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Constructions of well-rounded algebraic lattices over odd

prime degree cyclic number fields
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Abstract. Algebraic lattices are those obtained from modules in the ring of integers
of algebraic number fields through canonical or twisted embeddings. In turn, well-
rounded lattices are those with maximal cardinality of linearly independent vectors
in its set of minimal vectors. Both classes of lattices have been applied for signal
transmission in some channels, such as wiretap channels. Recently, some advances
have been made in the search for well-rounded lattices that can be realized as algebraic
lattices. Moreover, some works have been published that study algebraic lattices
obtained from modules in cyclic number fields of odd prime degree p. In this work,
we generalize some results of a recent work of Tran et al. and we provide new
constructions of well-rounded algebraic lattices from a certain family of modules in
the ring of integers of each of these fields when p is ramified in its extension over the
field of rational numbers.
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1 Introduction

Lattices are discrete additive subgroups of Rn. Recently, they have been considered for
applications in different areas, such as coding theory and cryptography [5,6,20]. Algebraic
lattices are those obtained as image in the Euclidean space of some Z-module in the
ring of integers of an algebraic number field through the canonical embedding or some
twisted embedding. In last decades, algebraic lattices have been studied from different
perspectives [1, 3, 9, 19].

Explicitly, a lattice Λ ⊆ Rn of rank k ≤ n is defined as the Z-module generated
by a set B = {u1, u2, . . . , uk} of k linearly independent vectors in Rn - this set B is
called a basis of Λ. In this work, we only consider full-rank lattices, which are those
having maximal rank k = n. If Λ is a full-rank lattice in Rn, then it can be obtained as
Λ = MZn, where M is the matrix n × n whose columns are given by the entries of the
vector in a basis of Λ - this matrix is called a generator matrix of Λ. In this case, the
volume of Λ is defined by V ol(Λ) = | det (M) | and the minimum norm of Λ is given by
tΛ = min {‖u‖2 : 0 6= u ∈ Λ}, where ‖.‖ is the usual Euclidian norm in Rn. The center
density of Λ is defined as δ(Λ) = ρ(Λ)n/V ol(Λ), where ρ(Λ) =

√
tΛ/2 is the largest radius

such that it is possible to obtain a sphere packing with centers in the points of the lattice
Λ. This parameter δ(Λ) is important because it is related to the classic sphere packing
problem [5], since the center density is greater, the spherical packing centered at the points
of the lattice is greater.

The set of minimal vectors of a lattice Λ is defined by S(Λ) = {u ∈ Λ : ‖u2‖ = tΛ}. The
lattice Λ is said to be well-rounded if S(Λ) generates Rn, that is, if S(Λ) contains a subset
of n linearly independent vectors (this set can be or not a basis of the lattice). Research
on well-rounded lattices has recently been developed due to their important properties and
their applications for signal transmission over SISO and MIMO channels [15, 16, 21].

In particular, studies linking algebraic lattices and well-rounded lattices have been
made after the remarkable work of Fukshansky and Petersen in 2012 [14]. In this work,
the authors provide well-rounded algebraic lattices via real quadratic fields and prove a
necessary and sufficient condition for the algebraic lattice coming from the whole ring
of integers of an algebraic number field via the Minkowski embedding be well-rounded.
Araujo and Costa [11] obtained (infinitely many) well-rounded lattices from cyclic number
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fields of odd prime degree in the unramified case. In the last years, several other articles
have been published relating well-rounded and algebraic lattices, such as [7, 8, 13, 26, 27].

Recently, several papers have been published studying algebraic lattices coming from
Z-modules in the ring of integers of cyclic number fields of odd prime degree p via the
canonical embedding [9, 10, 11, 12, 17, 23], some of them in the perspective of the well-
roundedness property. In this context, we need to consider two different cases: when p
is unramified and when p in ramified in the extension of the fixed number field over the
field of rational numbers. A family with infinitely many well-rounded algebraic lattices
was presented in [11]. In turn, some constructions of well-rounded algebraic lattices have
been provided in the ramified case in [2].

In this work, we present new constructions of well-rounded algebraic lattices in the
ramified case (Section 3.2.2). In Proposition 3.2, we generalize the result of [27, Lemma
2.5], which is related to the construction of well-rounded algebraic lattices in cubic number
fields. Using this fact, we provided a way to obtain well-rounded algebraic lattices over K
via the canonical embedding (Corollary 3.3). Moreover, we present a family of modules
over K which realizes well-rounded lattices via the canonical embedding (Subsection 3.2.2)
and we give some additional results.

This paper is organized as follows. In Section 2, we present some definitions and basic
facts about algebraic lattices (Subsection 2.1) and about odd prime degree cyclic number
fields (Subsection 2.2). In Section 3, we present the contributions mentioned in the last
paragraph.

2 Preliminaries

In this section we present some definitions and facts related to algebraic lattices (Sub-
section 2.1) and to odd prime degree cyclic number fields (Subsection 2.2) necessary in the
development of this article.

2.1 Algebraic lattices

Let K be an algebraic number field of degree n and be OK its ring of algebraic integers.
There are exactly n distinct Q-monomorphisms σi : K → C, for i = 1, 2, . . . , n. A Q-
monomorphism σi is said to be real if σi(K) ⊆ R, and imaginary otherwise. A number
field K is said to be totally real if σi is real for all i = 1, 2, . . . , n and totally imaginary if
σi is imaginary for all i = 1, 2, . . . , n. If r1 ≥ 0 denotes the number of indices such that
σi(K) ⊂ R, then n− r1 is an even number satisfying r1+2r2 = n. In order to standardize,
we denote the Q-monomorphisms σ1, σ2, . . . , σn in such a way that σ1, . . . , σr1 are the real
Q-monomorphisms and that σr1+r2+j = σr1+j, for j = 1, 2, . . . , r2.

The trace of any element α ∈ K is defined to be the rational number

TrK(α) =
n
∑

i=1

σi(α)

3
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and the discriminant of K over Q is given by

D(K) = det(TrK(αiαj))
n
i,j=1,

where {α1, α2, . . . , αn} is an integral basis of OK. The canonical embedding σ : K → Rn is
defined by setting σ(x) as

(σ1(x), . . . , σr1(x), Re(σr1+1(x)), Im(σr1+1(x)), . . . , Re(σr1+r2(x)), Im(σr1+r2(x))), (1)

where x ∈ K, and Re(β) and Im(β) denote the real and the imaginary parts of the complex
number β, respectively [24].

If M is a free Z-module of OK with rank n, then Λ = σ(M) is an n-dimensional lattice
whose minimum is given by tΛ = min{‖σ(x)‖2 : x ∈ M, x 6= 0}, where

‖σ(x)‖2 =
{

TrK(x
2) if K is totally real;

1
2
TrK(xx) if K is totally complex.

if K is an Abelian number field. The lattice Λ is called an algebraic lattice. In particular,
if M is an integral ideal of OK, Λ is called an ideal lattice. The center density of the
algebraic lattice Λ = σ(M) is given by

δ(Λ) =
(
√
tΛ/2)

n

[OK : M]
√

|D(K)|
=

t
n/2
Λ

2n[OK : M]
√

|D(K)|
, (2)

where [OK : M] denotes the index of M in OK as additive groups [24].

2.2 Odd prime degree cyclic number fields

Let K be a cyclic number field of prime degree p > 2. This means that K/Q is an
Abelian extension of degree p. Also, K is a totally real number field. By Kronecker-Weber
Theorem, there exists n > 0 such that K ⊆ Q(ζn), where ζn is a primitive n-th root of
unity [28, Theorem 14.1]. The smallest n with this property is called the conductor of
K. The discriminant of K is given by D(K) = np−1 [18]. It is well known (see [25], for
example) that:

1. p is unramified in K if and only if n = p1p2 . . . ps, with s ≥ 1, or

2. p is ramified in K if and only if n = p2p1p2 . . . ps, with s ≥ 0,

where pi are distinct prime numbers satisfying pi ≡ 1 (mod p), for i = 1, 2, . . . , s. Further-
more:

1. if p is unramified in K, then pOK = B and piOK = Bp
i , or

2. if p is ramified in K, then pOK = Bp and piOK = Bp
i ,

4
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where B and Bi are prime ideals in OK such that B ∩ Z = pZ and Bi ∩ Z = piZ, for
i = 1, 2, . . . , s.

Denote by θ a generator of the cyclic Galois group Gal(K/Q) and by t = TrQ(ζn)/K(ζn)
the trace of ζn in the field extension Q(ζn)/K. As shown in [4, 10, 12], it is known that:

1. if p is unramified in K, then {t, θ(t), . . . , θp−1(t)} is an integral basis of K and
TrK(θ

i(t)) = (−1)s, for i = 0, 1, . . . , p− 1, and

2. if p is ramified in K, then {1, θ(t), . . . , θp−1(t)} is an integral basis of K and also
TrK(θ

i(t)) = 0, for i = 0, 1, . . . , p− 1.

3 Well-rounded algebraic lattices

Let K be a cyclic number field of prime degree p > 2. Consider the notation adopted
in Subsection 2.2. In this section we present some constructions of well-rounded algebraic
lattices coming from Z-modules in the ring of integers of K. Firstly, we generalize to p-th
degree a result presented in [27] for third degree. We start with a technical lemma:

Lemma 3.1. Let ζp be a primitive p-th root of unity and α ∈ OK. Consider the polynomial
f(x) = α + θ(α)x + θ2(α)x2 + . . . + θp−1(α)xp−1 ∈ OK[x]. If α ∈ OK \ Z, then f(ζ ip) 6= 0,
for all i = 1, 2, . . . , p− 1.

Proof. Let φ(x) = 1 + x+ x2 + . . .+ xp−1 ∈ Z[x] be the minimal polynomial of ζp. Since
gcd(p, p−1) = 1, then L = K[ζp] has degree p(p−1), which implies that φ(x) is irreducible
over K. So, supposing that f(ζ ip) = 0 for some i = 1, 2, . . . , p− 1, then φ(x) divides f(x)
in K[x] since ζ ip is a root of the polynomials f(x) and φ(x) simultaneously. Thus, since
φ(x) is irreducible in K[x] and have the same degree of f(x), it follows that f(x) = αφ(x).
This implies that θj(α) = α for all j = 1, . . . , p− 1. However, this leads to α ∈ Z, which
is a contradiction. Therefore, f(ζ ip) 6= 0, for all i = 1, 2, . . . , p− 1.

The next result extends Lemma 2.5 of [27]:

Proposition 3.2. Let α ∈ OK \ Z. Then, TrK(α) 6= 0 if and only if the set

{σ(α), σ(θ(α)), . . . , σ(θp−1(α))}

is a R-linearly independent subset of Rp, where σ is the canonical embedding of K in Rp.

Proof. Suppose
a0σ(α) + a1σ(θ(α)) + · · ·+ ap−1σ(θ

p−1(α)) = 0,

where a0, a1, . . . , ap−1 ∈ R. Since σ(x) = (x, θ(x), . . . , θp−1(x)), where x ∈ K, it follows
that

C ·
(

a0 a1 . . . ap−1

)T
=
(

0 0 · · · 0
)T

5
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where C is the circulant matrix

C =











α θ(α) θ2(α) · · · θp−1(α)
θp−1(α) α θ(α) · · · θp−2(α)

...
...

...
. . .

...
θ(α) θ2(α) θ3(α) · · · α











.

It is well-known that the determinant of C is given by det(C) =

p−1
∏

i=0

f(ζ ip), where

f(ζ ip) = α+ θ(α)ζ ip + θ2(α)ζ2ip + · · ·+ θp−1(α)ζ (p−1)i
p ,

for i = 0, 1, . . . , p − 1, and ζp is a primitive p-th root of unity. So, det(C) 6= 0 if and
only if f(ζ ip) 6= 0, for all i = 0, 1, . . . , p − 1. From Lemma 3.1, it follows that f(ζ ip) 6= 0,
for i = 1, 2, . . . , p − 1. Thus, det(C) 6= 0 if and only if f(1) = TrK(α) 6= 0. Therefore,
B = {σ(α), σ(θ(α)), . . . , σ(θp−1(α))} is R-linearly independent subset of Rp if and only if
TrK(α) 6= 0.

The following corollary presents the construction of some well-rounded algebraic lattices
via some special submodules of OK:

Corollary 3.3. Let M ⊆ OK be a Z-module such that θ(M) ⊆ M. Let α ∈ M \ Z such
that σ(α) is one of the shortest vectors in the lattice Λ = σ(M). Then TrK(α) 6= 0 if
and only if B = {σ(α), σ(θ(α)), . . . , σ(θp−1(α))} generates a well-rounded sublattice of Λ
of rank p.

Proof. Firstly, we note that ‖σ(θi(α))‖ = λ1 is a constant number for all i = 0, 1, . . . , p−1,
because, in this case, the canonical embedding is given by

σ(x) = (x, θ(x), θ2(x), . . . , θp−1(x)),

which leads to the fact that the coordinates of σ(θi(α)) are a permutation of that of σ(α).
Since θ(M) ⊆ M by hypothesis, and so θi(M) ⊆ M for all i = 0, 1, . . . , p − 1, then
L = 〈B〉Z generates a sublattice of Λ containing a shortest vector of it. Thus, B is a set
having only minimal vectors of L. From this fact and from Proposition 3.2, finally this
leads to the fact that L = 〈B〉Z is a well-rounded full-rank sublattice of Λ if and only if
TrK(α) 6= 0.

We remark that the hypothesis in Corollary 3.3 given by θ(M) ⊆ M happens, for
example, if M = OK or if M = B1B2 . . .Bs, since θ(Bi) = Bj , for all i, j = 1, 2, . . . , s.

6
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3.1 The unramified case

Now suppose that p is unramified in K/Q. So the conductor of K is n = p1p2 . . . ps, for
s ≥ 1. For any m > 0 integer number, consider the subset of OK given by

Mm = {α ∈ OK : TrK(α) ≡ 0 (mod m)},

or, equivalently,

Mm =

{

α =

p−1
∑

i=0

aiθ
i(t) ∈ OK : a0, . . . , ap−1 ∈ Z,

p−1
∑

i=1

ai ≡ 0 (mod m)

}

.

As observed in [9], these modules generalize the prime ideals of OK above pi - in fact,
Bj = Mpj , for j = 1, 2, . . . , s. Additionally, in the following proposition we give an explicit
characterization of each prime ideal Bi:

Proposition 3.4. Bj = pjZt +

p−1
∑

i=1

Z(θi(t)− t).

Proof. Let α =
∑p−1

i=0 aiθ
i(t) ∈ OK. Thus, α ∈ Bj if and only if

∑p−1
i=0 ai = pjk, for some

k ∈ Z. Thus,

α =

p−1
∑

i=0

aiθ
i(t)−

p−1
∑

i=0

ait+

p−1
∑

i=0

ait = t

p−1
∑

i=0

ai +

p−1
∑

i=0

ai(θ
i(t)− t) = pjkt +

p−1
∑

i=1

ai(θ
i(t)− t).

Therefore, α ∈ Bj if and only if α ∈ pjZt +

p−1
∑

i=1

Z(θi(t)− t).

Furthermore, about the family of Z-modules Mm, from [9, 11], it follows that:

1. Mm is a Z-module of index m and rank p in OK;

2. If m ≡ 1 (mod p), the lattice σ(Mm) is well-rounded if and only if

√

n

p+ 1
≤ m ≤

√

n(p + 1);

3. An element α ∈ OK belongs to B1B2 . . .Bs if and only if TrK(α) ≡ 0 (mod n);

4. Mm is an ideal of OK if and only if m|n.

We emphasize the second point mentioned above, which states that σ(Mm) is well-
rounded under certain conditions on m and p. Next, we explore the well-roundedness
property of a similar family of Z-modules in the case where p is ramified in K/Q.

7
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3.2 The ramified case

In this section, our objective is to construct well-rounded algebraic lattices in the
ramified case via Z-submodules of OK with similar characterization of that presented in
the unramified case (Subsection 3.1). Suppose that p is ramified in the extension K/Q,
that is, pOK = Bp. In this case, the conductor of K is n = p2p1p2 . . . ps, for s ≥ 0. We
first give a characterization of the prime ideal above p using the norm function NL/K in
the extension L = Q(ζp2) over K, i.e., n = p2:

Proposition 3.5. If the conductor of K is n = p2, then

pOK = Bp,

where B = 〈NL/K(1− ζn)〉.

Proof. In this case, it is well-known that pOL = Bp(p−1)
L , where BL = (1− ζn)OL [22, (10.1)

Lemma]. Let λ = NL/K(1−ζn) =
∏p−1

j=1(1−ζr
jp

n ), where r is a generator of the cyclic group

(Z/p2Z)
∗
of the inversible elements of Z/p2Z. Since 1 − ζn is a conjugate of 1 − ζr

jp

n , for
some j = 1, 2, . . . , p− 1, it follows that (1− ζn)OL = (1− ζr

jp

n )OL. So,

p−1
∏

j=1

(1− ζr
jp

n )OL = (1− ζn)
p−1OL,

and so λOL = (1 − ζr
jp

n )OL. Thus, λOL = Bp−1
L = BOL. Therefore, λOL = BOL, that is,

B = 〈λ〉 = 〈NL/K(1− ζn)〉, which proves the result.

In the following, we present a family of Z-submodules of OK initially studied in [9]. For
any positive integers m, c ∈ Z such that 0 ≤ c < m, consider the set

Mm,c =

{

p−1
∑

i=0

aiθ
i(t) ∈ OK : a0 + c

p−1
∑

i=1

ai ≡ 0 (mod m)

}

(where the coefficients ai are integer numbers). From [9], it follows that

1. Mm,c =

{

α ∈ OK : TrK

(

1

p
α− pc

n
αt

)

≡ 0(mod m)

}

;

2. S = {m, c− θ(t), c− θ2(t), . . . , c− θp−1(t)} is a Z-basis of Mm,c;

3. Mm,c has rank p;

4. OK/Mm,c
∼= Z/pZ;

5. [OK : Mm,c] = m;

6. If i ∈ {1, . . . , p− 1}, then Bi = Mpi,0 and B = Mp,ℓ for some ℓ ∈ {0, . . . , p− 1} such
that t− l ∈ B;

8
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7. If α = a0m + a1(c − θ(t)) + · · · + ap−1(c − θp−1(t)) ∈ Mm,c, with ai ∈ Z, for
i ∈ {0, . . . , p− 1}, then

TrK(α
2) = p





(

a0m+ c

p−1
∑

i=1

ai

)2

+ u



p

p−1
∑

i=1

a2i −
(

p−1
∑

i=1

ai

)2






 , (3)

where u = n/p2.

In this work, we specifically focus on the submodule Mm ⊆ OK for any rational integer
m > 1:

Mm := {α ∈ OK : TrK(α) ≡ 0 (mod m)} .
We observe that

1. Mm = Mm,0 if and only if p ∤ m;

2. Mm = Mm/p,0 if and only if p | m.

Lemma 3.6. Mm is an ideal of OK if and only if m | n.

Proof. If α = a0 + a1θ(t) + · · · + ap−1θ
p−1(t) ∈ Mm (with a0, a1, . . . , ap−1 ∈ Z), then

TrK(α) ≡ 0 (mod m). From [10, Theorem 3.1], it follows that

TrK(θ
i(t)θj(t)) = TrK(tθ

i−j(t)) =

{

n(p−1)
p

if i = j

−n
p

if i 6= j,
(4)

for i, j = 0, 1, . . . , p− 1. Thus,

TrK(αθ
k(t)) = (a1 + · · ·+ ap−1)

(−n

p

)

+ akn,

for k = 1, . . . , p − 1. If m | n, then TrK(αθ
k(t)) ≡ 0 (mod m), for k = 1, . . . , p − 1.

Thus, αθk(t) ∈ Mm, for k = 1, . . . , p− 1. Since the set {1, θ(t), . . . , θp−1(t)} is an integral
basis of K, it follows that Mm is an ideal. Reciprocally, TrK(θ(t) − θ2(t)) = 0, and,
therefore, θ(t) − θ2(t) ∈ Mm. Since θ(t) ∈ OK and Mm is an ideal, it follows that
θ(t)(θ(t)− θ2(t)) ∈ Mm. From Equation (4), it follows that

TrK(θ(t)(θ(t)− θ2(t))) = TrK(t
2)− TrK(tθ(t)) = n ≡ 0 (mod m),

that is, m | n.

Lemma 3.7. The index [OK : Mm] is m.

Proof. Let α ∈ OK and [α] denote the coset of Mm in OK containing α. The proof is
completed by showing that the cosets [0], [1], [2], . . . , [(m − 1)] partition OK. Indeed, let
0 ≤ i ≤ j ≤ m − 1. Then [i] = [j] if and only if [(i − j)] = [0], that is, i − j ≡ 0

9
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(mod m), whence i = j and the cosets [0], [1], [2], . . . , [(m − 1)] are distinct. Finally, let

α = a0 +

p−1
∑

i=1

aiθ
i(t) ∈ OK (with a0, a1, . . . , ap−1 integer numbers). We can write

α = a0 +

p−1
∑

i=1

aiθ
i(t) = a0 +m

p−1
∑

i=1

ai +

p−1
∑

i=1

ai(θ
i(t)−m).

Since m

p−1
∑

i=1

ai +

p−1
∑

i=1

ai(θ
i(t)−m) ∈ Mm, it follows that α ≡ a0 (mod Mm). By writing

a0 = ms + r with 0 ≤ r < m, it follows that [α] = [r], that is, α ∈ [r], which proves the
result.

Lemma 3.8. The rank of Mm is p.

Proof. If p | m, then {m/p,m− θ(t), . . . , m− θp−1(t)} is a Z-basis of Mm. If p ∤ m, then
{m,m − θ(t), . . . , m− θp−1(t)} is a Z-basis of Mm. Therefore, in both cases, the rank is
p.

3.2.1 Case p | m.

Suppose that p is a divisor of m. As pointed in Lemma 3.8, the submodule Mm of OK

has basis {m/p,m− θ(t), . . . , m− θp−1(t)}. In the next proposition, we calculate the trace
form associated to Mm in relation with this basis:

Proposition 3.9. If α = a0
m
p
+
∑p−1

i=1 ai(m−θi(t)) ∈ Mm, for some integer a0, a1, . . . , ap−1,
then

TrK(α
2) = p





(

a0m

p
+m

p−1
∑

i=1

ai

)2

+ u



p

p−1
∑

i=1

a2i −
(

p−1
∑

i=1

ai

)2






 (5)

where u = n/p2.

Proof. Developing the expression of α2, we have the following:

α2 =
a2
0
m2

p2
+ 2a0m

p

∑p−1
i=1 ai(m− θi(t)) +

(
∑p−1

i=1 ai(m− θi(t))
)2

=
a20m

2

p2
+ 2

a0m

p

p−1
∑

i=1

ai(m− θi(t)) +

p−1
∑

i=1

a2i (m− θi(t))2

+2
∑

1≤i<j≤p−1

aiaj(m− θi(t))(m− θj(t))

=
a20m

2

p2
+

2a0m

p

p−1
∑

i=1

ai(m− θi(t)) +

p−1
∑

i=1

a2i (m
2 − 2mθi(t) + θi(t)θi(t))

+2
∑

1≤i<j≤p−1

aiaj(m
2 −mθi(t)−mθj(t) + θi(t)θj(t)).

10
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Thus, the trace form is given by

TrK(α
2) =

a20m
2

p2
TrK(1) + 2

a0m

p

p−1
∑

i=1

aiTrK(m− θi(t))

+

p−1
∑

i=1

a2iTrK(m
2 − 2mθi(t) + θi(t)θi(t))

+2
∑

1≤i<j≤p−1

aiajTrK(m
2 −mθi(t)−mθj(t) + θi(t)θj(t)).

Since TrK(1) = p and TrK(θ
i(t)) = 0, for i = 1, 2, . . . , p− 1, it follows from Equation (4)

that

TrK(α
2) = p

(

a20m
2

p2

)

+ 2pm
a0m

p

p−1
∑

i=1

ai +

p−1
∑

i=1

a2i

(

pm2 +
n(p− 1)

p

)

+2
∑

1≤i<j≤p−1

aiaj

(

pm2 − n

p

)

and so

TrK(α
2) = p

(

a20m
2

p2
+

2a0m
2

p

p−1
∑

i=1

ai +

p−1
∑

i=1

a2i (m
2 + u(p− 1)) + 2

∑

1≤i<j≤p−1

aiaj(m
2 − u)

)

.

From this and since
∑p−1

i=1 a
2
i + 2

∑

1≤i<j≤p−1 aiaj =
(
∑p−1

i=1 ai
)2
, it follows that

TrK(α
2) = p





(a0m)2

p2
+

2a0m
2

p

p−1
∑

i=1

ai + (m2 − u)

(

p−1
∑

i=1

ai

)2

+ up

p−1
∑

i=1

a2i



 .

Finally, since
(

a0
p

+

p−1
∑

i=1

ai

)2

=
a20
p2

+ 2
a0
p

p−1
∑

i=1

ai +

(

p−1
∑

i=1

ai

)2

,

then

TrK(α
2) = p





(

a0m

p
+m

p−1
∑

i=1

ai

)2

− u

(

p−1
∑

i=1

ai

)2

+ up

p−1
∑

i=1

a2i



 ,

that is,

TrK(α
2) = p





(

a0m

p
+m

p−1
∑

i=1

ai

)2

+ u



p

p−1
∑

i=1

a2i −
(

p−1
∑

i=1

ai

)2






 ,

which proves the result.
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In order to calculate the minimum norm of the lattice Λm = σ(Mm), we will now
compute the minimum of TrK(α

2), for 0 6= α ∈ Mm, considering the Equation (5). For
this purpose, consider the quadratic form Q1 : Z× Zp−1 → Z given by

Q1(a0, (a1, . . . , ap−1)) =

(

a0m

p
+m

p−1
∑

i=1

ai

)2

and the quadratic form Q2 : Z
p−1 → Z given by

Q2(a1, . . . , ap−1) = p

p−1
∑

i=1

a2i −
(

p−1
∑

i=1

ai

)2

.

So, Proposition 3.9 provides

TrK(α
2) = pQ1(a0, (a1, . . . , ap−1)) + uQ2(a1, . . . , ap−1), (6)

for each α = a0(m/p) + a1(m − θ(t)) + · · · + ap−1(m − θp−1(t)) ∈ Mm, with ai ∈ Z, for
i = 0, 1, . . . , p− 1.

Proposition 3.10. min
06=α∈Mm

TrK(α
2) = min

{

m2

p
, up(p− 1)

}

.

Proof. From [9, Corollary 11], Q2(a1, . . . , ap−1) = 0 if and only if a1 = . . . = ap−1 = 0.
Thus, from Equation (6), the minimum of TrK(α

2) is m2/p, since the minimum of Q1

with this condition is equal to m2/p2, which is achieved only by setting a0 = ±1. If
Q2(a1, . . . , ap−1) > 0, from [9, Corollary 11], the minimum of Q2 is p−1, which is achieved
by the vectors ±(1, . . . , 1) and by the permutations of ±(1, 0, . . . , 0). In this case, the
minimum of Q1 is zero, which is achieved only for a0 = 0, and, thus, from Equation (6)
it follows that the minimum of TrK(α

2) is up(p− 1). Therefore, the minimum of TrK(α
2)

for 0 6= α ∈ Mm is min{m2/p, up(p− 1)}.

As shown in the proof of Proposition 3.10, the value m2/p is achieved for α = ±m
and the value up(p − 1) is achieved for α = ±(m − θi(t)), with i = 1, 2, . . . , p − 1, and
α = ±

∑p−1
i=1 (m − θi(t)). Furthermore, Proposition 3.10 and Equation (2) provides that

the center density of the algebraic lattice Λm = σ(Mm) is given by

δ(Λm) =
(min{m2/p, up(p− 1)})p/2

2pn
p−1

2 m
,

where Λm = σ(Mm).

12
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3.2.2 Case: p ∤ m

Suppose that p is not a divisor of m. As shown in the proof of Lemma 3.8, the submodule
Mm of OK has basis {m,m− θ(t), . . . , m− θp−1(t)}. Let

α = a0m+

p−1
∑

i=1

ai(m− θi(t)) ∈ Mm,

with a0, a1, . . . , ap−1 ∈ Z. From [9, Proposition 8], it follows that

TrK(α
2) = p



m2

(

a0 +

p−1
∑

i=1

ai

)2

+ u



p

p−1
∑

i=1

a2i −
(

p−1
∑

i=1

ai

)2






 , (7)

where u = n/p2. From [9, Theorem 12], it follows that

min
06=α∈Mm,0

TrK(α
2) = min{pm2, up(p− 1)}.

Furthermore, the center density of the algebraic lattice Λm = σ(Mm) is given by

δ(Λm) =
(min{pm2, up(p− 1)})p/2

2pn
p−1

2 m
,

where Λm = σ(Mm).
Observe that, in general, Λm is not a well-rounded lattice. However, consider the its

submodule

M = {a0(m− t) + a1(m− θ(t)) + · · ·+ ap−1(m− θp−1(t)) : a0, a1, . . . , ap−1 ∈ Z}.

The module M has rank p and M ( Mm, since m ∈ Mm and m /∈ M.
In the following, we compute the trace of α2, for all α in this Z-submodule:

Proposition 3.11. If α = a0(m − t) + a1(m − θ(t)) + · · ·+ ap−1(m − θp−1(t)) ∈ M, with
a0, a1, . . . , ap−1 ∈ Z, then

TrK(α
2) = p



up

p−1
∑

i=0

a2i + (m2 − u)

(

p−1
∑

i=0

ai

)2


 . (8)

Proof. The expression of α2 is given by

α2 =

p−1
∑

i=0

a2i (m− θi(t))2 + 2
∑

0≤i<j≤p−1

aiaj(m− θi(t))(m− θj(t))

=

p−1
∑

i=0

a2i (m
2 − 2mθi(t) + θi(t)θi(t))

+2
∑

0≤i<j≤p−1

aiaj(m
2 −mθi(t)−mθj(t) + θi(t)θj(t)).

13
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Thus,

TrK(α
2) =

p−1
∑

i=0

a2iTrK(m
2 − 2mθi(t) + θi(t)θi(t))

+2
∑

0≤i<j≤p−1

aiajTrK(m
2 −mθi(t)−mθj(t) + θi(t)θj(t)).

Since TrK(θ
i(t)) = 0, for i = 0, 1, . . . , p− 1, then

TrK(α
2) =

p−1
∑

i=0

a2i (TrK(m
2)+TrK(θ

i(t)θi(t)))+2
∑

0≤i<j≤p−1

aiaj(TrK(m
2)+TrK(θ

i(t)θj(t))).

Also, TrK(θ
i(t)2) = TrK(t

2) and TrK(θ
i(t)θj(t)) = TrK(tθ

j−i(t)) for j > i. So,

TrK(α
2) =

p−1
∑

i=0

a2i (TrK(m
2) + TrK(t

2)) + 2
∑

0≤i<j≤p−1

aiaj(TrK(m
2) + TrK(tθ

j−i(t)).

From Equation (4), it follows that

TrK(α
2) =

p−1
∑

i=0

a2i

(

m2p+
n(p− 1)

p

)

+ 2
∑

0≤i<j≤p−1

aiaj

(

m2p+
−n

p

)

=

(

m2p+
n(p− 1)

p

) p−1
∑

i=0

a2i + 2

(

m2p− n

p

)

∑

0≤i<≤p−1

aiaj

= p

(

(

m2 + u(p− 1)
)

p−1
∑

i=0

a2i + 2(m2 − u)
∑

0≤i<j≤p−1

aiaj

)

.

Since

(

p−1
∑

i=0

ai

)2

=

p−1
∑

i=0

a2i + 2
∑

0≤i<j≤p−1

aiaj, denoting u = n/p2, we have that

TrK(α
2) = p



up

p−1
∑

i=0

a2i + (m2 − u)

(

p−1
∑

i=1

ai

)2


 ,

which proves the result.

Equation (8) can be rewritten as

TrK(α
2) = p

(

uQ1(a0, a1, . . . , ap−1) +m2Q2(a0, a1, . . . , ap−1)
)

,

where Q1 : Z
p → Z and Q2 : Z

p → Z are the quadratic forms defined by

Q1(a0, a1, . . . , ap−1) = p

p−1
∑

i=0

a2i −
(

p−1
∑

i=0

ai

)2

14
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and

Q2(a0, a1, . . . , ap−1) =

(

p−1
∑

i=0

ai

)2

.

The minimum of the trace form TrK(α
2) is given below:

Proposition 3.12. min
06=α∈M

TrK(α
2) = p(u(p− 1) +m2).

Proof. Proposition 3.11 provides

TrK(α
2) = p

(

upQ1(a0, a1, . . . , ap−1) +m2Q2(a0, a1, . . . , ap−1)
)

,

for each
α = a0(m− t) + a1(m− θ(t)) + · · ·+ ap−1(m− θp−1(t)) ∈ M,

with a0, a1, . . . , ap−1 ∈ Z. From [9, Corollary 11], the minimum of the quadratic form
Q1(a0, a1, . . . , ap−1) is p−1, which is achieved by the permutations of vectors±(0, 1, 1, . . . , 1)
and by the permutations of ±(1, 0, . . . , 0). In turn, the minimum of the quadratic form
Q2(a0, a1, . . . , ap−1) is 1, which is achieved by the permutations of ±(1, 0, . . . , 0). This
proves the proposition.

By Proposition 3.12 and Equation (2), we have that the center density of the algebraic
lattice Λm = σ(M) is equal to

δ(Λm) =
(p(u(p− 1) +m2))p/2

2pn
p−1

2 m
.

Proposition 3.13. σ(M) is a well-rounded lattice with a minimal basis

{m− t, m− θ(t), . . . , m− θp−1(t)}.

Proof. For i = 0, 1, . . . , p− 1, it follows from Equation (4) that

TrK(m− θi(t))2 = TrK(m
2)− 2mTrK(θ

i(t)) + TrK(t
2)

= pm2 + (n(p− 1))/p = p(u(p− 1) +m2),

which proves the result.
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