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On polynomial equations over split octonions

Artem Lopatin, Alexander Rybalov

Abstract. Working over the split octonions over an algebraically closed field, we solve
all polynomial equations in which all the coefficients but the constant term are scalar.
As a consequence, we calculate the n

−th roots of an octonion.
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1 Introduction

Assume that F is a field of an arbitrary characteristic p = charF ≥ 0. All vector spaces
and algebras are over F.

The problem of solving polynomial equations was historically considered as one of key
problems in mathematics, which influenced the creation of algebraic geometry and other
branches of mathematics. Polynomial equations were considered not only over fields, but
also over matrix algebras, algebras of quaternions, octonions, etc. Rodríguez-Ordóñez [30]
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proved that every polynomial equation over the algebra AR of Cayley numbers (i.e., the
division algebra of real octonions) of positive degree with the only term of the highest
degree has a solution. An explicit algorithm for a solution of the quadratic equations
x2 + bx + c = 0 over AR was obtained by Wag, Zhang and Zhang [32] together with
criterions whether this equation has one, two or infinitely many solutions.

In general, an octonion algebra C (or a Cayley algebra) over the field F is a non-
associative alternative unital algebra of dimension 8, endowed with a non-singular quadratic
multiplicative form n : C → F, which is called the norm. The norm n is called isotropic
if n(a) = 0 for some non-zero a ∈ C, otherwise the norm n is anisotropic. In case n is
anisotropic, the octonion algebra C is a division algebra. In case n is isotropic, there exists
a unique octonion algebra OF over F with isotropic norm (see Theorem 1.8.1 of [31]). This
algebra is called the split octonion algebra. Note that, if F is algebraically closed, then any
octonion algebra is isomorphic to the split octonion algebra OF (for example, see Lemma
2.2 from [28]). Since Artin’s theorem claims that in an alternative algebra every subalgebra
generated by two elements is associative, then any octonion algebra is power-associative,
i.e., the subalgebra generated by a single element is associative. Therefore, given a ∈ C,
we can write down an without specifying the brackets in the product.

Flaut and Shpakivskyi [17] considered the equation xn = a over real octonion di-
vision algebras. For an octonion division algebra C over an arbitrary field F, Chap-
man [7] presented a complete method for finding the solutions of the polynomial equation
anx

n + an−1x
n−1 + · · · + a1x + a0 = 0 over C. Moreover, Chapman and Vishkautsan [9],

working over a division algebra C, determined the solutions of the polynomial equation
(anc)x

n + (an−1c)x
n−1 + · · ·+ (a1c)x + (a0c) = 0 and discussed the solutions of the poly-

nomial equation (can)x
n + (can−1)x

n−1 + · · ·+ (ca1)x+ (ca0) = 0. Chapman and Levin [8]
described a method for finding so-called “alternating roots” of polynomials over an ar-
bitrary division Cayley-Dickson algebra. Chapman and Vishkautsan [10] examined the
conditions under which, for a root a of a polynomial f(x) over a general Cayley–Dickson
algebra, there exists a factorization f(x) = g(x)(x − a) for some polynomial g(x). The
case of polynomial equations over an arbitrary algebra has recently been considered by
Illmer and Netzer in [22], where some conditions were determined that imply the existence
of a common solution of n polynomial equations in n variables, with an application to
polynomial equations over AR.

Assume that A is a unital algebra over F. Consider a general polynomial equation
f(a1, . . . , am, x) = 0 over A, i.e., f(a1, . . . , am, x) is an element of the absolutely free
unital algebra F〈a1, . . . , am, x〉 with free generators a1, . . . , am, x. Here x ∈ A is a vari-
able and a1, . . . , am ∈ A are coefficients. We aim to describe a method for calculating x
when a1, . . . , am are given. Note that we can also consider f(a1, . . . , am, x) as an element
of the relatively free algebra FA〈a1, . . . , am, x〉 := F〈a1, . . . , am, x〉/Id(A) for A, where
Id(A) stands for the T-ideal of all polynomial identities for A. By knowing an F-basis
for FA〈a1, . . . , am, x〉, we can obtain a canonical form for f(x). Therefore, a problem of
solving a polynomial equation over an algebra A is tightly connected with the problem of
explicit description of polynomial identities for A. Although the theory of algebras with
polynomial identities is a well-developed area of algebra with many deep results, there
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are still few results offering an explicit description of generators of T-ideals of polynomial
identities for particular finite-dimensional algebras (see [11–14, 16]

for recent results). Due to the difficulty of solving a general equation f(a1, . . . , am, x) =
0 over A, it may be interesting to consider this equation over some vector subspace V ⊂ A
generating the algebra A, i.e., to assume that a1, . . . , am, x ∈ V. In this case, instead of
polynomial identities, we should use so-called weak polynomial identities for the pair (A,V)
(see survey [15] and papers [23, 25–27] for recent results on weak polynomial identities).

The split-octonions have numerous applications to physics. As an example, the Dirac
equation, which describes the motion of a free spin 1/2 particle, such as an electron or a
proton, can be represented by the split-octonions (see [18–20]). There exist applications of
split-octonions to electromagnetic theory (see [4–6]), geometrodynamics (see [3]), unified
quantum theories (see [1, 2, 24]), special relativity (see [21]).

In a recent paper, Lopatin and Zubkov [28] considered the linear equations ax = c,
(ax)b = c, a(bx) = c over the split octonion algebra O in case F is algebraically closed.
Note that, over a division octonion algebra, these equations can easily be solved, and for
non-zero a, b there is a unique solution. However, in the case of an algebraically closed
field, the situation is drastically different. Specifically, the set X of all solutions of one of
the above linear equations with non-zero a, b is either empty, or contains the only element,
or the affine variety X has dimension r, where

• r = 4 in case we consider the equation ax = c;

• r ∈ {4, 5, 7} in case we consider the equation (ax)b = c;

• r ∈ {4, 6, 8} in case we consider the equation a(bx) = c.

In Sections 2 and 3 we assume that the field F is algebraically closed. In Section 2 we
explicitly define the octonion algebra O and its group of automorphisms Aut(O) = G2. In
Section 3 we solve every equation

αnx
n + αn−1x

n−1 + · · ·+ α1x = c (1.1)

with scalar α1, . . . , αn ∈ F and possibly non-scalar constant term c ∈ O with respect to
the variable x ∈ O (see Theorem 3.2). The solution of equation (1.1) is obtained modulo
solution of polynomial equations over F. In Corollary 3.3 we explicitly describe the number
of solutions of equation (1.1). In Corollary 3.4 we apply the obtained general result to the
n−th roots of c ∈ O, i.e., to the solutions of the equation xn = c.

2 Octonions

In this section we assume that the field F is algebraically closed.
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2.1 Split-octonions

The split octonion algebra O = O(F), also known as the split Cayley algebra, is the
vector space of all matrices

a =

(

α u

v β

)

with α, β ∈ F and u,v ∈ F
3,

together with the multiplication given by the following formula:

aa′ =

(

αα′ + u · v′ αu′ + β ′
u− v × v

′

α′
v + βv′ + u× u

′ ββ ′ + v · u′

)

, where a′ =

(

α′
u
′

v
′ β ′

)

,

u · v = u1v1 + u2v2 + u3v3 and u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). For short,
we denote c1 = (1, 0, 0), c2 = (0, 1, 0), c3 = (0, 0, 1), 0 = (0, 0, 0) from F

3. Consider the
following basis of O:

e1 =

(

1 0

0 0

)

, e2 =

(

0 0

0 1

)

, ui =

(

0 ci

0 0

)

, vi =

(

0 0

ci 0

)

for i = 1, 2, 3. The unity of O is denoted by 1O = e1 + e2. We identify octonions

α1O,

(

0 u

0 0

)

,

(

0 0

v 0

)

with α ∈ F, u,v ∈ F
3, respectively. Note that uiuj = (−1)ǫijvk and vivj = (−1)ǫjiuk,

where {i, j, k} = {1, 2, 3} and ǫij is the parity of the permutation

(

1 2 3
k i j

)

.

The algebra O is endowed with the linear involution

a =

(

β −u

−v α

)

,

which satisfies the equality aa′ = a′a, a norm n(a) = aa = αβ−u ·v, and a non-degenerate
symmetric bilinear form q(a, a′) = n(a+a′)−n(a)−n(a′) = αβ ′+α′β−u·v′−u

′ ·v. Define
the linear function trace by tr(a) = a+ a = α + β. The subspace of traceless octonions is
denoted by O0 = {a ∈ O | tr(a) = 0} and the affine variety of octonions with zero norm is
denoted by O# = {a ∈ O |n(a) = 0}. Notice that

tr(aa′) = tr(a′a) and n(aa′) = n(a)n(a′). (2.1)

The next quadratic equation holds:

a2 − tr(a)a+ n(a) = 0. (2.2)

The algebra O is a simple alternative algebra, i.e., the following identities hold for a, b ∈ O:

a(ab) = (aa)b, (ba)a = b(aa). (2.3)

Moreover,
a(ab) = n(a)b, (ba)a = n(a)b. (2.4)

The following remark is well-known and can easily be proven.
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Remark 2.1. Given an a ∈ O, one of the following cases holds:

• if n(a) 6= 0, then there exist unique b, c ∈ O such that ba = 1O and ac = 1O;
moreover, in this case we have b = c = a/n(a) and we denote a−1 := b = c.

• if n(a) = 0, then a does not have a left inverse as well as a right inverse.

Equalities (2.4) imply that for a 6∈ O# we have

a−1(ab) = b, (ba)a−1 = b. (2.5)

2.2 The group G2

The group Aut(O) of all automorphisms of the algebra O is the exceptional simple
group G2 = G2(F). The group G2 contains a Zariski closed subgroup SL3 = SL3(F).
Namely, every g ∈ SL3 defines the following automorphism of O:

a →

(

α ug
vg−T β

)

,

where g−T stands for (g−1)T and u,v ∈ F
3 are considered as row vectors. For every

u,v ∈ O define δ1(u), δ2(v) from Aut(O) as follows:

δ1(u)(a
′) =

(

α′ − u · v′ (α′ − β ′ − u · v′)u+ u
′

v
′ − u

′ × u β ′ + u · v′

)

,

δ2(v)(a
′) =

(

α′ + u
′ · v u

′ + v
′ × v

(−α′ + β ′ − u
′ · v)v + v

′ β ′ − u
′ · v

)

.

The group G2 is generated by SL3 and δ1(tui), δ2(tvi) for all t ∈ F and i = 1, 2, 3 (for
example, see Section 3 of [33]). By straightforward calculations, it is easy to see that

~ : O → O, defined by a →

(

β −v

−u α

)

, (2.6)

belongs to G2.
The action of G2 on O satisfies the next properties:

ga = ga, tr(ga) = tr(a), n(ga) = n(a), q(ga, ga′) = q(a, a′).

Thus, G2 acts also on O0 and O#. The group G2 acts diagonally on the vector space O
n =

O⊕ · · · ⊕O (n times) by g(a1, . . . , an) = (ga1, . . . , gan) for all g ∈ G2 and a1, . . . , an ∈ O.
We fix a binary relation < on the field F such that for each pair α, β ∈ F with α 6= β

exactly one of α < β or β < α holds. Note that, we do not assume that < is transitive,
and we do not assume compatibility with the field operations.

Proposition 2.2 (Part 1 of Proposition 3.3 from [29]). The following set is a minimal set
of representatives of G2-orbits on O:
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1. α1O,

2.

(

α1 0

0 α2

)

with α1 < α2,

3.

(

α (1, 0, 0)
0 α

)

,

where α, α1, α2 ∈ F. In other words, O is the disjoint union of the following G2-orbits:

α1O, O2(α1, α2) := G2(α1e1 + α2e2), O3(α) := G2(α1O + u1),

where α1 < α2, α, α1, α2 ∈ F.

Definition 2.3. • The elements from Proposition 2.2 are called canonical octonions.

• Given a ∈ O, the diagonal elements of the canonical octonion from G2a are called
eigenvalues (α1, α2) ∈ F

2 for a, where α1 ≤ α2. Note that both eigenvalues are
solutions of the equation α2 − tr(a)α + n(a) = 0.

The following remark is a consequence of Part 2 of Proposition 3.3 from [29].

Remark 2.4. Assume α, αi, β, βi, γi ∈ F for i = 1, 2.

1. Two octonions α11O + β1u1 and α21O + β2u1 belong to the same G2-orbit on O if and
only if

• α1 = α2,

• either β1 = β2 = 0, or β1, β2 are non-zero.

2. If γ1 6= γ2, then α1O + βu1 6∈ O2(γ1, γ2).

3 Polynomial equations

In this section we assume that the field F is algebraically closed. Given a commutative
associative polynomial f(ξ) = αnξ

n+ · · ·+α1ξ+α0 ∈ F[ξ], where α0, . . . , αn ∈ F, we write
f ′(ξ) for its derivative. For each x ∈ O we naturally define the substitution

f(x) = αnx
n + · · ·+ α1x+ α01O ∈ O.

Assume that f(ξ) ∈ F[ξ] is a non-zero polynomial without constant term and γ ∈ F.
The multiplicity of a root ξ1 ∈ F for the equation f(ξ) = γ, where ξ ∈ F is a variable, is
k > 0 such that f(ξ) − γ = (ξ − ξ1)

kg(ξ) for some g(ξ) ∈ F[ξ] with g(ξ1) 6= 0. If k = 1,
then root ξ1 is called simple. If k ≥ 2, then the root ξ1 is called multiple. It is trivial that

• ξ1 is a simple root if and only if f(ξ1) = γ and f ′(ξ1) 6= 0;

6
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• ξ1 is a multiple root if and only if f(ξ1) = γ and f ′(ξ1) = 0.

Lemma 3.1. Assume that f(ξ) ∈ F[ξ] and α, β ∈ F. Then

f(α1O + βu1) = f(α)1O + f ′(α)βu1.

Proof. For short, denote a = α1O + βu1.

1. Assume that f(ξ) = ξn for some n > 0. We prove by induction on n that

an = αn1O + nαn−1βu1. (3.1)

In case n = 1 claim (3.1) is trivial.
Assume that claim (3.1) holds for some n > 1. Then

an+1 = (αn1O + nαn−1βu1)(α1O + βu1) = αn+11O + nαnβu1 + αnβu1 =

= αn+11O + (n+ 1)αnβu1.

Therefore, claim (3.1) holds for every n > 0.

2. Assume that f(ξ) = αnξ
n + · · ·+ α1ξ + α0 ∈ F[ξ] for some α0, . . . , αn ∈ F and n ≥ 0.

Note that in case n = 0 we have f(a) = α01O and the claim of the lemma holds.
For n > 0 we apply part 1 to obtain that

f(a) =

n
∑

i=1

αia
i + α01O =

n
∑

i=1

αi(α
i1O + iαi−1βu1) + α01O,

and the required statement is proven.

Theorem 3.2. Assume that f(ξ) ∈ F[ξ] is a non-zero polynomial without constant term
and c ∈ O. Acting by G2 on the equation f(x) = c, where x ∈ O is a variable, we can
assume that c is a canonical octonion from Proposition 2.2. Let X ⊂ O be the set of all
solutions of the equation f(x) = c. Then

1. in case c = γ1O for some γ ∈ F, we have

X =
{

ξ11O
∣

∣ ξ1 ∈ F satisfies f(ξ1) = γ
}
⋃

{

O2(ξ1, ξ2)
∣

∣ ξ1, ξ2 ∈ F satisfy f(ξ1) = f(ξ2) = γ and ξ1 < ξ2
}
⋃

{

O3(ξ1)
∣

∣ ξ1 ∈ F is a multiple root for f(ξ) = γ
}

;

2. in case c = γ1e1 + γ2e2 for some γ1, γ2 ∈ F with γ1 < γ2, we have

X =
{

ξ1e1 + ξ2e2
∣

∣ ξ1, ξ2 ∈ F satisfy f(ξ1) = γ1 and f(ξ2) = γ2
}

;

3. in case c = γ1O + u1 for some γ ∈ F, we have

X =

{

ξ11O +
1

f ′(ξ1)
u1

∣

∣

∣

∣

∣

ξ1 ∈ F is a simple root for f(ξ) = γ

}

.
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Proof. Assume that there exists some x ∈ X. Consider g ∈ G2 such that gx is canonical.
Note that

f(gx) = gc. (3.2)

1. Assume that c = γ1O for some γ ∈ F. Then we can rewrite equality (3.2) as

f(gx) = γ1O. (3.3)

One of the following possibilities holds:

(a) gx = ξ11O for some ξ1 ∈ F. Equality (3.3) is equivalent to f(ξ1) = γ. Thus,
x = g−1ξ11O = ξ11O.

(b) gx = ξ1e1 + ξ2e2 for some ξ1, ξ2 ∈ F with ξ1 < ξ2. Equality (3.3) is equivalent to
f(ξ1) = f(ξ2) = γ. Therefore, x ∈ O2(ξ1, ξ2) ⊂ X.

(c) gx = ξ11O +u1 for some ξ1 ∈ F. Lemma 3.1 implies that equality (3.3) is equivalent
to f(ξ1) = γ and f ′(ξ1) = 0. Therefore, x ∈ O3(ξ1) ⊂ X.

2. Assume that c = γ1e1 + γ2e2 for some γ1, γ2 ∈ F with γ1 < γ2. We have that one of the
following possibilities holds:

(a) gx = ξ11O for some ξ1 ∈ F. Equality (3.2) implies that

f(ξ1)1O ∈ O2(γ1, γ2);

a contradiction to Proposition 2.2.

(b) gx = ξ1e1 + ξ2e2 for some ξ1, ξ2 ∈ F with ξ1 < ξ2. Equality (3.2) is equivalent to

f(ξ1)e1 + f(ξ2)e2 = g(γ1e1 + γ2e2).

Therefore,
f(ξ1)e1 + f(ξ2)e2 ∈ O2(γ1, γ2).

Let f(ξ1) < f(ξ2). Then Proposition 2.2 implies that f(ξ1) = γ1 and f(ξ2) = γ2.
Hence, g ∈ StG2

(γ1e1 + γ2e2). Since StG2
(γ1e1 + γ2e2) = SL3 by Lemma 2.1 of [29],

we have that x = g−1(ξ1e1 + ξ2e2) = ξ1e1 + ξ2e2.

In case f(ξ1) = f(ξ2) we obtain a contradiction with Proposition 2.2.

Let f(ξ1) > f(ξ2). The equality ~(f(ξ1)e1 + f(ξ2)e2) = ~g(γ1e1 + γ2e2) implies
f(ξ2)e1 + f(ξ1)e2 = ~g(γ1e1 + γ2e2). Thus, it follows from Proposition 2.2 that
f(ξ1) = γ2 and f(ξ2) = γ1. Hence, ~g ∈ StG2

(γ1e1+ γ2e2). Since StG2
(γ1e1 + γ2e2) =

SL3 by Lemma 2.1 of [29], we have that x = (~g)−1
~(ξ1e1 + ξ2e2) = ξ2e1 + ξ1e2.

8



On polynomial equations over split octonions

(c) gx = ξ11O+u1 for some ξ1 ∈ F. Lemma 3.1 together with equality (3.2) implies that

f(ξ1)1O + f ′(ξ1)u1 ∈ O2(γ1, γ2);

a contradiction by part 2 of Remark 2.4.

3. Assume that c = γ1O+u1 for some γ ∈ F. We have that one of the following possibilities
holds:

(a) gx = ξ11O for some ξ1 ∈ F. Equality (3.2) implies that

f(ξ1)1O ∈ O3(γ);

a contradiction to Proposition 2.2.

(b) gx = ξ1e1 + ξ2e2 for some ξ1, ξ2 ∈ F with ξ1 < ξ2. Equality (3.2) implies that

f(ξ1)e1 + f(ξ2)e2 ∈ O3(γ);

a contradiction to Proposition 2.2.

(c) gx = ξ11O +u1 for some ξ1 ∈ F. Lemma 3.1 implies that equality (3.2) is equivalent
to

f(ξ1)1O + f ′(ξ1)u1 = g(γ1O + u1). (3.4)

It follows from part 1 of Remark 2.4 that equality (3.4) is equivalent to f(ξ1) = γ,
f ′(ξ1) 6= 0, and gu1 = f ′(ξ1)u1. Thus,

x = g−1(ξ11O + u1) = ξ11O + g−1
u1 = ξ11O +

1

f ′(ξ1)
u1.

On the other hand, Lemma 3.1 implies that for every ξ1 ∈ F with f(ξ1) = γ and
f ′(ξ1) 6= 0 we have

f

(

ξ11O +
1

f ′(ξ1)
u1

)

= γ1O + u1.

The following corollaries are immediate consequences of Theorem 3.2.

Corollary 3.3. Assume that f(ξ) ∈ F[ξ] is a non-zero polynomial of degree n > 1 without
constant term and c ∈ O. Denote by X ⊂ O the set of all solutions of the equation
f(x) = c. Let (γ1, γ2) ∈ F

2 be the eigenvalues of c. Then

(a) X is infinite if and only if γ1 = γ2 and c = γ11O;

(b) X is empty if and only if γ1 = γ2, c 6= γ11O, and the equation f(ξ) = γ1, where ξ ∈ F

is a variable, does not have any simple root;

9



Artem Lopatin, Alexander Rybalov

(c) |X| ≤ n in case γ1 = γ2 and c 6= γ11O;

(d) 1 ≤ |X| ≤ n2 in case γ1 6= γ2.

Corollary 3.4. Assume that n > 1 is an integer and c ∈ O. Acting by G2 on the equation
xn = c, where x ∈ O is a variable, we can assume that c is a canonical octonion from
Proposition 2.2. Let X ⊂ O be the set of all solutions of the equation xn = c. Then

1. in case c = γ1O for some γ ∈ F, we have

X =
{

ξ11O
∣

∣ ξ1 ∈ F satisfies ξn1 = γ
}
⋃

{

O2(ξ1, ξ2)
∣

∣ ξ1, ξ2 ∈ F satisfy ξn1 = ξn2 = γ and ξ1 < ξ2
}
⋃

Y, where
Y =

{

O3(ξ1)
∣

∣ ξ1 ∈ F satisfies ξn1 = γ
}

if p|n or γ = 0; and Y = ∅, otherwise;

2. in case c = γ1e1 + γ2e2 for some γ1, γ2 ∈ F with γ1 < γ2, we have

X =
{

ξ1e1 + ξ2e2
∣

∣ ξ1, ξ2 ∈ F satisfy ξn1 = γ1 and ξn2 = γ2
}

;

3. in case c = γ1O + u1 for some γ ∈ F, we have

X =

{

ξ11O +
ξ1
nγ

u1

∣

∣

∣

∣

∣

ξ1 ∈ F satisfies ξn1 = γ

}

, if p 6 |n and γ 6= 0;

X = ∅, if p|n or γ = 0.
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