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On the shape of the connected components of the comple-
ment of two-dimensional Brownian random interlacements
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Abstract. We study the limiting shape of the connected components of the vacant set
of two-dimensional Brownian random interlacements: we prove that the connected
component around x is close in distribution to a rescaled Brownian amoeba in the
regime when the distance from x ∈ C to the closest trajectory is small (which, in
particular, includes the cases x → ∞ with fixed intensity parameter α, and α → ∞
with fixed x). We also obtain a new family of martingales built on the conditioned
Brownian motion, which may be of independent interest.
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1 Introduction

In this paper, we study the model of Brownian random interlacements in two dimen-
sions. The discrete random interlacements in higher dimensions are “canonical Poissonian
soups” of doubly infinite simple random walk’s trajectories (or “loops passing through
infinity”); they were introduced by Sznitman in [15] and then studied quite extensively
(see, e.g. [5]). That original construction cannot be used in low dimensions where a simple
random walk’s trajectory is recurrent so that even a single trajectory will a.s. fill the whole
space; one can, however, construct a similar object in a natural way using the conditioned
(on avoiding the origin) trajectories. This was done in [4] in two dimensions and in [1] in
one dimension. In all dimensions, random interlacements are related to (simple) random
walks on tori: the traces left by the random walk up to a certain time on a box (with a
size much smaller than that of the torus) can be well approximated by the random inter-
lacements restricted to that box (in dimensions 1 and 2 one also needs to condition the
center of the box to be not visited by the walk).

It is also natural to consider a continuous space/time counterpart of the above-mentioned
models: namely, the “interlacement soup” made of Brownian trajectories (which, in the
case of lower dimensions, also needs some conditioning). This was done in [16] for the
original random interlacement model and in [3] for the two-dimensional case.

One of the main objects of interest in the context of random interlacements is the vacant
set, which is the complement of the union of the trajectories that make up the interlace-
ments. This article is part of a program focused on studying the geometric properties of
the vacant set of the two-dimensional random interlacements (discrete and continuous), as
well as the vacant set of a single-conditioned trajectory. Note that in the two-dimensional
case, the vacant set of Brownian interlacements only has bounded connected components;
the paper [3] contains some results mainly related to the (linear) size of these components.
In particular, it was shown there (see also [2]) that the vacant set contains an infinite num-
ber of nonoverlapping disks of constant radius whenever α ≤ 1, where α is the intensity
parameter of the model. In addition, the radius of the largest disk around x, which is fully
contained in the vacant set is exp(−Zα ln2 |x|), where Z is a random variable with some
(explicit) distribution. In Theorem 2.4 below, we extend that last result by studying not
only the distance to the closest trajectory but also to the second closest one, and so on, but
the main focus of this paper is to study the geometric shapes of the connected components
of the vacant set. We mention that the connected components of the complement of one
The Brownian trajectory was studied in a number of papers, notably (in chronological
order) [6, 8, 12, 17]; in particular, the limiting shape was the main subject of [17]. It is
interesting to note that, despite the fact that we are dealing with many trajectories here,
in some regimes it is still typically only one trajectory that defines the shape of a given
connected component, cf. Theorem 2.6 below. Then, in Theorem 2.7 we also consider a
situation when the shape of the connected component is typically determined by many
trajectories: in the limit α → ∞, we prove some geometric properties of the “central cell”
(that is, the connected component which contains the unit disk centered at the origin,
which the trajectories are conditioned not to touch).
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Another contribution of this paper we have to mention is the following: in Section 3.1,
we present a family of functions which, when applied to the conditioned Brownian motion,
result in (local) martingales (see Proposition 3.4 below). That can be seen as a continuous
counterpart of Proposition 2.4 of [13] or Proposition 4.10 of [14], where the corresponding
families for the simple conditioned two-dimensional random walk were discussed. It is gen-
erally very useful to be able to construct such martingales since it allows, e.g., estimating
hitting probabilities of various sets via the optional stopping theorem; therefore, we hope
that Proposition 3.4 will find its further applications.

2 Formal definitions and results

In the following, we will identify R2 and C via x = (x1, x2) = x1 + ix2, | · | will denote
the Euclidean norm in R2 as well as the modulus in C. Also, let B(x, r) = {y : |x−y| ≤ r}
be the closed disk of radius r centered in x, and abbreviate B(r) := B(0, r).

Let W be the standard two-dimensional Brownian motion. The main ingredient of
Brownian random interlacement is the Brownian motion is conditioned on not hitting the
unit disk B(1), which will be denoted by Ŵ ; formally, it is the Doob’s h-transform of W

with respect to h(x) = ln |x|. The process Ŵ can be formally defined via its transition
kernel p̂: for |x| > 1, |y| ≥ 1,

p̂(t, x, y) = p0(t, x, y)
ln |y|
ln |x|

. (1)

where p0 denotes the transition subprobability density of W killed on hitting the unit
disk B(1). It is possible to show (see [3]) that the diffusion Ŵ obeys the stochastic differ-
ential equation

dŴt =
Ŵt

|Ŵt|2 ln |Ŵt|
dt+ dWt. (2)

Sometimes, it can be useful to work with an alternative definition of the diffusion Ŵ using
polar coordinates Ŵt = (Rt cosΘt,Rt sinΘt). With W (1,2) two independent standard one-
dimensional Brownian motions, let us consider the stochastic differential equations

dRt =
( 1

Rt lnRt

+
1

2Rt

)
dt+ dW

(1)
t , (3)

dΘt =
1

Rt

dW
(2)
t (4)

(note that the diffusion Θ takes values in the whole R, so we are considering a Brownian
motion on the Riemann surface); it is an elementary exercise in stochastic calculus to show
that (2) is equivalent to (3)–(4). We also note that, as shown in [3], even though the radial
drift component in the above stochastic differential equations is not well defined ∂B(1), it

is still possible to define the process Ŵ starting at ∂B(1) and staying outside the unit disk
for all t > 0.
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Let us define

τ(x, r) = inf
{
t > 0 : Wt ∈ ∂B(x, r)

}
,

τ̂(x, r) = inf
{
t > 0 : Ŵt ∈ ∂B(x, r)

}

to be the hitting times of the boundary of the disk B(x, r) with respect to the (two-
dimensional) Brownian motion and its conditioned version; we abbreviate τ(r) := τ(0, r)
and τ̂(r) := τ̂(0, r).

Recall the definition of Wiener moustache (Definition 2.4 of [3]):

Definition 2.1. Let U be a random variable with a uniform distribution in [0, 2π], and let
(R(1,2),Θ(1,2)) be two independent copies of the processes defined by (3)–(4), with a common
initial point (1, U). Then, the Wiener moustache η is defined as the union of ranges of the
two trajectories, that is,

η =
{
reiθ : there exist k ∈ {1, 2}, t ≥ 0 such that R(k)

t = r,Θ
(k)
t = θ

}
.

We also need to recall the definition of capacity for subsets of R2. Let A be a compact
subset of R2 such that B(1) ⊂ A. Denote by hmA the harmonic measure (from infinity)
on A, that is, the entrance law in A for the Brownian motion starting from infinity (cf.
e.g. Theorem 3.46 of [11]). We define the (Brownian) capacity of A as

cap(A) =
2

π

∫

A

ln |y| d hmA(y). (5)

Also, for any compact subset A of R2, we define ĉap(A) := cap
(
B(1) ∪ A

)
.

Now, we recall the definition of two-dimensional Brownian random interlacements [3]:

Definition 2.2. Let α > 0 and consider a Poisson point process (ραk , k ∈ Z) on R+ with
intensity r(ρ) = 2α

ρ
, ρ ∈ R+. Let (ηk, k ∈ Z) be a sequence of i.i.d. Wiener moustaches. Fix

b ≥ 0. Then, the model of Brownian Random Interlacements (BRI) on level α truncated
at b is defined in the following way:

BRI(α; b) =
⋃

k:ραk≥b

ραkηk . (6)

We also define the vacant set Vα;b: it is the set of points of the plane that do not belong
to trajectories of BRI(α; b)

Vα;b = R2 \ BRI(α; b).
Let us abbreviate BRI(α) := BRI(α; 1) and Vα := Vα;1. It is a characteristic property

of Brownian random interlacements that (recall Proposition 2.11 of [3])

P
[
A ∩ BRI(α) = ∅

]
= exp

(
− πα ĉap(A)

)
. (7)

An important observation is that the above Poisson process is the image of a homo-
geneous Poisson process of rate 1 in R under the map x 7→ ex/2α; this follows from the
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mapping theorem for Poisson processes (see e.g. Section 2.3 of [7]). Because of that, we
may write

ραk = exp
(Y1 + · · ·+ Yk

2α

)
, (8)

where Y1, . . . , Yk are i.i.d. Exponential(1) random variables. Also, as mentioned in Re-
mark 2.7 of [3], one can actually construct BRI(α) for all α > 0 simultaneously, in such
a way that BRI(α1) dominates BRI(α2) for α1 > α2: for this, one can consider a Poisson
process of rate 1 in R2

+ (with coordinates (ρ, u)) and then take those points that lie below
the curve u = 2α

ρ
when constructing BRI(α).

It is clear that the above construction is not invariant with respect to translations
of R2. Let us also mention an equivalent construction which, in some sense, recovers the
translation invariance property (the random interlacement is obtained as an image of an
object which is “more translationally invariant”). For that, let us first observe that the
following fact holds (recall that the Bessel process of dimension 3, also denoted here as
Bes(3), is the norm of the three-dimensional standard Brownian motion):

Proposition 2.3. Let Ŵ be the conditioned Brownian motion started somewhere outside
B(1) (or on its boundary). Then, there exists a pair of independent processes (Z,B), where
Z is Bes(3) and B is a Brownian motion such that

Ŵt = exp(ZGt + iBGt), where Gt =

∫ t

0

ds

|Ŵs|2
. (9)

Proof. This follows from the skew-product representation of the Brownian motion, cf. e.g.
Theorem 7.19 of [9], together with the well-known fact that Bes(3) is the (one-dimensional)
Brownian motion conditioned on never hitting the origin (cf. [10, 18]).

Now, let S1
2π = R/2πZ be the circle of radius 1; then, one can naturally define the

exponential map from R × S1
2π to C by exp(r, θ) = exp(r + iθ). For (r, θ) ∈ R × S1

2π,
we call a Bessel moustache (attached to that point) a pair of independent trajectories

(r + Z
(1,2)
t , θ + B

(1,2)
t , t ≥ 0), where Z(k) is a Bes(3) process (taking values in R+ and

starting at 0) and B(k) is an independent Brownian motion on S1
2π starting at 0.

Then, due to (8) and Proposition 2.3, we can define BRI(α) in the following way1 (see
Figure 1):

• take a Poisson point process of rate 2α× 1
2π

on R+×S1
2π (i.e., take a one-dimensional

Poisson process with rate 2α and rotate the points randomly on S1
2π);

• attach Bessel moustaches to these points independently;

• transfer that picture to C using the exponential map.

1In fact, we will obtain the same model if the interlacement trajectories are viewed as subsets of C;
note the time change in (9).
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exp(·)

0

B(1)

S12π

Figure 1: On the equivalent definition of BRI(α).

We also remark that in a similar way, one can obtain the process BRI(α; b) by taking a
Poisson process on [ln b,+∞)× S1

2π in the above construction.
Now, we are almost ready to state our results, but we still need to recall a couple of

notations from [3]: for x /∈ B(1),

ℓx =

∫

∂B(1)

ln |x− z|H(x, dz) =
|x|2 − 1

2π

∫

∂B(1)

ln |x− z|
|x− z|2

dz,

where H(x, ·) is the entrance measure (with respect to the Brownian motion) to B(1)
starting from x (see (24) below). As argued in (3.9)–(3.10) of [3],

ℓx =
(
1 +O(|x|−1)

)
ln |x| as |x| → ∞ and ℓx = ln(|x| − 1) +O(1) as |x| ↓ 1. (10)

Let us also define (for the specific purpose of being inside O’s, given that ℓ· changes sign
and can be equal to 0) ℓ̃x := |ℓx| ∨ 1.

We recall another notation from [3]: for x ∈ R2, Φx(α) denotes the distance from x to

the closest trajectory of BRI(α). We now extend this by defining Φ
(0)
x (α) := 0, Φ

(1)
x (α) :=

Φx(α), Φ
(2)
x (α) to be the distance to the second closest trajectory, Φ

(3)
x (α) to be the distance

to the third closest trajectory, and so on; note that a.s. it holds that 0 < Φ
(1)
x (α) <

Φ
(2)
x (α) < Φ

(3)
x (α) < . . .. Let us denote also

Ỹ (1)
x (α) =

2α ln2 |x|
ln(Φ

(1)
x (α)−1)

, Ỹ (j)
x (α) =

2α ln2 |x|
ln(Φ

(j)
x (α)−1)

− 2α ln2 |x|
ln(Φ

(j−1)
x (α)−1)

, j ≥ 2.

The following result states that Ỹ
(m)
x (α) are approximately Exponential(1) for m ≥ 1, and

also that Ỹ
(j+1)
x (α) is approximately independent of Ỹ

(1)
x (α), . . . , Ỹ

(j)
x (α):

Theorem 2.4. Assume that x /∈ B(1), and let b1, . . . , bj > 0. Then

P
[
Ỹ (1)
x (α) > s

]
= e−s

(
1 + s×O

(
Ψ

(s)
1 +Ψ

(s)
2 +Ψ

(s)
3

))
, (11)
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and, for j ≥ 1,

P
[
Ỹ (j+1)
x (α) > s | Ỹ (1)

x (α) = b1, . . . , Ỹ
(j)
x (α) = bj

]

= e−s
(
1 + s(b+ s)×O

(
Ψ

(b+s)
1 +Ψ

(b)
2 +Ψ

(b+s)
2 +Ψ

(b)
3 +Ψ

(b+s)
3

))
, (12)

where b := b1 + · · ·+ bj, and

Ψ
(h)
1 =

ℓ̃xh

α ln2 |x|
,

Ψ
(h)
2 =

1 + αh−1 ln2 |x|+ ln |x|
exp(2h−1α ln2 |x|)|x| ln |x|

,

Ψ
(h)
3 =

1 + Ψ
(h)
1

exp(2h−1α ln2 |x|)(|x| − 1)
.

The above result can be interpreted informally in the following way:

( 2α ln2 |x|
ln(Φ

(1)
x (α)−1)

,
2α ln2 |x|

ln(Φ
(2)
x (α)−1)

,
2α ln2 |x|

ln(Φ
(3)
x (α)−1)

, . . .
)

is approximately a Poisson process of rate 1 in R+, as long as the error term in (12) is
small. (Note that the quantity inside O(. . . ) in (12) does not depend on j.) Let us also
observe that the error term in (12) is O(α−1) when x is fixed and α → ∞, and is O( 1

ln |x|)

when α is fixed and |x| → ∞.
We need to define another important object, which is derived from the Wiener mous-

tache.

Definition 2.5. Let η be a Wiener moustache. The Brownian amoeba A is the connected
component of the origin in the complement of η ⊂ R2, see Figure 2.

Observe that the Brownian amoeba a.s. contains B(1) (except for the point where the
Wiener moustache touches the unit disk). To the best of our knowledge, this object first
appeared in [17] (it is the one with the distribution L1 there) as the limiting shape of
the connected components of the complement of one Brownian trajectory. A remarkable
property of the Brownian amoeba is that if we move the origin to a uniformly randomly
chosen (with respect to the area) point in A and rescale it properly (so that it touches the
boundary of the unit disk centered at the new origin), then the resulting object has the
same law; this is Proposition 22 of [17].

Next, we formulate the main result of this paper, which says that in certain regimes, the
connected components of the vacant set converge in distribution to the Brownian amoeba.
Analogously to Definition 2.5, for x ∈ R2, define

Cx(α) = the connected component of x in R2 \ BRI(α),

with the convention that Cx(α) = ∅ if x ∈ BRI(α). In the next result, we show that
C0(α)/Φ0(α) converges to A in total variation distance as α → 0, and also Cx(α)/Φx(α)
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0

B(1)
η

Figure 2: The Brownian amoeba A

converges to A in total variation distance under certain conditions (which we discuss in
more detail below). In the following, distTV (X, Y ) denotes the total variation distance
between the laws of random objects X and Y (recall that this total variation distance is
defined as inf P[X ̸= Y ], where the infimum is taken over all couplings of X and Y ).

Theorem 2.6. (i) We have for a positive constant c1

distTV

(C0(α)

Φ0(α)
,A
)
≤ c1α. (13)

(ii) Assume that |x| > 1 and α ln2 |x| ≥ 2. Then, for some, c2 > 0 it holds that

distTV

(Cx(α)− x

Φx(α)
,A
)
≤ c2

ℓ̃x ln
3(α ln2 |x|)
α ln2 |x|

. (14)

We are not sure how sharp is the estimate (14). In any case, note that for the term
in the right-hand side of (14) to be small, we always need α ln2 |x| to be large, but that
might not be enough for convergence to A (since there is also the factor ℓ̃x, which grows
to infinity as |x| → ∞ or |x| ↓ 1). To give a few examples, we observe that the error term
in (14) is

• O
(
ln3 α
α

)
when x /∈ B(1) is fixed and α → ∞;

• O
( (ln ln |x|)3

ln |x|

)
when α > 0 is fixed and |x| → ∞;

• O
( | ln v| ln3(αv2)

αv2

)
when v := |x| − 1 ↓ 0 (in this case, we need α to be “a bit larger”

than (1/v)2, i.e., α = (1/v)2+ε would work).
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B(1)

Mα

mα

Figure 3: The central cell (in this case, formed by five bi-infinite trajectories).

In any case, it is interesting to observe the similarity between what is seen from the origin
in the α → 0 regime and what is seen from x /∈ B(1) the “high intensity” regime: only
one trajectory (the one that forms the amoeba) really ”matters”; others are much more
distant.

We also discuss the “central cell” C0(α) in the regime when α → ∞. In this situation,
the cell is likely to be formed by many trajectories. Let us denote by

mα = min
x∈∂B(1)

Φx(α), (15)

Mα = max
x∈∂B(1)

Φx(α) (16)

the minimal and maximal distances from a boundary point of B(1) to the boundary of the
cell C0(α), see Figure 3. Now, (8) immediately implies that 2α ln(1 + mα) is an Exp(1)
random variable (so, informally, mα is of order α−1 with a random factor in front); also

(the second part of) Theorem 2.20 of [3] implies that, for fixed x ∈ ∂B(1), α
(
Φx(α)

)2
is approximately an Exp(1) random variable (so, informally, the distance from a generic
boundary point of B(1) to the boundary of the cell is of order α−1/2; again, with a random

factor in front). We now obtain that Mα is concentrated around
√

lnα
2α

(without any

random factors), and, moreover, even the a.s. convergence takes place (here we, of course,
assume that, as mentioned earlier, the random interlacement process is constructed for all

9
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α ≥ 0 simultaneously, in such a way that BRI(α1) is dominated by BRI(α2) for α1 < α2,
meaning that Mα is nonincreasing):

Theorem 2.7. It holds that

( lnα
2α

)−1/2

Mα → 1 a.s., as α → ∞. (17)

Let us also remark that it would be interesting to investigate the shape of the (suitably
rescaled) “interface” (that is, the boundary of C0(α)) seen in some window around a typical
boundary point (say, 1) of B(1) in the regime α → ∞.

The rest of the paper will be organized in the following way: in Section 3, we recall some
facts and prove a few technical lemmas about the conditioned Brownian motion, notably,
in Section 3.1 we introduce and discuss a new martingale for the conditioned Brownian
motion. Then, in Section 4 we give the proofs of Theorems 2.4, 2.6, and 2.7.

3 Some auxiliary facts

First, we recall a basic fact about hitting circles centered at the origin by the conditioned
Brownian motion. Since 1

ln |Ŵt|
is a local martingale, the optional stopping theorem implies

that for any 1 < a < |x| < b < ∞

Px[τ̂(b) < τ̂(a)] =
(ln a)−1 − (ln |x|)−1

(ln a)−1 − (ln b)−1
=

ln(|x|/a)× ln b

ln(b/a)× ln |x|
. (18)

Sending b to infinity in (18) we also obtain that for 1 ≤ a ≤ |x|

Px[τ̂(a) = ∞] = 1− ln a

ln |x|
. (19)

Also, in the following, we will need to refer to the fact that

ln |x| = ln |y|+ ln
(
1 + |x|−|y|

|y|

)
= ln |y|+O

( |x−y|
|y|

)
. (20)

We denote by Ŵ x,r the Brownian motion conditioned on not hitting B(x, r); it is
straightforward to check that it can be obtained from the Brownian motion conditioned
by “canonical” conditioned Brownian motion Ŵ via the linear space-time transformation,

Ŵ x,r
t = x+ Ŵr2t.

Then, we need a fact about the conditional entrance measure of a Brownian motion
(we need to state and prove it here because the second statement of Lemma 3.3 of [3] is
incorrect, a logarithmic factor is missing there):

10
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Lemma 3.1. Let 0 < 2r < |x| < R, and let νr,R
x be the conditional entrance measure of the

Brownian motion started at x to B(r), given that τ(r) < τ(R). Then, we have (abbreviating
s := |x|) ∣∣∣ dνr,R

x

d hmB(r)
− 1
∣∣∣ = O

( r ln R
r

s ln(1 + R
s
)

)
(21)

(here, hmB(r) is the harmonic measure on B(r), which is also uniform on ∂B(r)).

Proof. Without restricting generality, one can assume that R−s ≥ s/2 (otherwise, one can
just condition the first entry point to ∂B

(
2
3
s
)
). Denote also by ν̂ the conditional entrance

measure of the Brownian motion started at x to ∂B(R), given that τ(R) < τ(r). Consider
M ⊂ ∂B(r) and note first that, for y with |y| ≥ 2r

Py

[
Wτ(r) ∈ M

]
= hmB(r)(M)

(
1 +O

(
r
|y|

))
; (22)

this is a well-known fact that can be obtained from the explicit formula for the (uncon-
ditional) entrance measure to a disk from outside; see, e.g. Theorem 3.44 of [11] or (24)
below. Then, we write

Px

[
Wτ(r) ∈ M, τ(r) < τ(R)

]

= Px

[
Wτ(r) ∈ M

]
− Px

[
Wτ(r) ∈ M, τ(R) < τ(r)

]

(by (22) and conditioning on the entrance point to ∂B(R))

= hmB(r)(M)
(
1 +O

(
r
s

))
− Px[τ(R) < τ(r)]

∫

∂B(R)

Pz

[
Wτ(r) ∈ M

]
dν̂(z)

(again by (22))

= hmB(r)(M)
(
1 +O

(
r
s

))
− Px[τ(R) < τ(r)] hmB(r)(M)

(
1 +O

(
r
R

))

= hmB(r)(M)
(
Px[τ(r) < τ(R)] +O

(
r
s

))
.

We then divide the above by Px[τ(r) < τ(R)] =
ln R

s

ln R
r

to arrive to (21) (recall the remark

at the beginning of the proof).

Next, we recall a fact about the capacity of a union of two disks:

Lemma 3.2. Assume that r < |y| − 1. We have

ĉap
(
B(y, r)

)
= cap

(
B(1) ∪ B(y, r)

)
=

2

π
·

ln2 |y|+O
( r(1+| ln r|+ln |y|) ln |y|

|y|

)

ln r−1 + ℓy + ln |y|+O
(

r
|y|−1

ln |y|−1
r

) . (23)

Proof. It is a reformulation of Lemma 3.11 (iii) of [3].

In the following subsections, we collect some “more advanced” auxiliary results about
the conditioned Brownian motion.
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3.1 Conditioned Brownian motion: martingales and hitting probabilities

Now, we will need some facts about hitting probabilities for conditioned Brownian
motions; however, to be able to estimate these probabilities, we first develop a method
which is “cleaner” than the one used, e.g. in Lemma 3.7 of [3].

Lemma 3.3. Assume that, for some open set Λ ⊂ R2 such that Λ ∩ B(1) = ∅, a function

g : Λ 7→ R is harmonic. Then g(Ŵ )/ ln |Ŵ | is a local martingale.

Proof. Let x ∈ Λ and consider any bounded closed subset G of Λ that contains x in its
interior. Let τ be the hitting time of Λ \G and let t > 0. Now, recall (1) and write (note
that none of the trajectories up to time t ∧ τ can touch the unit disk and therefore be
killed)

Ex
g(Ŵt∧τ )

ln |Ŵt∧τ |
=

1

ln |x|
Exg(Wt∧τ ) =

g(x)

ln |x|

since g(W ) is a local martingale, so (since Ŵ is also Markovian) we obtain that g(Ŵ )

ln |Ŵ |
is a

local martingale.

Next, we know (see e.g. Theorem 3.44 of [11]) that for x /∈ B(1) and z ∈ ∂B(1)

H(x, z) =
|x|2 − 1

2π|z − x|2
(24)

is the Poisson kernel on R2 \ B(1), i.e., the density of the entrance measure to B(1) when
starting at x. Define for x, y /∈ B(1), x ̸= y,

L(x, y) =
1

ln |x|

(
ln |x| − ln |x− y|+

∫

∂B(1)

ln |z − y|H(x, z) dz

)
(25)

= 1 +
1

ln |x|

(
− ln |x− y|+ |x|2 − 1

2π

∫

∂B(1)

ln |z − y|
|z − x|2

dz

)
, (26)

Writing x = x0(1 + δ) with x0 ∈ ∂B(1) and δ > 0, this definition can be rewritten as

L(x, y) = 1 +
1

ln |x|

(
− ln

|x− y|
|x0 − y|

+
|x|2 − 1

2π

∫

∂B(1)

ln |z−y|
|x0−y|

|z − x|2
dz

)

= 1 +
1

ln |x|

(
− ln

|x− y|
|x0 − y|

+
|x|2 − 1

2π

∫ π

0

ln |z(φ)−y||z(−φ)−y|
|x0−y|2

|z(φ) − x|2
dφ

)
, (27)

where z(φ) = x0e
iφ. To cover the case δ = 0, define for x0 ∈ ∂B(1), y /∈ B(1) (denoting by

(·, ·) the scalar product in R2),

L(x0, y) =
(y − x0, y)

|x0 − y|2
+

1

π

∫ π

0

ln |z(φ)−y||z(−φ)−y|
|x0−y|2

|z(φ) − x0|2
dφ. (28)

Then, partly as a consequence of Lemma 3.3, we have

12
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Proposition 3.4. For any fixed y /∈ B(1), it holds that

(i) the function
(
R2 \ (B(1) ∪ {y})

)
∪ ∂B(1) → R, x 7→ L(x, y) is continuous;

(ii) the process L(Ŵt, y) is a local martingale;

(iii) L(x, y) → 0 as x → ∞;

(iv) for any fixed r > 0, L(x, y) is uniformly bounded in x ∈ R2 \ (B(1) ∪ B(y, r));

(v) L(x, y) > 0 for all x ∈ (R2 \ B(1)) ∪ ∂B(1), x ̸= y.

Proof. We fix y /∈ B(1) once and for all. We begin with the proof of (i). The continuity
outside of B(1) is immediate. Let us prove that for all x0 ∈ ∂B(1),

lim
x→x0

L(x, y) =
(y − x0, y)

|x0 − y|2
+

1

π

∫ π

0

ln |z(φ)−y||z(−φ)−y|
|x0−y|2

|z(φ) − x0|2
dφ. (29)

To prove that, we assume that x = (1 + δ)x0 and then take the limit δ ↓ 0 with the help
of (27); we will prove that convergence uniformly in x0, together with the continuity in
x0 of L(x0, y), and (29) will follow by elementary arguments. We proceed term by term.
First, we compute that for fixed x0 ∈ ∂B(1), we have

ln |(1 + δ)x0| = ln(1 + δ) = δ +O(δ2) (30)

and

ln
|(1 + δ)x0 − y|

|x0 − y|
=

1

2
ln

|x0 − y + δx0|2

|x0 − y|2

=
1

2
ln
(
1 + 2δ · (x0 − y, x0)

|x0 − y|2
+ δ2 · 1

|x0 − y|2
)

(31)

= δ · (x0 − y, x0)

|x0 − y|2
+O(δ2). (32)

We derive that, for any x0 ∈ ∂B(1), when x = x0(1 + δ), we have

1− lim
δ→0

1

ln |x|
ln

|x− y|
|x0 − y|

= 1− (x0 − y, x0)

|x0 − y|2
=

(y − x0, y)

|x0 − y|2
. (33)

We argue that this convergence is in fact uniform in x0. We observe that the coefficients
(x0−y,x0)
|x0−y|2 and 1

|x0−y|2 appearing in (31) are bounded, respectively by |y|+1
(|y|−1)2

and 1
(|y|−1)2

.

Using the fact that | ln(1 + u)− u| ≤ 2u2 for u ∈ [−1
2
, 1
2
], we see that the O(δ2) in (32) is

uniform in x0, and thus, so is the convergence in (33).

We also compute limδ→0
|x|2−1
ln |x| = 2 and see that this limit is uniform in x0 (in fact,

|x|2−1
ln |x| is independent of x0).

13
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Finally, let us argue using the dominated convergence theorem that, still with x =
(1 + δ)x0,

∫ π

0

ln |z(φ)−y||z(−φ)−y|
|x0−y|2

|z(φ) − x|2
dφ −→

δ→0

∫ π

0

ln |z(φ)−y||z(−φ)−y|
|x0−y|2

|z(φ) − x0|2
dφ, (34)

uniformly in x0. For the moment, let us reason with fixed x0. It is clear that the integrand
in the left-hand side of (34) converges pointwise towards the integrand in the right-hand
side of (34). Observing that |x0− z(φ)| ≤ |x− z(φ)|, we see that the integrand in the right-
hand side of (34) dominates the integrand in the left-hand side of (34). Let us check that
the integrand in the right-hand side of (34) is integrable; the only difficulty is around 0.
On the one hand, as φ → 0:

|z(φ) − y|2

|x0 − y|2
=

|x0 − y + x0(e
iφ − 1)|2

|x0 − y|2

= 1 + 2
(x0 − y, x0(e

iφ − 1))

|x0 − y|2
+

|eiφ − 1|2

|x0 − y|2

= 1 + 2φ
(x0 − y, x0i)

|x0 − y|2
+ 2

(x0 − y, x0(e
iφ − 1− iφ))

|x0 − y|2
+

|eiφ − 1|2

|x0 − y|2
(35)

= 1 + 2φ
(x0 − y, x0i)

|x0 − y|2
+O(φ2), (36)

so

ln
|z(φ) − y||z(−φ) − y|

|x0 − y|2
=

1

2
ln

(
|z(φ) − y|2

|x0 − y|2
× |z(−φ) − y|2

|x0 − y|2

)

=
1

2
ln(1 +O(φ2)) = O(φ2). (37)

On the other hand, |z(φ) − x0|2 = |eiφ − 1|2 = φ2 + O(φ3). We obtain that the integrand
on the right-hand side of (34) is bounded around 0, thus, it is integrable. The dominated
convergence theorem yields the convergence in (34), for fixed x0.

To conclude, we need to show that this convergence is uniform in x0. We are simply
going to refine the above arguments by showing that our estimates are uniform. Let us
denote

f(φ, δ) := sup
x0∈∂B(1)

∣∣∣∣∣
ln |z(φ)−y||z(−φ)−y|

|x0−y|2

|z(φ) − x0|2
−

ln |z(φ)−y||z(−φ)−y|
|x0−y|2

|z(φ) − x|2

∣∣∣∣∣

=
(
1− |eiφ − 1|2

|eiφ − (1 + δ)|2
)
× g(φ), (38)

with

g(φ) :=
supx0∈∂B(1)

∣∣ln |z(φ)−y||z(−φ)−y|
|x0−y|2

∣∣
|eiφ − 1|2

. (39)

14
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Let us show that g(φ) is bounded: the numerator on the right-hand side of (39) is
clearly bounded, so we only have to check that g does not diverge at 0. This comes
from (35), (36) and (37): observe that the coefficients in (35) are bounded in x0. Using
the fact that | ln(1 + u) − u| ≤ 2u2 for u ∈ [−1

2
, 1
2
], it is straightforward to establish that

the O(φ2) in (37) is uniform in x0, hence g is bounded around 0.
In view of (38), we see that f(·, δ) is dominated by g and converges pointwise towards 0.

The dominated convergence theorem then yields
∫ π

0
f(φ, δ)dφ −→

δ→0
0. The uniform conver-

gence in (34) follows by exchanging the integration with the supremum and the absolute
value.

From the boundedness of g, we also derive that the right-hand side of (34), hence also
L(x0, y), is continuous in x0, as desired. This concludes the proof of item (i).

Next, item (ii) follows from Lemma 3.3 (recall that the Poisson kernel is harmonic with
respect to its first variable). Items (iii) and (iv) are straightforward to obtain.

Finally, item (v) follows from the optional stopping theorem: a direct computation
implies that L(z, y) > 1 for all z ∈ ∂B(y, r) with small enough r. Then, the optional
stopping theorem together with (ii) and (iii) implies that

L(x, y) = Px[τ̂(y, r) < ∞]Ex

(
L(Ŵτ̂(y,r), y) | τ̂(y, r) < ∞

)
> 0.

This concludes the proof of Proposition 3.4.

In the next result, we are interested in the regime when the radius of the disk (to be
hit) is small, and the starting point is also close to the disk.

Lemma 3.5. Consider some fixed δ0 > 0. For every x, y /∈ B(1) such that |x− y| < 1
2
and

|x− y| ≤ (|y| − 1)1+δ0, we have, uniformly for all r ∈ (0, |x− y|):

Px

[
τ̂(y, r) < ∞

]
=

ln |x− y|−1 + ℓy + ln |y|
ln r−1 + ℓy + ln |y|

(
1 +O

( |x−y|ℓ̃y
(|y|−1)(ln |x−y|−1+ln |y|)

))
, (40)

Px

[
τ̂(y, r) = ∞

]
=

ln |x−y|
r

ln r−1 + ℓy + ln |y|
+O

( |x−y|ℓ̃y
(|y|−1)(ln |x−y|−1+ln |y|)

)
. (41)

Proof. Instead of relying on Lemma 3.7 (iii) of [3], we will use the optional stopping
theorem with the martingale provided by Proposition 3.4 and the stopping time τ̂(y, r).

We first establish some estimates. Let us show that according to our assumptions, |x−y|
|y|−1

is bounded by 1 and |y|−1
|x|−1

is bounded by a constant depending on δ0. For the first quantity,

observe that when |y| ≤ 2, we have |x − y| ≤ (|y| − 1)1+δ0 ≤ |y| − 1, while |y| > 2 we

simply have |x−y|
|y|−1

< 1
2
. For the second quantity, write when |y| ≤ 1.7,

|x| − 1 ≥ |y| − 1− |x− y| ≥ |y| − 1− (|y| − 1)1+δ0 ≥ (|y| − 1)(1− 0.7δ0),

and note that |y| > 1.7 we have |x| − 1 ≥ |y| − |x − y| − 1 > |y| − 3/2 which yields
|y|−1
|x|−1

≤ |y|−1

|y|− 3
2

≤ 7
2
.
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From these facts, we now deduce that, under the conditions of the lemma,

H(x, z) = H(y, z)
(
1 +O

( |x−y|
|y|−1

))
(42)

uniformly in z ∈ ∂B(1). Indeed, using (24), we write

H(x, z)

H(y, z)
=

|x|2 − 1

|y|2 − 1
· |y − z|2

|x− z|2

=
(
1 +

|x− y|2 + 2(y, x− y)

|y|2 − 1

)(
1 +

|x− y|2 + 2(x− y, x− z)

|x− z|2
)

=: (1 + T1)(1 + T2).

Note that, since |y| ≥ 1, we have |y|2 − 1 ≥ |y|(|y| − 1), and recall that |x−y|
|y|−1

is bounded;

this shows that T1 is O
( |x−y|
|y|−1

)
. Then, writing |x−y|

|x−z| ≤
|x−y|
|x|−1

= |x−y|
|y|−1

|y|−1
|x|−1

, recalling that both

fractions are bounded, we also find that T2 is O
( |x−y|
|y|−1

)
. By the boundedness of |x−y|

|y|−1
, this

implies (42).
We now consider r ∈ (0, |x − y|). Notice that our assumptions imply r < |y| − 1, so

that B(y, r)∩B(1) = ∅. Indeed, if |y| ≤ 2, then r < |x− y| ≤ (|y| − 1)1+δ0 ≤ |y| − 1, while
if |y| > 2 then |y| − 1 > 1 > r.

Recalling (10) and using (20) (to substitute ln |x| or ln |u| by ln |y|), we notice that (42)
permits us to obtain

L(x, y) =
ln |x− y|−1 + ℓy + ln |y|+O

( |x−y|ℓ̃y
|y|−1

)

ln |y|+O
( |x−y|

|y|

)

and, for any u ∈ ∂B(y, r)

L(u, y) =
ln r−1 + ℓy + ln |y|+O

( rℓ̃y
|y|−1

)

ln |y|+O
(

r
|y|

) .

Now, by the assumption that |x− y| ≤ (|y| − 1)1+δ0 , and lower bounding ℓy by ln(|y| − 1),
we have

1

1 + δ0
ln |x− y|−1 + ℓy ≥ 0

hence ln |x− y|−1 + ℓy + ln |y| ≥ δ0
1+δ0

(ln |x− y|−1 + ln |y|).
We are now ready to conclude. We obtain from the optional stopping theorem (recall

Proposition 3.4 (iii) and (iv))

Px

[
τ̂(y, r) < ∞

]
=

(
ln |x− y|−1 + ℓy + ln |y|+O

( |x−y|ℓ̃y
|y|−1

))(
ln |y|+O

(
r
|y|

))
(
ln r−1 + ℓy + ln |y|+O

( rℓ̃y
|y|−1

))(
ln |y|+O

( |x−y|
|y|

))

=
ln |x− y|−1 + ℓy + ln |y|

ln r−1 + ℓy + ln |y|

(
1 +O

( |x−y|ℓ̃y
(|y|−1)(ln |x−y|−1+ln |y|)

))
,

thus proving (40). Then, (41) is a direct consequence of (40).
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3.2 Traces of different conditioned Brownian motions

Next, the goal is to be able to compare traces left by the Brownian motion condi-
tioned on not hitting a specific (typically small) disk and the usual conditioned (on not
hitting B(1)) Brownian motion additionally conditioned on not hitting that disk. Recall

that the Brownian motion conditioned on not hitting B(y, r) is denoted by Ŵ y,r.

Lemma 3.6. Assume that 0 < r < r′ and let y be such that B(y, r′) ∩ B(1) = ∅ (meaning
that s := |y| − r′ − 1 is strictly positive). Let us denote also by τ ∗(z, r′) the hitting time

of ∂B(z, r′) by Ŵ y,r. Then, for any x ∈
(
B(y, r′) \ B(y, r)

)
∪ ∂B(y, r)

∣∣∣
dPx

[
Ŵ[0,τ̂(y,r′)] ∈ · | τ̂(y, r′) < τ̂(y, r)

]

dPx

[
Ŵ y,r

[0,τ∗(y,r′)] ∈ ·
] − 1

∣∣∣ = O
(

r′

s ln s

)
. (43)

Proof. First, we note that, analogously to Section 2.1 of [3], it is possible to define the

diffusion Ŵ conditioned on not touching B(y, r) anymore even for a starting point on
∂B(y, r). Since the estimates we obtain below (in the case x ∈ B(y, r′) \ B(y, r)) will be
uniform in x, it is enough to prove the result for x ∈ B(y, r′) \ B(y, r).

Let Γ be a set of (finite) trajectories, having the following property: a trajectory
belonging to this set has to start at x, it cannot touch B(y, r), and it ends on its first visit
to ∂B(y, r′). Then, we have (by an obvious adaptation of Lemma 2.1 of [3])

Px

[
Ŵ y,r

[0,τ∗(y,r′)] ∈ Γ
]
= Px

[
W[0,τ(y,r′)] ∈ Γ | τ(y, r′) < τ(y, r)

]

=
Px

[
W[0,τ(y,r′)] ∈ Γ

]

Px

[
τ(y, r′) < τ(y, r)

] ,

and

Px

[
Ŵ[0,τ̂(y,r′)] ∈ Γ | τ̂(y, r′) < τ̂(y, r)

]
=

Px

[
Ŵ[0,τ̂(y,r′)] ∈ Γ

]

Px

[
τ̂(y, r′) < τ̂(y, r)

]

(by Lemma 3.6 of [3])

=
Px

[
W[0,τ(y,r′)] ∈ Γ

]

Px

[
τ(y, r′) < τ(y, r)

](1 +O
(

r′

s ln s

))
,

which implies (43).

The above result compares the traces left in B(y, r′) by Ŵ y,r and (conditioned) Ŵ
before going out of B(y, r′) for the first time; it is important to observe that it allows us to
couple these traces with probability close to 1 (when the right-hand side of (43) is small).
With r′ := r lnθ r−1, we also need to compare the full traces left in B(y, r′) by these two
processes:
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Lemma 3.7. Fix θ ≥ 2 and δ0 > 0. Let r < 1 and y /∈ B(1) be such that

r ln2θ r−1 < min
(
1
2
, |y| − 1, (|y| − 1)1+δ0

)
. (44)

Then, for any x ∈
(
B(y, lnθ r−1) \ B(y, r)

)
∪ ∂B(y, r), we have

∣∣∣
dPx

[
Ŵ[0,∞] ∩ B(y, r lnθ r−1) ∈ · | τ̂(y, r) = ∞

]

dPx

[
Ŵ y,r

[0,∞] ∩ B(y, r lnθ r−1) ∈ ·
] − 1

∣∣∣ = O
(

ln ln r−1

ln r−1+ln |y| +
rℓ̃y ln2θ r−1

|y|−1

)
. (45)

Proof. Once again, as in the proof of Lemma 3.6, it is enough to obtain the proof for the
case x ∈ B(y, lnθ r−1) \B(y, r). Abbreviate r1 := r lnθ r−1, r2 := r ln2θ r−1. The idea of the
proof is the following: first, by Lemma 3.6, the traces left by the two processes on B(y, r2)
(and therefore on B(y, r1)) up to their first hitting time of ∂B(y, r2) have almost the same
law. Then, both processes may return a few times from ∂B(y, r2) to ∂B(y, r1), and we
argue that the number of such returns has almost the same law (in fact, it is precisely

Geom0(1/2) for Ŵ
y,r); we also argue that the entrance points of these returns have almost

the same law. Then, each pair of additional excursions from ∂B(y, r1) to ∂B(y, r2) again
can be coupled with high probability by Lemma 3.6.

Now, we fill in the details. First, note that (e.g., by (2.17) of [3])

for any x ∈ ∂B(y, r2), Px[τ
∗(y, r1) < ∞] =

ln(r1/r)

ln(r2/r)
=

1

2
. (46)

For the (additionally) conditioned process Ŵ , we have, for x ∈ ∂B(y, r2)

Px[τ̂(y, r1) < ∞ | τ̂(y, r) = ∞]

(ν being the conditional entrance measure to ∂B(y, r1) from x)

=
Px[τ̂(y, r1) < ∞]Pν [τ̂(y, r) = ∞]

Px[τ̂(y, r) = ∞]

(by Lemma 3.5)

=

ln r−1
2 +ℓy+ln |y|

ln r−1
1 +ℓy+ln |y|

(
1 +O

( r2ℓ̃y

(|y|−1)(ln r−1
2 +ln |y|)

))( ln
r1
r

ln r−1+ℓy+ln |y| +O
( r1ℓ̃y

(|y|−1)(ln r−1
1 +ln |y|)

))

ln
r2
r

ln r−1+ℓy+ln |y| +O
( r2ℓ̃y

(|y|−1)(ln r−1
2 +ln |y|)

)

=

ln r−1
2 +ℓy+ln |y|

ln r−1
1 +ℓy+ln |y| ·

ln
r1
r

ln r−1+ℓy+ln |y|

ln
r2
r

ln r−1+ℓy+ln |y|

(
1 +O

( rℓ̃y ln2θ r−1

|y|−1

))

(recall that ln(r1/r)
ln(r2/r)

= 1
2 )

=
1

2

(
1 +O

(
ln ln r−1

ln r−1+ln |y| +
rℓ̃y ln2θ r−1

|y|−1

))
. (47)
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So, with (46) and (47), we are now able to couple the excursion counts of the two processes
with probability close to 1.

Next, we need to be able to couple the entrance points to ∂B(y, r1) with high probability.
Let M be a (measurable) subset of ∂B(y, r1). First, let us note that Lemma 3.1 implies
that

Pu[Ŵ
y,r
τ∗(y,r1)

∈ M | τ ∗(y, r1) < ∞] =
|M |
2πr1

(
1 +O

(
1

lnθ r−1

))
(48)

uniformly in u ∈ ∂B(y, r2). Let us obtain an analogue of (48) for Ŵ conditioned on
{τ̂(y, r) = ∞}. Lemma 3.5 implies that

Pu[τ̂(y, r) > τ̂(R)] =
2 ln ln r−1

ln r−1 + ℓy + ln |y|

(
1 +O

( rℓ̃y lnθ r−1

|y|−1

))
+ o(1) (49)

as R → ∞, uniformly in u ∈ ∂B(y, r1). Assume without loss of generality that r1 < r2/2.
For R such that B(y, r2) ⊂ B(R), abbreviate GR =

{
τ(y, r1) < τ(R) < τ(1)

}
. Define the

(possibly infinite) random variable

TR =

{
inf
{
t ≥ 0 : Wt ∈ B(y, r2/2),W[t,τ(y,r1)] ∩ ∂B(y, r2) = ∅

}
on GR,

∞ on G∁
R

to be the time when the last (before hitting ∂B(y, r1)) excursion between ∂B(y, r2/2)
and ∂B(y, r1) ∪ ∂B(y, r2) starts. Note that TR is not a stopping time; and the law of
the excursion that begins at time TR is the law of a Brownian excursion conditioned to
reach ∂B(y, r1) before going to ∂B(y, r2). We denote that excursion by W̃ (with its initial
time reset to 0) and denote by σ the time it hits ∂B(y, r1). Let νR be the joint law of
the pair (TR,WTR

) under Px. Abbreviate also H = R+ × ∂B(y, r2/2) and observe that∫
H dνR(t, y) = Px[GR].
We can then write for x′ ∈ ∂B(y, r2)

Px′
[
Ŵτ̂(y,r1) ∈ M, τ̂(y, r1) < ∞, τ̂(y, r) = ∞

]

= lim
R→∞

Px′
[
Ŵτ̂(y,r1) ∈ M, τ̂(y, r1) < τ̂(R) < τ̂(y, r)

]

(by Lemma 2.1 of [3])

= lim
R→∞

Px′
[
Wτ(y,r1) ∈ M, τ(y, r1) < τ(R) < τ(y, r) | τ(R) < τ(1)

]

= lim
R→∞

lnR

ln |x′|
Px′
[
Wτ(y,r1) ∈ M, τ(y, r1) < τ(R) < τ(y, r) ∧ τ(1)

]

= lim
R→∞

lnR

ln |x′|

∫

H
dνR(t, z)

∫

M

Pz[W̃σ ∈ du]Pu[τ(R) < τ(y, r) ∧ τ(1)]

(again by Lemma 2.1 of [3])

= lim
R→∞

1

ln |x′|

∫

H
dνR(t, z)

∫

M

Pz[W̃σ ∈ du]Pu[τ̂(y, r) > τ̂(R)] ln |u|. (50)
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On the other hand, in the same way, one can obtain

Px′
[
τ̂(y, r1) < ∞, τ̂(y, r) = ∞

]

= lim
R→∞

1

ln |x′|

∫

H
dνR(t, z)

∫

∂B(y,r1)

Pz[W̃σ ∈ du]Pu[τ̂(y, r) > τ̂(R)] ln |u|. (51)

Then, (20) implies that ln |u|
ln |x′| = ln |y|+O(r2/|y|) uniformly in u ∈ ∂B(y, r1), and Lemma 3.1

implies that

Pz[W̃σ ∈ M ] =

∫

M

Pz[W̃σ ∈ du] =
|M |
2πr1

(
1 +O

(
1

lnθ r−1

))

for any z ∈ ∂B(y, r2/2). Using also (49) together with (50)–(51), we then obtain that

Px′
[
Ŵτ̂(y,r1) ∈ M | τ̂(y, r1) < ∞, τ̂(y, r) = ∞

]
=

|M |
2πr1

(
1 +O

(
1

lnθ r−1 +
r lnθ r−1ℓ̃y

|y|−1

))
, (52)

which is the desired counterpart of (48) and permits us to couple the starting points of

the corresponding excursions with probability at least 1−O
(

1
lnθ r−1 +

r lnθ r−1ℓ̃y
|y|−1

)
.

Using the observation we made after (47), it is now straightforward to conclude the
proof of Lemma 3.7 (as outlined at the beginning of the proof).

3.3 Controlling the size of the Brownian amoeba

Next, we need a result that would permit us to control the size of the Brownian amoeba.
For any r ≥ 1, define the event

Ur =
{
B(1) is not connected to ∞ in C \ Ŵ[τ̂(r),τ̂(2r)]

}
. (53)

Lemma 3.8. There exists γ0 > 0 such that for all x with |x| ≥ 1 we have

Px[U|x|] ≥ γ0. (54)

Proof. Let r := |x|. It is convenient to use Proposition 2.3: it is enough to consider the
trace of the process exp(Zt+iBt) (where Z is Bes(3) and B is a standard Brownian motion
independent of Z) before Z hits ln(2r). Denote τZ(s) = min{t ≥ 0 : eZt = s}. Let

τ̃ = min
{
t > τZ(5

3
r) : eZt = 3

2
r
}
.

Define the event (cf. Figure 4; note that what is written in the first line guarantees that
the first crossing of {z ∈ C : 4

3
r ≤ |z| ≤ 5

3
r} is not “too wide”)

U ′
r =

{
τ̃ < τZ(2r), |Bs −BτZ( 4

3
r)| ≤ 1

3
π for all s ∈ [τZ(4

3
r), τ̃ ],

|Bτ̃+1 −Bτ̃ | ≥ 8
3
π, 4

3
r < eZs < 5

3
r for all s ∈ [τ̃ , τ̃ + 1]

}
,

and observe that Px[U|x|] ≥ Px[U
′
|x|] (given that |Ŵ0| = r, on U ′

r the origin is indeed

disconnected from the infinity). By independence of Z and B it can be easily seen that,
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0

B(1)

r

2r

4
3r

3
2r

5
3r

Ŵ

Figure 4: On the definition of the event U ′
r

for any y such that |y| = 4
3
r

Py

[
τ̃ < τZ(2r), |Bs −B0| ≤ 1

3
π for all s ≤ τ̃

]
≥ γ1,

and for any y such that |y| = 3
2
r

Py

[
|B1 −B0| ≥ 8

3
π, 4

3
r < eZs < 5

3
r for all s ∈ [0, 1]

]
≥ γ′

1,

for some γ1, γ
′
1 > 0. We conclude the proof using the (strong) Markov property.

For A ⊂ C, define rad(A) = supx∈A |x|. The above result immediately implies the
following fact for the Brownian amoeba A: P[rad(A) > 2k] ≤ (1 − γ0)

k for any positive
integer k. From this, it is straightforward to obtain the following result. (it is similar to
Lemma 3 of [17]):

Corollary 3.9. There is a positive constant γ2 such that, for all u > 1

P[rad(A) > u] ≤ 2u−γ2 . (55)

4 Proofs of the main results

Proof of Theorem 2.4. For 0 < a < b < ∞, let Λx,α(a, b) be the set of BRI’s trajectories
that intersect B(x, b) but do not intersect B(x, a). By construction, it holds that Λx,α(a, b)
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and Λx,α(c, d) are independent whenever (a, b] ∩ (c, d] = ∅, and the number of trajectories
in Λx,α(a, b) has Poisson distribution with parameter πα

(
ĉap(B(x, b))− ĉap(B(x, a))

)
.

For b > 0, abbreviate rb := exp
(
− 2α ln2 |x|

b

)
. We have

P[Ỹ (1)
x (α) > s] = exp

(
− πα ĉap(B(x, rs))

)

and, for j ≥ 1 (and with b = b1 + · · ·+ bj) we can write

P
[
Ỹ (j+1)
x (α) > s | Ỹ (1)

x (α) = b1, . . . , Ỹ
(j)
x (α) = bj

]

= P
[
Λx,α(rb, rb+s) = ∅

]

= exp
(
− πα

(
ĉap(B(x, rb+s))− ĉap(B(x, rb))

))
.

Next, we use Lemma 3.2 to obtain that

πα ĉap(B(x, rh)) = h
(
1 +O

(
Ψ

(h)
1 +Ψ

(h)
2 +Ψ

(h)
3

))
. (56)

Using this in the above calculations together with the fact that (for bounded Ω)

e−v(1+O(Ω)) = e−v(1 + vO(Ω)),

it is straightforward to conclude the proof of Theorem 2.4.

Proof of Theorem 2.6. For the proof of part (i), denote A1 the connected component of the

origin formed by the closest trajectory (the one at distance ρα1 ); it is clear that A1
law
= ρα1A

(with A being a Brownian amoeba independent of (ραk , k ≥ 1)). In the following, we
obtain an upper bound for the probability that another trajectory would “touch” the cell
formed by the first trajectory. We have (recall (8)) ρα2/ρ

α
1 = exp(Y2/(2α)), where Y2 is an

Exponential(1) random variable, independent of ρα1 . Therefore, we can write

P[Cα
0 = A1] ≥ P

[
rad(A1) < ρα2

]

= P
[
ρα1 rad(A) < ρα2

]

= P
[
rad(A) < exp

( Y2

2α

)]

= E
(
P
[
rad(A) < exp

( Y2

2α

) ∣∣∣ Y2

])

(by Corollary 3.9)

≥ 1− 2E exp
(
− γ2Y2

2α

)

= 1− 2
1

1 + γ2
2α

= 1−O(α) as α → 0, (57)
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and this completes the proof of the part (i).
Let us now prove the part (ii). Recall the notation Λx,α(a, b) from the beginning of the

proof of Theorem 2.4. Considering events in the sequence
(
Λx,α(e

−n, e−(n−1)), n ∈ Z
)
are

independent, let us define the events

Υn =
{
Φx(α) ∈ (e−n, e−(n−1)]

}
,

and let σx,α = ⌊− lnΦx(α)⌋ + 1, i.e., σx,α is the only integer k for which Υk occurs.

Let Ŵ x,(n) be the bi-infinite trajectory defined in the following way: let Ŵ
x,(n)
0 be chosen

uniformly at random on ∂B(x, e−(n−1)); then (Ŵ
x,(n)
t , t < 0) is distributed as Ŵ x,e−(n−1)

and

(Ŵ
x,(n)
t , t > 0) is distributed as Ŵ x,e−n

. That is, from a random point on ∂B(x, e−(n−1))
we draw one trajectory conditioned on (immediately) escaping from B(x, e−(n−1)) and
another one conditioned on never hitting B(x, e−n). Then, Lemma 3.9 of [3] implies that

the cell Ax,(n) formed by Ŵ x,(n) around x is the standard Brownian amoeba rescaled by
inft>0

∣∣Ŵ x,(n)
t − x

∣∣, and then shifted to x.
An important observation is that all BRI’s trajectories are actually ordered by their

α-coordinates (see e.g. Remark 2.7 of [3]), so it may make sense to speak about the first tra-
jectory belonging to some set of trajectories (in the case when we are able to find one with
minimal α-coordinate among them). By Lemma 3.7 (and also assuring that the entrance
measure of that BRI’s trajectory to ∂B(x, e−(n−1)) is not far from uniform), we can have a

coupling Ŵ x,(n) with the first BRI’s trajectory (for all α > 0) that intersects B(x, e−(n−1))
but does not intersect B(x, e−n), such that the traces of these coincide with high proba-
bility in the vicinity of B(x, e−n) (more precisely, in B(x, e−nnθ), where θ := max(2, γ−1

2 )
with γ2 of Corollary 3.9). Now, we are interested in proving that, with high probability,
Cx(α) = Ax,(σx,α). Let us define three families of events

G
(n)
1 =

{
Ax,(n) ⊂ B(x, e−nnθ)

}
,

G
(n)
2 =

{
Φ(2)

x (α) > e−nnθ
}
,

G
(n)
3 =

{
Ŵ

x,(n)
[−∞,∞] ∩ B(x, e−nnθ) = Ŵ

∗,(n)
[−∞,∞] ∩ B(x, e−nnθ)

}
,

where Ŵ ∗,(n) stands for the first BRI’s trajectory that intersects B(x, e−(n−1)) but does
not intersect B(x, e−n); as suggested above, for each n, we assume that it is coupled with

the Ŵ x,(n) in such a way that the probability that the corresponding traces coincide is
maximized.

Recall the notation rb = exp
(
− 2αb−1 ln2 |x|

)
, so that ln r−1

b = 2αb−1 ln2 |x|. Also,

abbreviate b0 := 3 ln(α ln2 |x|) > 1 and n0 = ln r−1
b0

= 2α ln2 |x|
3 ln(α ln2 |x|) . Note that Theorem 2.4

implies that
P
[
σx,α ≤ n0

]
≤ O

(
1

(α ln2 |x|)3
)
. (58)

Then, Corollary 3.9 implies that, for n ≥ n0

P
[
G

(n)
1

]
≥ 1− 2n−θγ2 ≥ 1− 2n−1 ≥ 1− 3 ln(α ln2 |x|)

α ln2 |x|
. (59)
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Observe that if N is a Poisson-distributed random variable, then an elementary com-
putation implies that P[N = 1 | N ≥ 1] ≥ P[N = 0]. Therefore, quite analogously to
the proof of Theorem 2.4, using (56) after some elementary calculations we can obtain for

n ≥ n0 (note that Ψ
(h)
1 and Ψ

(h)
3 grow in h and Ψ

(h)
2 grows in h at least when α ln2 |x| is

large enough)

P
[
G

(n)
2 | Υn

]

= P
[
card

(
Λx,α(e

−n, e−(n−1))
)
= 1 | Υn

]
P
[
Λx,α(e

−(n−1), e−nnθ) = ∅
]

≥ P
[
Λx,α(e

−n, e−(n−1)) = ∅
]
P
[
Λx,α(e

−(n−1), e−nnθ) = ∅
]

= P
[
Λx,α(e

−n, e−nnθ) = ∅
]

≥ 1−O
(
Ψ∗ + b0(H1 +H2 +H3)

)
, (60)

where

Ψ∗ =
ln3(α ln2 |x|)
α ln2 |x|

,

H1 =
ℓ̃x ln(α ln2 |x|)

α ln2 |x|
,

H2 =
α ln2 |x|+ ln |x| × ln(α ln2 |x|)

|x| exp
( 2α ln2 |x|
3 ln(α ln2 |x|)

)
ln |x|

,

H3 =
1 +H1

(|x| − 1) exp
( 2α ln2 |x|
3 ln(α ln2 |x|)

) .

We now intend to simplify the term O(Ψ∗+ b0(H1+H2+H3)). First, it can be easily seen
that, as α ln2 |x| → ∞, the term H2 is negligible in comparison to H1. Then, assuming
that H1 ≤ 1, we have

H3 ≤
2

(|x| − 1) exp
( α ln2 |x|
3 ln(α ln2 |x|)

) × exp
(
− α ln2 |x|

3 ln(α ln2 |x|)

)
;

since

ln
(
(|x| − 1) exp

( α ln2 |x|
3 ln(α ln2 |x|)

)
)
≥ α ln2 |x|

3 ln(α ln2 |x|)
) − | ln(|x| − 1)| ≥ 0, (61)

if H1 is small enough, we see that H3 is at most of order of H1. Therefore, since both Ψ∗

and b0H1 are bounded from above by ℓ̃x ln3(α ln2 |x|)
α ln2 |x| , for n ≥ n0 we obtain that

P
[
G

(n)
2 | Υn

]
≥ 1−O

( ℓ̃x ln3(α ln2 |x|)
α ln2 |x|

)
. (62)

Next, we deal with the event G
(n)
3 . To achieve a successful coupling of Ŵ x,(n) with

the actual BRI(α) trajectory, we first have to estimate the probability that their entrance
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points to ∂B(x, e−(n−1)) can be successfully coupled. Here substituting for the moment
r := e−(n−1) and recall Lemma 3.10 of [3]: the entrance measure of a BRI’s trajectory
to B(x, r) is the harmonic (i.e., uniform) measure hmB(x,r) biased by the logarithm of

the norm of the entrance point (and obviously that, it holds ln |y|
ln |z| = (1 + O( r

|x| ln |x|)) for

y, z ∈ ∂B(x, r)). Then, the entrance measure of a trajectory of Λx,α(r/e, r) is the preceding
one additionally biased by the probability of not hitting B(x, r/e). We note that, for
y ∈ ∂B(x, r), Lemma 3.5 gives us that

Py[τ̂(x, r/e) = ∞] =
1

ln e
r
+ ℓx + ln |x|

(
1 +O

(
rℓ̃x

(|x|−1)(ln r−1+ln |x|)2
))

;

this implies that for any y, z ∈ ∂B(x, r),

∣∣∣∣
Py[τ̂(x, r/e) = ∞]

Pz[τ̂(x, r/e) = ∞]
− 1

∣∣∣∣ ≤ O
(

rℓ̃x
(|x|−1)(ln r−1+ln |x|)2

)
. (63)

Therefore, the probability of successfully coupling the entrance points is at least

1−O
(

r
|x| ln |x| +

rℓ̃x
(|x|−1)(ln r−1+ln |x|)2

)
= 1−O

(
rℓ̃x

(|x|−1)(ln r−1+ln |x|)2
)
. (64)

Next, to couple the actual traces with Lemma 3.7, we have to assure that (44) is verified
for n ≥ n0. It is clear that it holds for large enough α ln2 |x| in the case |x| ≥ 2, since it
would be enough to check that2 rb0 ln

2θ r−1
b0

≤ 1
2
, which is clearly the case. Assume now

that |x| < 2; essentially, we need to verify that rb0 ln
2θ r−1

b0
< (|x| − 1)1+δ0 . Let α ln2 |x| be

large enough so that rb0 ln
2θ r−1

b0
≤ r

1/2
b0

. Then, as in (61), we have

ln
(|x| − 1)1+δ0

r
1/2
b0

≥ α ln2 |x|
3 ln(α ln2 |x|)

) − (1 + δ0)
∣∣ ln(|x| − 1)

∣∣ > 0 (65)

if ℓ̃x ln(α ln2 |x|)
α ln2 |x| is small enough, so (44) indeed holds.

Then, using Lemma 3.7 (for both positive and negative sides of the trajectories, which
are independent except for their starting point), we obtain for n ≥ n0 (recall (64))

P
[
G

(n)
3 | Υn

]
≥ 1−O

( ln(αb−1
0 ln2 |x|)

ln |x|+αb−1
0 ln2 |x| +

ℓ̃xrb0 ln2θ r−1
b0

|x|−1
+ rℓ̃x

(|x|−1)(ln r−1+ln |x|)2
)

(66)

(again, it is not difficult to see that the second term with generic b ∈ (0, b0) is majorized
by the term with b0, in the case when α ln2 |x| is large enough). We have that

ln(αb−1
0 ln2 |x|)

ln |x|+ αb−1
0 ln2 |x|

≤ 3 ln2(α ln2 |x|)
α ln2 |x|

.

2Observe that the function f(x) = x ln2θ x−1 is increasing for x ∈ (0, e−2θ).
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As for the second term, it is clearly of smaller order when |x| ≥ 2. If 1 < |x| < 2, we have
ℓ̃x ≤ O

(
(|x| − 1)−1

)
so we can write

ℓ̃xrb0 ln
2θ r−1

b0

|x| − 1
≤ O

( r
1/2
b0

(|x| − 1)2

)
≤ r

1/4
b0

×O
( r

1/4
b0

(|x| − 1)2

)
;

analogously to (61) and (65), we can show that
r
1/4
b0

(|x|−1)2
≤ 1 (assuming that ℓ̃x ln(α ln2 |x|)

α ln2 |x| is

small enough), which allows us to conclude that the second term is of a smaller order than
the first one in that case as well. The third term can be treated quite analogously to the
second one, so we obtain

P
[
G

(n)
3 | Υn

]
≥ 1−O

( ℓ̃x ln2(α ln2 |x|)
α ln2 |x|

)
(67)

for n ≥ n0.
We can now estimate the probability of the event of interest. It remains to write using

(58), (59), (62), (67)

P
[
Cx(α) = Ax,(σx,α)

]
= E

(
P
[
Cx(α) = Ax,(σx,α) | σx,α

])

≥ E
(
P
[
Cx(α) = Ax,(σx,α) | σx,α

]
1{σx,α ≥ n0}

)

≥ P
[
σx,α ≥ n0

]
× min

n≥n0

P
[
G

(n)
1 ∩G

(n)
2 ∩G

(n)
3 | Υn

]

≥ 1−O
( ℓ̃x ln3(α ln2 |x|)

α ln2 |x|

)
.

This concludes the proof of Theorem 2.6.

Proof of Theorem 2.7. We need to prove that for any δ > 0 it holds that

(1− 2δ)

√
lnα

2α
≤ Mα ≤ (1 + 2δ)

√
lnα

2α
(68)

eventually for all large enough α.
We start by showing that the second inequality in (68) (with δ on the place of 2δ) is

verified with high probability. Let us place nδ,α :=
⌈
6π
δ

√
2α
lnα

⌉
points x1, . . . , xnδ,α

on ∂B(1)

in such a way that every closed arc of length δ
3

√
lnα
2α

contains at least one of these points.

Then, we have the following inclusion:

{
Mα > (1 + δ)

√
lnα

2α

}
⊂

nδ,α⋃

k=1

{
Φxk

(α) >
(
1 +

δ

3

)√ lnα

2α

}
. (69)

Next, we recall that Lemma 3.12 of [3] states that, for x ∈ ∂B(1) and small enough r > 0,

ĉap
(
B(x, r)

)
= cap

(
B(1) ∪ B(x, r)

)
=

r2

π

(
1 +O(r)

)
, (70)
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so, by (7)

P
[
Φxk

(α) >
(
1 +

δ

3

)√ lnα

2α

]
= exp

(
−

(1 + δ
3
)2 lnα

2

(
1 + o(1)

))
≤ O

(
α− 1

2
(1+ 2δ

3
)
)
;

by the union bound, this shows that

P
[
Mα > (1 + δ)

√
lnα

2α

]
≤ O

(
α−δ/3

)
. (71)

Now, we need to obtain an upper-bound on the probability that Mα does not exceed

(1−δ)
√

lnα
2α

. Denote mδ,α =
⌈
α

1
2
(1− δ

3
)
⌉
, and let y1, . . . , ymδ,α

be points placed on ∂B(1) with

equal spacing between neighbouring ones (so that the distance between the neighbouring

ones is of order α− 1
2
(1− δ

3
)). Again, by (7) and (70) for large enough α we have that for

any k

P
[
Φyk(α) ≤ (1− δ)

√
lnα

2α

]
= 1− exp

(
− (1− δ)2 lnα

2

(
1 + o(1)

))

≤ 1− α− 1
2
(1−δ). (72)

Next, abbreviate Ak = B
(
yk, (1 − δ)

√
lnα
2α

)
\ B(1), and consider all the interlacement

trajectories that has an intersection with
⋃mδ,α

k=1 Ak. We say that such a trajectory is of
type 1 if it intersects only one of the Ak’s, and of type 2 if it intersects several of them. By
construction, the numbers of type-1 trajectories that intersect Ak are independent Poisson
random variables for k = 1, . . . ,mδ,α, and they are also independent of the process of
type-2 trajectories. Note also that, by (70), the total number of trajectories (i.e., of both
types) that intersect Ak is Poisson with parameter 1

2
(1− δ)2 lnα×

(
1 + o(1)

)
; this means

that the number of type-1 trajectories that intersect Ak is dominated by a Poisson random
variable with that parameter. Therefore, from (72) we obtain

P
[
there exists j such that no type-1 trajectory hits Aj

]

≥ 1−
(
1− α− 1

2
(1−δ)

)mδ,α

≥ 1− exp(−αδ/3). (73)

Now, we work with the process of type-2 trajectories. First, we claim that, for any k
and any x ∈ Ak

Px

[
Ŵ hits

⋃

ℓ̸=k

Aℓ

]
≤ O

(
α−δ/3 lnα

)
. (74)

To show the above, we use Proposition 2.3 together with the fact that the Bes(3) process
can be represented as the norm of the 3-dimensional Brownian motion. Assume without

restricting generality that k = 1 in (74), and that y1 = 1. Denote rδ,α = (1− δ)
√

lnα
2α

and

let A′
j be the pre-image of Aj with respect to the exponential map. It is clear that, for
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fixed δ and large enough α we have A′
j ⊂ [0, 2rδ,α] × Ij, where Ij is the interval of length

4rδ,α centred at the pre-image of yj. For j ∈ Z, denote also

B′
j = [0, 2rδ,α]×

[ 2π

mδ,α

j − 2rδ,α,
2π

mδ,α

j + 2rδ,α

]
⊂ R+ × R.

Let φ : R4 → R+ × R be defined by φ(x, y, z, t) = (
√

x2 + y2 + z2, t), and let W (4) be the
standard Brownian motion in R4 started at the origin. We then have, for x′ ∈ A′

1

Px′

[
(Z,B) hits

⋃

2≤ℓ≤mδ,α

A′
ℓ

]
≤ Pφ−1(x′)

[
W (4) hits

⋃

ℓ∈Z\{0}

φ−1(B′
ℓ)
]
.

Recall that, in R4, we have (momentarily “lifting” the notation B(·, ·) to that dimen-

sion) Px[W
(4) hits B(y, r)] ≍

(
r

|x−y|

)2
. Then, φ−1(B′

ℓ) is a cylinder of the linear size

of the order
√

lnα
α

(so it fits into a ball of the size of the same order), and the dis-

tance between φ−1(x′) and φ−1(B′
ℓ) is of order |ℓ|α− 1

2
(1− δ

3
). This indeed shows that (74)

holds (note that
√

lnα
α
/α− 1

2
(1− δ

3
) = α−δ/6

√
lnα, and we also have to use the fact that∑

ℓ∈Z\{0} |ℓ|−2 < ∞).

Now, (74) shows that the number of type-2 trajectories that hits a set Ak has expec-
tation at most O

(
α−δ/3 ln2 α

)
(recall that the total number of trajectories hitting Ak is

Poisson with parameter O(lnα)). Using the fact that the process of type-2 trajectories
is independent from all the type-1 ones, we find that if ζ ∈ {1, . . . ,mδ,α} is a (random)
index such that no type-1 trajectory touches Aζ (by (73), such ζ exists with probability at
least 1− exp(−αδ/3)), then also no type-2 trajectory touches Aζ with probability at least
1−O

(
α−δ/3 ln2 α

)
. This means that

P
[
Mα < (1− δ)

√
lnα

2α

]
≤ O

(
α−δ/3 ln2 α

)
. (75)

Together with (71), this implies the convergence in probability in (17); now, we will deduce

the a.s. convergence using the monotonicity of Mα. Indeed, let αk = e
√
k. By the Borel-

Cantelli lemma, for any fixed δ > 0 the estimates (71) and (75) imply that

(1− δ)

√
lnαk

2αk

≤ Mαk
≤ (1 + δ)

√
lnαk

2αk

(76)

for all but finitely many k. We have that Mαk+1
≤ Mα ≤ Mαk

for all α ∈ [αk, αk+1], and
it is also elementary to verify that

√
lnαk+1

2αk+1√
lnαk

2αk

→ 1 as k → ∞.

This allows us to deduce (68) from (76) and therefore concludes the proof of Theorem 2.7.
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