,
————5
mr (megie”?) = {o(meel) | .
where
A Multiplication table
NSL | (213)s | fifi=e1 fafo=es fafs=e1+en
NG | 2B3)is | esfsa=f1 eafa=fi fofo = 2e1 fofs = —e
NGL | (23)10 | esfs=fi eafa=Ffi fafs=—e1  [afs = 2e;
NGL | (23)as | esfo=fi eifs=fo fifs=—e2  fofo=es
m@ggvd (213)24 | e1fo=f1i eifs=fa efs=nh

1.34.2 Jordan superalgebras
A superalgebra A is a Jordan superalgebra if it satisfies ab = (—1)%/*lba and

(ab)(cd) + (= 1)l (ac) (bd) 4 (—1)lPleFIeldl (qq) (be)
= ((ab)e)d + (_1)\clld|+\b\\cl((ad)c)b + (_1)IaHb\+|a\\cl+\alld|+\clld|((bd)c)a‘

Denote by GJotrd"™" the variety of Jordan superalgebras of dimension (m,n).
Using the algebraic classification from Martin (2017), it was proven in [17] that

Irr (&3ord™?) = {0(633’2)}7 :

i=1

where

A Multiplication table
63}72 Uf €1€1 = €1
63,7 | St |eei=e1 afi=1ifi
632 [ St |efi=F fifo=ea
637 [ S |efi=er efi=hfi
637 | St eer=e1 esfi=fH efi=1if
637 | S |ees=er efi=3fi eif=Lif ff=e
63" |3 lewer=e1_ehi=fH eafh=fr hh=e

Again employing the classification from Martin (2017), it was proven in [17] that the
variety SJord?! also has seven irreducible components:

7

It (&Joro™!) = {O(Gﬁf’l)} :

i=1
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where

A Multiplication table
~2,1

61)1’ QUf e1e1 = e1  egeg = €9
~2,1 1

61)2 BS €161 = €1 €162 = 5€2

~2,1 2 1
SJ3 | SioUf |erter=e1 eea=e3  erfi=3f1
T 5
SJ, | S50Uf |erer=e1 eea=ex  efi=h

~2T [ ¢3 T i
6155 Sll €1€1 = €1 €162 = 5€2 61f1 = §f1

~2,1 3 . 1 —
6‘56 512 eje1 =e;  ejeg = 562 erfr=f1

~2,1 3 . 1 — — 1
G377 | Sis erep=e1 e1fi=s5f1 eea=e exfi =5/

As the Jordan superalgebras of dimension (3,0) are nothing but the 3-dimensional
Jordan algebras, and the unique Jordan superalgebra of dimension (0,3) is trivial, the
classification of Jordan superalgebras of dimension (m,n) with m 4+ n = 3 is complete.

1.35 Poisson algebras
An algebra (B, -, {-,-}) is called Poisson if it satisfies the identities

(l’,y,Z) = 07 Ty = yzx, {x,y} = _{yvx}a
{z.{y,2}} = {z. v} 2t +{y. {z. 2}, {zy, 2} = {z, 2}y + 2{y, 2}

We will denote this variety by JPoiss.

1.35.1 2-dimensional Poisson algebras

There are no non-trivial Poisson algebras in dimension 2 (i.e. there are no Poisson algebras
with both non-zero multiplications) [6]. Hence, based on subsections 1.4.1 and 1.13.1, we
have

Irr (Poiss®) {UO (B?) } )

=1
where

A Multiplication table
% Q:Ql% e1ep = ex €29 = €9
5180 [{en o} =
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1.35.2 3-dimensional nilpotent Poisson algebras

The full graph of degenerations of nilpotent Poisson algebras in dimension 3 was studied
in [2]. The variety 9¥Poiss® has two irreducible components [2], corresponding to the
algebras:

Irr (MPoiss®) = {(’)(‘ﬁ‘ﬁi’)} U {U O(‘ﬁ‘l‘;’(a))} ;

where

A Multiplication table
NPy Pse | cre1 =e2  erea =e3
NP5 () | PGs | erea = aes {er, e} = e

1.35.3 3-dimensional Poisson algebras

The full graph of degenerations of Poisson algebras in dimension 3 was studied in [6]. The
variety Poiss” has six irreducible components [6], corresponding to the algebras:

Irr (Poiss®) = {W};l U {U O(‘B?(oz))}

)

6
1=5

where

A Multiplication table

H Pzs | {er,ea} =es {er ez} = —2e1  {ez,e3} =2es

5 Pz | erer = eg €262 = €3 eze3 = €3

3 Ps,is | ere1 = e e1eg = eg e1eg = e3 {ea,e3} = e2
2 Ps20 | e1e1 = ey {e2,e3} = €3

5@) [ Bss | {erea) =ea {er,e3} = aes

0(@) [ BSis | crez=e3 {e1,ea} = ey

1.35.4 4-dimensional nilpotent Poisson algebras

The full graph of degenerations of nilpotent Poisson algebras in dimension 3 was studied
in [2]. The variety 9¥Boiss’ has five irreducible components [2], corresponding to the
algebras:

5

Irr (MPoiss') = {O(‘ﬁmf) }321 U {U O(‘ﬁ‘l‘?(a))} :

=4

where
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A Multiplication table
NP Pago | e1e1 =ea ejea =e3  eje3 =ey e2e2 = €4
NP, Paio | ere1 =ex ejea =e4  eze3 =ey {er,e3} = ey
NP3 Pais | e1e1=e4 eea=eq4 {er,ea} =e3 {er, ez} =eq
NP1(a) | BG 1o | erea =es  esez3 =ey {e1,e3} =eqs {ea,e3} = aey
NPs(a) | BGog | e161 = €3 ezea = ae3  ereq = ey {e1,e2} =e3

1.36 Transposed Poisson algebras

An algebra (B, -, {, }) is called transposed Poisson if it satisfies the identities
(Zlf,’y,Z) =0, Ty = yx, {xay} = _{yvx}7
{z.{y. 2t} = {z,u}, 2} + {y {z. 23}, 22{y, 2} = {ay, 2} + {y, 22}

We will denote this variety by TRoiss.

1.36.1 2-dimensional transposed Poisson algebras

The full graph of degenerations of transposed Poisson algebras in dimension 2 was studied
in [5]. The variety TPoiss” has two irreducible components [5], corresponding to the
algebras:

Irr (TPoiss’) = {(’)(’S‘B?)} U {U O(‘I‘Bg(a))} ;

where

A Multiplication table
T,Qm% T3 €1€e1 = €1 €2€9 = €9
TLP3 () T | ete; =e1 ejea =€z {er,ea} = ey

1.36.2 3-dimensional transposed Poisson algebras

The variety TBoiss® of 3-dimensional transposed-Poisson algebras has five irreducible com-
ponents [20].

4

Irr (TRoiss’) = {W}; U {U o(wi’(a»} U {U o(wi’(a,ﬁ))} :

=3

where
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A Multiplication table

TR To1 | {e1,e2} =e3 {er,e3} = —ex {ea,e3} =€

TR; Too | e1e1 =€ e2eg = €2 eze3 = €3

TP () % | erer = e e1ea = —eo eles = aeq
€29 = €9 €23 = (€9 €3e3z = (e3
{er,e3} =e1+eo

TP () T, | erer = ez e1es = aeq ege3 = ey ese3 = aes
{61, 63} =e1+e2 {62, 63} = 2e9

TP: (av, B) TS‘gf ere3 = ey ege3 = fBes ese3 = fJe3
{er,e3} =e1 +ex {ea,e3} = aes

1.37 Generic Poisson algebras

An algebra (B, -, {-,-}) is called generic Poisson if it satisfies the identities
(Zlf,’y,Z) = 07 Ty = yx, {xay} = _{yvx}a

{zy, 2} = {z, 2}y + 2{y, 2}.
We will denote this variety by &oiss.

1.37.1 2-dimensional generic Poisson algebras

Each anticommutative 2-dimensional algebra is Lie. Hence, each 2-dimensional generic
Poisson algebra is Poisson. There are no non-trivial Poisson algebras in dimension 2 (i.e.
there are no Poisson algebras with both non-zero multiplications) [6]. Hence, based on
subsections 1.4.1 and 1.13.1, we have

2

It (&Poiss®) = {U 0(05518?)} :

i=1

where

A Multiplication table
(’5%% Q:Qlf €1€1 = €1 €9€9 = €9
eP5 | €1 [ {er e} =en

1.37.2 3-dimensional generic Poisson algebras

There is a one-to-one correspondence between generic Poisson algebras and Kokoris al-
gebras [1]. Hence, the algebraic and geometric classifications of generic Poisson algebras
follow from the algebraic and geometric classifications of Kokoris algebras. The algebraic
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and geometric classifications of 3-dimensional Kokoris can be found in [1]. In particular,
it follows that the variety &Qoiss® has five irreducible components:

3 5
Ir(&Poiss”) = {O(6F) |} U {U o(q5q3§(a))} ,
=1 i=4
where
A Multiplication table
&P; Ay | erer = e egey = e
&R Agg | e1e1 = €1 erez = € eje3 = e3 {e2,e3} = e3
&P A3y | eter = {e2,e3} = e3
(’5%2(&) A02 €1€9 = €3 {61, 62} — «es
B2 (a) S0 | {er,e2} =e3 {er,es} =e1+e3 {er,e3} = aen

1.38 Generic Poisson-Jordan algebras

An algebra (%B,-,{-,-}) is called generic Poisson-Jordan if it satisfies the identities
(33273/73:) = 07 ry = yx, {x,y} = —{y’gj}j

{wy, 2} = {z, 2}y + 2{y, 2}
We will denote this variety by &BJ.

1.38.1 2-dimensional generic Poisson-Jordan algebras

There is a one-to-one correspondence between generic Poisson-Jordan algebras and noncommu-
tative Jordan algebras [1]. Hence, the algebraic and geometric classifications of generic Poisson-
Jordan algebras follow from the algebraic and geometric classifications of noncommutative Jordan
algebras. The algebraic and geometric classification of 2-dimensional noncommutative Jordan al-
gebras can be found in [44]. In particular, it is proven that the variety &PJ? has two irreducible
components:

Irr(GPI?) = {o(essm%)} U {U 0(@5%33(@))} :

where the algebras &PJ+ and BPI3() are defined as follows:

A Multiplication table
(’5‘»‘33% El(0,0, 0,0) e1e1 = e1 €2€9 — €9
EPJ3() | Es() ee; =e1  ejex =e1 + e
egeg = ey {e1,e2} = ae; — aeg
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1.38.2 3-dimensional generic Poisson-Jordan algebras

There is a one-to-one correspondence between generic Poisson-Jordan algebras and noncommu-
tative Jordan algebras [1]. Hence, the algebraic and geometric classifications of generic Poisson-
Jordan algebras

follow from the algebraic and geometric classifications of noncommutative Jordan algebras.
The algebraic and geometric classification of 3-dimensional noncommutative Jordan algebras can
be found in [1]. In particular, it is proven that the variety &PJ> has eight irreducible components:

8
I (6PJ°) = {o(esm?)}j_l U {U O(@fmg”(a))} :
- i=6
where
A Multiplication table
GBI Aps | ere1 =eg eses = €9
(’5%3% Aip | ere; = e e1e3 = %63 €969 = €9
€263 = %63 ezez = e1 + ey
[CDRE A | ereg = e e1e2 = 26 163 — e3 PAp——
GBI Az | ereg = e {ea,e3} = e3
(’5%3‘; A32 €1e1 = €1 €16y = %62 ejes = %63
{er,e2} = ez {ez,e3} =e2
(’5%33(0‘) (1l7 €11 = €1 ejes = %63 e9eg = €9
€263 = %63 {e1,e3} = aes {eg,e3} = —aes
EPI () | ATy | erer =& ere3 = €3 oty — €9 Ter, st = aes
05‘1333(@) S0 | {er,e2} =e3 {er,ez3} =e1+e3 {ez,e3} = ey

1.39 Poisson-type algebras

1.39.1 2-dimensional Leibniz—Poisson algebras
An algebra (B, -, {-,-}) is called Leibniz-Poisson if it satisfies the identities

(x,y,2) =0, xy=yx,

Uz, yh, 2} = {2} ) +H{w {y, 23}, {zy, 2} = {=, 2}y + 2{y, 2}

We will denote this variety by £Boiss.
The full graph of degenerations of Leibniz—Poisson algebras in dimension 2 was studied in [5].
The variety £Boiss? has four irreducible components [5], corresponding to the algebras:
9 N4
Iir (£oiss?) = {O(CPT) } U {U O(ﬁmf(a))} :
= i=3
where
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A Multiplication table
LP7 L3 | {e1,e2} =ea, {ez,e1} = —eo
B3 Ly | erer =e; egeg = €9
22]35,(0[) Lg | ere1 = e e1ez = eo {eg,e1} = aey
LPRI(a) | LE | erer = e {ea,e1} = aeg

1.39.2 2-dimensional transposed Leibniz—Poisson algebras
An algebra (B, -, [, -]) is called transposed Leibniz-Poisson if it satisfies the identities

(r,y,2) =0, zy=yz, 2x{y,z}={zy, 2z} +{y, 2z},

gk 2h = Ho o 2hwd HHa {y 24 {o{ys 2 = Heoyd 23 + {y {23

We will denote this variety by TLPBoiss.

The full graph of degenerations of transposed Leibniz—Poisson algebras in dimension 2 was
studied in [5]. The variety TLPoiss? has three irreducible components [5], corresponding to the
algebras:

2
i=

Iir (T2Poiss?) = { O(T2FF) | e {U o(zmg(a))} :

where

A Multiplication table
52%% T3 €1e1 = €1 €9€9 = €9
52%5 T4 €1e1 = €1 €169 = €9 {61, 61} — €2
TLP3(a) | T | erer =61 erea =€z {e1,ea} =aeq {ea,e1} = —aey

1.39.3 2-dimensional Novikov—Poisson algebras
An algebra (%8, -, 0) is called Novikov-Poisson if it satisfies the identities

(,9,2) =0, zy=yz, (2,9,2)0 = (4,7,2)0, (xoy)oz=(r02)0y,

(zy)oz=2x(yoz), (xoy)z— (yox)z==x0 (yz) —yo (zz).

We will denote this variety by 91Boiss.
The full graph of degenerations of Novikov—Poisson algebras in dimension 2 was studied in [5].
The variety 9Boiss? has two irreducible components [5], corresponding to the algebras:

Irr (MPoiss?) = {O(snm%(a, 3)) }2 :

1=1

where
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A Multiplication table
2 Q, _ _ _ _
NP1 («, B) N07B ele1 = eq €9e9 = €9 ejoel =aey e90e = ey
2 a,fB _ _
NP5 (v, B) | Nog~ | erer = er e1ex = ey
e1oel =ael + e 61062:ﬁ62 €2 0 €1 = ey

1.39.4 2-dimensional pre-Lie Poisson algebras
An algebra (%8, -,0) is called pre-Lie Poisson if it satisfies the identities

(zy) oz = 2(y © 2),

(,y,2) =0, xy=yz,

We will denote this variety by p£Joiss.

The variety p£Poiss? has two irreducible components [5], corresponding to the algebras:

trr (ppaiss?) = {O(peR?) } U {O(peE() } U {OGLF (@ 7)) .

(;L’, y7 z)o = (y7 x? z)o7

(zoy)z— (yow)z =z o (yz) —yo (z2).

i=3
where
A Multiplication table
pﬁm% Pogo |e1o0e1 =eo ep0€e] = —e] €206y = —2¢e5
PLYR3 () P§, | e20e = —e €9 0 ey = aen
pﬁmg(a, B) Ng@ﬁ ele; = e egeg = €9 e10e] = aey €9 0 ey = [Beg
pLP3 (o, B) Ng‘éﬁ ele; = eq eles = ey
e1o0e; = ey + eg 61062:ﬁ62 €2 0 €1 = ey

1.39.5 2-dimensional commutative pre-Lie algebras

An algebra (B, -, 0) is called commutative pre-Lie if it satisfies the identities

where

Irr (€PL2) = {o(e:qm?)} 1u{(’)(¢‘l§£?(a>)}ll :

(x,y,2) =0, xy=yz,

(;L’, y7 z)o = (y7 x? z)o7

zo(yz)=(zoy)z+y(zoz).

We will denote this variety by CBL.
The full graph of degenerations of commutative pre-Lie in dimension 2 was studied in [5].
The variety ¢£2 has eleven irreducible components [5], corresponding to the algebras:

5
=

1=6

259
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A Multiplication table
C‘BE% Cor | e10e1 =€ €90 e = €3
@‘BE% Cog €1e1 = eq €2€9 = €9
Q:&Bfé CH €1e1 = e1 €1€9 = €9 €2 O €9 = €9
C‘Bﬂﬁ Ci3 | e1e1 = €1 €90 e = €3
CPLZ Ciy | e1e1 = e e1oe; = e e1 0 ey = 2ey
CPLE(a) 65 | eroer =e; €10 ey = ey
CPLE() 66 | eroer =e; €106y = ey €30€] = ey
CPLE () % | erer = e1 e1ea = €9 €10 ey = aes
@‘1323(04) ?2 €11 = €1 €1 0 €2 = (xey
CPLYy(a) | CF5 | erer = eo

ejoe; =aqe; e10ey =2aey eg0e] =e1+aey €9 0ey = 2y

CPL2 (o) & | erer = ez e10e] = aey

1.39.6 2-dimensional anti-Pre-Lie Poisson algebras
An algebra (B, -, o) is called anti-pre-Lie Poisson if it satisfies the identities
(x,y,2) =0, zy=yz, wo(yoz)—yo(zoz)=(yox—zoy)oz, J(z,y,2)0=J(y,,2)o,

2(@oy—you)z=y-(roz)—x(yoz), 2zo(yz)=(zx)oy+z-(roy).

We will denote this variety by ap£JBoiss.
The variety ap£Poiss? has three irreducible components [5], corresponding to the algebras:

Irr (apL£Poiss?) = {O(apﬁm%)} U {O(apﬁ‘ﬁ%(a,ﬁ)) }3 )

=2
where
A Multiplication table
apLP7 Ags | e10e1=—e e20e1 = —eg
apﬁfﬁg(a, B) A%ﬁ ele1 = ey €26y = €9 epoe] = aeyl e0ey = ey
ap P2 (a, B) A?l’ﬁ eje1 = eq e1es = €9
eroe; = (2a—fB)e;+e2 e1oes=aey egoe; = fPey

1.39.7 2-dimensional pre-Poisson algebras
An algebra (B, -,0) is called pre-Poisson if it satisfies the identities
z(yz) = (yz+xy)z, (voy—yoz)z=wzo(yz)—y(roz),

(xy +yz)oz=1x(yoz)+y(roxz).

We will denote this variety by pRoiss.
The variety pBoiss> has five irreducible components [5], corresponding to the algebras:
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— 33 - 5
.2 2 2
Irr (pPoiss”) = {(’)(piﬁi)}i_l U {O(p%z(a)) }i_4,
where
A Multiplication table
)
PP Co7 | e10€1=€1 e20e3 =e3
5 C = =2 =3 =
p‘BZ 08 | e10€e1 =e€1 e10ex = 2ey 62061—2€1+62 €2 0 e9 = €9
)
p‘B3 PlO e1e1 = €9 e10e; =eq €1 069 = €9 €9 0€e] = €9
)
pPi() G5 |eroer =e; ejoex = ey
p)
pP: () (o leroer=e1 eoea=aey eyoe =ey

1.40 Compatible algebras

1.40.1 2-dimensional compatible commutative associative algebras

An algebra (€, -, %) is called compatible commutative associative if it satisfies the identities
TY =Yr, T*Y =Y * T, (l’,y,Z) = 07 (ac,y,z)* = 07

(xxy)z+ (xy) x z =z * (yz) + x(y * 2).

We will denote this variety by C€2l.
The variety ¢€2? has two irreducible components [7], corresponding to the algebras:

Irr (€€2%) = {U o(ct@@(a,ﬁ))} u {U O((ﬁ@ﬂ%(a,ﬁ,’y))} :

where
A Multiplication table
C@Q[%(oz, B) ngg,ﬁ e1e] = ey €26y = €9
el * e] = aey eo * eg = ey
CeWd(a, B,7)|C5s"  erer = er ey = €3 erker = (y+B—a)er — PBey
e1x eg = aey + Beg eg x 61 = aey + Beg eg * eg = —aeq + yeo

1.40.2 2-dimensional compatible associative algebras
An algebra (€, -, %) is called compatible associative if it satisfies the identities
(x7y7 Z) = 07 (waya Z)* = 07

(xxy)z+ (zy) * 2 =z % (yz) + x(y * 2).

We will denote this variety by €2L.
The variety €22 has four irreducible components [7], corresponding to the algebras:
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Irr (€20%) = {WQ@)}: U {U O(@@(a,ﬁ))} u {U 0(@1?1(@,5,7))} :

where
A Multiplication table
@Q[f ng €1€1 = €1 €169 = €9
€y *x €1 = €1 €9 % €9 = €9
QQ@ 633 e1ep = ex €2€1 = €9
€1 X eg = €1 €2 % €2 = €9
2 a,B _ _
CA3(or, B)  |Csg” |ere1 = er €26y = €9
el * e1 = ey eo * eg = fBeg
2 a,f, _ _ _
€A (a, B,7)|Ca8 " |erer = e exey = € erxer = (y+ 8 —a)er — Bey
e1x eg = aey + Beg eg x 61 = aey + Bey eg k eg = —aeq + yeo

1.40.3 2-dimensional compatible Novikov algebras
An algebra (€, -, %) is called compatible Novikov if it satisfies the identities

(%,y,Z) = (y,x,z), (xy)z = (xz)y, (x7y7 Z)* = (y,x,z)*, (x * y) * 2= (‘T * Z) *Y,
(xxy)z—x*(yz) + (xy) *xz —x(y*2) = (y*xx)z — yx (x2) + (yz) * 2 — y(z * 2),

(x*xy)z+ (xy) xz = (v * 2)y + (v2) * y.

We will denote this variety by €91.
The variety €92 has six irreducible components [7], corresponding to the algebras:

4 6
Irr (€N?) = {o(@n%)} U {U (9(@13(@,5))} U {U O(Q‘ﬁf(a,ﬁ,v))} :
=2 =5
where
A Multiplication table
@ﬁ% 633 €1e1 = €1 €9€1 = €9
€1 *x ey = €1 €9 % €2 = €9
@ﬁ%(a, B) ngﬁ ere1 = ey + ey ese] = €9
el xe] = ae e1 % eg = ey €9 * €] = (eg
eNZ(a, B) C;‘Zﬁ ese] = e el * eg = aey
62*612561 € * €p = €1 + (€2
N (a, B) ngﬁ ere] = e1 €9€y = €9
e1 xe; = aeq €9 * eg = ey
@ﬁ%(a,ﬁ,y) C’g‘l’ﬁ’7 ele1 = ey e1ez = aesy ese] = es
e1xep = fep +ey e ke =yey eg * e1 = fesy
CNE (v, B,7) C?éﬁ’” ele; = ey egey = € epxer = (y+ B —a)e — fey
e1xeg = ey + Pegy egxe; = aer + Bey eg*k eg = —aeq + yes
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1.40.4 2-dimensional compatible pre-Lie algebras
An algebra (€, -, %) is called compatible pre-Lie if it satisfies the identities

(x7 y? z) = (y7 ':L'7 z)? (;L’, y7 Z)* = (y7 x? z)*?

(xxy)z—x*(yz) + (xy)*xz —x(y*2) = (y*xx)z —y * (x2) + (yx) * 2 — y(x * 2).

We will denote this variety by CpL.
The variety €pL? has fourteen irreducible components [7], corresponding to the algebras:

Irr (€p22) =
9 10 14
2 2 2 2
{o(e:p):i)}, U {U O(@psg(a))} U {U O(epLs: (a,B))} U {U O(epLs: (a,ﬁ,’y))}
=1 i=4 i=11
where
A Multiplication table
Cpei Cos  |e1e1 =€ e1es = eg
€2 * €1 = €1 €9 * €3 = €9
¢p£§ C33 ejer =€ €261 = €9
€1 % €3 = €] €9 * €9 = €9
¢pLi(a) Cs;  |eter =€ ere2 = 2ez €ge1 = €3
e1 *x e = aeq e1 *x eg = e1 + 2aes
e9 x e = 2e1 + aes €9 * ey = €9
2 a, _ _
Q:]J£4(Oé,5) COQ e1e1 =e1 + es ege] = ey
el xe1 = aey e * eg = fBesy e * €1 = (ey
2 @, _ _
Q:]J£5(Oé,5) Cll e1er =e1 + es e1es = ey
€1 xe1 = aeq e1 * eg = fBesy
2 a, _ _
pLi(a, B) Cos exe] =€ e1 * e = ey
es x e1 = feq €o % €9 = €1 + aey
ng%(%ﬂ) C;% €161 = €1 €162 = %62 el xe1 = 2aeq
e1*x e = e + aey eg x 1 = 2e1 eo * eg = fBe1 + e
Q:pﬂ%(a,ﬂ) C?é €11 = €1 eres = 2e9 ese] = €n
e1xe1 = aey + Beo e1 % e = 2aey
ez xe; = e+ ae €9 % €9 = 2e9
2 a, _ _
pLy(a, B) Csg eje; = e €26y = €9
€1 xe1 = aey €9 * €9 = [egy
2 a, 1
CpLip(a, B) |C4]7 |erer = e eren = 2ey eser = Le + e
exe2 = €3 €1 x e = aeyp e1 x eg = fBe1 + 2aes
exxer = (284 3a) el +aes exxes = 2fer + (a+ fB)es
2 a,B, _ _
CpLii(a,B,7) [Coi” 7 [erer = e eres = aey
e1xep = fBer + e €1 * €3 = Y€y
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2 a,f, _ _ _
CpLis(a, B,7) [C17 7 [erer = e erea = aey €961 = €9
e1 * e = fBej + eg el * eg = Yey ey e1 = fey
2 a,f, _ _
CpLiz(a, B,7) [Cs57 7 [erer = e e9ey = €9
erxe; = (y+ B —a)er — Pey e1 xey = aey + Pes
eg *x e1 = aeq + fesy eg % €9 = —ae] + yeo
2 a,B, _ _ _ 1
CpLiy(a, B,7) [Cg” 7 [erer = e e1ea = 2e3 exe1 = €1 + e
€9y = €9 e1 *x e1 = aer + Bes
el x es = 2aen ea x €1 = ye] + aex eg *x eg = 2yex

2 The level classification of algebras

Throughout this section, we summarize the level classification of different varieties of (not
necessarily associative) algebras over the field C. In what follows, we will not refer to the base
field anymore.

Let us establish some notation that will be used throughout this section. Let m,m1,...,mg
be positive integers such that Zle m; = m, and let &, be the symmetric group on ¢ elements.
There is a natural action of &,,, X --- x &,,, on C™: the symmetric group &,,, permutes the
components located from the position number Zi;} m; + 1 to the position number Zi-:l m; in
C™. We will denote by K,,, . m, the fixed set of representatives of this action. There is also
an action of C* on C™ by multiplication. Both actions commute and stabilize the zero element.
Then, K7, ., Wwill denote a fixed set of representatives of the action of G,y X -+ X &p x C

on C™\ (0,...,0).

2.1 Algebras of level one

The complete classification of algebras of level one was given in [65]. It was proven that every
2-dimensional algebra of level one is isomorphic to one of the following algebras:

A Multiplication table
TA7 Dy €16 = €2 €261 = —€2
1A% )\2 €1€1 = €9
1A§(o¢) va(a) | eteg =e1  ejeg =aes  ege; = (1 —a)esy

In dimension n > 3, the classification is the following:

A Multiplication table
1 —
AT Pn €16, = €; €i€1 = —€
T
AL AP anp_s | e1e1 = es
1 —
Ag ng Danp—3 | e1eg =e€3 e = —e3
T — - —
Al(a) | vp(a) ere1 =e1 ere;=ae;  ee; = (1 —a)e,

for 2 <i<n.
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2.2 Algebras of level two

The classification of all algebras of level two is considerably more complex than that of level
one, and was accomplished in [61].
Each 2-dimensional algebra of level two is isomorphic to one of the following algebras:

A Multiplication table
2A% A2 €1e1 = €9 €169 = €9 €21 = —€9
ZA% E4 e1e1 = eq e1e2 = e1 + e €269 = €9
2A%(a) ¢ e1e1 =e1 + ey er1eg = aeo ese1 = (1 — a)es
2A%(a) g e1es = aey ese1 = (1 — a)es
2A%(a,B), a+ B #1 Dg"[j ele1 = eq e1ex = qes eser = fesy

Each 3-dimensional algebra of level two is isomorphic to one of the following algebras:

A Multiplication table
2Ai;’ C X1 A2 €1e1 = €2 €162 = €9
€13 = €3 €21 = —€9
€3€1 — —e€3
2A§’ CxEy eijer = e1 €1ea = e1 + ey
eje3 = es3 €263 = €3
€3€2 = €3
2A§(a) C xq AT ere1 = eq + e e1e = aey
e1e3 = aes ege; = (1 — a)es
ese; = (1 —a)es
2A3(a) C xt BY e1ey = ey e1es = aes
ege; = (1 —a)egs  ese; = (1 —a)es
2A§(a75)7 a+pB#1 C >46 Dgﬁ eijer = ey e1ea = aey
e1e3 = aes ezer = ey
ese; = fBeg
A, B), (o, B) € K3 | F*P erer = e3 e1ey = ae3
eae1 = fles
273 K* TZW _ _
2o, B), (a,B) € K3 | T ejeg = aeg +e3  erez = fe3
ege] = —aeg — ez ege; = —[Jeg
2,a,8
2A8(, B), (a,B) € Ky | TP erer = e e1e2 = aep +e3
ejez = fPes egze; = (1 —a)ex —e3
€3€e1 — (1 — 5)63.

Every 4-dimensional algebra of level two is isomorphic to one of the following algebras:
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A Multiplication table
2.A‘11 (C2 X1 A2 e1e1 = e €162 = €2
€1€3 = €3 €1€4 = €4
€9€1 = —€9 €3€e1 — —€3
€461 = —€4
QA% (CZ X E4 e1ep = ep €162 = €1 + €3
€1€3 = €3 €14 = €4
€2€2 = €2 eseg = e3
€462 = €4
2A§ T03 €1€9 = €3 €1€3 = €4
€261 = —€3 €3€1 = —€4
2A%(a) C?xq A} |ere1=e1+ e e1ea = aes
€163 = Qeg €14 = ey
ege; = (1 — a)es ese; = (1 — a)es
eqer = (1 —a)ey
2A%(a) C? x} BS e1ea = aey ere3 = aes
e1eq4 = aey ese; = (1 — a)eq
ese; = (1 —a)es eqer = (1 —a)ey
2A4(0,B), a+B#£1 | C2xEDY7 [ erer = e erer = aes
€163 = Qeg €14 = ey
ege; = [Beg eze; = (es
eqe; = Bey
2A%(a,B), (,B) € K |F¥PacC e1e] = e3 e1eg = aes
. ege1 = fes
2A%(a, B), (o, B) € Ki, Tg’a’ﬁ e1ea = ey + €3 eres = fes
e1eq = ey eze] = —aey — €3
. eze; = —fleg eser = —fey
2A3(O‘>5)7 (Oz,ﬁ) € Kl,l T127a’6 €11 = €1 €12 = e + €3
ejes = fBes e1es = fBey
ese; = (1 —a)eg —e3  ege; = (1 — Pes
eqer = (1 — Bey

Every n-dimensional algebra of level two, n > 5, is isomorphic to one of the following algebras:

A Multiplication table
QA? cn2 X1 Ag €161 = €3 e|1e; = €;
€i€1 = —¢&;
2 —2
Ag (6 R ejer = ex eleg = ej + €3
€165 = €5 €2€2 = €2
- €j€2 = ej
2 ; _ —
Az T, e1ex = €3 e1e4 = €5
€261 = —€3 €4€1 = —6€5
Continued on next page
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A Multiplication table
‘A ny @ Cn° e1ez = €5 €21 = —e5
€3€4 = €5 €4€3 = —€5
A% () C" 2 x4 AY e1e1 = e1 + e e1e; = ae;
eier = (1 — a)e;
2Ag‘(a) cn—2 xt Bg e1e; = ae; eier = (1 — a)e;
2A?(a,ﬂ), a+ b #£1 cr—2 xi Dy | erer = e e1e; = ae;
eie1 = fBe;
2Ag(a7/8)7 (OZ,B) € Ké( Fa’ﬁ @ (cn—3 €1€1 = €3 €1€2 = ae3
. ege; = (e
27 9
*Af(a, B), (,B) €Kiy | Ty ereg = aey +e3  erej = [e;
ege] = —aeg —e3  ejer = —fe;
2,0,8
2AT (o, B), (o, B) € Kiq | T7 eje; = e1 e1ea = ey + €3
e1e; = fe; ese1 = (1 —a)ey —e3
ejer = (1 — Bey,

for2<i<nand3<j<n.

2.3 Nilpotent algebras
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The nilpotent algebras of level one can be selected from the general results of [65], and those

of level two, from [61].

2.3.1 Nilpotent algebras of level one

There exists only one 2-dimensional nilpotent algebras of level one, up to isomorphism:

A

Multiplication table

1N%

A2

€1€1 = €2

In dimension n > 3, there exist two:

A Multiplication table
IN? [ Xa@an—2 |ere1 = ez
1Ng ng Oap_3 | €162 =€3 €261 = —e3

2.3.2 Nilpotent algebras of level two

In this section, we correct some inaccuracies of [29].
There are no nilpotent algebras of level two in dimension 2; in dimension 3, there exists only

one family:
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A

Multiplication table

Fo.B

“Ny(a, ), (. f) € K3

ele] =e3 ejex = ez ege; = fes

In dimension 4, we find one algebra and one family, namely:

A Multiplication table
2N‘11 Tg €1€p = €3 €1€3 — €4 €o€] = —€3 €361 — —€4
"N3(o, 8), (o,8) € K3 | F*P & C | ere1 =e3 e1ea = aes  ezer = Peg

In dimension n > 5, the classification of nilpotent algebras of level two is as follows:

A Multiplication table
7,2
N7 Ty e1e9 = e3 e1e4 = e5 ege] = —e3  eqe] = —e;5
N3 @ C? €162 = €5 €2€] = —€5 €364 = €5 eq4€3 = —€5
2N§(a,5), (0475) S K; FoB D cn—s elje] =es €1y = ey €961 = 563

2.4 Commutative algebras

Thanks to [65], we know that every n-dimensional commutative algebra of level one, with

n > 2, is isomorphic to one of the following two algebras:

A Multiplication table
ICT | M@ an—a | ere1 = e
1Cc3 Vn(%) eje1 =e; e = %ei,

for 2 <i<n.

In [61], the classification of the commutative algebras of level two was also presented. Each
commutative algebra of dimension 2 and level two is isomorphic to one of the following algebras:

A Multiplication table
T
20% 12 eje; =e;+ey ejeg = %62
T
202 B2 €169 = leg
2 2 2
22 T o — —
Ci(a), a# 5 | D, ele1 = e e1es = aes

In dimension n > 3, the commutative algebras of level two are as follows:
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A Multiplication table
T
ZC? C" 2%, A7 elep =e1 +ey ele = %ei
2
T
ZCQ (Cn—Z >46 B22 e1e; = %62‘
ch Fl! D cn—3 eije1 = es e1eg = €3
2 T =7 I YO
Cl(a), a# 5 | C"% xy D, e1e] = e e1e; = ae;,

for 2 < i <n.

2.5 Anticommutative algebras

Anticommutative algebras of levels one and two are completely classified in [30] and [61],
respectively. For higher levels, we will impose the condition of being Engel to classify the algebras
(see [70]). The algebra A is called m-Engel if (Lg)™ = 0 for any a € A. Here we use the notation
L, for the operator of left multiplication in 2. We will call the algebra A Engel if it is m-Engel
for some m > 0.

2.5.1 Anticommutative algebras of level one

The unique 2-dimensional anticommutative algebra of level one is:

A Multiplication table
1AC% Py | €162 = €2

In dimension n > 3, any anticommutative algebra of level one is isomorphic to one of the
following two algebras:

A Multiplication table
'ACY | p, e16 = e
TACY ng @ anp—3 | erea = e3,

for 2 <i<n.
Note that all these algebras are Lie. On the other hand, only 'ACY is Engel, for n > 3.

2.5.2 Anticommutative algebras of level two

There are no anticommutative algebras of level two and dimension 2, and in dimension 3 there
exists only one:
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A Multiplication table
2ACH o, B), (o, B) € K3 T(Z)’O"B elea = aeg +e3  erez = fBes

In dimension 4, it turns out that there are, up to isomorphism, two anticommutative algebras:

A Multiplication table
21&(311l Tg’ €1€2 = €3 €1€3 = €4
Lo
2ACH (v, B), (o, 8) € K7y | T9™" | erea = aes +e3 ere3 = fes  ejes = Bey

Finally, for n > 5, every n-dimensional anticommutative algebra of level two is isomorphic to
one of the following algebras:

A Multiplication table
2AC’1‘ T02’2 €162 = e3 e1eq4 = €5
“ACh n2®C" 0 | ereg = es e3eq = e

o
2ACE (a, B), (o, B) € K3, | Ty o e1ea = aeg +e3  erej = fe;y,

for 3 <j <n.
Note that all anticommutative algebras of the level two are Lie algebras. Also, any Engel
anticommutative algebra of level two is isomorphic to 2AC{, to 2ACY or to 2AC%, for n > 5.

2.5.3 Engel anticommutative algebras of level three

There are no Engel anticommutative algebras of level three and dimension at most 4, and there
exists only one, up to isomorphism, of dimension 5:

A Multiplication table
3EAC? T3 €1€9 = €3 €1€3 = €5

In dimension 6, we find that every Engel anticommutative algebra of level three is isomorphic
to one of the following algebras:

A Multiplication table
3EAC(1) T3 €1€g — €3 €1€3 = €4
SEACS T272(e‘213) e1e9 = €5 €163 = eg €263 = €4
SEACS T272(eg4) e1e9 = €5 €163 = €5 €9e4 = €g

Finally, in dimension n > 7 there exist the following Engel anticommutative algebras, up to
isomorphism:
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A Multiplication table
SEACT | n3 e1ey = ey eseq = ey eseq = e
SEACY | T%2?2 €19 = €,_2 €163 = €,_1 €1€4 = €,
SEACY | T3 e1eg = e3 e1e3 = e,
SEACY T2’2(e§3_2) €1y = e,_1 e1e3 = e, €963 = €n_9
SEACYE | T%2(ehy) €1y = e,_1 e1e3 = e, eses = e

Note that every Engel anticommutative algebra of level three is a Lie algebra.

2.5.4 Engel anticommutative algebras of level four

The Engel anticommutative algebras of level four have dimension at least 5. In dimension 5 there
exist three, up to isomorphism:

A Multiplication table
4EAC? T4 €1€e9 = €3 €1€3 = €4 €1€4 = €5

TEACS | T3(e33) | e1ea = e3  eje3 =e5  eaes

€4
TEAC] | T3(e5,) | e1ea = €3 e1e3 =e5  egeq = e5

In dimension 6, there exist four:

A Multiplication table
4EAC€1) T3’2 €1€9 = €5 €1€3 = €4 €1€4 = €¢
TEACS | T3(€3 e1€a = €3 €163 = eg €9€3 = €5

2 23
‘EACS T3(eg4)4 e1e9 = €3 e1e3 = eg €9e4 = €g
TEACS | T?%(8,) | erea =e5 ere3=es ezeq = g

In dimension n = 7,8, we find the following list:

A Multiplication table
T 2
EACY | T €162 = €,_1 €1€3 = ey e1e4 = €y
‘EACY Tg(egg_l) e1es = e3 eles = ey, €963 = €51
‘EACYE | T3(e3y) e1eg = e3 e1es = e, eses = €,
‘EACY T2’2(e§4 e1e9 = €p—1 €163 = ey, eses = e
‘EAC? T2’272(e§3) €169 = €9 €163 = €,_1 €164 = € ege3 = ey,

Finally, in dimension n > 9, we find the following Engel anticommutative algebras of level
four:
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A Multiplication table

4EAC’f N4 e1es = €9 eseq = €9 e5eg = €9 ereg = €9
‘EACY | T32 €162 = €,_1 €1€3 = ey e1e4 = €y

4EAC§ T2:2:2.2 €1€3 = €,_3 €1€3 = €p_2 €164 = €p_1 €165 = €y,
‘EACT T3(e23 ) | erea =e3 e1e3 = e, €963 = €n_1

TEAC? | T3(e) €16y = e3 e1e3 = e, eses = e,

‘EACE | T* 2( 1) e1e9 = €n—1 €163 = ey, eses = e

‘EAC? | T*? 2( 53) | erea =en—2 ejez =e,_1 ereqs =ey ege3 = ey,

Note that every Engel anticommutative algebra of level four is a Lie algebra.

2.5.5 Engel anticommutative algebras of level five
There are no Engel anticommutative algebras of level five and dimension lower than 5. In

dimension 5, there exist two Engel anticommutative algebras of level five, up to isomorphism:

A Multiplication table
SEAC? T3(e3,) | erea =e3 ele3=e5 ezeq =es
"EACS TA(e3;3) | erea =e3 ele3=es ejeq =e5 ege3 =e;

In dimension 6, every Engel anticommutative algebra of level five is isomorphic to one of the
following algebras:

A Multiplication table

5EAC(1) T4 €169 = €3 €163 = €4 €164 = €g

SEACS | T3(e§,) | erea=e3 eres=es ezeq =eq

SEACS | T3(cS5) | erea=e3 eres=es eses = cg

5 6 3,2/ .6 — — — —

EAC, | T°%(e33) | e1e2a =e5 eje3 =e€4 e1e4 =€ €263 = €6
In dimension 7, we find:
A Multiplication table
SEACI T4 €1€9 = €3 €1€3 = €4 €1e4 = €7
5EAC; 733 e1ey = €3 e1e3 = e4 €15 = eg €166 = €7
5EAC§ T3( 54) €169 = €3 €13 = e7 €34 = €7
EAC] | T%2(€fy) e1es = eg e1es = ey eses = ey
5EAC; T3 2( 7 ) €169 = €g €13 — €4 €14 = €7 e9€3 = €7
SEACg T2 2, 2( 7 ) €1€9 = €5 €1€3 = €¢ €1e4 = €7 €o€q4 = €7
SEACT | T*? 2( 4 — 656 + 655) e1es = ex e1e3 = eg €164 = €7 €3e3 = €4
€otg — —€7 €365 = €7

The Engel anticommutative algebras of level five and dimension n, with n = 8,9, 10, are the

following, up to isomorphism:
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A Multiplication table
SEACT | T* e1ex = e3 e1e3 = ey el1eq = e
SEACY | 1322 €1€9 = €,_2 €1€3 = €,_1 €14 =€5 €165 = €y
2
EACY | T3(e) e1es = e3 e1es3 = ey, eses = e,
5 2,2 — — —
EAC) | T%%(€}s) e1ex = e,_1 e1e3 = ey, eses5 = e,
SEAC? | T32(e €s) €163 = e,_1 €13 = ey eles = e, ese3=e¢,
SEACYE | T?22(e)) | erea =en 2 e1e3=e€n1 eres =€, egeq=ce,

Finally, in dimension n > 11, there exist, up to isomorphism, the following Engel anticom-
mutative algebras:

A Multiplication table
5 — — — —
EACY | 75 €1ez = e1]  ezeq = €11  €5€g = €11 €768 = €]
€9€10 = €11
SEACY | T* e1es = e3 e1e3 = ey e1eq4 = e,
5EAC§‘ 7322 €1€9 = €p—2 €163 = €,-1 €1€4 = €5 e1es = €,
PEAC] | T%%%22 | ejeg =en_4 €163 =€,_3 €1€4 =62 €165 =€p_1
€1€6 = €n
"EACY T3(€§4) eijes = €3 ejes = e, eseq = e
SEACY | T*?(e €1s) €169 = €1 €13 = e, eses = e
PEACY | T32(ely) €163 = ep,_1 €163 = ey e1e4 = e ese3 = e
5EAC§‘ T2’2’2( 51) | e1ea =e€n_2 eje3 =en_1 e1e4 =ey €264 = €,

As it is pointed out in [70], any Engel anticommutative algebra of level at most five is a
Lie algebra, except for "PEACS, "EACY, SEACY for n € {8,9,10}, "EAC? for n > 11 (all of
them grouped under the name T%(e,) in [70]) and "EAC?, which are Malcev. Also, any Engel
anticommutative algebra of level at most five is nilpotent.

2.6 Lie algebras

For results about Lie and Engel Lie algebras, we refer the reader to Subsection 2.5.

2.7 Malcev algebras

For results about Malcev and Engel Malcev algebras, we refer the reader to Subsection 2.5.

2.8 Jordan algebras

The classification of Jordan algebras of level two was given in [64]. In the same article,
the authors selected the Jordan algebras of level one from the classification of [65]. Also, the
classification of Jordan algebras of level two can be seen as an easy corollary of the general results
of [61]. In this survey, we will refer to the notation of the original work [64].
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2.8.1 Jordan algebras of level one

Every n-dimensional Jordan algebra of level one is isomorphic to one of the two following algebras:

A Multiplication table
Lyn Ao @ an—2 | ere1 = €3
1J§(%) I/n(%) ele1 = e ele = %ei, for2<i<n

2.8.2 Jordan algebras of level two
Up to isomorphism, there exist two Jordan algebras of level and dimension 2, namely:

A Multiplication table
2J% Jl €1€1 = €1
2J% J2 €1€1 = €1 €169 = €9

In dimension n > 3, we find the following list:

A Multiplication table
2.]? Jl €1€1 = €1

2.]3 Jg €1€; = €5

2.]? Jg €1€2 = €3,

for 1 < i < n. Note that 2J% and F1! @ C"3 (with the notation of [61]) are isomorphic, for
n > 3.
2.9 Left-alternative algebras

We select the left-alternative algebras of level one from the general classification of [65]. For

level two, consult [61].

2.9.1 Left-alternative algebras of level one

Up to isomorphism, the 2-dimensional left-alternative algebras of level one are

A Multiplication table
1LA% )\2 €1€1 = €9
1LA§4 7/2(0) €1€1 = €1 €2€1 = €9
1LA§ I/g(l) €1€1 = €1 €169 = €9

In dimension n > 3, the classification is the following:
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A Multiplication table
lLA? AP a,_o | e1e1 = es
1LA5L ”I”Lg Dap—3 | e1eg =e3 ege] = —e3
LAYL | v,(0) eier = e€;
LAY | v,(1) ele; = €,

Note that all these algebras are associative.

2.9.2 Left-alternative algebras of level two
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In dimension 2, there exist only two left-alternative algebras of level two, up to isomorphism:

A Multiplication table
QLA% Dg’o e1e1 = e1
QLA% D%’l €162 = €9 €961 = €9

In dimension 3, the classification is the following:

A Multiplication table
2LA§’ C >46 Dg’o eijer = e1
2LA§ C >46 D%’l eijer = e1 €169 = €2 eies es
€9€1 = €9 €3€e1 — €3
2 3 _
LAj(a,8), (o, fB) € K5 | F*P €11 = €3 e1eg = aeg eze; = PBeg
2,1,0
2L;Ai T17 ’ eijer = e1 €1€g = €2 +e3 €21 = —€3
€3€1 = €3
2,0,1
2L;Ag TI’O’ eijer = e1 €12 = €3 eies €3
€2€1 = €2 — €3
In dimension 4, we find:
A Multiplication table
2LAA41l C >46 Dg’o eijer = e1
I,
2L;Aél C >46 D2’ eijer = e1 e1egy = €2 eies €3
€2€1 = €2 €3€1 = €3
LA (o, B), (a,B) € K5 | F*P @ C |eje; =e3 eles = aes ese] = feg
2,1,0
2L;Ai Tl’ 0 eijer = e1 €1€g = €2 +e3 €21 = —€3
€3€1 = €3
2,0,1
2L;Agl TI’O’ eijer = e1 €12 = €3 eies €3
€2€1 = €2 — €3
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Finally, the classification of n-dimensional left-alternative algebras of level two, for n > 5, is
the following:

A Multiplication table
72
LAY Ty e1e2 = e3 e1e4 = es eze1 = —e3
€461 = —¢€5
“LA% n2 & C"° er1eg = e; eze1 = —€5 eseq = €5
€43 = —¢€5
2LA§ crn—2 Ng D(2J,0 eler = eq
LAY Cn=2 % D%’l e1e] = e e1e; = € ee1 = ¢
2LA?(O¢,B), (a,ﬁ) S Ké( FoP (&) cr—3 eje1 = es ejeg = aes ese] = /8@3
2,1,0
LA by o ere; = eq erex = ez +e3  ege] = —€3
€j€1 = €4
2,0,1
2LA? Tl 0 e1er = ej €169 = €3 e1e; = ¢;
€2€1 = €3 — €3,

for2<i<nand3<j<n.
Note that all these algebras are associative.

2.10 Associative algebras

We refer the reader to Subsection 2.9, as the associative and left-alternative algebras of levels
one and two coincide.

2.11 Leibniz algebras

In this section, we will deal with Leibniz algebras of levels one and two. The algebras are
selected from the general classifications of [65] and [61], respectively.

2.11.1 Leibniz algebras of level one

There exist two Leibniz algebras of level one and dimension 2: one of them is Lie, and the other
one is not.

A Multiplication table
1L% Dy | €162 =62 eze1 = —eo
1L% /\2 €1€1 = €9

In dimension n > 3, the classification is the following:
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A Multiplication table

1 —

LY | p, €1€; =¢€; ee] = —¢;
T

LY | M@ ap—2 | ere1 =e

1 —

LY | ng ©ap_3 | erea =e3 ege; = —eg,

for 2 <i<n.

2.11.2 Leibniz algebras of level two

In this section, we correct some inaccuracies of [29].
Up to isomorphism, there exists one Leibniz non-Lie algebra of level two and dimension 2:

A Multiplication table
2L% Bg €2€1 = €2

In dimension 3, the classification is:

A Multiplication table
2:[4515 C Ng Bg €2€1 = €3 €3€e1 = €3
2L§’(a,ﬁ), (o, B) € K3 Fof ele; = es e1es = aeg  ege] = fes
2,03
2L3 (o, B), (,8) € K3 | To™® | erea = aea +e3 eje3 = fes  eger = —aeq — e3
eze; = —feg

The 4-dimensional Leibniz algebras of level two are, up to isomorphism, the following ones:

A Multiplication table
2:[4‘11 Tg €169 = €3 €13 = €4 €21 = —€3
€3€1 — —€4
2L% (C2 Ng Bg €2€1 = €3 eze] = es €461 = €4
274
Li(o, B), (o, B) € K3 Fo"i@ C | ere1 =e3 e1es = aes ese1 = Bes
21 4 2,a,8 _ _ _
Li(o, B), (o, B) € Kt | Ty e1es = aeg + €3 ere3 = Peg ereq = PBey
ege1 = —qeg —e3  ege; = —fez  eqer = —fey

Finally, in dimension n > 5, the classification of Leibniz algebras of level two up to isomor-
phism is as follows:
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A Multiplication table

°LY 7y e1ey = €3 eleg =e5  ege] = —e3
eqe] = —e;

°Ly ne ®C"° e1e2 = e; €261 = —e5 €34 = €5
€43 = —¢€5

2Ly C" 2 i BY | eier = e

L} (o, B), (o,8) € K5 |F*P@C" 7 | erer = e3 eles = aegy  ege; = fles

2L (o, B), (o, B) € Kty | Ty’ erex = aeg +e3  ejej = fej  eze; = —aep —e3
ejer = —pPej,

for2<i<nand 3<j<n.

2.12 n-ary algebras

n [71], the author described all the n-ary algebras of level one. In particular, he gave an
explicit classification for n = 2, which coincides with the one in [65], and for n = 3, which we
present below.

2.12.1 Ternary algebras of level one

Up to isomorphism, there exist the following ternary algebras of level one and dimension 2:

A Multiplication table
1T% p:(3,0,...) [61,61,61]262
'T3(e, B1,B2,83) | p=(2,0,...) le1,e1,e1] = eey le1, e1,e2] = Bzen
le1,e2,e1] = Paer lea, e1,e1] = Bren
1T§(a1,a2,a3) P = (1,1,0,...) [61761762] = (042 —a3)61 [61762, 1] = (ag—al)el
[e2,e1,e1] = (a1 —ag)er  [er, ez, e2] = (o — a1 )en
[62, €1, 62] = (041 — a3)62 [62, €9, 61] (043 — ag)eg

Here (an — ag, a0 — a3, a3 — aq) # (0,0,0) and the triple (a1, as9,as3) is determined (by
the isomorphism class of 1T§(a1,a2,a3)) up to multiplication by a nonzero element of C and
addition of an element of C. Furthermore, € € {0,1}, 81 + B2 + B3 = ¢, and if € = 0, then the
triple (81, B2, 83) # (0,0,0) is determined (by the isomorphism class of 'T3(e, 81, 32, 53)) up to
multiplication by a nonzero element of C.

In dimension 3, we find the following ternary algebras, up to isomorphism:
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A

Multiplication table

'} p = (3,0, ler,e1,e1] = €2

'T3(e, 51, B2, 83) | p= (2,0, le1,e1,e1] = eeq le1,e1,e2] = Baer
le1, e2,e1] = Baen lea, e1,e1] = Bres
le1,e1,e3] = Bzes le1, e3,e1] = Paes
le3, e1,e1] = Bies

1T§(a1,a2,a3) (1,1,0, ) [61761, 2] = (042 —ag)el [61762761] (ag—al)el
le2,e1,e1] = (a1 —az)er  [e1,e2,e2] = (2 — a1)en
[62, €1,¢€ 2] (041 — a3)€2 [e €9, 61] = (043 — ag)eg
le1, €2, e3] = azes le1, e3,e2] = —anes
[e2, €1, €3] = —azes [e2, €3, €1] = ae3
le3, e1,e2] = ae3 le3, e2,e1] = —aqe3

'Ti(ar,2,a3) [ p=1(2,1,0,...) | [e1, e1,€2] = azes le1,e2,e1] = ages
[e2,e1,e1] = age3

Here a1 +as+a3 = 0 and the triple (a1, az, as) # (0,0,0) is determined (by the isomorphism class
of the corresponding algebra T3 (a1, g, a3) or 'T3(aq, a2, a3)) up to multiplication by a nonzero
element of C. Furthermore, € € {0,1}, 81 + B2 + B3 = ¢, and if € = 0, then (51, B2, 53) # (0,0,0)
is determined (by the isomorphism class of T3 (e, 81, B2, 83)) up to multiplication by a nonzero

element of C.

In dimension n > 4, the classification is the following:

A Multiplication table

1T? p:(3,0, ) [61,61,61] = €9

'T5 (e, B1, B2, 83) | p=(2,0,...) le1,e1,e1] = eey le1, e1, €] = Bse;
le1, €5, e1] = Bae; lei,e1,e1] = Bre;

1T§(O¢1,O¢2,O&3) (1,1,0, .. ) [61,61,62] (042 —043)61 [61,62,61] (013 —041)61
[e2,e1,e1] = (a1 —an)er  [er,e2,e2] = (2 — ar)en
[e2,e1,€2] = (a1 —az)ea ez, e2,e1] = (a3 — az)es
le1, e2,€5] = asze; le1, €5, e2] = —aze;
le2, e1, €] = —aze; le2, €5, e1] = ane;j
lej,e1,ea] = aqe; lej,e2,e1] = —aie;

T a1,a9,a3) | p=(2,1,0,...) le1, e1,e2] = ases le1, e2,€1] = ages
[62, €1, 61] — (x1€3

1Tg :(1,1,1,0,...) [61,62, 3] = €4 [61,63,62] = —€4
[62,61,63] = —€4 [62,63,61] = €4
[63,61,62] — €4 [63,62,61] — —€4

Here 2 < ¢ < n and 3 < j < n. Regarding the coefficients, we have that oy + as + a3 = 0,
and (a1, az,a3) # (0,0,0) is determined up to multiplication by a nonzero element of C (by the
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isomorphism class of 'T% (a1, ag, a3) or 'T% (a1, az, as)). Moreover, € € {0,1}, B + 2 + B3 = ¢,
and if € = 0, then (81, B2, 83) # (0,0,0) is determined up to multiplication by a nonzero element
of C (by the isomorphism class of 'T% (e, 81, B2, 53)).

References

[1]

2]

[11]

[12]

[13]

H. Abdelwahab, K. Abdurasulov, I. Kaygorodov. The algebraic and geometric classification
of noncommutative Jordan algebras. arXiv:2407.05429.

H. Abdelwahab, E. Barreiro, A. Calderén, A. Fernandez Ouaridi. The algebraic classification
and degenerations of nilpotent Poisson algebras. J. Algebra, 615 (2023), 243-277.

H. Abdelwahab, E. Barreiro, A. Calderén, A. Fernandez Ouaridi. The algebraic and geomet-
ric classification of nilpotent Lie triple systems up to dimension four. Rev. R. Acad. Cienc.
Exactas Fis. Nat. Ser. A Mat., 117 (2023), no. 1, 11.

H. Abdelwahab, A. J. Calderén, I. Kaygorodov. The algebraic and geometric classification
of nilpotent binary Lie algebras. Int. J. Algebra Comput., 29 (2019), no. 6, 1113-1129.

H. Abdelwahab, A. Ferndndez Ouaridi, I. Kaygorodov. Degenerations of Poisson-type alge-
bras. arXiv:2403.17193.

H. Abdelwahab, A. Ferndndez Ouaridi, C. Martin Gonzalez. Degenerations of Poisson alge-
bras. J. Algebra Its Appl., DOI: 10.1142/S0219498825500872.

H. Abdelwahab, I. Kaygorodov, A. Makhlouf. The algebraic and geometric classification of
compatible pre-Lie algebras. SIGMA, 20 (2024), 107.

H. Abdelwahab, I. Kaygorodov, B. Sartayev. Shift associative algebras. arXiv:2408.07078.

K. Abdurasulov, I. Kaygorodov, A. Khudoyberdiyev. The algebraic and geometric classifi-
cation of nilpotent Leibniz algebras. arXiv:2307.00289.

J. Adashev, 1. Kaygorodov, A. Khudoyberdiyev, A. Sattarov. The algebraic and geometric
classification of nilpotent left symmetric algebras. J. Geom. Phys., 167 (2021), 104287.

J. Adashev, 1. Kaygorodov, A. Khudoyberdiyev, A. Sattarov. The algebraic and geometric
classification of nilpotent right commutative algebras. Results Math., 76 (2021), no. 1, 24.

M. A. Alvarez. On rigid 2-step nilpotent Lie algebras. Algebra Colloq., 25 (2018), no. 2,
349-360.

M. A. Alvarez. The variety of 7-dimensional 2-step nilpotent Lie algebras. Symmetry, 10
(2018), no. 1, 26.

M. A. Alvarez. Degenerations of 8-dimensional 2-step nilpotent Lie algebras. Algebra Rep-
resent. Theory, 24 (2021), no. 5, 1231-1243.

M. A. Alvarez, I. Herndndez. On degenerations of Lie superalgebras. Linear Multilinear
Algebra, 68 (2020), no. 1, 29-44.



[16]

[17]

[18]

[19]

[20]

28]

[29]

[30]

[31]

The geometric classification of non-associative algebras 281

M. A. Alvarez, I. Herndndez. Varieties of nilpotent Lie superalgebras of dimension < 5.
Forum Math., 32 (2020), no. 3, 641-661.

M. A. Alvarez, I. Hernandez, 1. Kaygorodov. Degenerations of Jordan superalgebras. Bull.
Malays. Math. Sci. Soc., 42 (2019), no. 6, 3289-3301.

M. A. Alvarez, R. Fehlberg Junior, I. Kaygorodov. The algebraic and geometric classification
of Zinbiel algebras. J. Pure Appl. Algebra, 226 (2022), no. 11, 107106.

M. A. Alvarez, I. Kaygorodov. The algebraic and geometric classification of nilpotent weakly
associative and symmetric Leibniz algebras. J. Algebra, 588 (2021), 278-314.

P. D. Beites, A. Fernandez Ouaridi, I. Kaygorodov. The algebraic and geometric classification
of transposed Poisson algebras. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 117
(2023), no. 2, 55.

J. M. Ancochea Bermudez, J. Fresan, J. Margalef Bentabol. Contractions of low-dimensional
nilpotent Jordan algebras. Commun. Algebra, 39 (2011), no. 3, 1139-1151.

T. Benes, D. Burde. Degenerations of pre-Lie algebras. J. Math. Phys., 50 (2009), no. 11,
112102.

T. Benes, D. Burde. Classification of orbit closures in the variety of three-dimensional
Novikov algebras. J. Algebra Appl., 13 (2014), no. 2, 1350081.

D. Burde, C. Steinhoff. Classification of orbit closures of 4-dimensional complex Lie algebras.
J. Algebra, 214 (1999), no. 2, 729-739.

A. J. Calderéon Martin, A. Fernandez Ouaridi, I. Kaygorodov. The classification of 2-
dimensional rigid algebras. Linear Multilinear Algebra, 68 (2020), no. 4, 828-844.

L. M. Camacho, I. Kaygorodov, V. Lopatkin, M. A. Salim. The variety of dual mock-Lie
algebras. Commun. Math., 28 (2020), no. 2, 161-178.

R. Fehlberg Junior, I. Kaygorodov, C. Kuster. The algebraic and geometric classification of
antiassociative algebras. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 116 (2022),
no. 2, 78.

A. Fernandez Ouaridi, I. Kaygorodov, M. Khrypchenko, Y. Volkov. Degenerations of nilpo-
tent algebras. J. Pure Appl. Algebra, 226 (2022), no. 3, 106850.

J. Francese, A. Khudoyberdiyev, B. Rennier, A. Voloshinov. Classification of algebras of
level two in the variety of nilpotent algebras and Leibniz algebras. J. Geom. Phys., 134
(2018), 142-152.

V. Gorbatsevich. On contractions and degeneracy of finite-dimensional algebras. Sov. Math.
(Iz. VUZ), 35 (1991), no. 10, 17-24.

V. Gorbatsevich. Anticommutative finite-dimensional algebras of the first three levels of
complexity. St. Petersburg Math. J., 5 (1994), 505-521.



282

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Ivan Kaygorodov, Mykola Khrypchenko and Pilar Paez-Guillan

V. Gorbatsevich. On the level of some solvable Lie algebras. Sib. Math. J., 39 (1998), no. 5,
872-883.

I. Gorshkov, I. Kaygorodov, M. Khrypchenko. The algebraic classification of nilpotent
Tortkara algebras. Commun. Algebra, 48 (2020), no. 8, 3608-3623.

I. Gorshkov, I. Kaygorodov, M. Khrypchenko. The geometric classification of nilpotent
Tortkara algebras. Commun. Algebra, 48 (2020), no. 1, 204-209.

I. Gorshkov, I. Kaygorodov, A. Kytmanov, M. Salim. The variety of nilpotent Tortkara
algebras. J. Sib. Fed. Univ. Math. Phys., 12 (2019), no. 2, 173-184.

I. Gorshkov, I. Kaygorodov, Y. Popov. Degenerations of Jordan algebras and Marginal
algebras. Algebra Colloq., 28 (2021), no. 2, 281-294.

F. Grunewald, J. O’Halloran. Varieties of nilpotent Lie algebras of dimension less than six.
J. Algebra, 112 (1988), no. 2, 315-325.

F. Grunewald, J. O’Halloran. A characterization of orbit closure and applications. J. Algebra,
116 (1988), no. 1, 163-175.

M. Ignatyev, I. Kaygorodov, Y. Popov. The geometric classification of 2-step nilpotent al-
gebras and applications. Rev. Mat. Complut., 35 (2022), no. 3, 907-922.

N. Ismailov, I. Kaygorodov, F. Mashurov. The algebraic and geometric classification of
nilpotent assosymmetric algebras. Algebra Represent. Theory, 24 (2021), no. 1, 135-148.

N. Ismailov, I. Kaygorodov, M. Mustafa. The algebraic and geometric classification of nilpo-
tent right alternative algebras. Period. Math. Hung., 84 (2022), no. 1, 18-30.

N. Ismailov, I. Kaygorodov, Y. Volkov. The geometric classification of Leibniz algebras. Int.
J. Math., 29 (2018), no. 5, 1850035.

N. Ismailov, I. Kaygorodov, Y. Volkov. Degenerations of Leibniz and anticommutative alge-
bras. Can. Math. Bull., 62 (2019), no. 3, 539-549.

D. Jumaniyozov, I. Kaygorodov, A. Khudoyberdiyev. The algebraic and geometric classifi-
cation of nilpotent noncommutative Jordan algebras. J. Algebra Appl., 20 (2021), no. 11,
2150202.

D. Jumaniyozov, 1. Kaygorodov, A. Khudoyberdiyev. The geometric classification of nilpo-
tent commutative €D-algebras. Boll. Unione Mat. Ital., 15 (2022), no. 3, 465-481.

I. Karimjanov, I. Kaygorodov, A. Khudoyberdiyev. The algebraic and geometric classifica-
tion of nilpotent Novikov algebras. J. Geom. Phys., 143 (2019), 11-21.

I. Kashuba, M. E. Martin. Deformations of Jordan algebras of dimension four. J. Algebra,
399 (2014), 277-289.

I. Kashuba, M. E. Martin. Geometric classification of nilpotent Jordan algebras of dimension
five. J. Pure Appl. Algebra, 222 (2018), no. 3, 546-559.



[49]

[50]

The geometric classification of non-associative algebras 283

I. Kashuba, I. Shestakov. Jordan algebras of dimension three: geometric classification and
representation type. Actas del XVI Coloquio Latinoamericano de Algebra, Colonia del Sacra-
mento, Uruguay, 2005, in: Bibl. Rev. Mat. Iberoamericana, 2007, 295-315.

I. Kaygorodov. Non-associative algebraic structures: classification and structure. Commun.
Math., 32 (2024), no. 3, 1-62.

I. Kaygorodov, M. Khrypchenko. The geometric classification of nilpotent €®-algebras. J.
Algebra Appl., 20 (2021), no. 11, 2150198.

1. Kaygorodov, M. Khrypchenko, S. Lopes. The algebraic and geometric classification of
nilpotent anticommutative algebras. J. Pure Appl. Algebra, 224 (2020), no. 8, 106337.

1. Kaygorodov, M. Khrypchenko, S. Lopes. The geometric classification of nilpotent algebras.
J. Algebra, 633 (2023), 857-886.

1. Kaygorodov, M. Khrypchenko, Y. Popov. The algebraic and geometric classification of
nilpotent terminal algebras. J. Pure Appl. Algebra, 225 (2021), no. 6, 106625.

I. Kaygorodov, S. Lopes, Y. Popov. Degenerations of nilpotent commutative associative
algebras. Commun. Algebra, 48 (2020), no. 4, 1632-1639.

1. Kaygorodov, P. Pdez-Guillan, V. Voronin. The algebraic and geometric classification of
nilpotent bicommutative algebras. Algebr. Represent. Theory, 23 (2020), no. 6, 2331-2347.

I. Kaygorodov, Y. Popov, A. Pozhidaev, Y. Volkov. Degenerations of Zinbiel and nilpotent
Leibniz algebras. Linear Multilinear Algebra, 66 (2018), no. 4, 704-716. [Corrigendum:
Linear Multilinear Algebra, 70 (2022), no. 5, 993-995.]

1. Kaygorodov, Y. Popov, Y. Volkov. Degenerations of binary-Lie and nilpotent Malcev
algebras. Commun. Algebra, 46 (2018), no. 11, 4929-4941.

I. Kaygorodov, O. Shashkov. Degenerations of nilalgebras. Commun. Math. Res., DOLI:
10.4208 /cmr.2024-0033.

1. Kaygorodov, Y. Volkov. The variety of 2-dimensional algebras over an algebraically closed
field. Can. J. Math., 71 (2019), no. 4, 819-842.

I. Kaygorodov, Y. Volkov. Complete classification of algebras of level two. Mosc. Math. J.,
19 (2019), no. 3, 485-521.

I. Kaygorodov, Y. Volkov. Degenerations of Filippov algebras. J. Math. Phys., 61 (2020),
no. 2, 021701.

1. Kaygorodov, Y. Volkov. Degenerations of noncommutative Heisenberg algebras. Commun.
Algebra, 51 (2023), no. 10, 4204-4213.

A. Khudoyberdiyev. The classification of algebras of level two. J. Geom. Phys., 98 (2015),
13-20.

A. Khudoyberdiyev, B. Omirov. The classification of algebras of level one. Linear Algebra
Appl., 439 (2013), no. 11, 3460-3463.



284 Ivan Kaygorodov, Mykola Khrypchenko and Pilar Paez-Guillan

[66] G. Mazzola. Generic finite schemes and Hochschild cocycles. Comment. Math. Helv., 55
(1980), no. 2, 267-293.

[67] R. L. Rodrigues, A. Papa Neto, E. Quintero Vanegas. Commutative power-associative alge-
bras of small dimension. Commun. Algebra, 48 (2020), no. 12, 5056-5066.

[68] C. Seeley. Degenerations of 6-dimensional nilpotent Lie algebras over C. Commun. Algebra,
18 (1990), 3493-3505.

[69] M. Vergne. Variété des algebres de Lie nilpotentes. These, Fac. Sci. de Paris (1966).

[70] Y. Volkov. Anticommutative Engel algebras of the first five levels. Linear Multilinear Alge-
bra, 70 (2022), no. 1, 148-175.

[71] Y. Volkov. n-ary algebras of the first level. Mediterr. J. Math., 19 (2022), no. 1, 2.

Received: October 16, 2024
Accepted for publication: October 16, 2024
Communicated by: Adam Chapman, Mohamed Elhamdadi and Ivan Kaygorodov



	The geometric classification of algebras
	Non-associative algebras
	Nilalgebras
	Associative algebras
	Commutative associative algebras
	Cyclic associative algebras
	Jordan algebras
	Kokoris algebras
	Standard algebras
	Noncommutative Jordan algebras
	Commutative power-associative algebras
	Weakly associative algebras
	Terminal algebras
	Lie algebras
	Malcev algebras
	Binary Lie algebras
	Tortkara algebras
	Dual mock-Lie algebras
	CD-algebras
	Commutative CD-algebras
	Anticommutative CD-algebras
	Symmetric Leibniz algebras
	Leibniz algebras
	Zinbiel algebras
	Novikov algebras
	Bicommutative algebras
	Assosymmetric algebras
	Antiassociative algebras
	Left-symmetric algebras
	Right alternative algebras
	Right commutative algebras
	Filippov algebras
	Lie triple systems
	Anticommutative ternary algebras
	Superalgebras
	Poisson algebras
	Transposed Poisson algebras
	Generic Poisson algebras
	Generic Poisson-Jordan algebras
	Poisson-type algebras
	Compatible algebras

	The level classification of algebras
	Algebras of level one
	Algebras of level two
	Nilpotent algebras
	Commutative algebras
	Anticommutative algebras
	Lie algebras
	Malcev algebras
	Jordan algebras
	Left-alternative algebras
	Associative algebras
	Leibniz algebras
	n-ary algebras


