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Partially alternative algebras

Tianran Hua, Ekaterina Napedenina and Marina Tvalavadze

Abstract. In this paper, we introduce a novel generalization of the classical property
of algebras known as ”being alternative,” which we term ”partially alternative.” This
new concept broadens the scope of alternative algebras, offering a fresh perspective
on their structural properties. We showed that partially alternative algebras exist
in any even dimension. Then we classified middle C-associative (noncommutative)
algebras satisfying partial alternativity condition. We demonstrated that for any
four-dimensional partially alternative real division algebra, one can select a basis
that significantly simplifies its multiplication table. Furthermore, we established
that every four-dimensional partially alternative real division algebra naturally gives
rise to a real Lie algebra, thereby bridging these two important algebraic frameworks.
Our work culminates in a description of all Lie algebras arising from such partially
alternative algebras. These results extend our understanding of algebraic structures
and reveal new connections between different types of algebras.
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1 Introduction

As is well known, an alternative algebra is defined by two identities x(xy) = (xx)y
and (yx)x = y(xx) for all x, y in this algebra. This can be interpreted as stating that the
associator of this algebra, defined as (x, y, z) = (xy)z − x(yz), is an alternating trilinear
mapping. Notably, alternativity is a weaker form of associativity; hence, the class of
associative algebras is contained in the class of alternative algebras. The converse is not
true, and the most well-known example of an alternative non-associative algebra is the
octonion algebra.

Over the years, alternative algebras have garnered the attention of many researchers
who examined these algebras from different perspectives. In 1957, Bruck and Kleinfeld
established that an alternative division ring must necessarily be a division algebra of
Cayley-Dickson type (a generalization of the Cayley numbers to an arbitrary field) or
an associative division algebra [13]. There exists a substantial body of literature dedicated
to exploring representations, cohomology, deformations, actions, and various properties of
semisimple alternative algebras.

Subsequent research began to investigate potential generalizations of alternativity. In
[19] the author introduced the concept of nearly alternative algebras. This is a class of
noncommutative Jordan algebras J satisfying the identity ([x, y], z, z) = 0 for all elements
x, y, z ∈ J . Shestakov also demonstrated the following result.

Theorem 1.1. If J is a simple nearly alternative algebra with an idempotent e 6= 1, then
J is commutative or alternative.

In [14,16], the authors studied almost alternative algebras, which were originally intro-
duced by Albert. These are algebras over a field F of characteristic not 2 defined by a few
specific conditions, one of them being

z(xy) = α(zx)y + β(zy)x+ γ(xz)y + δ(yz)x+ ǫy(zx) + ηx(zy) + σy(xz) + τx(yz),

where all coefficients belong to F. Under some technical conditions regarding the coeffi-
tients, this algebra becomes Lie-admissible.

In this paper, we propose a further generalization of the concept of alternativity, which
we term partial alternativity. We present examples of algebras that exhibit partial al-
ternativity without being alternative, thereby illustrating that this new class of algebras
encompasses a broader range than the class of alternative algebras. Subsequently, we
examine four-dimensional partially alternative real division algebras and elucidate their
direct connection to Lie algebras.

One of the possible directions for studying partially alternative algebras involves ex-
amining polynomial equations over these structures. The problem of solving polynomial
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equations over various algebraic structures, such as fields, matrices, and alternative alge-
bras (including quaternions and Cayley-Dickson algebras), is considered a key problem in
mathematics. For instance, recent studies have focused on specific types of polynomials
over split octonions, as seen in works like [6, 7], which explore solutions to polynomial
equations with scalar coefficients over algebraically closed fields. Additionally, other re-
search, such as [7], delves into the roots of octonion polynomials, offering insights into the
behavior of these equations in non-associative settings.

2 Definitions and preliminary example

Let A denote a nonassociative algebra over R. Recall that (a, b, c) = (ab)c − a(bc) is
an R-trilinear map, called an associator, and it measures the degree of nonassociativity.

In this section we introduce the partial alternativity property for a nonassociative al-
gebra. This property can be viewed as a natural generalization of regular alternativity,
defined by the identities: (x, x, y) = (y, x, x) = 0 for all x, y ∈ A. We note that the latter
identities always imply the flexibility identity (x, y, x) = 0.

Definition 2.1. Let A be a real nonassociative algebra with unit element 1. An element
q ∈ A is called an imaginary unit if q2 = −1. Denote by IA the set of all imaginary units
in A.

Definition 2.2. Let A be a real nonassociative algebra with unit element 1 and IA 6= ∅.
Then

(1) A is called partially left alternative if for all x ∈ IA and y ∈ A, (x, x, y) = 0;

(2) A is called partially flexible if for all x ∈ IA and y ∈ A, (x, y, x) = 0;

(3) A is called partially right alternative if for all x ∈ IA and y ∈ A, (y, x, x) = 0.

The algebra A is called partially alternative if it is partially left alternative, flexible,
and right alternative.

Notice that the above definition requires the existence of at least one imaginary unit;
otherwise, it would become too general, with no condition to hold.

By Definition 2.2, if A is partially alternative and B is a subalgebra of A containing
the identity and isomorphic to C, then A can be viewed as a B-bimodule. Specifically, for
any x, x′ ∈ B and y ∈ A, the associator conditions are satisfied:

(x, x′, y) = (x, y, x′) = (y, x, x′) = 0.

It is immediate that any alternative algebra with unity is partially alternative and,
therefore, the class of such alternative algebras is contained in the class of partially al-
ternative algebras. Moreover, this inclusion is strict. We soon provide evidence for this
statement.
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Next, we introduce the special linear subspace of A, named its commutative nucleus
that serves as a measure of the extent to which the given algebra deviates from being
commutative.

Definition 2.3. Let A be a nonassociative algebra. Then the set

NC(A) = {x ∈ A | xy = yx, for any y ∈ A}

is called the commutative nucleus of A.

It is evident that NC(A) is a linear subspace that may or may not be a subalgebra.
Besides, if A is a unital algebra, its commutative nuclear contains the unit element 1 and,
therefore, R1 ⊆ NC(A) implies that dimNC(A) ≥ 1.

In conclusion we note that partially alternative algebras exist in any dimension n
provided that n is an even number. This follows from the example below.

Example 2.4. Consider Ak = C⊕V1⊕ . . .⊕Vk with k ≥ 1, C = SpanR{1, e1} with e21 = −1
where 1 denotes the unity of Ak. Besides each Vi = SpanR{vi1, vi2} is a two-dimensional
subspace.

We define multiplication of Ak as follows. We set e1 ∈ NC(Ak) which implies that e1
will commute with any element from Ak. Also, we let

e1vi1 = vi2 and e1vi2 = −vi1.

Next, set vijvkl = 0 for all (i, j) 6= (k, l) and v2ij = aij1, where aij is a positive real number.

Proposition 2.5. The algebra Ak defined in Example 2.4 is a partially alternative (non-
alternative) algebra of dimension 2k + 2.

Proof. First, it is clear that Ak is not alternative since, for example,

(v11, v11, v12) = v211v12 − v11(v11v12) = a11v12 − v11 · 0 = a11v12 6= 0.

Let us now show that e1 satisfies partial alternativity condition (i.e. the left, right and
flexible partial alternativity). Thus, we need to show that

(e1, e1, x) = (e1, x, e1) = (x, e1, e1) = 0,

for all x ∈ Ak.
Due to linearity in x, it suffices to verify the conditions only for basis elements of Ak.

Let x = vij ∈ Vi, i ∈ {1, . . . , k} and j ∈ {1, 2}. Then

(e1, e1, vi1) = e21vi1 − e1(e1vi1) = −vi1 − e1vi2 = −vi1 + vi1 = 0,

(e1, e1, vi2) = e21vi2 − e1(e1vi2) = −vi2 − e1(−vi1) = −vi2 + vi2 = 0.

Hence, (e1, e1, x) = 0 for all x ∈ Ak. The other two conditions, that is, (e1, x, e1) = 0 and
(x, e1, e1) = 0, for all x ∈ Ak, follow from the first one and the fact that e1 ∈ NC(Ak).
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We next show that the set IAk
= {−e1, e1}. For this, we consider any x = z0+v1+. . .+vk

in Ak such that x2 = −1, z0 ∈ C and vi ∈ Vi. Put z0 = α1 + βe1 and vi = αivi1 + βivi2
where α, β, αi, βi ∈ R.

First, we assume that z0 = 0, then x2 = v21 + . . .+ v2k where each v2i = (α2
i ai1 +β2

i ai2)1,
and α2

i ai1 + β2
i ai2 ≥ 0. Hence, x2 = −1 is impossible in this case.

If now z0 6= 0, then since z0 ∈ NC(Ak) and vivj = 0 for i 6= j, we have that

x2 = (z20 + v21 + . . .+ v2k) + 2(z0v1 + . . . z0vk),

where the first term is in C and each z0vi is in Vi. As follows from the assumption x2 = −1,
each z0vi = 0. In terms of the coefficients

z0vi = (ααi − ββi)vi1 + (αiβ + αβi)vi2 = 0.

This implies that ααi−ββi = 0 and βαi+αβi = 0. This is a system of two linear equations
in variables αi, βi and its determinant is α2 + β2 6= 0 as z0 6= 0. Hence, αi = βi = 0 for
each i.

It follows that in this case x2 = −1 implies that x = z0 ∈ C, hence, x = ±e1. The
proof is complete.

3 Middle C-associative algebras

Let M be an n-dimensional real algebra, and C be a subalgebra isomorphic to the
complex numbers. Then M is middle C-associative (with respect to C) if

(1) M is a C-bimodule and

(2) (xz)y = x(zy) for all x, y ∈ M and z ∈ C (the middle C-associativity condition).

In [2], the authors provide a concise summary of the results regarding the classification
of four-dimensional C-associative algebras (left, right or middle C-associative) obtained in
a series of their papers. In particular, they fully classified the commutative algebras of
this type. For the noncommutative case, they only identified the canonical multiplication
table.

In what follows, we assume that M is a four-dimensional real algebra, and focus on
the middle C-associativity condition. As shown in [1], if M is a noncommutative mid-
dle C-associative algebra, then there exists a basis {1, i, j, k} in M with the following
multiplication table:

1 i j k

1 1 i j k
i i −1 k −j
j j −k a1 + bi+ cj + dk f1 + gi+ hj + ek
k k j −f1− gi− hj − ek a1 + bi+ cj + dk

(Tn)
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where a, b, c, d, f, g, h, e ∈ R. Notice that M with multiplication table (Tn) is middle
C-associative with respect to C = SpanR{1, i}.

In the commutative case (see [1, Theorem 1.4]), there exists a basis {1, i, j, k} in M
with the following multiplication table:

1 i j k

1 1 i j k
i i −1 k −j
j j k a1 + bi f1 + gi+ hj
k k −j f1 + gi+ hj −a1− bi

(Tc)

where a, b, f, g, h ∈ R, and h = 0 or 1. Notice that M with multiplication table (Tc) is
middle C-associative with respect to C = SpanR{1, i}.

Recall that M is called strictly middle C-associative if it is a middle C-associative
algebra that does not satisfy either the left or right C-associativity conditions. Specifically,
for all x, y ∈ M and z ∈ C, one of the following does not hold: (zx)y = z(xy) and
(xy)z = x(yz).

Proposition 3.1. Let M be a commutative strictly middle C-associative algebra. Then M
is partially alternative.

Proof. To show thatM is partially alternative, we first assume that there exists an element
g ∈ M but not in C = SpanR{1, i} such that g2 = −1 and M is a C′-bimodule where
C′ = SpanR{1, g}.

Consider f = ig. Then

f 2 = (ig)(ig) = (gi)(ig) = g(i(ig)) = g(i2g) = g(−1 · g) = −g2 = −(−1) = 1.

Let us now assume that E = {1, i, g, f} form a basis for M. Then the multiplication
table of M with respect to E is given by

1 i g f

1 1 i g f
i i −1 f −g
g g f −1 −i
f f −g −i 1

(1)

Using (1), one can easily confirm that the middle C-associativity condition also holds
with respect to C′. Recall that Lemma 1.2 from [1] states that a commutative strictly
middle C-associative algebra has exactly one two-dimensional subalgebra with respect to
which it is middle C-associative. Hence, this case is not possible by the lemma.

If now E is not a basis for M, then f can be expressed as a linear combination of 1, i, g
(as they are linearly independent), then S = SpanR{1, i, g} is a 3-dimensional associative
commutative subalgebra whose basis elements satisfy i2 = g2 = −1.
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Let now f = ig = α1 + βi + γg for some α, β, γ ∈ R. Multiplying this by g from the
right, we obtain

fg = (ig)g = αg + βig + γg2,

ig2 = αg + βig − γ1,

−i = αg + βf − γ1.

The latter implies that βf = γ1 − i− αg. On the other hand, βf = αβ1 + β2i+ βγg. If
follows that β2 = −1, which is impossible.

This implies that the only elements that satisfy the condition x2 = −1 are ±i. It
is straightforward to verify that M satisfies partial alternativity condition for x = ±i.
Hence, by Definition 2.2, M is partially alternative. The proof is complete.

Example 3.2. A particular case of M with table (Tn) is an algebra obtained from M by
setting c = d = e = h = 0, f = b and g = −a. These are real algebras satisfying the left,
right and middle C-associativity conditions:

(z, x, y) = (x, z, y) = (x, y, z) = 0

for any z ∈ C, x, y ∈ M. In addition, if b 6= 0, then each such M is partially alternative
but not alternative as j2j 6= jj2.

Example 3.3. There are noncommutative middle C-associative algebras that are not par-
tially alternative. For example, if we consider M with (Tn) and (a, b, c, d) = (−1, 0, 0, 0),
gh 6= 0, then simple computations show that (jk)k 6= j(k2) but k2 = −1. This violates
partial alternativity condition.

The remainder of the section presents a classification of all noncommutative middle
C-associative algebras satisfying the partial alternativity condition. As a starting point,
we prove a few auxiliary lemmas.

Lemma 3.4. Let M be a noncommutative middle C-associative algebra with multiplication
table (Tn). If M is partially left and right alternative, then IM ⊆ Span{i, j, k}.

Proof. Assume there exists q = r1 + xi+ yj + zk for r, x, y, z ∈ R such that q2 = −1 and
r 6= 0.

Since M is left and right partially alternative, we have that

q(qi) = (q2)i = −i = i(q2) = (iq)q.

Using multiplication (Tn), we obtain

q(qi) = r′1 + x′i+ y′j + z′k, and (iq)q = r′1 + x′i+ y′′j + z′′k,

where

7
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r′ = −2rx− f(y2 + z2),

x′ = r2 − x2 − g(y2 + z2),

y′ = 2rz − h(y2 + z2),

y′′ = −2rz − h(y2 + z2),

z′ = −2ry − e(y2 + z2),

z′′ = 2ry − e(y2 + z2).

It follows that y′ = y′′ and z′ = z′′, and, therefore, rz = 0 and ry = 0.
By the assumption, r 6= 0, we have y = z = 0. Then q ∈ C = Span{1, i} satisfying

q2 = −1. Clearly, q = ±i which contradicts r 6= 0. Therefore, IM ⊆ Span{i, j, k}, as
needed.

Lemma 3.5. Let M be as in Lemma 3.4. If IM \ C 6= ∅, then b = c = d = 0 in (Tn) and
IM = {xi+ yj + zk | −x2 + a(y2 + z2) = −1}.

Proof. Consider q = xi+ yj + zk ∈ IM. Computing q2 in terms of x, y, z and equating to
−1 we get the following equations:

−x2 + a(y2 + z2) = −1

b(y2 + z2) = 0

c(y2 + z2) = 0

d(y2 + z2) = 0

Since IM \ C 6= ∅, we can choose q ∈ IM \ C such that y2 + z2 6= 0. Then it follows
from the above equations that b = c = d = 0 and

IM = {xi+ yj + zk | −x2 + a(y2 + z2) = −1}.

The proof is complete.

Example 3.6. Let us consider the following three examples of partially alternative algebras
given by specific multiplication tables.

(1) The algebra M+ is defined by the multiplication table

· 1 i j k
1 1 i j k
i i −1 k −j
j j −k 1 −i
k k j i 1

The imaginary units in M+ are given by

IM+ = {(0, x, y, z) | −x2 + y2 + z2 = −1}

and form a hyperboloid of two sheets in Span{i, j, k}.

(2) The algebra M0 is defined by the multiplication table

8
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· 1 i j k
1 1 i j k
i i −1 k −j
j j −k 0 0
k k j 0 0

The imaginary units in M0 are given by

IM0 = {(0, x, y, z) | x2 = 1}

and form two real parallel planes in Span{i, j, k}.

(3) The quaternion algebra H is defined by the standard multiplication table

· 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

The imaginary units in H are given by

IH = {(0, x, y, z) | x2 + y2 + z2 = 1}

and form a sphere in Span{i, j, k}.

Theorem 3.7. Let M be a noncommutative middle C-associative algebra. Then the fol-
lowing affirmations are equivalent:

(1) M is associative;

(2) M is partially left alternative and right alternative with IM \ C 6= ∅;

(3) M is isomorphic to one of the aforementioned three algebras: M+, M0, and H.

Proof. (1) ⇐⇒ (3). This is Theorem 1.10 in [1].
(2) =⇒ (3). By Lemma 3.5, b = c = d = 0 and

IM = {xi+ yj + zk | −x2 + a(y2 + z2) = −1}.

If a > 0, then a change of basis by 1′ = 1, i′ = i, j′ = (1/
√
a)j, and k′ = (1/

√
a)k

allows us to assume a = 1. Similarly, if a < 0, then a change of basis by 1′ = 1, i′ = i,

9
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j′ = (1/
√−a)j, and k′ = (1/

√−a)k allows us to assume a = −1. Consider the following
three cases:

Let a = 1. It is easy to see that q =
√
2i+ j ∈ IM. Then,

−i = (qq)i = q(qi) = (−f)1 + (−g − 2)i+ (−h)j + (−e)k.

It follows that f = 0, g = −1, h = 0, e = 0. Thus, M ∼= M+.
Let a = 0. Choose q = i+ j ∈ IM. Then,

−i = (qq)i = q(qi) = (−f)1 + (−g − 1)i+ (−h)j + (−e)k.

It follows that f = 0, g = 0, h = 0, e = 0. Thus, M ∼= M0.
Let a = −1. Choose q = j ∈ IM. Then,

−i = (qq)i = q(qi) = (−f)1 + (−g)i+ (−h)j + (−e)k.

It follows that f = 0, g = 1, h = 0, e = 0. In particular, this algebra is isomorphic to the
quaternion algebra H with the usual basis {1, i, j, k}.

(3) =⇒ (2) This follows from the explicit multiplication tables of M+, M0, and H.
Namely, each of these algebras is partially left and right alternative and, in addition, they
have imaginary units outside C.

The proof is complete.

If we omit the condition IM \ C 6= ∅ (meaning that IM = i,−i) from the statement of
the theorem, then this case becomes very difficult to classify. The corresponding algebras
are no longer isomorphic to any of those listed above, since all three algebras given by
the tables have additional imaginary units (as shown). In particular, they are also not
associative.

4 Partially alternative division algebras

Let A be an arbitrary non-associative algebra over a field F whose unit element is
denoted by 1. Let La, Ra : A → A be the linear operators of left and right multiplication
defined, respectively, by La(x) = ax, Ra(x) = xa for all x ∈ A. If La, Ra are bijective for
every nonzero element a in A, then A is said to be a division algebra. As usual, IdA and
Aut(A) stand for the identity operator of A and the group of all automorphisms of A,
respectively.

Definition 4.1. Let A be an algebra over R, and f ∈ Aut(A). If f 6= IdA and f 2 = IdA,
then f is called a reflection of A. In other words, a reflection is an automorphism of A of
order two.

A key result in the theory of real division algebras identifies that the only possible
dimensions for finite-dimensional real division algebras are 1, 2, 4, and 8 (see for exam-
ple [11]). The classification of algebras of dimension d has been fully established only for
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d = 1 ( [17]), d = 2 ( [3,10,12]), and partially completed for d ∈ {4, 8}. Specifically, the clas-
sification for dimension 4 was achieved for absolute-valued algebras, power-commutative
algebras and algebras whose derivation Lie algebra is isomorphic to su(2) (see [4,5,8,17,18]).
In the present paper, we further explore the four-dimensional case under the assumption
that the algebra in question is partially alternative.

One intriguing open question in this field concerns whether every four-dimensional real
division algebra A, with a nontrivial automorphism group Aut(A), possesses a reflection.
If such a property were proven, it would provide invaluable insights into the underlying
algebraic structures of these algebras. Currently, no example exists of a four-dimensional
real division algebra whose nontrivial automorphism group lacks a reflection. In the specific
case of absolute valued algebras, a positive answer has been established in [9]. Therefore,
our assumption that reflections exist in Aut(A) appears well-founded.

For a linear mapping ϕ : A → A, we denote by Eλ(ϕ) the eigenspace in A corresponding
to the eigenvalue λ ∈ R. The following useful result is taken from [9]:

Lemma 4.2. Let ϕ ∈ Aut(A). Then E1(ϕ), E1(ϕ) + E−1(ϕ) and E1(ϕ2) are subalgebras of
A satisfying

E1(ϕ) ⊆ E1(ϕ) + E−1(ϕ) ⊆ E1(ϕ2).

In addition, if ϕ 6= IdA, then the following statements are equivalent

(1) ϕ is a reflection of A,

(2) ϕ is diagonalizable,

(3) A = E1(ϕ)⊕ E−1(ϕ).

Let ϕ be a reflection of A. Set B = E1(ϕ) and C = E−1(ϕ). By Lemma 4.2, we have
that A = B ⊕ C where B is a subalgebra of A and

BC = CB = C, CC = B. (2)

We note that the above equalities follow from Lemmas 1 and 2 from [9].

Lemma 4.3. Assume that A is a four-dimensional unital real division algebra with a reflec-
tion ϕ. Let A = B⊕C where B and C are as above. Then both B and C are two-dimensional
subspaces. Moreover, B is isomorphic to the algebra of complex numbers.

Proof. Clearly, 1 ∈ B since ϕ(1) = 1. Hence, B is a unital subalgebra of A which is
itself division. In turn, this implies that dim(B) is either 1 or 2 (it cannot be 4 as ϕ
is a reflection). In particular, there exists a nonzero a ∈ C such that the corresponding
left-multiplication operator La : A → A satisfies La(B) ⊆ C and La(C) ⊆ B. Since La is
bijective, we conclude that dim(B) = dim(C) = 1

2
dim(A) = 2.

It is well known that a two-dimensional unital real division algebra is necessarily iso-
morphic to the algebra of complex numbers C. Hence, B ∼= C.
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In what follows we assume that A is a four-dimensional unital real division algebra A
with a reflection ϕ. As shown above, A = B ⊕ C where B isomorphic to C. Hence, we can
choose a basis {1, i, w, v} for A as follows: B = SpanR{1, i}, C = SpanR{w, v}, i2 = −1
and v = wi.

Lemma 4.4. Assume that A has a basis {1, i, w, v} as above. In addition, we assume that
A is partially alternative. Then either iw = wi or iw = −wi.

Proof. By (2), BC = C, and hence we have that iw = αw + βwi where α, β ∈ R. Since A
is partially alternative, A is a B-bimodule. Therefore,

i(wi) = (iw)i = (αw + βwi)i = αwi+ β(wi)i = αwi+ βwi2 = αwi− βw.

Hence, i(wi) = −βw + αwi. However,

−w = i2w = i(iw) = i(αw + βwi) = αiw + βi(wi) = αiw + β(−βw + αwi)

= α(αw + βwi)− β2w + αβwi = α2w + αβwi− β2w + αβwi

= (α2 − β2)w + 2αβwi.

We have that α2 − β2 = −1 and αβ = 0. Hence, α = 0 and β = ±1 which implies that
iw = ±wi, as needed.

Proposition 4.5. Let A be a four-dimensional real division algebra with unity 1. Assume
that A admits a reflection. Then NC(A) = R1.

Proof. Since 1 ∈ NC(A), dim NC(A) ≥ 1. Let us first show that NC(A) is Aut(A)-
invariant. Indeed, let f ∈ Aut(A), and choose any x ∈ NC(A), y ∈ A. Since f is
bijective, there is y0 ∈ A such that y = f(y0). Hence,

f(x)y = f(x)f(y0) = f(xy0) = f(y0x) = f(y0)f(x) = yf(x).

Therefore, f(x)y = yf(x) for any y ∈ A. Hence, f(x) ∈ NC(A) for any x ∈ NC(A), as
required.

Next, by Lemma 4.2, A = E1(ϕ)⊕E−1(ϕ). Moreover, E1(ϕ) is a unital subalgebra, and

E1(ϕ)E−1(ϕ) = E−1(ϕ)E1(ϕ) = E−1(ϕ), E−1(ϕ)E−1(ϕ) = E1(ϕ).

By Lemma 4.3 we have that dim E1(ϕ) = dim E−1(ϕ) = 2, and E1(ϕ) ∼= C.
As NC(A) is Aut(A)-invariant, we have that ϕ(NC(A)) = NC(A). Thus, the re-

striction ψ = ϕ|NC(A) is a well-defined linear mapping of NC(A). Since ϕ2 = Id,
ψ2 = ϕ2|NC(A) = Id, and, hence, ψ is an involution. This implies that its Jordan form
contains only 1 × 1 blocks with either 1 or -1 on the main diagonal. Therefore, ψ is
diagonalizable on NC(A).

We next show that dimNC(A) = 1 by eliminating the other possibilities for its dimen-
sion.

12
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Case 1. Let us assume that dimNC(A) is 3. Hence, NC(A) = SpanR{1, e1, e2} where ei
is an eigenvector of ϕ corresponding to λi ∈ {1,−1}.

If both e1 and e2 are in E1(ϕ), then dim E1(ϕ) ≥ 3 as 1 ∈ E1(ϕ), a contradiction.
Therefore, one of e1, e2 must be in E−1(ϕ). Without loss of generality, let us assume that
e2 ∈ E−1(ϕ). Then e22 = z ∈ E1(ϕ). There exists z0 ∈ E1(ϕ) ∼= C such that z20 = z. Since
e2 ∈ NC(A), e2 and z0 commute, we have that

(e2 − z0)(e2 + z0) = e22 − z0e2 + e2z0 − z20 = e22 − z20 = z − z = 0.

However, since e2− z0 6= 0, e2+ z0 6= 0, and A is a division algebra, this is not possible.
Case 2. Assume now that dimNC(A) is 2. Then NC(A) = SpanR{1, e} where e is an
eigenvector of ψ. Thus, e ∈ E1(ϕ) or e ∈ E−1(ϕ). If e ∈ E1(ϕ), then NC(A) = E1(ϕ)
by dimension argument. Choose any w ∈ E−1(ϕ). Then w2 = z ∈ E1(ϕ). There exists
z0 ∈ E1(ϕ) = NC(A) such that z20 = z. Also, w and z0 commute. Then

(w − z0)(w + z0) = w2 − z0w + wz0 − z20 = 0.

Like in the previous case, this is a contradiction.
Once again, if e ∈ E−1(ϕ), then e2 = z ∈ E1(ϕ). We can find z0 ∈ E1(ϕ) such that

z20 = z. Since e ∈ NC(A), we have that

(e− z0)(e+ z0) = e2 + ez0 − z0e− z20 = 0,

which is impossible.
This shows that dim NC(A) = 1, and NC(A) = R1.

Corollary 4.6. Let A be a four-dimensional partially alternative real division algebra with
unit element 1. Further assume that A admits a reflection ϕ and write A = B ⊕ C where
B = SpanR{1, i} ∼= C. Then iy = −yi for all y ∈ C.
Proof. Assume that there is an element w ∈ C such that iw 6= −wi. Then {1, i, w, v} where
v = wi is a basis of A satisfying conditions of Lemma 4.4. Hence, by assumption and using
Lemma 4.4, we have that iw = wi. Then iv = i(wi) = (iw)i = (wi)i = vi. This means
that i commutes with any element from C as {w, v} is a basis for it. Since i obviously
commutes with any element from B, we have that i ∈ NC(A) and dim NC(A) ≥ 2, which
is impossible by Proposition 2.

Corollary 4.7. Let A be a four-dimensional partially alternative real division algebra with
unit 1. Assume that A admits a reflection ϕ. Then there exists a basis {1, i, w, v} of A
with the following multiplication table (Tp):

1 i w v

1 1 i w v
i i −1 −v w
w w v α11 + α2i β11 + β2i
v v −w δ11 + δ2i γ11 + γ2i

(Tp)

where α1, α2, β1, β2, δ1, δ2, γ1, γ2 ∈ R.

13
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5 Lie algebras associated with partially alternative algebras

This section opens with a lemma illustrating the close connection between partially
alternative division algebras and Lie algebras.

Lemma 5.1. Let A be a four-dimensional unital partially alternative division algebra with
a reflection. Then A becomes a Lie algebra L with respect to the product [x, y] = xy − yx
where x, y ∈ A.

Proof. By Corollary 4.7, we can choose a basis {1, i, w, v} of A with multiplication table
(Tp). Since anti-commutativity of the product [x, y] is known, we only verify the Jacobi
identity :

J(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

It sufficies to show that Jacobi identity holds for any choice of x, y, z ∈ {1, i, v, w}.
First, assume that at least one of x, y, z, say x, equals to 1. Then J(1, y, z) = 0 since

[1, a] = 0 for any a ∈ A.
We now assume that x, y, z ∈ {i, v, w} and are distinct; otherwise, if, for example,

x = y, then, clearly, J(x, x, z) = 0. By setting x = i, y = v and z = w, we obtain

[i, [v, w]] + [v, [w, i]] + [w, [i, v]] = 0 + [v,−2iw] + [w,−2vi]

= [v, 2v] + [w, 2w] = 2[v, v] + 2[w,w] = 0

as [v, w] is in SpanR{1, i}, and [w, i] = −2iw = 2v, [v, i] = 2vi = −2w. This proves the
claim.

Mubarakzyanov’s classification of low-dimensional real Lie algebras, published in 1963
[15], provides a comprehensive framework for understanding the structure of these algebras
up to dimension five. This work complements earlier classifications and has been influential
in the study of solvable and indecomposable Lie algebras.

Building on this foundational work, we will explore how four-dimensional partially
alternative real division algebras yield various types of Lie algebras.

Let us now recall the canonical multiplication tables of relevant Lie algebras, such as
g3,5, g3,7, and g4,9, which play an important role in our classification:

1. g3,5 = SpanR{e1, e2, e3} where [e1, e3] = β ′e1 − e2, [e2, e3] = e1 + β ′e2 where β ′ ≥ 0.
This is a solvable Lie algebra.

2. g3,7 = SpanR{e1, e2, e3} where [e2, e3] = e1, [e3, e1] = e2 and [e1, e2] = e3. This is a
simple Lie algebra isomorphic to so(3).

3. g4,9 = SpanR{e1, e2, e3, e4} where [e2, e3] = e1, [e1, e4] = 2α′e1, [e2, e4] = α′e2 − e3,
[e3, e4] = e2 + α′e3. This is an indecomposable solvable Lie algebra.

In what follows g1 denotes a 1-dimensional real Lie algebra.
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Proposition 5.2. Let A be a four-dimensional partially alternative unital real division al-
gebra with a reflection. Let L = (A, [ , ]) be the Lie algebra associated with A. Let
[v, w] = α1 + βi where α, β ∈ R. Write L = R1 + I where I = SpanR{i, w, v}.

1. If α = 0 and β 6= 0, then I is a simple Lie ideal isomorphic to so(3). Hence,
L ∼= g1 ⊕ g3,7.

2. If α = β = 0, then L ∼= g1 ⊕ g3,5.

3. If α 6= 0 and β 6= 0, then L ∼= g1 ⊕ g3,7.

4. If α 6= 0 and β = 0, then L ∼= g4,9 (with zero parameter).

Proof. We first assume that α = 0. Then [v, w] = βi ∈ I. Hence, I is a Lie subalgebra
which is also a Lie ideal as [R1, I] = {0}. Thus, L = R1 ⊕ I where R1, I are ideals of L.
In particular, L is a decomposable Lie algebra.

In addition, let us assume that β 6= 0. Then it can be easily seen that the derived
algebra I(1) = [I, I] = SpanR{i, v, w} = I. Hence, I is a nonsolvable three-dimensional
Lie algebra.

Recall that [v, w] = βi, [i, v] = 2w, [i, w] = −2v. If β > 0, then by scaling the basis of
I according to

h =
1

2
i, e =

1√
2β
v, f =

1√
2β
w,

we obtain [e, f ] = h, [f, h] = e and [h, e] = f which yields the canonical basis for so(3). If
β < 0, then we scale the basis of I as follows:

h =
1

2
i, e =

1√−2β
v, f =

1√−2β
(−w),

which results in the canonical basis for so(3). Thus, L = R1⊕ so(3) ∼= g1 ⊕ g3,7.
If now α = β = 0, then [v, w] = 0. Hence, I(1) = SpanR{v, w}, I(2) = {0}. Referring

to Mubarakzyanov’s classification of 3-dimensional Lie algebras, I is isomorphic to g3,2,
g3,3, g3,4 or g3,5. Moreover, each of these algebras has a canonical basis {e1, e2, e3} such
that the derived Lie algebra is spanned by {e1, e2}, and ad(e3) can be restricted to it. If
we write i = µe3 + v0 where v0 ∈ I(1), µ 6= 0, then

ad(i)(x) = ad(µe3)(x) + ad(v0)(x) = µad(e3)(x),

as [v0, x] = 0 for every x ∈ I(1).
Next, we note that I = R1 + I(1) and ad(i)|I(1) has no real eigenvalues as its charac-

teristic polynomial is p(λ) = λ2 + 4. However, as follows from the multiplication tables of
g3,2, g3,3, g3,4 with respect to {e1, e2, e3}, ad(e3)|I(1) must have real eigenvalues which is a
contradiction. Thus, I must be of the remaining type g3,5. Therefore, L ∼= g1 ⊕ g3,5.

We now assume that α 6= 0, and β 6= 0. Thus, L(1) = SpanR{v, w, α1 + βi}. Let e
denote α1 + βi. It is easy to see that L(1) = L(2) which implies that L is unsolvable. In
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addition, [v, w] = e, [e, v] = 2βw, [e, w] = −2βv. By scaling the basis accordingly, we
obtain a new basis with multiplication similar to that of I in the first case (i.e. α = 0,
β 6= 0). It follows that L = R1⊕ L(1) where L(1) ∼= so(3).

Let us now consider the remaining case when β = 0. This case seems tedious, as we
have to rule out several possibilities. We first note that in this case L(1) = SpanR{1, v, w},
L(2) = R1, L(3) = {0}. Then L is solvable (non-nilpotent) Lie algebra.

Moreover, L is indecomposable as any nonzero ideal of L contains 1. Indeed, let
I ′ 6= {0} be an ideal of L, and let x = α′1+β ′i+γ′v+δ′w ∈ I ′ such that β ′2+γ′2+δ′2 6= 0.
If β ′ 6= 0, then [[x, v], v] = (−2αβ ′)1 6= 0 and is in I ′. If γ′ (or δ′) is nonzero, then
[[x, i], v] = (2αγ′)1 6= 0 and is in I ′, as needed.

According to Mubarakzayanov’s classification, L is one of the following types: g4,r

where r = 2, . . . , 10. Since L(2) = R1, L cannot be of types g4,2, g4,3, g4,4, g4,5, g4,6 or g4,10
for which L(2) = {0}.

For the remaining three types: g4,7, g4,8, g4,9 we verify the existence of an element x 6= 0
such that ad(x)(L) = {0} as 1 in L plays a role of such an element. Routine check shows
that such an element exists only in g4,8 (with parameter -1), and in g4,9 with a parameter
0. Finally, observing the multiplication table of g4,9 (with zero parameter), we notice that
it is identical to the multiplication of L with respect to a new basis given by

1′ =
1

2
1, i′ =

1

2
i, v′ =

1√
2α
v, w′ =

1√
2α
w, if α > 0.

If α < 0, then we use the following change of basis:

1′ = −1

2
1, i′ =

1

2
i, v′ =

1√
−2α

v, w′ =
1√
−2α

w.

This implies that L ∼= g4,9 (with zero parameter). The proof is complete.
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