
ar
X

iv
:2

50
1.

03
63

6v
3 

 [
m

at
h.

R
A

] 
 2

8 
M

ay
 2

02
5

Communications in Mathematics 33 (2025), no. 3, Paper no. 9
DOI: https://doi.org/10.46298/cm.15036
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On the Nowicki conjecture for the two-generated free Lie

algebra
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Abstract. Let K[Xn] = K[x1, . . . , xn] be the polynomial algebra in n variables over
a field K of characteristic zero. A locally nilpotent linear derivation δ of K[Xn] is
called Weitzenböck due to his well known result from 1932 stating that the algebra
of constants of δ defined by ker(δ) = K[Xn]

δ is finitely generated. The explicit form
of a generating set of K[Xn, Yn]

δ was conjectured by Nowicki in 1994 in the case δ

was such that δ(yi) = xi, δ(xi) = 0, i = 1, . . . , n. Nowicki’s conjecture turned out to
be true and, recently, has been applied to several relatively free associative algebras.
In this paper, we consider the free Lie algebra L(x, y) of rank 2 generated by x and
y over K and we assume the Weitzenböck derivation δ sending y to x, and x to zero.
We introduce the idea of pseudodeterminants and we present a characterization of
Hall monomials that are constants showing they are not so far from being pseudode-
terminants. We also give a complete list of generators of the constants of degree less
than 7 which are, of course, pseudodeterminants.
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1 Introduction

Let K[Xn] be the polynomial algebra with generating set Xn = {x1, . . . , xn}, n ≥ 2
over a field K of characteristic zero. It is the free algebra of rank n in the variety of
unitary commutative algebras over K. Let H be a subgroup of the general linear group
GLn(K). Then a polynomial p ∈ K[Xn] is H-invariant if it is preserved under the action
of each element of H . The vector space K[Xn]H of all H-invariants is called the algebra
of H-invariants.

The question whether the algebra K[Xn]H of invariants is finitely generated for every
subgroup H of GLn(K) is a special case of the Hilbert’s fourteenth problem suggested
by the German mathematician David Hilbert in 1900 at the International Congress of
Mathematicians in Paris. Although the answer to Hilbert’s question turned out to be
negative in general (see for instance the paper by Nagata [24] (1958)), some remarkable
affirmative cases have been handled as well. Among them is the approach of Weitzenböck
[33], where he considered the locally nilpotent linear derivations δ of the algebra K[Xn].
Then the kernel ker(δ) = K[Xn]δ of the derivation δ is an algebra so called the algebra
of constants. He showed that the algebra K[Xn]δ is finitely generated as an algebra,
which is equal to the algebra K[Xn]UT2(K) of invariants of the unitriangular group given by
UT2(K) = {exp(cδ) | c ∈ K}. Thus the study of the algebra of constants inherits methods
from the classical invariant theory. The books by Nowicki [25], Derksen and Kemper [12],
and Sturmfels [31] are suggested for the readers interested in numerical aspects of algebras
of constants and general invariant theory.

The next question after the approach of Weitzenböck has become the explicit forms
of those generators. Nowicki conjectured in his book [25] that the algebra K[Xn, Yn]δ

is generated by x1, . . . , xn, and xiyj − yixj , 1 ≤ i < j ≤ n, assuming that δ(yi) = xi,
δ(xi) = 0, i = 1, . . . , n. The Nowicki’s conjecture was proved by Khoury [20, 21], Drensky
and Makar-Limanov [17], Kuroda [22], Bedratyuk [2] using different techniques. See also
the paper [14] by Drensky for a generalized version of Nowicki’s conjecture in which the
author proves, as a consequence of the paper by Kuroda of 2009, that the algebra of
constants of K[Xn, Yn]δ is generated by Xn and the “determinants” ui,j := fiyj − fjyi’s,
when the derivation δ is such that δ(xi) = 0 and δ(yi) = fi, i = 1, . . . , n, where the fi’s
are nonconstant polynomials of K[Xn].

A natural generalization of the problem is to study the generators of the algebra of
constants of (relatively) free associative or Lie algebras. In [16] Drensky and Gupta studied
Weitzenböck derivations acting on the relatively free algebra in a variety V. They proved
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that if V contains UT2(K), then the algebra of constants is not finitely generated. It is
also known by a result of Drensky in [13] that if UT2(K) does not belong to V, then
the algebra of constants is finitely generated. One may list the recent works as follows.
Let δ be a Weitzenböck derivation of the free metabelian Lie algebra Fn and of the free
metabelian associative algebra An of rank m. Dangovski et al. [10, 11] showed that the
algebras of constants F δ

n and Aδ
n are not finitely generated as an algebra except for some

trivial cases. Also Drensky and one of the authors [15] considered the Nowicki conjecture
for free metabelian Lie algebras, and they gave explicit forms of the generators. As a
continuation of this approach, two among the authors [8] solved the problem for several
relatively free algebras. See also the paper [7] for a survey toward this argument.

The goal of this paper goes in this direction but in a free Lie algebra setting. We
recall, by the well known dichotomy, a variety of Lie algebras either satisfies the Engel
condition (hence it is nilpotent by [35]) or contains the metabelian variety A2 consisting
of all solvable Lie algebras of class 2 which is defined by the identity [[x1, x2], [x3, x4]] = 0.
Since the finitely generated nilpotent Lie algebras are finite dimensional, the problem for
the finite generation of the algebras of constants of relatively free nilpotent Lie algebras is
solved trivially. In this paper we present the algebra of constants of the free Lie algebra
L(x, y) in two generators. We make use of the definition of pseudodeterminants. The
name pseudodeterminants is due to some own algebraic properties and their similarities
with the determinant-like generators used by Makar-Limanov and Drensky in their proof
of Nowicki’s conjecture for the free commutative algebra. We give a characterization of
the monomials which are constants. It turns out they can be monomials in the algebra
generated by the pseudodeterminants or they are “very close” to being pseudodetermi-
nants. We finally give some examples of an explicit set of generators for constants of small
degree (up to degree 7) and based on these experimental results, we conjecture a stronger
proposition:

The algebra of constants of the free Lie algebra of rank 2 is generated by

x and the pseudodeterminants that are constants.

2 Preliminaries

Let us fix some notations and some basic facts in our Lie setting.

Definition 2.1. A Lie algebra L is a vector space over the field K with a K-bilinear map
[·, ·] : L× L → L such that

[a, a] = 0 and [[a, b], c] + [[c, a], b] + [[b, c], a] = 0

for every a, b, c ∈ L.

The second of the relations above is called Jacobi’s identity. For the sake of simplicity
of notations we shall omit brackets in case of left-normed products, that is, we define
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[a1, a2, . . . , an−1, an] = [[[. . . [a1, a2], . . .], an−1], an] for all a1, . . ., an ∈ L. An immediate
consequence of Jacobi’s identity is the relation

[a, b, c] = [a, c, b] − [a, [c, b]] (1)

for all a, b, c ∈ L. In particular [a, b, a, b] = [a, b, b, a]. We shall denote by L′ the Lie
subalgebra [L, L] of L, which is called the commutator ideal of L.

As well as for the associative case, in the Lie setting we can construct a free object,
called the free Lie algebra. If X is a set of indeterminates we are allowed to consider L(X)
the free Lie algebra over the field K generated by the set X . In the sequel we shall use
linear basis of the free Lie algebra in order to perform our computations. Indeed linear
basis of the free Lie algebra have been studied by several authors using different techniques.
We shall use one of them in particular which construction will be presented below.

Suppose X is linearly ordered, then using an induction on the degree of Lie monomials,
we construct basic words starting from the “smallest” basic words. Each xi ∈ X is a basic
word of degree 1. Then let n > 1 and suppose that for every d < n all basic words of
degree d are defined and ordered. Suppose also that provided w, u and v are basic words
of degree less than n, then w = [u, v] implies w > v. Additionally the monomial q of
degree n is basic if, whenever q = [q1, q2], then q1, q2 are basic words and q1 > q2 and the
decomposition q = [[q′, q′′], q2] implies q′′ ≤ q2. Any monomial not respecting the previous
axioms is to be considered not basic. We have the next result.

Theorem 2.2 ([19]). The basic words in X form a basis of the free Lie algebra L(X).

Instead of basic words we shall use the expression Hall basis. We will denote by B the
Hall basis of the free Lie algebra L(x, y). The order used here is the deg-lexicographic one:
f ≤ g if, and only if, deg(f) < deg(g) or deg(f) = deg(g) and f ≤lex g where ≤lex is
the lexicographic order and x < y, where we compare lexicographically the words f and g
after deleting the brackets.

The first basis of a free Lie algebra was found by Hall in [19] whereas Shirshov in [29] and
Lyndon in [23] constructed the basis of a free Lie algebra consisting of the so called Lyndon-
Shirshov words (see for example Bahturin’s book [1]). In a former work [30] Shirshov was
able to develop the composition method for Lie algebras which was refined and rewritten
in a modern language setting by Bokut in [5]. The smart contribution of Shirshov is
highlighted in [29] where he suggested a path for choosing bases for free Lie algebras
generalizing those of Hall’s basis and of Lyndon-Shirshov’s basis. Other examples of bases
for free Lie algebras were found by Bokut in [4], by Reutenauer in [26], by Blessenohl and
Laue in [3], by Bryant, Kovacs and Stöhr in [6], by Guilfoyle and Stöhr in [18] and by
Chibrikov in [9] in which the author shows a right normed monomial basis for the free Lie
algebra. For more details on the theory of free Lie algebras we address the reader to the
book of Reutenauer [27] or the paper [26] by the same author.

We will also use a well celebrated result by Shirshov [28] and Witt [34] which separately
obtained the same result.
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Theorem 2.3. Every Lie subalgebra of a free Lie algebra is free. Moreover, every finite
dimensional Lie subalgebra of a free Lie algebra has dimension 1.

Now we will give a look toward the notion of derivation for a given algebra.

Definition 2.4. If A is any algebra (associative or not) over a field K, a derivation of A is
a K-linear map δ : A → A so that δ(ab) = δ(a)b + aδ(b) for every a, b ∈ A.

Of course, every derivation of a free algebra is completely determined by the value it
takes on its generators. Moreover we shall denote by

Aδ := {a ∈ A|δ(a) = 0}

the algebra of constants of A.
As mentioned before, throughout the paper we deal with one particular locally nilpotent

derivation of L(x, y). We recall a locally nilpotent derivation of an algebra A is a derivation
δ such that δn(a) = 0 for every a ∈ A with n depending on a. Here we shall study the
behaviour of L(x, y)δ, where δ is the derivation of L(x, y) sending y 7→ x and x 7→ 0.
Notice that δ is a locally nilpotent derivation of L(x, y).

3 Pseudodeterminants

As already mentioned in the introduction, the algebra of constants of L(x, y) is not
finitely generated. In what follows we shall construct an ad hoc algebra for monomials
(Hall monomials) that are constants starting from the definition of pseudodeterminants.
Every field here is assumed to be of characteristic 0.

We recall the first formulation of Nowicki’s conjecture stated the algebra of constants
K[Xn, Yn]δ, where Xn and Yn are two finite sets of n commutative variables, is generated
by the variables Xn and the

uij =

∣
∣
∣
∣

xi xj

yi yj

∣
∣
∣
∣
.

In [17] Drensky and Makar-Limanov found a uniformly looking explicit set of defining
relations of the algebra of constants K[Xn, Yn]δ which corresponds to the reduced Gröbner
basis of the related ideal of K[Xn, uij|1 ≤ i < j ≤ n]. The basic idea of the paper is the
construction of objects which are similar to the determinants uij.

From now on we shall denote L := L(x, y) and we shall construct some peculiar poly-
nomials that will be useful in figuring out the constants of L. We consider the following
elements of L,

U
(m,k)
A,B :=

∣
∣
∣
∣

δm(A) δk(A)
δm(B) δk(B)

∣
∣
∣
∣

= [δm(A), δk(B)] − [δk(A), δm(B)],

where A and B are Hall monomials.
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Definition 3.1. We shall call U
(m,k)
A,B pseudodeterminant of degree (m, k) in the Hall mono-

mials A and B.

First of all, notice the following facts.

Remark 3.2. Notice that

δ(U
(m,k−1)
A,B ) = U

(m,k)
A,B + U

(m+1,k−1)
A,B

and in particular δ(U
(m,k−1)
A,B ) = U

(m,k)
A,B if δm+1(A) = δm+1(B) = 0. Moreover, we have

U
(m,k)
A,B = −U

(k,m)
B,A , so we are allowed to consider m ≥ k.

Remark 3.3. Of course we have U
(k,0)
A,A = 2[δk(A), A]. In particular if A and B are Hall

monomials such that δk(A) = B, then U
(k,0)
A,A = 2[B,A].

The pseudodeterminants of degree (k, 0) describe completely a special class of polyno-
mials as we can see below.

Proposition 3.4. Let f = [p, δk(p)], where p ∈ L, then f is a linear combination of pseu-
dodeterminants of degree (k, 0).

Proof. Let p =
∑

αiMi, where the Mi’s are Hall monomials and αi ∈ K. Then

f =
[∑

αiMi,
∑

αjδ
k(Mj)

]

=
∑

i

∑

j

αiαj [Mi, δ
k(Mj)]. (2)

Notice that in Equation (2), for any fixed couple i, j, we have the summand

αiαj([Mi, δ
k(Mj)] + [Mj , δ

k(Mi)]) = αiαj([Mi, δ
k(Mj)] − [δk(Mi),Mj]) = −αiαjU

(k,0)
Mj ,Mi

,

and if i = j, then

[Mi, δ
k(Mi)] = −

1

2
U

(k,0)
Mi,Mi

.

Hence

f = −
∑

i<j

αiαjU
(k,0)
Mi,Mj

−
1

2

∑

i

α2
iU

(k,0)
Mi,Mi

and we are done.

4 On constant monomials

We investigate on the structure of Hall monomials which are constants. We believe
this will share light on the structure of constants in general.

The next easy and well known result will be of help in our work. We would like to
give a simple proof of it in order to highlight the strict relations between the Lie algebra
structure of L and its elements. In fact it is a direct consequence of the Shirshov-Witt
Theorem.
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Proposition 4.1. Let f, g ∈ L such that [f, g] = 0, then f = αg for some α ∈ K.

Proof. Let us suppose g 6= 0 and do consider S the Lie algebra generated by f and g. By
Theorem 2.3 S is free and all its products are 0. Hence the dimension of S as a vector
space is less than or equal to 2. This means S is a finite dimensional free Lie algebra. By
the second part of Theorem 2.3 and the fact that g 6= 0 we get the dimension of S is 1 and
we are done.

The next is a consequence of Proposition 4.1 and is of independent interest.

Corollary 4.2. If [g, x] + [δ(g), y] = 0 and g /∈ spanK{x}, then g = αy + βx for some
α, β ∈ K and α 6= 0.

Proof. It is sufficient to prove the statement for homogeneous polynomials; suppose g is a
homogeneous polynomial. Because δ is locally nilpotent and g /∈ spanK{x}, there exists
an integer n ≥ 2 such that δn(g) = 0 and δn−1(g) 6= 0. Since [g, x] + [δ(g), y] = 0, by
induction we obtain

n[δn−1(g), x] + [δn(g), y] = 0.

Therefore, n[δn−1(g), x] = 0 and consequently δn−1(g) = αx with α 6= 0 by Proposition
4.1. Notice that the non-zero elements [g, x] and [δ(g), y] are of the same degree as well as
g and δ(g).

If n = 2, since g is homogeneous, we have g = αy + βx, for α, β ∈ K and α 6= 0. If
n ≥ 3, then there exists an element w ∈ L such that δ(w) = αy that is impossible.

Let us denote by U (k) the Lie subalgebra of Lδ generated by the polynomials that
are constants of type M = [f, g] and such that there exists r ≥ k ≥ 1 in order that

δr−1(f) = αδk−1(g) 6= 0, by the constants of type U
(k,0)
A,B , where A and B are Hall monomials

and by x. Then we get the next property of Hall monomials that are constants.

Theorem 4.3. Let M = [A,B] 6= 0 be a monomial of Lδ, where A, B are monomials
in the Hall basis, then M ∈ U (k), where k = min{r, s}, δr(A) = 0, δs(B) = 0 whereas
δr−1(A) 6= 0 6= δs−1(B). Moreover, M ∈ U (1) if at least one of A and B belongs to Lδ.

Proof. Let δ(M) = δ([A,B]) = 0. Notice that, by induction, for any n ≥ 1 we have the
Leibniz rule

δn(M) =
∑

0≤i≤n

(
n

i

)

[δn−i(A), δi(B)] = 0. (3)

Suppose neither A nor B is a constant and let us fix r, s ≥ 2 such that

δr(A) = 0 = δs(B), δr−1(A) 6= 0 6= δs−1(B),

7



Lucio Centrone, Şehmus Fındık and Manuela da Silva Souza

where s ≤ r. Now assume that n = r + s− 2. Then we get from Equation (3):

0 = δr+s−2(M) =
∑

0≤i≤r+s−2

(
r + s− 2

i

)

[δr+s−2−i(A), δi(B)]

=

(
r + s− 2

s− 1

)

[δr−1(A), δs−1(B)] +
∑

i 6=s−1

(
r + s− 2

i

)

[δr+s−2−i(A), δi(B)].

If i > s − 1, then δi(B) = 0; otherwise, if i < s − 1, then r + s− 2 − i > r − 1, and
δr+s−2−i(A) = 0. Hence the second sum is zero and we get [δr−1(A), δs−1(B)] = 0. Because
δr−1(A) 6= 0 and δs−1(B) 6= 0, by Proposition 4.1, we have

δr−1(A) = αδs−1(B), (4)

for some non-zero α ∈ K, which proves the first assertion.
Suppose now A,B are constants. If M has degree 2, then M is a scalar multiple of

[x, y] = 1
2
U

(1,0)
y,y and we are done. If deg(M) = 3, then for some 0 6= α ∈ K,

M = α[x, y, x] = α[[x, y], x] = (α/2)[U (1,0)
y,y , x]

and consequently M ∈ U (1). If deg(M) > 3, since A, B are monomials such that deg(A),
deg(B) < deg(M), the result follows by induction. Now suppose that A is a constant and
B is not a constant. Then, by Proposition 4.1,

0 = δ(M) = [A, δ(B)],

which implies that δ(B) = βA for some 0 6= β ∈ K, since A 6= 0 6= δ(B). Therefore

M = β−1[δ(B), B] and the proof follows because M = β−1

2
U

(1,0)
B,B .

Remark 4.4. By Proposition 3.4, in the hypotheses of Theorem 4.3, we get if A = δk(B)

for some k ≥ 1, then M is in the algebra generated by the U
(k,0)
C,C for some k. This forces,

in order to figure out explicitly how the monomials that are constants look like, to focus
on the attention on such a set of constants. If M = [A,B] is a constant but neither A nor
B is, with the same hypotheses of Theorem 4.3, then

0 = δ(M) = δr+s−2(M) = [δr−1(A), δs−1(B)] = U
(r−1,s−1)
A,B :

if some kind of integration theory could be developed herein, M looks like very close
to being a pseudodeterminant. Unfortunately, the algebras U (k) are very difficult to be
described in terms of generators; this justifies the computations of the next section. Our
goal now is giving experimental results in order to restrict future studies on a smaller class
of generators.
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5 Lie polynomials of small degree

In this section, we shall calculate the generators of the constants of small degree. The
results show that if f = f(x, y) ∈ Lδ is a polynomial of degree less than or equal to 7,
then f belongs to the subalgebra generated by x, [y, x], [y, x, y, [y, x, x]]. In particular, we
observe that these polynomials are equal to a multiple scalar of the determinant

∣
∣
∣
∣

A δ(A)
B δ(B)

∣
∣
∣
∣

= [A, δ(B)] − [δ(A), B],

when A = B = y and A = B = [y, x, y] respectively.
We shall present two proofs: a direct one that shows, degree by degree of the constants,

the algebra the constants belong to, and their vector space structure; a more theoretical
one using invariant theory and having a sharply less number of calculations.

5.1 Direct proof

We start off with the next.

Lemma 5.1. For all a ≥ 0 and b ≥ 1,

[y, x, x, . . . , x
︸ ︷︷ ︸

a

, y, x, . . . , x
︸ ︷︷ ︸

b

] = [y, x, x, . . . , x
︸ ︷︷ ︸

a+b

, y] +

b−1∑

i=0

(
b

i

)

[y, x, x, . . . , x
︸ ︷︷ ︸

a+i

, [y, x, . . . , x
︸ ︷︷ ︸

b−i

]]

where

(
b

i

)

=
b!

i!(b− i)!
is a binomial coefficient.

Proof. The proof will be performed by induction on b. If b = 1 the result follows from (1).
We have that

[y, x, x, . . . , x
︸ ︷︷ ︸

a

, y, x, . . . , x
︸ ︷︷ ︸

b+1

] = [y, x, x, . . . , x
︸ ︷︷ ︸

a+1

, y, x, . . . , x
︸ ︷︷ ︸

b

] + [y, x, x, . . . , x
︸ ︷︷ ︸

a

, [y, x], x, . . . , x
︸ ︷︷ ︸

b

]

= [y, x, x, . . . , x
︸ ︷︷ ︸

a+b+1

, y] + [y, x, x, . . . , x
︸ ︷︷ ︸

a+b

, [y, x]]

+

b−1∑

i=0

(
b

i

)

[y, x, x, . . . , x
︸ ︷︷ ︸

a+1+i

, [y, x, . . . , x
︸ ︷︷ ︸

b−i

]]

+
b−1∑

j=0

(
b

j

)

[y, x, x, . . . , x
︸ ︷︷ ︸

a+j

, [y, x, . . . , x
︸ ︷︷ ︸

(b+1)−j

]]
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= [y, x, x, . . . , x
︸ ︷︷ ︸

a+b+1

, y] + [y, x, x, . . . , x
︸ ︷︷ ︸

a+b

, [y, x]]

+
b∑

j=1

(
b

j − 1

)

[y, x, x, . . . , x
︸ ︷︷ ︸

a+j

, [y, x, . . . , x
︸ ︷︷ ︸

(b+1)−j

]]

+
b−1∑

j=0

(
b

j

)

[y, x, x, . . . , x
︸ ︷︷ ︸

a+j

, [y, x, . . . , x
︸ ︷︷ ︸

(b+1)−j

]]

= [y, x, x, . . . , x
︸ ︷︷ ︸

a+b+1

, y] +
b∑

j=0

(
b + 1

j

)

[y, x, x, . . . , x
︸ ︷︷ ︸

a+j

, [y, x, . . . , x
︸ ︷︷ ︸

(b+1)−j

]]

where the first equality holds by the induction hypothesis and the last follows by the
relation

(
b+1
j

)
=

(
b

j−1

)
+
(
b

j

)
for all 1 ≤ j ≤ b− 1.

Corollary 5.2. Let f be a polynomial such that degy(f) = 2. Then f ∈ Lδ if and only if f
belongs to the subalgebra generated by x, [y, x].

Proof. We show the multihomogeneous case because the generalization follows directly
from this result. Let f be a multihomogeneous polynomial, degy(f) = 2 such that f ∈ Lδ.
Since left normed brackets generate L′, we assume that f is of the form

f = α0[y, x, y, x, . . . , x
︸ ︷︷ ︸

k

] + α1[y, x, x, y, x, . . . , x
︸ ︷︷ ︸

k−1

] + · · · + αk[y, x, x, . . . , x
︸ ︷︷ ︸

k

, y]

for some scalars αi ∈ K, i = 0, . . . , k. The fact that δ(f) = 0 implies

(α0 + · · · + αk)[y, x, x, . . . , x
︸ ︷︷ ︸

k+1

] = 0,

and therefore α0 + · · · + αk = 0. The result follows from Lemma 5.1.

In the next propositions, we show that the constants of degree less than or equal to 7
are in the Lie subalgebra generated by x, [y, x], [y, x, y, [y, x, x]].

Proposition 5.3. If f ∈ Lδ is a nonzero polynomial of degree less than or equal to 5, then
f belongs to the subalgebra generated by x, [y, x].

Proof. Suppose without loss of generality that f is a multihomogeneous polynomial.
If degy(f) = 1, f belongs to the subalgebra generated by x, [y, x] and consequently is

a constant. If degy(f) = 2 the result follows from Corollary 5.2. Suppose f homogeneous
of degree 4 such that degy(f) = 3. In this case f = α[y, x, y, y], for some α ∈ K, and
consequently δ(f) = 2α[y, x, x, y] = 0. This implies that α = 0.

10



On the Nowicki conjecture for the two-generated free Lie algebra

Now suppose f homogeneous of degree 5. In this case it is sufficient to check two
possibilities: degy(f) = 3 and 4. Assume that degy(f) = 3. Then

f = α[y, x, x, y, y] + β[y, x, y, y, x] ∈ Lδ

for some α, β ∈ K. We have the following:

0 = δ(f) = (α + 2β)[y, x, x, y, x] + α[y, x, x, x, y]

= (α + 2β)([y, x, x, x, y] + [y, x, x, [y, x]]) + α[y, x, x, x, y].

Since [y, x, x, x, y] and [y, x, x, [y, x]] belong to Hall’s basis we have that α = β = 0. Now
let degy(f) = 4. Then f = α[y, x, y, y, y] ∈ Lδ for some α ∈ K, that is,

α[y, x, x, y, y] + α[y, x, y, x, y] + α[y, x, y, y, x] = 0.

Since [y, x, x, y, y] = [y, x, y, x, y] and [y, x, y, y, x] = [y, x, y, x, y] + [y, x, y, [y, x]], the
last equation implies that 3α[y, x, x, y, y] + α[y, x, y, [y, x]] = 0. Therefore α = 0 since
[y, x, x, y, y], [y, x, y, [y, x]] belong to Hall’s basis of L .

Proposition 5.4. If f ∈ Lδ is a polynomial of degree 6, then f belongs to the subalgebra
generated by x, [y, x] and [y, x, y, [y, x, x]].

Proof. As before, we may assume that f is a multihomogeneous polynomial. By Corollary
5.2, there are three cases to check: degy(f) = 3, 4 and 5. Suppose α[y, x, y, y, y, y] ∈ Lδ,
i.e., 2α[y, x, x, y, y, y] + α[y, x, y, y, x, y] + α[y, x, y, y, y, x] = 0. Since

[y, x, y, y, x, y] = [y, x, x, y, y, y] + [y, x, y, y, [y, x]]

and
[y, x, y, y, y, x] = [y, x, x, y, y, y] + 2[y, x, y, y, [y, x]],

it follows that α = 0. Suppose

f = α[y, x, x, y, y, y] + β[y, x, y, y, x, y] + γ[y, x, y, y, y, x] ∈ Lδ, (5)

that is,

δ(f) = α[y, x, x, x, y, y] + (α + 2β)[y, x, x, y, x, y]

+(α + 2γ)[y, x, x, y, y, x] + (β + γ)[y, x, y, y, x, x] = 0.

Since v1 = [y, x, x, x, y, y], v2 = [y, x, x, y, [y, x]], v3 = [y, x, y, [y, x, x]] belong to Hall’s basis
and by simple calculations using (1)

[y, x, x, y, x, y] = v1 + v2 − v3,

[y, x, x, y, y, x] = v1 + 2v2 − v3,

[y, x, y, y, x, x] = v1 + 3v2,

11
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we have the following system equations: α+β+γ = 0 and 3α+5β+7γ = 0 whose solution
is β = −2α and γ = α. Replacing this solution in (5) we get f = −α[y, x, y, [y, x, y]] = 0.
Finally consider

f = α[y, x, x, y, y, x] + β[y, x, y, y, x, x] + γ[y, x, x, x, y, y] + ǫ[y, x, x, y, x, y] ∈ Lδ, (6)

that is,

(α + γ)[y, x, x, x, y, x] + (α + 2β + ǫ)[y, x, x, y, x, x] + (γ + ǫ)[y, x, x, x, x, y] = 0.

Denote by v1 = [y, x, x, x, x, y] and v2 = [y, x, x, x, [y, x]]. Since [y, x, x, x, y, x] = v1 + v2
and [y, x, x, y, x, x] = v1 + 2v2 follow that α + β + γ + ǫ = 0 and 3α + 4β + γ + 2ǫ = 0.
Consequently γ = α + 2β and ǫ = −2α− 3β. Replacing this solution in (6) we obtain

f = α([y, x, x, y, y, x] + [y, x, x, x, y, y]− 2[y, x, x, y, x, y])

+β([y, x, y, y, x, x] + 2[y, x.x, x, y, y]− 3[y, x, x, y, x, y]) ∈ Lδ.

By simple calculations we conclude that

[y, x, x, y, y, x] + [y, x, x, x, y, y] − 2[y, x, x, y, x, y] = [y, x, y, [y, x, x]],

[y, x, y, y, x, x] + 2[y, x.x, x, y, y] − 3[y, x, x, y, x, y] = 3[y, x, y, [y, x, x]]

and this ends the proof.

Next we prove that if f ∈ Lδ is a polynomial of degree 7 then f belongs to the subalgebra
generated by x, [y, x], and [y, x, x, y, [y, x, x]] − [y, x, x, x, [y, x, y]]. We observe that

[y, x, x, y, [y, x, x]] − [y, x, x, x, [y, x, y]] = [y, x, y, [y, x, x], x],

that is, the product between [y, x, y, [y, x, x]] and x.

Proposition 5.5. If f 6= 0 is a polynomial of degree 7 then f ∈ Lδ if and only if f belongs
to the subalgebra generated by x, [y, x], and [y, x, x, x, [y, x, y]] − [y, x, x, y, [y, x, x]].

Proof. As before, we may assume that f is a multihomogeneous polynomial. By Corollary
5.2, we have four cases to check: degy(f) = 3, 4, 5 and 6.

1. degy(f) = 3. We write f as a linear combination of the Hall’s basis. If we denote by

v1 = [y, x, x, x, x, y, y],

v2 = [y, x, x, x, y, [y, x]],

v3 = [y, x, x, [y, x], [y, x]],

v4 = [y, x, x, x, [y, x, y]],

v5 = [y, x, x, y, [y, x, x]]

12
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and f = α1v1 + α2v2 + α3v3 + α4v4 + α5v5, δ(f) = 0 implies that

α1δ(v1) + α2δ(v2) + α3δ(v3) + α4δ(v4) + α5δ(v5) = 0.

Since δ(v1) = 2[y, x, x, x, x, x, y] + [y, x, x, x, x, [y, x]], δ(v2) = [y, x, x, x, x, [y, x]],
δ(v3) = 0, δ(v4) = [y, x, x, x, [y, x, x]] and δ(v5) = [y, x, x, x, [y, x, x]] we have that
α1 = α2 = 0 and α4 + α5 = 0. Therefore f ∈ Lδ if and only if f is a linear
combination of [y, x, x, [y, x], [y, x]] and [y, x, x, x, [y, x, y]]− [y, x, x, y, [y, x, x]].

2. degy(f) = 4. Denote by

v1 = [y, x, x, x, y, y, y],

v2 = [y, x, x, y, y, [y, x]],

v3 = [y, x, y, [y, x], [y, x]],

v4 = [y, x, x, y, [y, x, y]],

v5 = [y, x, y, y, [y, x, x]],

we have that f = α1v1 + α2v2 + α3v3 + α4v4 + α5v5. Therefore δ(f) = 0 implies that

α1δ(v1) + α2δ(v2) + α3δ(v3) + α4δ(v4) + α5δ(v5) = 0.

Since

δ(v1) = 3[y, x, x, x, x, y, y] + 3[y, x, x, x, y, [y, x]] + 2[y, x, x, x, [y, x, y]],

δ(v2) = 2[y, x, x, x, y, [y, x]] + [y, x, x, [y, x], [y, x]],

δ(v3) = [y, x, x, [y, x], [y, x]],

δ(v4) = [y, x, x, x, [y, x, y]] + [y, x, x, y, [y, x, x]],

δ(v5) = 2[y, x, x, y, [y, x, x]],

we have that αi = 0 for all i ∈ {1, 2, 3, 4, 5}.

3. degy(f) = 5. We write

v1 = [y, x, x, y, y, y, y],

v2 = [y, x, y, y, y, [y, x]],

v3 = [y, x, y, y, [y, x, y]],

and f = α1v1 + α2v2 + α3v3. Therefore δ(f) = 0 implies that

α1δ(v1) + α2δ(v2) + α3δ(v3) = 0.

Since

δ(v1) = 4[y, x, x, x, y, y, y] + 6[y, x, x, y, y, [y, x, y]]

+ 8[y, x, x, y, [y, x, y]]− 3[y, x, y, y, [y, x, x]],

δ(v2) = 3[y, x, x, y, y, [y, x]] + [y, x, y, [y, x], [y, x]],

δ(v3) = 2[y, x, x, y, [y, x, y]] + [y, x, y, y, [y, x, x]],

we have that αi = 0 for all i.
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4. degy(f) = 6. Let f = α[y, x, y, y, y, y, y] ∈ Lδ, that is,

0 = α(2[y, x, x, y, y, y, y] + [y, x, y, y, x, y, y] + [y, x, y, y, y, x, y] + [y, x, y, y, y, y, x]).

By simple calculations

2[y, x, x, y, y, y, y] + [y, x, y, y, x, y, y] + [y, x, y, y, y, x, y] + [y, x, y, y, y, y, x]

is a non zero linear combination of the Hall’s basis [y, x, x, y, y, y, y], [y, x, y, y, y, [y, x]]
and [y, x, y, y, [y, x, y]]. Thus α = 0.

Corollary 5.6. If f 6= 0 is a multihomogeneous polynomial such that degy(f) = 3 and
deg(f) = n, then f ∈ Lδ if and only if f belongs to the subalgebra generated by x, [y, x]
and

[y, x, . . . , x
︸ ︷︷ ︸

k

, [y, x, . . . , x
︸ ︷︷ ︸

n−3−k

, y]] − [y, x, . . . , x
︸ ︷︷ ︸

k−1

, y, [y, x, . . . , x
︸ ︷︷ ︸

n−2−k

]]

where k is an integer and n−2
2

≤ k ≤ n− 4.

Proof. Suppose f 6= 0 a multihomogeneous polynomial such that deg(f) = n. It is suffi-
cient to show when degy(f) > 7. We write f as a linear combination of the Hall’s basis,
that is, as a linear combination of polynomials

[y, x, . . . , x
︸ ︷︷ ︸

n−3

, y, y],

fk = [y, x, . . . , x
︸ ︷︷ ︸

k

, y, [y, x, . . . , x
︸ ︷︷ ︸

n−3−k

]],

fl.m = [y, x, . . . , x
︸ ︷︷ ︸

n−3−l−m

, [y, x, . . . , x
︸ ︷︷ ︸

l

], [y, x, . . . , x
︸ ︷︷ ︸

m

]],

fp = [y, x, . . . , x
︸ ︷︷ ︸

p

, [y, x, . . . , x
︸ ︷︷ ︸

n−3−p

, y]]

for all k, l, m, p integers ≥ 1 such that n−4
2

≤ k ≤ n−4, n−2
2

≤ p ≤ n−4, l ≤ m < n−3
2

and
2l+m < n− 3. The proof is analogous to the previous proposition when degy(f) = 3.

5.2 Proof using invariant theory

We start recalling the next useful result by Drensky and Gupta (see Theorem 4.6
of [16]).

Theorem 5.7. For any GL2(K)-invariant ideal I of K〈x, y〉 the algebra of constants
(K〈x, y〉/I)δ is spanned by the highest weight vectors of the GL2(K)-irreducible compo-
nents of K〈x, y〉/I.
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Keeping in mind the previous result, let L be the free Lie algebra of rank two generated
by x, y. If L is a direct sum of irreducible GL2(K)-modules W (λ1, λ2), then in each
summand W (λ1, λ2) there is a homogeneous polynomial of degree λ1 in x and λ2 in y and
these polynomials form a basis of Lδ. If a constant is of degree λ1 in x and λ2 in y, then
it belongs to W (λ1, λ2). In particular, we get the homogeneous constants f in x and y do
satisfy the inequality degx(f) ≥ degy(f). Now, if we know the multiplicity m(λ1, λ2) of the
GL2(K)−module W (λ1, λ2) in L, then we only need to find m(λ1, λ2) linearly independent
homogeneous constants of degree λ1 in x and λ2 in y. On this purpose, it is crucial the
knowledge of the decomposition of the homogeneous components of the free Lie algebra
of any finite rank that is well known for degrees up to 10 (see [32]). In particular, if Ln

denotes the homogeneous component of degree n of L, we have:

L1 = W (1), L2 = W (1, 1), L3 = W (2, 1), L4 = W (3, 1), L5 = W (4, 1) + W (3, 2),

L6 = W (5, 1) + W (4, 2) + W (3, 3), L7 = W (6, 1) + 2W (5, 2) + 2W (4, 3).

Now remark L′/L′′ = ⊕n≥2W (n − 1, 1) and therein the constants are monomials of type
[y, x, . . . , x]. For the other modules, the following polynomials form bases of the homoge-
neous components Lδ(λ1, λ2) with obvious meaning of the notation:

(n− 2, 2) : [[y, x, . . . , x], [y, x, . . . , x]],

(3, 3) : [[y, x, y], [y, x, x]],

(4, 3) : [[y, x, x], [y, x], [y, x]], [[y, x, x, y], [y, x, x]]− [[y, x, x, x], [y, x, y]].

Observe the modules W (n−2, 2) belong to L′′, then the constants can only be polynomials
of type [[y, x, . . . , x], [y, x, . . . , x]] which belongs to the subalgebra L≤2 of L generated by
x, [y, x]. Notice that the polynomial [[y, x, y], [y, x, x]] does not belong to L≤2 whereas it is
easy to see that

[[y, x, x, y], [y, x, x]] − [[y, x, x, x], [y, x, y]] = [[[y, x, y], [y, x, x]], x].

We have proved the following.

Theorem 5.8. The constants of L of degree less than or equal to 7 belong to the Lie
subalgebra of L generated by

x, [y, x], [[y, x, y], [y, x, x]].

Indeed, if A := [x, y, y], B := [x, y, x], then δ(A) = B and

M = [A,B] = −2U
(1,0)
A,A ∈ U (1).

Because of the previous experimental results, we can state the next conjecture.

Conjecture 5.9. Let M be a Hall monomial so that it is a constant under the derivation
δ, then M ∈ U (1).

15
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We can also state a stronger conjecture supported by the results of this section.

Conjecture 5.10. The algebra Lδ of constants of δ in the free Lie algebra L of rank 2 is
the algebra U (1).
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tions of polynomial algebras. J. Algebra Appl., 8:41–51, 2009.
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[21] J. Khoury. A Gröbner basis approach to solve a conjecture of Nowicki. J. Symbolic
Comput., 43:908–922, 2008.

[22] S. Kuroda. A simple proof of Nowicki’s conjecture on the kernel of an elementary
derivation. Tokyo J. Math., 32:247–251, 2009.

[23] R. C. Lyndon. On Burnsides problem I. Trans. Amer. Math. Soc., 77:202–215, 1954.

[24] M. Nagata. On the fourteenth problem of Hilbert. In Proc. Int. Congr. Math. (Edin-
burgh 1958), pages 459–462. Cambridge University Press, Cambridge, 1960.

[25] A. Nowicki. Polynomial derivations and their rings of constants. Uniwersytet Miko laja
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