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Separating symmetric polynomials over finite fields

Artem Lopatin, Pedro Antonio Muniz Martins and Lael Viana Lima

Abstract. The set S(n) of all elementary symmetric polynomials in n variables is
a minimal generating set for the algebra of symmetric polynomials in n variables,
but over a finite field Fq the set S(n) is not a minimal separating set for symmetric
polynomials in general. We determine when S(n) is a minimal separating set for the
algebra of symmetric polynomials having the least possible number of elements.
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1 Introduction

1.1 Symmetric polynomials

Assume that F is an arbitrary field (finite or infinite) and denote by Fq the finite field
of order q with the characteristic p = charFq.

Consider an n-dimensional vector space V over a field F with a fixed basis, where n ≥ 2.
For v ∈ V let vi denote the ith-coordinate with respect to this basis of V . The symmetric
group Sn acts on V by permutations of the coordinates with respect to the fixed basis of
V . Namely, for σ ∈ Sn and v = (v1, . . . , vn) ∈ V we have σ · v = (vσ−1(1), . . . , vσ−1(n)). The
coordinate ring F[V ] = F[x1, . . . , xn] of V is isomorphic to the symmetric algebra S(V ∗)
over the dual space V ∗ with the dual basis x1, . . . , xn to the fixed basis of V . The group
Sn acts on the set {x1, . . . , xn} by σ · xi = xσ(i) and this action is extended to the action
of Sn on F[V ]. The algebra of Sn-invariants

F[V ]Sn = {f ∈ F[V ] | σ · f = f for all σ ∈ Sn}

is the algebra of symmetric polynomials. It is well known that the algebra F[V ]Sn is
minimally (with respect to inclusion) generated by the set

S(n) = {st(x1, . . . , xn) | 1 ≤ t ≤ n}

of all elementary symmetric polynomials st(x1, . . . , xn) =
∑

1≤i1<···<it≤n xi1 · · ·xit .
Any element f of F[V ] can be considered as a function f : V → F. Obviously, any

f ∈ F[V ]Sn has a constant value over every Sn-orbit on V . Given a subset S of F[V ]Sn ,
we say that elements u, v of V are separated by S if there exists an invariant f ∈ S
with f(u) 6= f(v). If u, v ∈ V are separated by F[V ]Sn , then we simply say that they
are separated. A subset S ⊂ F[V ]Sn is called separating if for any u, v from V that are
separated we have that they are separated by S. We say that a separating set is minimal

if it is minimal with respect to inclusion. Obviously, any generating set is also separating.
Minimal separating sets for different actions of groups were constructed in [2–4, 6–13].

In the case of an algebraically closed field F as well as in the case of F = R the set S(n)
is a minimal separating set for F[V ]Sn having the least possible number of elements. On
the other hand, over a finite field a minimal separating set for the algebra of symmetric
polynomials is not known in general. For every n ∈ N denote

[n]q = {jpk | 1 ≤ j < q, k ∈ N0, jp
k ≤ n} and

Sq(n) = {st(x1, . . . , xn) | t ∈ [n]q},
where N0 = N ⊔ {0}. In 1964 Aberth [1] established that Sp(n) is a separating set for
Fp[V ]Sn for a prime p. In [8] it was proven that the set S2(n) is a minimal separating
set for F2[V ]Sn having the least possible number of elements. Recently, Domokos and
Miklósi [5] extended the result of Aberth to the case of an arbitrary finite field. Namely,
they proved that Sq(n) is a separating set for Fq[V ]Sn. Nevertheless, the set S(n) is a
minimal separating set for Fq[V ]Sn in some cases.
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1.2 Results

In Theorem 3.1 and Corollary 3.3 we prove that S(n) is a minimal separating set for
Fq[V ]Sn having the least possible number of elements if and only if n ≤ χq, where χq is
defined by formula (9). The explicit values of χq for q ≤ 104 are given in Remark 3.4.
Since χq ≥ ⌊ln(ln q)⌋ by Theorem 3.6, for every n ≥ 2 there exists q such that S(n) is
a minimal separating set for Fq[V ]Sn having the least possible number of elements (see
Corollary 3.8). In Proposition 2.3 we determine when the separating set S3(n) for F3[V ]Sn

has the least possible number of elements.

1.3 Auxiliaries

Since the number of Sn-orbits on V is the binomial coefficient
(

n+q−1
q−1

)

, Theorem 1.1

of [8] implies that the least possible number of elements of a separating set for Fq[V ]Sn is

γ = γq(n) =
⌈

logq
(n+ q − 1) · . . . · (n + 1)

(q − 1)!

⌉

(1)

Consider some properties of the floor and the ceiling functions. Obviously, for x ∈ R

and n ∈ Z we have

⌊x+ n⌋ = ⌊x⌋ + n, ⌈x+ n⌉ = ⌈x⌉ + n, frac(x+ n) = frac(x), and − ⌊x⌋ = ⌈−x⌉,

where frac(x) stands for the fractional part of x, i.e., x = ⌊x⌋ + frac(x).

Remark 1.1. For a, b ∈ R with b 6∈ Z we have

(a)

⌊2 a⌋ =
{

2⌊a⌋ + 1 if frac(a) ≥ 1/2
2⌊a⌋ if frac(a) < 1/2

;

(b)

⌊a− b⌋ =
{

⌊a⌋ + ⌊−b⌋ + 1 if frac(a) ≥ frac(b)
⌊a⌋ + ⌊−b⌋ if frac(a) < frac(b)

.

2 The case of F3

For short, we denote

ar = 3
r

2 and br =
−3 +

√
8 · 3r + 1

2

for r ∈ N0. Note that
ar < br < ar+1 for all r ≥ 3. (2)
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Lemma 2.1. For every n ≥ 1 we have

2⌊log3 n⌋ = ⌊2 log3 n⌋ + α,

where

• α = 0, if n ∈ [a2r, a2r+1) for some r ∈ N0;

• α = −1, if n ∈ [a2r+1, a2r+2) for some r ∈ N0.

Proof. By part (a) of Remark 1.1, the statement of the lemma follows from the following
claim:

frac(log3 n) <
1

2
if and only if n ∈ [a2r, a2r+1) for some r ∈ N0. (3)

Note frac(log3 n) = 0 if and only if n = a2r for some r ∈ N0. Since log3 n is a strictly
increasing function, then frac(log3 n) is also strictly increasing on every interval [a2r, a2r+2)
with r ∈ N0. The equality frac(log3 a2r+1) = 1/2 for every r ∈ N0 concludes the proof of
claim (3).

Lemma 2.2. Assume that n ≥ 6. Then for f1(x) = log3 x
2, f2(x) = log3

(x+1)(x+2)
2

, and

f3(x) = log3
2

1 + 3
x
+ 2

x2

we have

⌊f1(n)⌋ + ⌊−f2(n)⌋ = ⌊f3(n)⌋ + β,

where

• β = 0, if n ∈ [ar, br) for some r ∈ N;

• β = −1, if n ∈ [br, ar+1) for some r ∈ N.

Proof. Since n ≥ 6, we have a3 < n. Hence, ar < br < ar+1 in case n ∈ [ar, ar+1) by (2).
It is easy to see that f2(n) 6∈ Z, since in case (n + 1)(n + 2) = 2 · 3k for some k ∈ N we
obtain a contradiction.

We assume that x lies in R+ = (0,+∞). Since f1(x) − f2(x) = f3(x) and f2(n) 6∈ Z,
part (b) of Remark 1.1 implies that the statement of the lemma follows from the next
claims:

frac(f1(x)) < frac(f2(x)), if x ∈ [ar, br) for some r ≥ 3, (4)

frac(f1(x)) ≥ frac(f2(x)), if x ∈ [br, ar+1) for some r ≥ 3. (5)

We have frac(f1(x)) = 0 if and only if x = ar for some r ∈ N0. Similarly, frac(f2(x)) = 0
if and only if x = br for some r ∈ N0. Since f1(x) and f2(x) are strictly increasing, then
frac(f1(x)) and frac(f2(x)) are also strictly increasing on intervals [ar, ar+1) and [br, br+1),
respectively, where r ∈ N0.

Since f ′
1(x) > f ′

2(x) for all x ∈ R+ and frac(f1(br)) > frac(f2(br)), we obtain claim (5).
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Assume that frac(f1(x)) ≥ frac(f2(x)) for some x ∈ [ar, br) with r ≥ 3. Then there
exists x0 ∈ [ar, br) with frac(f1(x0)) = frac(f2(x0)). Since f1 increases faster than f2, we
have frac(f1(x)) > frac(f2(x)) for all x ∈ [x0, br). Then the equality lim

x→b
−

r

frac(f2(x)) = 1

implies that lim
x→b−r

frac(f1(x)) = 1, i.e., frac(f1(br)) = 0; a contradiction to inequalities (2).

Hence claim (4) is proven.

Proposition 2.3. Let ∆ = #S3(n)−γ3(n) be the difference between the number of elements

of the separating set S3(n) for F3[V ]Sn and the least possible number of elements of a

separating set for F3[V ]Sn. Then

• ∆ = 0 in case 2 ≤ n ≤ 8;

•
∆ =

{

0, if n ∈ [b2r, 2 a2r) ∪ [b2r+1, a2r+2) for some r ∈ N

1, otherwise

in case n ≥ 9.

Proof. It is easy to see that #S3(n) = 2 ⌊log3 n⌋+ δ, where

• δ = 1 in case n ∈ [a2r, 2 a2r) for some r ∈ N0;

• δ = 2 in case n ∈ [2 a2r, a2r+2) for some r ∈ N0.

Since γ3(n) =
⌈

log3
(n+2)(n+1)

2

⌉

by formula (1), we obtain

∆ = 2⌊log3 n⌋+ δ −
⌈

log3
(n + 2)(n+ 1)

2

⌉

.

For 2 ≤ n ≤ 8 by straightforward calculations, we can see that ∆ = 0.
Assume n ≥ 9. Then a4 ≤ n and inequalities (2) imply that

a2r < b2r < a2r+1 < 2 a2r < b2r+1 < a2r+2

in case n ∈ [a2r, a2r+2) for some r ∈ N. Note that here we have r ≥ 2.
Using the properties of ceiling functions and Lemma 2.1, we obtain

∆ = ⌊2 log3 n⌋+
⌊

− log3
(n+ 2)(n+ 1)

2

⌋

+ α + δ.

Hence, Lemma 2.2 together with the fact that
⌊

log3
2

1+ 3

n
+ 2

n2

⌋

= 0 in case n ≥ 4 implies

∆ = α + β + δ,

where α and β are the same as in Lemmas 2.1 and 2.2, respectively. We complete the
proof case-by-case consideration. Namely,
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• for n ∈ [a2r, b2r) we have α + β + δ = 0 + 0 + 1 = 1;

• for n ∈ [b2r, a2r+1) we have α + β + δ = 0− 1 + 1 = 0;

• for n ∈ [a2r+1, 2 a2r) we have α + β + δ = −1 + 0 + 1 = 0;

• for n ∈ [2 a2r, b2r+1) we have α + β + δ = −1 + 0 + 2 = 1;

• for n ∈ [b2r+1, a2r+2) we have α + β + δ = −1− 1 + 2 = 0.

3 The general case

Theorem 3.1. The set S(n) is a minimal separating set for Fq[V ]Sn having the least possible

number of elements if and only if n < x0, where x0 = x0(q) ∈ R≥1 is the unique solution

of the following equation

qx−1 = (x+ 1)
(x

2
+ 1

)

· . . . ·
( x

q − 1
+ 1

)

over R≥1 = [1,+∞). Moreover,

• x0 > 1;

• x0 < q in case q > 3.

Proof. Since #S(n) = n and γ = γq(n) =
⌈

logq
(n+q−1)· ... ·(n+1)

(q−1)!

⌉

is the least possible

number of elements of a separating set for Fq[V ]Sn by formula (1), using the properties of
the floor and ceiling functions we obtain

#S(n)− γ =

⌊

logq
(q − 1)! · qn

(n+ q − 1) · . . . · (n + 1)

⌋

.

Hence,

#S(n) = γ if and only if
(q − 1)! · qn

(n+ q − 1) · . . . · (n+ 1)
< q. (6)

Therefore,

#S(n) = γ if and only if qn−1 < (n+ 1)
(n

2
+ 1

)

· . . . ·
( n

q − 1
+ 1

)

.

Applying ln to both sides, we obtain that

#S(n) = γ if and only if f1(n) < f2(n),

6
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where f1(x) = (x− 1) ln q and f2(x) =

q−1
∑

i=1

ln
(x

i
+ 1

)

.

Assume x ∈ R≥1. Since f ′
1(x) = ln q and f ′

2(x) =

q−1
∑

i=1

1

x+ i
, we obtain

f ′
1(x) > f ′

2(x), (7)

where we use inequality f ′
2(1) ≥ f ′

2(x) and the well-known upper bound on a partial sum
f ′
2(1) of the harmonic series:

f ′
2(1) =

1

2
+ · · ·+ 1

q
< ln q.

Functions f1(x) and f2(x) are strictly increasing over R≥1 and f1(1) < f2(1). We claim
that

f1(a) > f2(a) for some a > 1. (8)

To prove the claim, we consider the following three cases.

• If q = 2, then f2(x) = ln(x+ 1) and f1(4) > f2(4).

• If q = 3, then f2(x) = ln(1 + x) + ln(1 + x/2) and f1(4) > f2(4).

• Assume q > 3. Then f1(q) = ln q2 + (q − 3) ln q and

f2(q) = ln
(q + 1)(q + 2)

2
+

q−1
∑

i=3

ln
(q

i
+ 1

)

.

Since q2 > (q+ 1)(q +2)/2 and q > (q + i)/i for i ≥ 3, we obtain that f1(q) > f2(q).

Claim (8) together with inequality f1(1) < f2(1) implies that f1(x0) = f2(x0) for some
x0 ∈ R≥1 with 1 < x0 < a. Inequality (7) implies that x0 = x0(q) is the unique solution
of the equation f1(x) = f2(x) over R≥1. Moreover, we can see that for x ∈ R≥1 we have
f1(x) < f2(x) if and only if x < x0. Obviously, x0 is also the unique solution of the
equation

qx−1 = (x+ 1)
(x

2
+ 1

)

· . . . ·
( x

q − 1
+ 1

)

over R≥1.
In case q > 3 we have f1(q) > f2(q) and we may take a = q; hence x0 < q. The

requirements is proven.

Let us remark that the following lemma which is an easy corollary of [8, Theorem
1.1] describes when S(n) is a minimal separating set having the least possible number of
elements, but for our purposes, we need more explicit condition on n.
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Lemma 3.2. The set S(n) is a minimal separating set for Fq[V ]Sn having the least possible

number of elements if and only if

qn−1 <

(

n + q − 1

n

)

.

Proof. It follows from equivalence (6).

Given x0 = x0(q) from the formulation of Theorem 3.1, define χq ∈ N as follows:

χq =

{

x0 − 1, if x0 ∈ N

⌊x0⌋, if x0 6∈ N
(9)

Note that χq is defined for an arbitrary integer q ≥ 2, not only for the power of a prime.
Theorem 3.1 implies the following corollary.

Corollary 3.3. The set S(n) is a minimal separating set for Fq[V ]Sn having the least possible

number of elements if and only if n ≤ χq. Moreover,

1 ≤ χq < q in case q > 3.

Definition 3.4. By straightforward calculations, using a computer, we can see that

• χ2 = 2;

• χq = 3 for 3 ≤ q ≤ 17;

• χq = 4 for 18 ≤ q ≤ 109;

• χq = 5 for 110 ≤ q ≤ 704;

• χq = 6 for 705 ≤ q ≤ 5018;

• χq = 7 for 5019 ≤ q ≤ 104.

To prove a lower bound on χq from Theorem 3.6 (see below) we need the following
technical lemma.

Lemma 3.5. For every q ≥ ee
2

we have

ln q − (2 ln(ln q) + 1) ln(ln(ln q)) > 0.

Proof. Assume x ∈ R≥e. Then for

h(x) = x− (2 lnx+ 1) ln(ln x).

we have

h′(x) =
w(x)

x ln x
, where w(x) = x ln x− 2 ln x− 2 ln(lnx) ln x− 1.

8
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Since

w′(x) =
(x ln x− 2 ln(ln x)) + (x− 4)

x
> 0,

for all x ≥ e2 and w(e2) = 2e2 − 4 ln 2 − 5 > 0, we obtain that w(x) > 0 for all x ≥ e2.
Therefore, h′(x) > 0 for all x ≥ e2. Hence, the inequality h(e2) = e2 − 5 ln 2 > 0 implies
that h(x) > 0 for all x ≥ e2. In particular, h(ln q) > 0 for all q ≥ ee

2

. The required
statement is proven.

Theorem 3.6. We have χq ≥ ⌊ln(ln q)⌋.

Proof. If q < ee
2

, then ⌊ln(ln q)⌋ ≤ 1 ≤ χq, and the required statement is proven.
Assume that q ≥ ee

2

. Define

f(x) = qx−1, g(x) =
(x+ 1) · . . . · (x+ q − 1)

(q − 1)!

for x ∈ R≥1. Recall that x0 = x0(q) from definition (9) of χq is the unique solution of the
equation f(x) = g(x) over R≥1 and 1 = f(1) < g(1) = q. Hence, to prove the theorem is
sufficient to show that

f(b) < g(b) (10)

for b = ⌊ln(ln q)⌋ ≥ 2, since inequality (10) implies that b < x0. Inequality (10) is
equivalent to the inequality ln(f(b)) < ln(g(b)).

For short, define a = b+ q − 1 ≥ q + 1. Then

g(b) =

(

a

q − 1

)

and ln g(b) = ln a!− ln b!− ln(q − 1)!

Using well-known inequalities

√
2πk

(k

e

)k

< k! < 2
√
πk

(k

e

)k

for all k ≥ 1,

we obtain that

ln g(b) > a ln(a)−
(

q − 1

2

)

ln(q − 1) +
1

2

(

ln(a)− 2b ln(b)− ln(b)

)

−1

2
ln(8π). (11)

By the definition of b, we have 2 ≤ b ≤ ln(ln q). Therefore,

ln(a)− 2b ln(b)− ln(b) ≥ ln(q)− (2 ln(ln q) + 1) ln(ln(ln q)) > 0

by Lemma 3.5. Thus inequality (11) implies that

ln g(b) > a ln(a)−
(

q − 1

2

)

ln(q − 1)− 1

2
ln(8π).

9
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Applying inequality a ≥ q + 1, we obtain

ln g(b) > (q + b− 1) ln(q + 1)−
(

q − 1

2

)

ln(q − 1)− 1

2
ln(8π) =

= (b− 1) ln(q + 1) +

(

q − 1

2

)(

ln(q + 1)− ln(q − 1)

)

+

+
1

2

(

ln(q + 1)− ln(8π)

)

> (b− 1) ln q = ln f(b).

The required statement is proven.

Corollary 3.7. We have limq→∞ χq = +∞.

Corollary 3.8. For every n ≥ 2 there exists q such that S(n) is a minimal separating set

for Fq[V ]Sn having the least possible number of elements.
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