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The geometric classification of symmetric Leibniz algebras*

Renato Fehlberg Junior, Ivan Kaygorodov, Azamat Saydaliyev

Abstract. This paper is devoted to the complete geometric classification of complex
5-dimensional solvable symmetric Leibniz algebras. As a corollary, we have the com-
plete geometric classification of complex 5-dimensional symmetric Leibniz algebras.
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Introduction

In the past years, Leibniz algebras have been under active research (see, for exam-
ple, [2,3,8,9,11,12,14,17,19] and references therein). In the present paper, we give the
geometric classification of complex 5-dimensional symmetric Leibniz algebras. The alge-
braic classification (up to isomorphism) of algebras of dimension n from a certain variety
defined by a certain family of polynomial identities is a classic problem in the theory of
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non-associative algebras. There are many results related to the algebraic classification
of small-dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel, and many
other algebras [15]. Deformations and geometric properties of a variety of algebras de-
fined by a family of polynomial identities have been an object of study since the 1970s,
see [1,2,4,7,13,14] and references in [15,16,18].

The variety of symmetric Leibniz algebras is a principal subvariety of the variety of
weakly associative algebras [2] and of the variety of €®-algebras. Symmetric Leibniz
algebras and anticommutative €®-algebras have the following common property: they
are central extensions (in a suitable variety) of Lie algebras [5]. At the same time, the
variety of symmetric Leibniz algebras is in the intersection of right Leibniz and left Leibniz
algebras, and it plays an important role in one-sided Leibniz algebras. So, each quadratic
(i.e., endowed with a bilinear, symmetric, and non-degenerate associative form) Leibniz
algebra is a symmetric Leibniz algebra [5]. Every symmetric Leibniz algebra is flexible,
power-associative, nil-algebra with nilindex 3, and they are also Lie-admissible algebras
(about Lie-admissible algebras see [10]). It satisfies the following identities:

2(y2) = (zy)z +y(vz) and (zy)z = (v2)y + 2(y2).

1 Definitions and notation

Given an n-dimensional vector space V, the set Hom(V®@ V,V) 2 V* @ V* @ V is
a vector space of dimension n3. This space has the structure of the affine variety c.
Indeed, let us fix a basis ey, ..., e, of V. Then any u € Hom(V ® V,V) is determined by

n? structure constants c}; € C such that pu(e; ® e;) = 1; cy;er. A subset of Hom(V®V,V)

is Zariski-closed if it can be defined by a set of polynomial equations in the variables cfj
(1<i,j5,k<n).

Let T be a set of polynomial identities. The set of algebra structures on V satisfying
polynomial identities from 7" forms a Zariski-closed subset of the variety Hom(V @ V, V).
We denote this subset by L(7"). The general linear group GL(V) acts on L(7") by conju-
gations:

(g*xp)(z®@y) =gulg 'z @ g 'y)

forz,y € V, p € L(T) C Hom(V® V,V) and g € GL(V). Thus, L(7T") is decomposed into
GL(V)-orbits that correspond to the isomorphism classes of algebras. Let O(u) denote the
orbit of p € IL(T') under the action of GL(V) and O(u) denote the Zariski closure of O(u).

Let A and B be two n-dimensional algebras satisfying the identities from 7', and let
w, A € L(T') represent A and B, respectively. We say that A degenerates to B and write
A — B if A € O(p). Note that in this case we have O(\) C O(u). Hence, the definition
of degeneration does not depend on the choice of  and A. If A 2 B, then the assertion
A — B is called a proper degeneration. We write A /4 B if A ¢ W

Let A be represented by p € L(T'). Then A is rigid in L(T) if O(u) is an open subset of

L(T). Recall that a subset of a variety is called irreducible if it cannot be represented as a
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union of two non-trivial closed subsets. A maximal irreducible closed subset of a variety is
called an irreducible component. It is well known that any affine variety can be represented
as a finite union of its irreducible components uniquely. The algebra A is rigid in L(7T) if
and only if O(u) is an irreducible component of (7).

Method of the description of degenerations of algebras. In the present work, we
use the methods applied to Lie algebras in [13]. First of all, if A — B and A % B, then
Der(A) < Der(B), where Der(A) is the algebra of derivations of A. We compute the
dimensions of algebras of derivations and check the assertion A — B only for such A and
B that Detr(A) < Der(B).

To prove degenerations, we construct families of matrices parametrized by t. Namely,
let A and B be two algebras represented by the structures p and A from IL(T") respectively.
Let e1,...,e, be a basis of V and cfj (1 <i,7,k < n) be the structure constants of A

in this basis. If there exist al(t) € C (1 < i,j < n, t € C*) such that Ef = 3 al(t)e;
j=1

(1 < i < n) form a basis of V for any t € C*, and the structure constants of y in the

basis Ef,..., El are such rational functions cf;(t) € C[t] that ¢};(0) = ¢};, then A — B.

In this case Et, ..., E! is called a parametrized basis for A — B. In case of EY, E%, ... E!

ELEL,. B, o
is a parametric basis for A — B, it will be denoted by A (5.5 L B. To simplify

our equations, we will use the notation A; = (e;,...,e,), ¢ = 1,...,n and write simply
A,A, C A, instead of cfj =00G@>p,j>q k<r).

Let A(x) := {A(a)}aer be a series of algebras, and let B be another algebra. Suppose
that for a € I, A(«) is represented by the structure p(«) € L(T) and B is represented by
the structure A € L(7"). Then we say that A(x) — B if A € {O(u(a))}aer, and A(x) /4 B
if ) ¢ {0(u(a)) Joer.

Let A(x), B, p(a) (o € I) and X\ be as above. To prove A(x) — B it is enough
to construct a family of pairs (f(t),¢(t)) parametrized by ¢t € C*, where f(t) € I and
g(t) € GL(V). Namely, let ey,... e, be a basis of V and ¢; (1 < 4,5,k < n) be the

structure constants of A in this basis. If we construct a/ : C* — C (1 < 4,5 < n) and

f: C* = I such that B! = " al(t)e; (1 < i < n) form a basis of V for any t € C*,

j=1
and the structure constants of u(f(¢)) in the basis Ef, ... E! are such rational functions
cj;(t) € C[t] that ¢;(0) = ¢}, then A(x) — B. In this case EY, ..., E} and f(t) are called
a parametrized basis and a parametrized index for A(x) — B, respectively.

We now explain how to prove A(x) 4 B. Note that if Der A(a) > Der Bforall a € 1
then A(x) /4 B. One can also use the following Lemma, whose proof is the same as the

proof of [13, Lemma 1.5].

Lemma. Let B be a Borel subgroup of GL(V) and R C IL(T) be a B-stable closed subset. If
A(x) — B and for any a € I the agebra A(«) can be represented by a structure p(a) € R,
then there is A € R representing B.
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2 Our strategy

Let us remember the principal results, that will be used in our main results.

(a) The algebraic classification of indecomposable 5-dimensional symmetric non-
nilpotent Leibniz algebras is given in [9].

(b) The geometric classification of 5-dimensional Lie algebras is given in [7].

(¢) The geometric classification of 5-dimensional nilpotent symmetric Leibniz algebras
is given in [2].

(0) The geometric classification of 4-dimensional Lie algebras is given in [6], and irre-
ducible non-Lie components of 4-dimensional symmetric Leibniz algebras are given
in [2].

Hence, our proof of the main statement will be based on the description of irreducible
components of varieties given in (b), (¢), (9), and given above.
Thanks to [7], all irreducible components of 5-dimensional Lie algebras are given below.

5[2 D T2 : €1e9 = 261 €1€3 = —€9 €o€1 — *261 €9€3 — 263
€3€1 — €9 €3€y — —263 €45 = €5 €54 — —€5
5[2 X V2 Loe1eg = 261 €1e3 = —€9 e1e4 = e €261 = —261
ese3 = 2eg €064 = €4 eges = —ej esel = es
€3ey — —263 €365 — €4 €4€1 = —€5
€463 = —€4 €562 = €5 €563 = —€4
Eg(m;) D e1eg = eg e1e3 = aes ereg = (a+1)ey eres = (a+ 2)es
€2€1 = —€9 €9€3 — €4 €o2€4 = €5 €31 — —QeEg3
e3ey = —ey ege; = —(a+1)eg eqeg = —es ese1 = —(a+ 2)es
=
Ri(ns®C) : ejes = Peo e1e3 = e3 e1e4 = ey eres = (a+ 1)es
eze1 = —feg  ezer = —e3 eseq = €5
eqe1 = —Qey €463 = —es5 ese1 = —(a+ 1)es
=)
Rs5(n3) i e1e3 = €3 €15 = €5 €264 = €4 €265 = €5
€3e1 = —e€3 €364 = €5 €4€9 = —€4
€43 — —€5 €5€1 — —¢€5 €5€9 — —€5
Eg(@‘l) © e1eg = eg e1e3 = aes e1eq = Bey ejes = yes
ege] = —€y  eze] = —Qey eser = —Pey ese1 = —7€s
Eg((C3) : ejes3 = e3 e1es = aes eseq = €4 eses = fes
€3e1 = —e€3 €561 = —Qe; €463 = —€4 esea = —fles

Thanks to [2], all irreducible components of 5-dimensional nilpotent symmetric Leibniz
algebras are given below.

"The multiplication tables of suitable algebras were found in [20].
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So; ele; = aes erea =e3+eqs+ fPes erez =es €ge] = —e3 €€z = €5

€92€3 = €4 €361 — —¢€j5 €362 = —€4
32 €1€e1 = €5 €1€e9 = €3 €1€3 = €5 €9€1 = —e3 €9€9 = Qe;

€264 = €5 €361 = —¢65 €464 = €5

Si‘l €1€e1 = €5 €1€e2 = €3 €1€3 = €5 €9€1 = —e€3 €9€9 = Qe
€2€3 = €4 €2€4 = €5 €361 = —€5 €362 = —€4 €463 = —€5

Vit e1e2 = es eze1 = Aes e3eq = €5 eqe3 = fies

RIEED) ere] = eq e1ez = pl1€5 ele3 = figes5 €261 = [13e5 €262 = [l4€5
€2€3 = U565 €3€1 = U6€s ezea = Aeq + pres €3€3 = €5

51]2_1_3 €161 = €3 + )\65 €1€e9 = €3 €9€1 = €4 €969 = €5

Thanks to [6], all irreducible components of 4-dimensional Lie algebras are given below.

Ty D Tty €162 = €2 €2€1 = —€2 €364 = €4 €4€3 — —€4
5[2 S5, C €1€9 = €9 €163 — —€3 €9€3 = €1
€2€1 — —€9 €3€1 = €3 €3y = —€1
g5(Oé> €1€9 = €9 €1€3 = €3 + (eg €164 = (Oé + 1)64 €9€3 = €4
€e] = —ey  e3ze] = —eg — ey eqe; = —(a+ l)ey  ezea = —ey
ga(e, B) €163 = €3 e1e3 = €z + aes ereq = e3 + fBey
€261 = —€9 €361 = —€9 — (€3 €461 = —e3 — [ey

Thanks to [2], all irreducible non-Lie components of 4-dimensional symmetric Leibniz
algebras are given below.

Mo () €161 = €3 €16y = €4 €961 = —Qe3 €96y = —€4
N3 (a) €161 = €4 €163 = Qg €96] = —e4 €9y = €4 €363 = €4
L2 €161 = €4 €162 = —€2 €163 = €3 €2€1 = €2
€9€3 — €4 €361 — —€3 €369 — —€4
(115 €161 — (xeyg €19 = €4 €163 = —€3 €9€o — €4 €3€1 = €3
34 €161 = €4 €16y — —€9 €163 = —(X€3 €9€] — €2 €361 — (€3

Let us note that algebras My(a) and 3(«), considered as 5-dimensional algebras,
are nilpotent algebras, and they are in the suitable irreducible components of nilpotent
5-dimensional symmetric Leibniz algebras. Hence, they will be omitted.

From [9] we obtain the list of complex 5-dimensional solvable (non-split, non-nilpotent,
non-Lie) symmetric Leibniz algebras.

0 ejer = aes eles = e3 elez = e; eleq = ey
€9€1 — —e€3 €269 — —€5 €31 — —€5 €461 = —€4
0o ejeog = —e3 +aes  ejez = e; e1eq4 = €4
exe] = e3 + aes €3] = —e€5 €4€1 = —€4
Loz eler = es e1ez = €3 e1e3 = es e1eq4 = e4
€9€1 — —e€3 €31 — —¢€5 €461 = —€4
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«

04 €1€1 = Qey €1e9 = €5 €1e3 — €3 + ey4 €1€4 = €4
€262 = €5 e2e1 = —ex €361 = —e3 — €4 €461 = —e4
o5 erea = (a+1)es e1es3 = e3 +eq e1e4 = €4
ege; = (a— 1)es €361 = —e3 — €4 €481 = —e4
Los ele] = es e1ez = e; eje3 = ez +eyq e1e4 = ey
€2€1 = —€5 €3€1 = —€3 — €4 €461 = —€4
,Cg%ﬁ ere1 = Pes eles = €5 eles = e3 €164 = aey
€9€1 = —€5 €2€9 = €5 €3e1 — —€3 €4€1 = —Q€ey
Egéﬁ erea = (B+ 1es e1e3 = e3 e1e4 = ey
ege; = (B —1)es ese; = —es3 eq€1 = —aey
39 €1€1 = €5 €169 = €5 €1e3 = €3 €1€4 = ey
€2€1 = —¢€5 €361 — —€3 €4€1 = —Q€y
?0 €1€1 = Qey €1€2 = €4 €1€4 = €5 €2€1 = —€4
€9€3 = —e3 €3ey = €3 €41 = —¢€5
(fl €1€1 = €5 €169 = €3 €14 = €4 €21 = —€3
€9€9 = Qey €2€3 = €5 €39 — —€5 €4€1 = —€4
5(112’[5 ere; = fBes €1€2 = €3 — €5 €1€4 = €4 €2€1 = —€3 — €5
€9€9 = Qey €2€3 = €5 €39 — —€5 €461 = —€4
?3 €1€1 = Qey €169 = €5 €1e3 = €3 €164 = —€4
€2€1 = —€5 €2€2 = €5 €3€1 = —€3
€3€4 = —€5 €4€1 = €4 €4€3 = €5
4 erea = (e —1)es e1es = e3 e1e4 = —ey ege; = (a+ 1)es
€3€1 = —€3 €3€4 = €5 €4€1 = €4 €4€3 = —€5
L5 e1e1 = €5 ejeg = —es eres = e3
€1€4 = —€4 €2€1 = €5 €3€1 = —€3
€3€4 = €5 €4€1 = €4 €4€3 = —€5
6 eielr = €5 ejeg = —e eje3 = e3
€164 = —Qey €92€1 = €2 €23 = —€5
€3€1] — —€3 €3€9 = €5 €4€1 = ey
L7 e1e1 = €5 e1ez = e e1e3 = —e3 — ey
€164 = —€4 €2€1 = —€2 €2€3 = —€5
ese1 = €3+ e4 esey = ex eqe1 = ey4
L1g e1e1 = es ejeg = —es eje3 = —e3
€164 = —€4 €2€1 = €5 €2€3 = €4
€3€1 = €3 €362 = —€4 €4€1 = €4
L1g eres = €3 e1eq = €4 ege1 = —2es e2e3 = €4
€3€1 = —€3 €3€2 = —€4 €4€1 = —€4
EQO 6161 — 65 6163 — —63 6164 — —64 6261 — 265
€2€3 = €4 €3€1 = €3 €362 = —€4 €4€1 = €4
Lo1 erez = —es eje3 = —es e1eq4 = —ey
€2€1 = €5 €2€2 = €5 €2€3 = €4
€3€1 = €3 €362 = —€4 €4€1 = €4
La2 €1€1 = €5 €1€2 = —€5 €1€3 = —€3 €1€4 = —€4
€2€1 = €5 €2€2 = €5 €2€3 = €4 €3€1 = €3
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€3€3 = —e4 e4e] = €4
%3 e1e1 = aes eles = —es e1e4 = —ey
€9€e1 = 265 €2€9 = €5 €23 — €4
€3e] = €3 €3y = —ey €41 = €4
Loy e1e1 = e5 €169 = —eg e1e3 = 2eg e1e4 = —ey
€9€e1 = €9 €2€3 — €4 €o2€q4 = €5 €3e] — —263
€3€3 = —e4 €41 = €4 €42 = —e€;
Eg‘g’)ﬁ"y ele] = yes erea = (B —1)es erez = —es eser = (B+ 1)es
€9€9 = ey €9€4 = —€4 €3€1 = €3 €4€9 = €4
Egﬁ’ﬁ e1e1 = Beyq + e5 erea = (v —1)egy eje3 = —eg
ege; = (a+ 1)ey eges = e5 ese; = e3
% ele1 = ey erea = (a—1)ey eje3 = —eg
ege; = (a+ 1)ey esey = €5 ese] = e3
S8 erea = (v — 1)ey ejes = —e3 ege; = (a+ 1)ey
€9€9 = €5 €3e1 — €3
%9 e1e1 = aeq e1eg = —eq +e5 e1e3 = —e3
€2€e] = €4 + €5 €263 = €4 €3e] = e3
L30 eler = ey4 eleg = —es+e5  eje3 = —e3
ege] = €4 + €5 ese] = e3
L31 ejex = —e4 +e;5 €163 = —e€3 exe1 = €4+ €5 €3e] = €3
L32 eler = es e1e2 = —ey eje3 = —e3
€9€1 = €4 €9€9 = €4 €3e1 — €3
% e1e] = es ereg = (e —1l)ey eje3 = —eg
ege; = (a+ 1)ey ese1 = e3
§4 €1€1 = Qey €1€9 = —€5 €1€4 = —€4 €2€1 = €5
€2€2 = €5 €3€3 = €5 €4€1 = €4
% erea = (a— 1)es e1e4 = —ey ege; = (a+ 1)es
€33 = €5 €41 = €4
L3s ele] = es ejea = —es e1eq4 = —ey
€2€1 = €5 €3€3 = €5 €4€1 = €4
L7 e1ea = —e; e1e4 = —ey eze1 = €5
€2€3 = €5 €3€2 = €5 €4€1 = €4
L3 ele] = es e1e2 = —es e1e4 = —ey eze1 = e;
€2€3 = €5 €3ez = €5 €41 = €4
L3g eres = —es e1e3 = es e1eq = —ey
€2€1 = €5 €3€1 = €5 €4€1 = €4
Lo e1e3 = —€s €1€e3 = €5 €1e4 = —ey €2e1 = €5
€263 = €5 €s3e] = €5 €41 = €4
L €1€1 = €5 €1€2 = —€2 — €3 €1€3 = —€3 — €4 €164 = —€4
ege1 = eo + e3 eser = e3 +eyq eqje1 = ey
EZQ’ﬁ eie1 = es e1e9 = —Qey er1e3 = —[feg €164 = —€y4
€2€1 = Qe ese; = [eg eqe1 = ey
LG, e1e1 = es e1eg = —eg —e4 €13 = —Qes e1eq4 = —ey
€261 = €2 + €4 e3e1 = aes eqe1 = eyq
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Lag*

€1€1 — €5 €1€92 = —€9 €1e3 — €3 €2€1 = €2
e9e3 = €y e3e] = —e3 €36y = —ey
L5 eler = es e2e3 = €3 €2eq = —e€4 egeg = —e3
€364 — —€5 €4€9 = €4 €4qe3 = €5
L eje1 = e; €22 = €5 e2e3 = €3 €264 = —€4
€39 — —€3 €3€4 — —€5 €4€9 = €4 €4€3 = €5
L7 erez = €5 e2e1 = €5 e2e3 = €3 e2ey = —e€y
€36y = —e3 €34 = —€5 €4€9 = €4 €4qe3 = €5
9 eie] = es e1€y = —€9 e1e3 = —qes
eres = —(a+1)eg egeq = ey ese3 = ey
ese; = aes ezeg = —ey eqer = (a+ 1)ey
Lag eler = e; eleg = —eg —e3  eje3 = —e3
e1eq4 = —2ey ege] = eg + €3 e9e3 = —éy
€361 — €3 €3y = €4 €461 = 264
L0 e1e; = es €163 = —e3 €164 = —€4 €263 = €4
€361 = €3 €362 = —€4 €4€1 = €4
Ls1 e1e2 = €5 e1e3 = —e3 €164 = —¢€4 €21 = €5
€263 = €4 €361 = €3 €363 = —€4 €4€] = €4
L2 eler = es e1e2 = e5 e1e3 = —e3
€164 = —€4 €2€1 = €5 €2€3 = €4
€3e] = €3 €362 = —€4 €4€] = €4
L3 elez = —e3 e1eq4 = —ey e2e2 = €5 e2e3 = €4
€361 = €3 €3€2 = —€4 €4€1 = €4
L4 eje1 = e; e1e3 = —e3 €164 = —¢€4 €22 = €5
€2€3 = €4 €3e] = €3 €363 = —€4 €4€] = €4
g% €1€1 = ey €1€9 = €5 €1€3 = —€3 €164 = —€4
€2€1 = €5 €2€2 = €5 €2€3 = €4 €3€1 = €3
€3y = —e4 €4€] = €4
Lse e1e1 = es ele3 = —es egeq = —e€y4
€3€1 = €3 €4€2 = €4
g‘7 €1€1 = Qey €169 = €5 €1e3 = —e€3 €2€1 = €5
€264 = —€4 €3€1 = €3 €4€2 = €4
a,B _ _ _
L ele] = aes eres = fPes e1e3 = —es3 ese1 = fPes
€9€9 — €5 €9€4 = —€4 €3e1 — €3 €4€9 = €4
Ls9 eler = es erez = ea + €3 e1ez = e3 e1eq = —ey
€9e] = —egy — €3 e3e] = —es3 €461 = —ey
Leo erez = €5 €21 = —e5 eze3 = €3+ €4
€2€4 = €4 €3€y = —€3 — €4 €4€2 = —€4
Le1 ele] = es €262 = €5 ege3 = €3 + €4
€264 = €4 €3€3 = —€3 — €4 €4€2 = —€4
%2 €1€1 = €5 €169 = —Qen €13 = —€3 €14 = €4
€9€e1 = (€9 €3e1 = €3 €4€1 = €4
—1
iL:44 = A48
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«

63 I ejeg = e5 eijes = —es €1€4 = —Q€y
esel = €5 esel = e3 e4e1 = ey
61 : eje] = ep ejes = —es3 €14 = —Qey
€9€9 = €5 €3e1 — €3 €4€1 = ey
Les T eje] = ey ejex = esx €2e] = €5
€263 = —€3 €32 = €3
Lo Doele1 =ey e1e2 = €5 €2e1 = €5
€262 = €4 €3€2 = €3 €2€3 = —€3
Lg7 I ei1eg =e;5 e2e] = e5 €2€4 = —€4
€3€3 = €5 €4€2 = €4
Les 1 eje3 = e; egey = €5 €264 = —€4
€3€1 = €5 €4€2 = €4
géﬁ : ere; = Pes e1e9 = €5 €164 = —€4 €2€1 = €5
ege9 = Qs €2e3 = —e3 €3ea = €3 €4€1 = €4
20 : eje; =e;p e1e4 = —ey4 €2€2 = (ej
€2€3 = —€3 €3€2 = €3 €4€1 = €4
% : eres = (a—1es egey = e €264 = —€4

ese; = (a+ 1)es €462 = €4

% : eilex = e5 eres = (o —1)es ege; =e5
€264 = —€4 €3e] = (Oé + 1)65 €469 = €e4
23 © ejeg = e5 eres = (a—1)es ege; =e5 egey = €5
ege4 = —ey ese;1 = (a+1)es  eqgeq = ey
L?‘f : e1eg = e; eres = (a—1)es ege; =e5
ezez = fBes eze3 = €5 egeq = —ey
ese; = (a+ 1)es eses = ex eq69 = €4
Lrs 1 e1e; = e; e1e3 = —es e2e2 = €5
€264 = —€4 €3€1 = €5 €4€2 = €4
?6 . e1e1 = e5 €13 = —¢€5 €29 = €y €o2€3 = €5
€2€4 = —€4 €3€1 = €5 €3€2 = €5 €4€2 = €4
?‘7 . €1€1 = €5 €1€9 = €5 €1€3 = —¢€5 €2€1 = €5
€9€9 = Qe €9€4 = —€4 €3e1 = €5 €4€9 = €4

3 Results and proof

Proposition. Algebras to @ to, slo & C, gy, ), and gs(«) give irreducible components in
the variety of complex 4-dimensional symmetric Leibniz algebras. Algebras sla@ty, slo XV,

R;(nyg), Ry(ns @ C), R5(n3), Rg(@‘l), and f_{g((C?’) give irreducible components in the variety
of complex 5-dimensional symmetric Leibniz algebras.

Proof. 1t is easy to see that each algebra, excepting sly @ C, from the presented list, has
a trivial annihilator. On the other side, it is known that each non-Lie symmetric Leibniz
algebra is a central extension of a suitable Lie algebra [5], and it has a nontrivial annihilator.
Hence, no non-Lie symmetric Leibniz algebras can degenerate to algebras from our list.
sly & C is rigid due to uniqueness of non-solvable 4-dimensional symmetric algebra. O
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Summarizing the result from the Proposition above and proof from Theorem Ef in [2],
we have the following statement.

Statement. The variety of complex 4-dimensional symmetric Leibniz algebras has dimen-
sion 13 and it has 9 irreducible components defined by

Cl = O(tQ o2, tQ), CQ = 0(5[2 o, C), Cg = 0(202), C4 = (’)(%(oz)), C5 = O(mg(Oé»?
Cs = O(Ms(a)), C7r=0(LY;), Cs=0(L3), and Cy = O(ga(a, B)).

In particular, there are only 3 rigid algebras in this variety.

Theorem. The variety of complex 5-dimensional solvable symmetric Leibniz algebras has
dimension 24 and it has 20 irreducible components defined by

Cor = O(Ly7), Cop = O(La1), Cos = O(Lss), Coa = ( 2(n3)). Cos = O(R5(ny)),
Cos = OR5(n3 & C)), Cor = O(Eg(@l)% Cos = O(R3(C?)), Cop = O(Brs).
Cio = O(Us42), Ci1 = O(‘B4+1) Ci2 = O( giﬂ)a Cis = O(LS3), Cua = O(LSy),
Cis = O(L3), Ci6 = O(L5)), Cir = O(Ly), Cis = O(LY), Cio=O(LE,), and

Cao = O(LE).

In particular, there are only 4 rigid algebras in this variety.

Proof. The proof of our Theorem will be based on two big parts: first, we give the list of
all necessary degenerations, and then, we present all reasons for non-degeneration.

Degenerations. Let us give some useful degenerations for our proof.

Et, 1, 1-at tei—ea, tea—Tes, es—t’es, es, —toes o
\

25 01

£0 at, 2« te1—es, teates, tes+tles, tegt+ties, t3es o

02

0, 0, —t te1—ea, tea+tes, —teg—t2e5, 64—t465, —t365
£ > Eog

142t (1fat?)t?

&, 5t ++<t+> —e1+(—1—t)eatey, t2eattes, esttes, tles, t2es o
Lss ? 04
L:()7 —a, 2a(1—t) —e1+(t—1)ea, t2eattezt+tes, es+(1—t)eq, t(t—1)eq, t3es o

25 05

t? 2 2 1 2

Te=nz 1t 0 —e1+(t—1)ez, t*eattes, e3—jeq, ea, t e
£25 £06

1 a a2+ﬁt2 ey — t t 2 t

1, -9, : e1—aeg, teatles, €3, eat-es, tes o

25 07

0, —8, 2a —e1—aea+tey, teg+te3—ie4, es, eqat+tles, tes o
£ 5 \ E ’

08

EO 0, t —61—0(62—%64, teateq, esttest+(a—1)t3es, es+tles, tes o
N

09

$In general, due to omitted Lie algebras in the variety of symmetric Leibniz algebras, [2, Theorem E]
is not correct. But it gives a description of irreducible non-Lie components in 4-dimensional symmetric
Leibniz algebras.

10
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‘607 0, —a te1+tea, 62—%63, es4, ez—tes, —t265\ o
25 10
Egg’, at?, t2+att —e1+t2eq, teattez—eq, t2esttes, es, 1‘/265> ,111
1 2
— = t t t t
L‘S‘g t, Bt? e1tyea, teattes, eattes, €3, thes ?é/g
—3a2 e1—aea, t62+t2€4, e3, tes, —te5\ ?4
— e1, tea+tteq, tes, eq, —tes
L > L5
gé —a, tta e1tea, teattes—ey, 63—%64, eq, t85\ £18
£(2),5 1, —2 —e1—eg, leg, e3—eq, teq, tes £19
0, 1, —2+t e1tex+eq, teatlez, ez—eq, tesq, les
Ly * > Lao
I—IT e1ten, teat+tes—t’eq, eg—eq, le, tes r
25 7 21
2
%, —%, H'tt e1tez, teat+testtes, esteq, —tesa+t2es, tes,
‘625 ? LQQ
2
%7 %7 at 22t+1 e1+e2, tea, esteq, —tey, te5\ a
25 23
(1—a)t?+lt+a
La, — «
26 ) 27
;L t _ (14a)(1+t2)
El =€+ teg E2 = TQQ
t _ 2 3 t _ (14+o)(1+t?) 2
E3—63+2(1—|—2024)(1—|—t)€4+(t—|—t)65 B} = == ——es+ (1 +t)es
t _ (14a)?(142t2)
E5 = t—ze
e1, Les, e +e Ley, Le
LOGO L ¢€2, eated, gea, 3¢5 o
26 28
244t +(1 2 t—1 —t 2 1 t
1+1, itt(i\/%;?t et 51 71 % 2-1% =14 T 2i-19 o
Lo > 29
t e1, tea, es+t2es+tes, teq, tes
29 ” L3
1 7617l62 tea, eq, tes, es
2 t ) ) ) )
Eél > £31
—5 TF3?
T/ —t(1+4t)
£26 > 532
Et=e¢ — —2—¢, E!'=-——t—c¢ El=e
1 ! t—at) 2 2 W(1—at) 2 3 3
t __ t t 1 1
By = 156 by = N €4+ 56
o — 2a(l+a)ﬁ
L T V1-t(1+a)2 N @
26 ’ 33
1+ t
Bl = ey + — vt OVE_, o QS A—
1—-t(14a)2 1—-t(14a)2
3 t2 t Vit t
Ef = e3 + VB, e5 FB!=——Y e, +————c¢
3 3 \/1—t(1+a)2 4 1—t(1+a)2 4 /1—t—(1+a)2 4 I—t(1+0)2 5
t 1
By = T t(11a)2 o5
3 2 3
1 2 t—at 2t - 2t
L—?, —1+;t2 terteat i Tines, teat 7 oves, itez, ea, 17w 65\ o
74 34
—a? e1+aes, t2eattes, teg, eq, t2es
Ly ’ 35
_2 2-t* 2
Lo 2 T3 teitez, ezt2es, tez, eq,—2tes r
25 4 36

11
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_1 i ; _1
,CO e1, —ze2tzesttes, ies, eq, 165 r
34 37
E—% e1, —Lea+iesttes, ies, es, —tes r
34 38
2, _%2’0 te1t+es—es, e3—es, tea, eattes, e r
25 39
N 2t(2t+1)(t2+1)
£ﬁ+ > 24143 a2 942 N £4O
74 ’
2 2 5 3
Bl — e+ oy 12 (22 4142) e Bt — fen — 2(5+4%) .
1 1 (2 )2t4+t3+4t2+2t+2 3 2 2 2t4+t3(+4t24>th+2 3
2t5 (1241 2t4(t2+1
t t
by = A rParTa2 s te By =eq+ A3+ 42 1201205
5 3
ot 2(t +t%) .
5 2t14$t5+4t2+2t+2 5
LI e (1+t?)e1, ea+(1+t)es+(1+t)eq, tes+t2eq, (t*—t3)eq, (1+t2)2es Ly
42
E%H, o (1+t)e1, ex+1ea, e3, eq, (1+t)2%es r
42 43
o %62, el, t%e37 €4, %265 r
13 45
1 eg+le4 el-i—ieg es L64 L65
E*Tl [ 12790 U9 2R 42 L
13 v 47
e1, ea+es, tez, —teq, €5
L' > Ly
0,0, 1 eitez, tea, e3teq, —teq, es
,C ) > ,C
25 . 50
2
Ely , 0, tlg ei1tes, tea, eztes, —testes, %65\ r
25 4 51
0, %2, tt—; e1tezttes, tez, ezteq, —legtes, %65
£25 7 652
2 2
%» *1+2t ) H%t e1+ez2, tea, esteq, —les, e5
Et t t > £
25 53
2z 2
Et%, e, e e1+tes, tez, e3tes, —tes, €5 r
25 - 54
2
%3’ tt;l, 1*2:/}“ e1teatteq, tea, estes, —teates, %65\ o
Lz ’ 55
1
0,1 €1, €2, €3, €4,7€5
9 K t
Loy ’ Lse
0, %2, t% e1—ley, e2, e3, €4+%€5, %265 o
Lo ’ 57
1 _ 1 1
[ =z e1—tes, ez, €3, eat+es, 25 .8
25 ’ 58
E* litv -1 (1+t)e1, ea+tes, tes, ea, (1+t)265\ r
42 4 59
£07 0, 0 t282, —61—(1+t)82, e3+eq, te4+t3e5, —t265\ E
25 60
4 2 I 5
tl , _1+22—t , 1+2t4t t—XSt +2t t2€2, —61—(1+t)€2, e3+teq, t64, 65\ L
25 61
£O, 5. -2 e1taez—eq, tea, €3, estes, %65\ o
25 63
2 142 tz 2
E%zv *%» % ei1taey, tez, e3, e4, €5 a
25 4 64
R
L > Les

12
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2

t it t ; t 7 t

Ei = {5560+ tes ES =e +iey Ez=e3+ "zeq — 1265
t_ 2 t o i _ t

Ey = ~@Z_12%5 Ey = B T @2
1 _2v3 2eg+tes, 61+\/§eg, e3+%64, des, %644»2\/565

£t27 12 t N L
26 66
1,0 —2t%e3, eq, tej+tea—tes, es—2t3es, —2t%es

£74 > £67

2 t7—t6—2t5+4t4+2t3—4t2+4)
t3(t6—atT+at2—q)
74 4 ‘668
2t(t1—242) £2(t1—2t2+42)
¢ 1 142 ( _ t_
by = ger tler + 507 | pogapgems — 1) €8 Br = e+ wogpup=i©s

2
b -

t _ t__ 1 t_ 2
E3 = €3 + t€4 E4 = €4 + ;65 E5 = t_3€5
£, 3. 3 e2, e1ttes, €3, eaties, 3¢5 o
L ’ Leg
t%’ L tg2 €2, €1, €3, €4, t%65 a
L ’ 70
o te1, ez, tes, ea, e N
73 71
£1+t8 y 171
73 2
t_ 1+2a—a? . 2t4(2+3a—a?) 3 +4t8+ (14a)t 142416
Ey = ((1165)2 1 2a(1105)—a2) €1 tes + 2a(114%) €4
EL = ey + t5(2+4a—2a2+(2+5a+4a2—a3)t3+(6+8a—2a2)t8+(3+5a+2a2)t11+(6+4a)t16+(1+a)t19+2t24)63
2 2a(1+2a—a?
Ft — () ((+°)2+2a(14t%)—a?) 44 altrae aE)t _ ., 1 Et— 1,
3 14+2a—q? €3 €4 4= 64 165 5 — #A%5
1 1 1
Ea, 7%2 —ize1, €2, eztles, ea—yes, AN o
74 73
2, A
' » Los
t_ 1-¢2 1+t t_ 1 t_ 2t
LBy = Sen —tex — i55es Ly =ey— pes Ly = o agm 3
t_ t t_ 1
Ej = + 65 Ly = g6
t 1 2 2
£;42+t2’ pat®(2+t7%) , ?6
1 1 4 t
El =32+ 1)e1+te; — 52+ t*)(1 +at')es Ei=e,
t* 9 | ¢4
Eg;: = (t2 + 3)63 + tey Efl = €4 Bt = (t + 5)65
2 2a
E;j b 1—at? > ?7
t 1 _at?=2t41 t t 2t
El = ;el + tes Ti—atd €3 E2 = 622 E3 = _at2—1€3
t_ t_
Ey=e Ly = i=am®s
1 —e1, —1es, eq, Les, en
t b t b b t b N £
13 7 02
E;sf, —1, —2at e1, tez, e3, —2tes, eq (1;,{5
T —l—gp, gt aeites, e4, e3, e, tea o
25 24
_da+/I—da-1 ( 8( 174047)1()2 )
T-4da-1 ’ (datvi—da—1)(t2-4
Ly Saz

13
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(Vi—da—1)t ; (Vi—da—1)t(12+4) 4
T lary/i—da—1cl ~le2 T (40+vT-Ta—1)(2—4) €~ (Vi—da-1)t2 €4

¢ (A An 2 212 t_ (vida-1)’s
By =—; ( I —da— 1)t €2 — g6 Ly=est (2a+\/m—1)(4a+\/m_1)(t2—4)65

Bl =

¢ _ 12 2 ¢ (Vi—da-1)*
By =50+ (i o L5 = — oy ) ey e ) 9

6 7
oth t3e2—%63+%64, te1+t%837 63+%847 —t8eq4—t5es, tOes o
£13 41

Non-degenerations. To prove all non-degenerations, we will work with the algebras listed
in the table below. The present table also contains some useful information about the
nilpotent radical, dimension of orbits, and the dimension of derived algebras. The present
information can justify some obvious non-degeneration reasons, which will be omitted
without detailed explication.

Algebra  Rad dim Rad dim A* dim Orb

£17 n3 P C 4 4 22
0o C? 3 3 22
£or C? 3 2 22
Loy ny 4 4 21
& B 1 3 21
S Lo C? 4 3 21
5 S5i” 5 3 21
o ns @ C 4 4 20
o 13 & C 4 4 20
o C? 4 4 20
Loy ct 4 4 20
Lo N3 3 3 20
51344_1 %4“ 5] 1 20
U3 Uy 3 5 3 18
Here, we are using the following low-dimensional algebras:
li : ee1=ey
lb = ejeg=e4 ege3=-¢ey €36y = —€y
N3 : e1eg =e3 €61 = —€3
Ny : €eg=e3 €163 =¢ey €9€] = —€3 €3] = —€4

It is known that ng & C 4 {n4, L, & (CQ}.

The list below comprises reasons for all the necessary non-degenerations.

14
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Lir # {8, L5 £, L3 L Tavs, Vin |

(A2 + AyAg + Ay Ay + AsAy + A1 A5 = 0,

A1Ay + As Ay T Ay, AAs + A3Ay C As, AjAL+ AyAL C Ay,
Ci1 = 0%13: 0?1 :401111 5: 0, 0525: C§2 = ‘3325: 0352 = 032 5: 0,

\ C12 = —Ci3 = —Cyyy C13 = —C31, C1gy = —Cyy5 Co3 = —C3o

géﬁﬁ Vad {Sgi6> PIPIES m4+1}

(A2 4+ AsA + A1 A5 =0,

A2 C Ay, AjAs+ AzA; C Az, AjA+ A4A C Ay,

R =
1 _ 2 _ 3 _ 4 _ 1 2 _ .3 _ 4 _
iy =cip=cp =¢; =0, g = €59 = 5y = Cyy =0,
4 4 5 _ 5 5 _ 5 5 _ 5
\ C12 = —C91, €13 = —C31, Ciy = —Cyq, Co3 = —C39

D
= { A3+ AA+AA:=0, & =—c, S =—ch }

Loy # { % L3, L%, L&, DVois, m4+1}

AT C Ay, A3+ AsAy + A1 A5 =0, AjAs + Ay Ay C Ay,

AyAz + AzAy C Az, AyAy+ AsAy + A Az + AyAy C Ay,

R = 250%2 = _50?3 :5 201147 Cﬁg :5_C§1> . . .
0%4 = _26417 (;13 = 26317 6231: _0:327 0243: _(21427 .
cpp =Cjp = = =0, Cop =59 =y = gy = Cyp =0

% A { Do Tanf

R - A1A5 + AsA1 =0, 3y = —Cls, €3y = —Chy, €3y = —Cls,
=0 1<k<5&1<5<4

SRS {‘132+3, Q]4+1}

{ ?67 £4aéﬂ7 £267 287 82} 7L> m2+3
R = {¢,=01<k<5&1<j<4}

]

Corollary. The variety of complex 5-dimensional symmetric Leibniz algebras has dimen-
sion 24 and it has 23 irreducible components defined by solvable algebras given in Theorem
and

621 = 0(5[2 D 'CQ), CQQ = 0(5[2 X VQ), C23 = O(E[g ) [1)
In particular, there are only 7 rigid algebras in this variety.

Proof. 1t is easy to see that there is only one non-Lie non-solvable symmetric Leibniz
algebra:

5[2 (&) [1 . €169 = 261 €163 = —€9 €9€3 = 263

15
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€2€1 = —261 €3€1 = €9 €3€y = —263 €4€4 = €5

Obviously, dim Det(sly @ ;) = 5. Hence it can degenerate only to s, 3, but it is not the
case due to the following condition R = { c7kk =0, 1<k<b5&1< <4 } . It follows
that all irreducible components are defined by all irreducible components from solvable
symmetric Leibniz algebras, sl @ to, sls X Vo, and sly & 1.

]
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