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Separating symmetric polynomials over finite fields

Artem Lopatin, Pedro Antonio Muniz Martins and Lael Viana Lima

Abstract. The set S(n) of all elementary symmetric polynomials in n variables is
a minimal generating set for the algebra of symmetric polynomials in n variables,
but over a finite field F, the set S(n) is not a minimal separating set for symmetric
polynomials in general. We determine when S(n) is a minimal separating set for the
algebra of symmetric polynomials having the least possible number of elements.
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1 Introduction

1.1 Symmetric polynomials

Assume that F is an arbitrary field (finite or infinite) and denote by F, the finite field
of order ¢ with the characteristic p = char[F,.

Consider an n-dimensional vector space V over a field F with a fixed basis, where n > 2.
For v € V let v; denote the i*"-coordinate with respect to this basis of V. The symmetric
group S, acts on V' by permutations of the coordinates with respect to the fixed basis of
V. Namely, for 0 € S, and v = (vy,...,v,) € V we have 0 - v = (V5-1(1), . . ., Uo-1(n)). The
coordinate ring F[V] = F[z1,...,z,] of V is isomorphic to the symmetric algebra S(V*)
over the dual space V* with the dual basis z1, ..., x, to the fixed basis of V. The group
S, acts on the set {z1,...,2,} by 0 - 2; = 2,4 and this action is extended to the action
of §, on F[V]. The algebra of S, -invariants

FV]5 = {f €F[V]|o-f=fforalocS,}

is the algebra of symmetric polynomials. It is well known that the algebra F[V]5" is
minimally (with respect to inclusion) generated by the set

S(n) ={si(x1,...,2,) |1 <t <n}

of all elementary symmetric polynomials s,(z1,...,z,) = Zl§i1<~~~<it§n Ty Ty,

Any element f of F[V] can be considered as a function f : V' — F. Obviously, any
f € F[V]°" has a constant value over every S,-orbit on V. Given a subset S of F[V]°",
we say that elements u,v of V are separated by S if there exists an invariant f € S
with f(u) # f(v). If u,v € V are separated by F[V]5", then we simply say that they
are separated. A subset S C F[V]®" is called separating if for any u,v from V that are
separated we have that they are separated by S. We say that a separating set is minimal
if it is minimal with respect to inclusion. Obviously, any generating set is also separating.
Minimal separating sets for different actions of groups were constructed in [2—4,6-13].

In the case of an algebraically closed field F as well as in the case of F = R the set S(n)
is a minimal separating set for F[V]°» having the least possible number of elements. On
the other hand, over a finite field a minimal separating set for the algebra of symmetric
polynomials is not known in general. For every n € N denote

[y = {jp" |1 < j <q, k €Ny, jp* <n}and

Sg(n) = {se(x1,...,2,) |t € [n]y},

where Ny = N U {0}. In 1964 Aberth [1] established that S,(n) is a separating set for
F,[V]% for a prime p. In [8] it was proven that the set Sy(n) is a minimal separating
set for Fy[V]%" having the least possible number of elements. Recently, Domokos and
Miklési [5] extended the result of Aberth to the case of an arbitrary finite field. Namely,
they proved that S,(n) is a separating set for F,[V]°". Nevertheless, the set S(n) is a
minimal separating set for F,[V]°" in some cases.
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1.2 Results

In Theorem 3.1 and Corollary 3.3 we prove that S(n) is a minimal separating set for
F,[V]®" having the least possible number of elements if and only if n < y,, where y, is
defined by formula (9). The explicit values of x, for ¢ < 10* are given in Remark 3.4.
Since x, > |[In(lng)| by Theorem 3.6, for every n > 2 there exists ¢ such that S(n) is
a minimal separating set for F,[V]°» having the least possible number of elements (see
Corollary 3.8). In Proposition 2.3 we determine when the separating set Sz(n) for F3[V]5
has the least possible number of elements.

1.3 Auxiliaries

Since the number of S,-orbits on V is the binomial coefficient (";rle), Theorem 1.1

of [8] implies that the least possible number of elements of a separating set for F,[V]%" is

(n+q—1)- ... -(n+1)“
(g — 1!

Consider some properties of the floor and the ceiling functions. Obviously, for z € R
and n € Z we have

7= 4(n) = | log, (1)

|z +n] = |x] +n, [z +n] =[z] +n,frac(x + n) = frac(z), and — |z] = [—z],
where frac(z) stands for the fractional part of z, i.e., z = |z| + frac(z).

Remark 1.1. For a,b € R with b € Z we have

(a)
| 2la]+1 if frac(a) >1/2
[2a] = { 2|al if  frac(a) <1/2 °

(b)
{ la] +|-b] +1 if frac(a) > frac(b)
la] +|—0b] if frac(a) < frac(b) -

2 The case of 3

For short, we denote

—3+8- 3 +1

=32 and b, =
a 2 an 2

for r € Ny. Note that
a, < b. < apyq forall r>3. (2)
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Lemma 2.1. For every n > 1 we have
2|logsn| = |2 loggn| + «a,
where
e a=0, ifn € [ay., asy1) for some r € Ny;
o o= —1, ifn € [ag41, agr12) for some r € Ny.

Proof. By part (a) of Remark 1.1, the statement of the lemma follows from the following
claim:

if and only if n € [ag,, ag,11) for some r € Ny. (3)

N —

frac(logsn) <

Note frac(logsn) = 0 if and only if n = ag, for some r € Ny. Since logy n is a strictly
increasing function, then frac(logs n) is also strictly increasing on every interval [agy,., ag,12)
with r € Ny. The equality frac(logs as,11) = 1/2 for every r € Ny concludes the proof of
claim (3). O

Lemma 2.2. Assume that n > 6. Then for fi(x) = logs 2%, fo(x) = log, W, and

—log; ———— we h
f3(z) 0g31+%+%we ave

()] + [=fa(n)] = [fs(n)] + 5,

where
e =0, ifn € [a,,b.) for somer € N;
e f=—1,ifn € [b,a,41) for somer € N.

Proof. Since n > 6, we have a3 < n. Hence, a, < b, < a,;1 in case n € [a,,a,11) by (2).
It is easy to see that fy(n) € Z, since in case (n + 1)(n +2) = 2 - 3* for some k € N we
obtain a contradiction.

We assume that = lies in R, = (0,400). Since fi(z) — fo(x) = f3(x) and fa(n) € Z,
part (b) of Remark 1.1 implies that the statement of the lemma follows from the next

claims:
frac(fi(z)) < frac(fa(x)), if « € [a,,b,) for some r > 3, (4)

frac(fi(z)) > frac(fo(z)), if z € [b,, ar41) for some r > 3. (5)

We have frac(fi(z)) = 0 if and only if x = a, for some r € Ny. Similarly, frac(fz(z)) =0
if and only if z = b, for some r € Ny. Since fi(z) and fo(x) are strictly increasing, then
frac(fi(z)) and frac(fo(x)) are also strictly increasing on intervals [a,, a,41) and [b,., b1 1),

respectively, where r € Nj.
Since fi(x) > f}(z) for all x € R, and frac(f,(b,)) > frac(f2(b.)), we obtain claim (5).
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Assume that frac(fi(x)) > frac(fa(z)) for some = € [a,,b,) with » > 3. Then there
exists g € [ar,b,) with frac(fi(xg)) = frac(fa(x)). Since f; increases faster than fo, we
have frac(fi(z)) > frac(fy(x)) for all x € [2¢,b,). Then the equality lim frac(fy(x)) =1

z—b,
implies that lim frac(fi(x)) = 1, i.e., frac(fi(b,)) = 0; a contradiction to inequalities (2).
r—b,
Hence claim (4) is proven. O

Proposition 2.3. Let A = #S3(n) —~3(n) be the difference between the number of elements
of the separating set Sz(n) for F3[V]S" and the least possible number of elements of a
separating set for F3[V]5. Then

e A=01incase2<n<8§;

A 0, ifn € [ba,2as,) U lboyry1,agr12) for somer € N
e | 1, otherwise

m case n > 9.

Proof. 1t is easy to see that #S3(n) = 2 |logzn| + ¢, where
e ) =11n case n € [ay,2ay,) for some r € Ny;

e ) =2in case n € [2ay,, as42) for some r € Ny.

Since y3(n) = [log3 %W by formula (1), we obtain

(n+2)(n+ 1)“

A =2|loggn| +d — {log3 5

For 2 < n < 8 by straightforward calculations, we can see that A = 0.
Assume n > 9. Then a4 < n and inequalities (2) imply that

agr < boy < agri1 < 2a9, < bypyy < Ao

in case n € [ag,, ag12) for some r € N. Note that here we have r > 2.
Using the properties of ceiling functions and Lemma 2.1, we obtain

(n+2)(n+1)
2

A:L210g3nj+{—log3 J+0z—|—5.

Hence, Lemma 2.2 together with the fact that Llogg ﬁj =0 in case n > 4 implies

A=a+pB+3,

where o and ( are the same as in Lemmas 2.1 and 2.2, respectively. We complete the
proof case-by-case consideration. Namely,
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for n € [ag,, by ) we have a+ 5 +0=0+0+1=1;

for n € [by,, a9 41) we have a+ 4+ =0—1+1=0;

for n € [ag41,2a9,) we have a+ [+ 60 =—-1+0+ 1= 0;

for n € [2ag;,byr41) we have a+ [ +60 = —-14+0+2 = 1;

for n € [by,11,a9.12) we have a + B+ =—-1—-14+2=0.

3 The general case

Theorem 3.1. The set S(n) is a minimal separating set for F,[V]" having the least possible
number of elements if and only if n < xy, where vg = xo(q) € R>1 is the unique solution
of the following equation

qx_lz(x+1)<§+1>-...-(qf1+1)

over R>y = [1,4+00). Moreover,
o 1y > 1;
e 1y < q in case q > 3.
(n+q—(}])_~.1.j!~(n+1)

number of elements of a separating set for F,[V]° by formula (1), using the properties of
the floor and ceiling functions we obtain

Proof. Since #S(n) = n and v = v,(n) = [logq -‘ is the least possible

#S(n) — 7 = {logq " J

m+qg—1)-...-(n+1)
Hence,
I - (¢—1!-¢"
#S(n) =~ if and only if (n+q—1)-...-(n+1)<q’ (6)
Therefore,
— ~ 3 : n—1 ﬁ . . n
#S(n) =~ if and only if ¢ <(n+1)<2—|—1> <q—1+1)'

Applying In to both sides, we obtain that
#S(n) =~ if and only if fi(n) < fa(n),
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where fi(x) = (r — 1)Ing and fy(x Zln( )

q—1
1
Assume = € Rs;. Since f](z) =1Ing and fj(z) = Z 1 Ve obtain
= x+1

fi(z) > f5(z), (7)

where we use inequality f4(1) > f5(x) and the well-known upper bound on a partial sum
f5(1) of the harmonic series:

1 1
fr(1)==+-4+=-<Ing.
2 q

Functions fi(z) and fo(z) are strictly increasing over R>; and fi(1) < fo(1). We claim
that

fi(a) > fa(a) for some a > 1. (8)

To prove the claim, we consider the following three cases.
o If g =2, then fo(z) =In(x + 1) and f1(4) > fo(4).
o If ¢ =3, then fo(z) =In(1+z) +1In(1 + 2/2) and f1(4) > f2(4).

e Assume ¢ > 3. Then f,(¢) = Ing¢®> + (¢ — 3)Ing and

fz(q):m(qul—qJr2 qil ( )

Since ¢*> > (¢+1)(¢+2)/2 and q > (¢ +1)/i for i > 3, we obtain that f;(q) > fa(q).

Claim (8) together with inequality f1(1) < f2(1) implies that fi(z¢) = fa(zo) for some
xo € Rsy with 1 < 2y < a. Inequality (7) implies that z¢p = zo(q) is the unique solution
of the equation fi(z) = fo(z) over R>;. Moreover, we can see that for z € R>; we have
fi(z) < fa(x) if and only if © < zg. Obviously, x, is also the unique solution of the

equation
rz—1 x T
- 1(— 1)(— 1)
q (x+1) 5 T 1 +
over RZL
In case ¢ > 3 we have fi(q) > f2(q) and we may take a = ¢; hence o < ¢q. The
requirements is proven. [

Let us remark that the following lemma which is an easy corollary of [8, Theorem
1.1] describes when S(n) is a minimal separating set having the least possible number of
elements, but for our purposes, we need more explicit condition on n.
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Sn

Lemma 3.2. The set S(n) is a minimal separating set for F,[V]°" having the least possible

number of elements if and only if

-1
qn—1<<n+q )
n

Proof. 1t follows from equivalence (6). O

Given zy = zo(¢) from the formulation of Theorem 3.1, define x, € N as follows:

o xo— 1, if zg € N
Xe = { lzo), ifxggN (©)

Note that y, is defined for an arbitrary integer ¢ > 2, not only for the power of a prime.
Theorem 3.1 implies the following corollary.

Corollary 3.3. The set S(n) is a minimal separating set for F,[V]5" having the least possible
number of elements if and only if n < x,. Moreover,

1< x4 <qin caseq>3.
Definition 3.4. By straightforward calculations, using a computer, we can see that
* X2 =2
o x,=3for3 <q<17;
o x, =4 for 18 < ¢ < 109;
o x, =5 for 110 < g < 704;
e x, =6 for 705 < ¢ < 5018;
e x, =7 for 5019 < ¢ < 10*.

To prove a lower bound on x, from Theorem 3.6 (see below) we need the following
technical lemma.

Lemma 3.5. For every q > e we have
Ing — (2In(Ing) + 1) In(In(In¢)) > 0.
Proof. Assume z € Rx.. Then for
h(z) =2 — (2Inz + 1) In(lnz).
we have
w(z)

h'(z) = PP where w(z) =zInz —2Inz —2In(lnz)Inz — 1.
rlnzx
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Since | o lun(l A
w’(:)s):(x nxr — n(ix))—i-(x— )>O,

for all z > €2 and w(e?) = 2¢2 —4In2 — 5 > 0, we obtain that w(x) > 0 for all z > %
Therefore, h'(x) > 0 for all z > €. Hence, the inequality h(e?) = € —5In2 > 0 implies
that h(z) > 0 for all © > e2. In particular, h(lng) > 0 for all ¢ > . The required
statement is proven. [

Theorem 3.6. We have x, > [In(Ing)].

Proof. If ¢ < €, then |In(lng)] <1 < x,, and the required statement is proven.
Assume that g > e¢”. Define

C(z+1) - (wtg—1)
(¢—=1)!
for x € R>y. Recall that xy = x¢(g) from definition (9) of y, is the unique solution of the

equation f(z) = g(z) over R>y and 1 = f(1) < g(1) = ¢. Hence, to prove the theorem is
sufficient to show that

fb) < g(b) (10)
for b = |In(lng)| > 2, since inequality (10) implies that b < . Inequality (10) is
equivalent to the inequality In(f(b)) < In(g(b)).

For short, definea =b+qg—1> g+ 1. Then

g(b) = < “ 1) and Ing(b) =Ina! —Inbd! —In(q — 1)!
q —
Using well-known inequalities

27rk<§)k <kl < 2@(§)k forall k> 1,

we obtain that

Ing(b) > aln(a) — (q _ %)ln(q 1)+ % (ln(a) — % ln(b) — ln(b)) —% n(8r).  (11)

By the definition of b, we have 2 < b < In(lng). Therefore,
In(a) — 2bIn(b) — In(b) > In(q) — (2In(lng) + 1) In(In(lng)) > 0

by Lemma 3.5. Thus inequality (11) implies that

Ing(b) > aln(a) — (q - %)ln(q —-1)— %ln(87r).
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Applying inequality a > ¢ + 1, we obtain

Ing() > (g+b—1)In(g+1) — (q _ %) In(g—1) — %m(gﬁ) _
=0b-1)In(g+1)+ (q — %) (ln(q +1)—In(qg — 1))+
+ % <1n(q +1)— ln(87r)) > (b—1)Ing =In f(b).

The required statement is proven. O

Corollary 3.7. We have limg_,, x4 = +00.

Corollary 3.8. For every n > 2 there exists q such that S(n) is a minimal separating set
for F,[V]5" having the least possible number of elements.
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