

Communications in Mathematics 33 (2025), no. 1, Paper no. 10

DOI: https://doi.org/10.46298/cm.15949

©2025 Renato Fehlberg Júnior, Ivan Kaygorodov, Azamat Saydaliyev

This is an open access article licensed under Creative Commons BY-SA 4.0 licence.

The geometric classification of symmetric Leibniz algebras*

Renato Fehlberg Júnior, Ivan Kaygorodov, Azamat Saydaliyev

Abstract. This paper is devoted to the complete geometric classification of complex 5-dimensional solvable symmetric Leibniz algebras. As a corollary, we have the complete geometric classification of complex 5-dimensional symmetric Leibniz algebras.

Contents

1	Definitions and notation	2
2	Our strategy	4
3	Results and proof	9

Introduction

In the past years, Leibniz algebras have been under active research (see, for example, [2,3,8,9,11,12,14,17,19] and references therein). In the present paper, we give the geometric classification of complex 5-dimensional symmetric Leibniz algebras. The algebraic classification (up to isomorphism) of algebras of dimension n from a certain variety defined by a certain family of polynomial identities is a classic problem in the theory of

Contact information:

Renato Fehlberg Júnior:

Affiliation: Federal University of Espirito Santo, Vitória, Brazil.

Email: renato.fehlberg@ufes.br

Ivan Kaygorodov:

Affiliation: CMA-UBI, University of Beira Interior, Covilhã, Portugal.

Email: kaygorodov.ivan@gmail.com

Azamat Saydaliyev:

Affiliation: Institute of Mathematics Academy of Sciences of Uzbekistan, Tashkent,

Uzbekistan; National University of Uzbekistan, Tashkent, Uzbekistan.

Email: azamatsaydaliyev6@gmail.com

^{*}The work is supported by FCT 2023.08031.CEECIND and UID/00212/2023.

MSC 2020: 17A32 (primary); 17A30, 14D06, 14L30 (secondary).

Keywords: Symmetric Leibniz algebra, Lie algebra, geometric classification.

non-associative algebras. There are many results related to the algebraic classification of small-dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel, and many other algebras [15]. Deformations and geometric properties of a variety of algebras defined by a family of polynomial identities have been an object of study since the 1970s, see [1, 2, 4, 7, 13, 14] and references in [15, 16, 18].

The variety of symmetric Leibniz algebras is a principal subvariety of the variety of weakly associative algebras [2] and of the variety of \mathfrak{CD} -algebras. Symmetric Leibniz algebras and anticommutative \mathfrak{CD} -algebras have the following common property: they are central extensions (in a suitable variety) of Lie algebras [5]. At the same time, the variety of symmetric Leibniz algebras is in the intersection of right Leibniz and left Leibniz algebras, and it plays an important role in one-sided Leibniz algebras. So, each quadratic (i.e., endowed with a bilinear, symmetric, and non-degenerate associative form) Leibniz algebra is a symmetric Leibniz algebra [5]. Every symmetric Leibniz algebra is flexible, power-associative, nil-algebra with nilindex 3, and they are also Lie-admissible algebras (about Lie-admissible algebras see [10]). It satisfies the following identities:

$$x(yz) = (xy)z + y(xz)$$
 and $(xy)z = (xz)y + x(yz)$.

1 Definitions and notation

Given an n-dimensional vector space \mathbb{V} , the set $\operatorname{Hom}(\mathbb{V}\otimes\mathbb{V},\mathbb{V})\cong\mathbb{V}^*\otimes\mathbb{V}^*\otimes\mathbb{V}$ is a vector space of dimension n^3 . This space has the structure of the affine variety \mathbb{C}^{n^3} . Indeed, let us fix a basis e_1,\ldots,e_n of \mathbb{V} . Then any $\mu\in\operatorname{Hom}(\mathbb{V}\otimes\mathbb{V},\mathbb{V})$ is determined by n^3 structure constants $c_{ij}^k\in\mathbb{C}$ such that $\mu(e_i\otimes e_j)=\sum\limits_{k=1}^n c_{ij}^k e_k$. A subset of $\operatorname{Hom}(\mathbb{V}\otimes\mathbb{V},\mathbb{V})$ is $\operatorname{Zariski-closed}$ if it can be defined by a set of polynomial equations in the variables c_{ij}^k $(1\leq i,j,k\leq n)$.

Let T be a set of polynomial identities. The set of algebra structures on \mathbb{V} satisfying polynomial identities from T forms a Zariski-closed subset of the variety $\mathrm{Hom}(\mathbb{V}\otimes\mathbb{V},\mathbb{V})$. We denote this subset by $\mathbb{L}(T)$. The general linear group $\mathrm{GL}(\mathbb{V})$ acts on $\mathbb{L}(T)$ by conjugations:

$$(g*\mu)(x\otimes y)=g\mu(g^{-1}x\otimes g^{-1}y)$$

for $x, y \in \mathbb{V}$, $\mu \in \mathbb{L}(T) \subset \text{Hom}(\mathbb{V} \otimes \mathbb{V}, \mathbb{V})$ and $g \in GL(\mathbb{V})$. Thus, $\mathbb{L}(T)$ is decomposed into $GL(\mathbb{V})$ -orbits that correspond to the isomorphism classes of algebras. Let $\mathcal{O}(\mu)$ denote the orbit of $\mu \in \mathbb{L}(T)$ under the action of $GL(\mathbb{V})$ and $\overline{\mathcal{O}(\mu)}$ denote the Zariski closure of $\mathcal{O}(\mu)$.

Let **A** and **B** be two *n*-dimensional algebras satisfying the identities from T, and let $\mu, \lambda \in \mathbb{L}(T)$ represent **A** and **B**, respectively. We say that **A** degenerates to **B** and write $\mathbf{A} \to \mathbf{B}$ if $\lambda \in \overline{\mathcal{O}}(\mu)$. Note that in this case we have $\overline{\mathcal{O}}(\lambda) \subset \overline{\mathcal{O}}(\mu)$. Hence, the definition of degeneration does not depend on the choice of μ and λ . If $\mathbf{A} \not\cong \mathbf{B}$, then the assertion $\mathbf{A} \to \mathbf{B}$ is called a *proper degeneration*. We write $\mathbf{A} \not\to \mathbf{B}$ if $\lambda \notin \overline{\mathcal{O}}(\mu)$.

Let **A** be represented by $\mu \in \mathbb{L}(T)$. Then **A** is rigid in $\mathbb{L}(T)$ if $\mathcal{O}(\mu)$ is an open subset of $\mathbb{L}(T)$. Recall that a subset of a variety is called irreducible if it cannot be represented as a

union of two non-trivial closed subsets. A maximal irreducible closed subset of a variety is called an *irreducible component*. It is well known that any affine variety can be represented as a finite union of its irreducible components uniquely. The algebra **A** is rigid in $\mathbb{L}(T)$ if and only if $\overline{\mathcal{O}(\mu)}$ is an irreducible component of $\mathbb{L}(T)$.

Method of the description of degenerations of algebras. In the present work, we use the methods applied to Lie algebras in [13]. First of all, if $A \to B$ and $A \not\cong B$, then $\mathfrak{Der}(A) < \mathfrak{Der}(B)$, where $\mathfrak{Der}(A)$ is the algebra of derivations of A. We compute the dimensions of algebras of derivations and check the assertion $A \to B$ only for such A and B that $\mathfrak{Der}(A) < \mathfrak{Der}(B)$.

To prove degenerations, we construct families of matrices parametrized by t. Namely, let \mathbf{A} and \mathbf{B} be two algebras represented by the structures μ and λ from $\mathbb{L}(T)$ respectively. Let e_1, \ldots, e_n be a basis of \mathbb{V} and c_{ij}^k $(1 \leq i, j, k \leq n)$ be the structure constants of λ in this basis. If there exist $a_i^j(t) \in \mathbb{C}$ $(1 \leq i, j \leq n, t \in \mathbb{C}^*)$ such that $E_i^t = \sum_{j=1}^n a_i^j(t) e_j$ $(1 \leq i \leq n)$ form a basis of \mathbb{V} for any $t \in \mathbb{C}^*$, and the structure constants of μ in the basis E_1^t, \ldots, E_n^t are such rational functions $c_{ij}^k(t) \in \mathbb{C}[t]$ that $c_{ij}^k(0) = c_{ij}^k$, then $\mathbf{A} \to \mathbf{B}$. In this case E_1^t, \ldots, E_n^t is called a parametrized basis for $\mathbf{A} \to \mathbf{B}$. In case of $E_1^t, E_2^t, \ldots, E_n^t$ is a parametric basis for $\mathbf{A} \to \mathbf{B}$, it will be denoted by $\mathbf{A} \xrightarrow{(E_1^t, E_2^t, \ldots, E_n^t)} \mathbf{B}$. To simplify our equations, we will use the notation $A_i = \langle e_i, \ldots, e_n \rangle$, $i = 1, \ldots, n$ and write simply $A_p A_q \subset A_r$ instead of $c_{ij}^k = 0$ $(i \geq p, j \geq q, k < r)$.

Let $\mathbf{A}(*) := {\{\mathbf{A}(\alpha)\}}_{\alpha \in I}$ be a series of algebras, and let \mathbf{B} be another algebra. Suppose that for $\alpha \in I$, $\mathbf{A}(\alpha)$ is represented by the structure $\mu(\alpha) \in \underline{\mathbb{L}(T)}$ and \mathbf{B} is represented by the structure $\lambda \in \underline{\mathbb{L}(T)}$. Then we say that $\mathbf{A}(*) \to \mathbf{B}$ if $\lambda \notin \overline{\{\mathcal{O}(\mu(\alpha))\}_{\alpha \in I}}$, and $\mathbf{A}(*) \not\to \mathbf{B}$ if $\lambda \notin \overline{\{\mathcal{O}(\mu(\alpha))\}_{\alpha \in I}}$.

Let $\mathbf{A}(*)$, \mathbf{B} , $\mu(\alpha)$ ($\alpha \in I$) and λ be as above. To prove $\mathbf{A}(*) \to \mathbf{B}$ it is enough to construct a family of pairs (f(t), g(t)) parametrized by $t \in \mathbb{C}^*$, where $f(t) \in I$ and $g(t) \in \mathrm{GL}(\mathbb{V})$. Namely, let e_1, \ldots, e_n be a basis of \mathbb{V} and c_{ij}^k ($1 \leq i, j, k \leq n$) be the structure constants of λ in this basis. If we construct $a_i^j : \mathbb{C}^* \to \mathbb{C}$ ($1 \leq i, j \leq n$) and $f: \mathbb{C}^* \to I$ such that $E_i^t = \sum_{j=1}^n a_i^j(t)e_j$ ($1 \leq i \leq n$) form a basis of \mathbb{V} for any $t \in \mathbb{C}^*$, and the structure constants of $\mu(f(t))$ in the basis E_1^t, \ldots, E_n^t are such rational functions $c_{ij}^k(t) \in \mathbb{C}[t]$ that $c_{ij}^k(0) = c_{ij}^k$, then $\mathbf{A}(*) \to \mathbf{B}$. In this case E_1^t, \ldots, E_n^t and f(t) are called a parametrized basis and a parametrized index for $\mathbf{A}(*) \to \mathbf{B}$, respectively.

We now explain how to prove $\mathbf{A}(*) \not\to \mathbf{B}$. Note that if $\mathfrak{Der} \mathbf{A}(\alpha) > \mathfrak{Der} \mathbf{B}$ for all $\alpha \in I$ then $\mathbf{A}(*) \not\to \mathbf{B}$. One can also use the following Lemma, whose proof is the same as the proof of [13, Lemma 1.5].

Lemma. Let \mathfrak{B} be a Borel subgroup of $GL(\mathbb{V})$ and $\mathcal{R} \subset \mathbb{L}(T)$ be a \mathfrak{B} -stable closed subset. If $\mathbf{A}(*) \to \mathbf{B}$ and for any $\alpha \in I$ the agebra $\mathbf{A}(\alpha)$ can be represented by a structure $\mu(\alpha) \in \mathcal{R}$, then there is $\lambda \in \mathcal{R}$ representing \mathbf{B} .

2 Our strategy

Let us remember the principal results, that will be used in our main results.

- (a) The algebraic classification of indecomposable 5-dimensional symmetric non-nilpotent Leibniz algebras is given in [9].
- (b) The geometric classification of 5-dimensional Lie algebras is given in [7].
- (c) The geometric classification of 5-dimensional nilpotent symmetric Leibniz algebras is given in [2].
- (\mathfrak{d}) The geometric classification of 4-dimensional Lie algebras is given in [6], and irreducible non-Lie components of 4-dimensional symmetric Leibniz algebras are given in [2].

Hence, our proof of the main statement will be based on the description of irreducible components of varieties given in (\mathfrak{b}) , (\mathfrak{c}) , (\mathfrak{d}) , and given above.

Thanks to [7], all irreducible components of 5-dimensional Lie algebras are given below[†].

$\mathfrak{sl}_2\oplus\mathfrak{r}_2$:	$e_1e_2 = 2e_1$	$e_1e_3 = -e_2$	$e_2e_1 = -2e_1$	$e_2e_3=2e_3$
		$e_3e_1=e_2$	$e_3e_2 = -2e_3$	$e_4e_5=e_5$	$e_5e_4 = -e_5$
$\mathfrak{sl}_2 \ltimes V_2$:	$e_1e_2 = 2e_1$	$e_1e_3 = -e_2$	$e_1e_4 = e_5$	$e_2e_1 = -2e_1$
		$e_2e_3=2e_3$	$e_2e_4=e_4$	$e_2e_5=-e_5$	$e_3e_1=e_2$
		$e_3e_2 = -2e_3$	$e_3e_5=e_4$	$e_4e_1 = -e_5$	
		$e_4 e_2 = -e_4$	$e_5 e_2 = e_5$	$e_5e_3=-e_4$	
$\overline{\mathrm{R}}_{5}^{0}(\mathfrak{n}_{4})$:	$e_1e_2 = e_2$	$e_1e_3 = \alpha e_3$	$e_1 e_4 = (\alpha + 1)e_4$	$e_1e_5 = (\alpha + 2)e_5$
		$e_2e_1 = -e_2$	$e_2e_3=e_4$	$e_2e_4=e_5$	$e_3e_1 = -\alpha e_3$
		$e_3e_2 = -e_4$	$e_4e_1 = -(\alpha + 1)e_4$	$e_4e_2 = -e_5$	$e_5e_1 = -(\alpha + 2)e_5$
$\overline{\mathrm{R}}_{5}^{0}(\mathfrak{n}_{3}\oplus\mathbb{C})$:	$e_1e_2 = \beta e_2$	$e_1e_3=e_3$	$e_1e_4 = \alpha e_4$	$e_1e_5 = (\alpha + 1)e_5$
			$e_3e_1 = -e_3$	$e_3e_4=e_5$	
		$e_4e_1 = -\alpha e_4$	$e_4e_3 = -e_5$	$e_5e_1 = -(\alpha + 1)e_5$	
$\overline{\mathrm{R}}_{5}^{0}(\mathfrak{n}_{3})$:	$e_1e_3 = e_3$	$e_1e_5 = e_5$	$e_2e_4=e_4$	$e_2e_5=e_5$
		$e_3e_1 = -e_3$	$e_3e_4=e_5$	$e_4e_2 = -e_4$	
		$e_4e_3 = -e_5$	$e_5e_1 = -e_5$	$e_5e_2 = -e_5$	
$\overline{\mathrm{R}}_{5}^{0}(\mathbb{C}^{4})$:	$e_1e_2 = e_2$	$e_1e_3 = \alpha e_3$	$e_1e_4 = \beta e_4$	$e_1e_5 = \gamma e_5$
. .		$e_2e_1 = -e_2$	$e_3e_1 = -\alpha e_3$	$e_4e_1 = -\beta e_4$	$e_5e_1 = -\gamma e_5$
$\overline{\mathrm{R}}_{5}^{0}(\mathbb{C}^{3})$:	$e_1e_3 = e_3$	$e_1e_5 = \alpha e_5$	$e_2e_4=e_4$	$e_2e_5 = \beta e_5$
J \ /					
		$e_3e_1 = -e_3$	$e_5e_1=-\alpha e_5$	$e_4 e_2 = -e_4$	$e_5e_2 = -\beta e_5$

Thanks to [2], all irreducible components of 5-dimensional nilpotent symmetric Leibniz algebras are given below.

[†]The multiplication tables of suitable algebras were found in [20].

$\mathbb{S}_{21}^{lpha,eta}$:	$e_1e_1 = \alpha e_5$	$e_1 e_2 = e_3 + e_4 + \beta e_5$	$e_1e_3 = e_5$	$e_2e_1 = -e_3$	$e_2e_2=e_5$
		$e_2e_3=e_4$	$e_3e_1 = -e_5$	$e_3e_2 = -e_4$		
\mathbb{S}^{lpha}_{22}	:	$e_1e_1 = e_5$	$e_1e_2=e_3$	$e_1e_3=e_5$	$e_2e_1 = -e_3$	$e_2e_2 = \alpha e_5$
		$e_2e_4=e_5$	$e_3e_1 = -e_5$	$e_4e_4=e_5$		
\mathbb{S}^{α}_{41}	:	$e_1e_1 = e_5$	$e_1e_2=e_3$	$e_1e_3=e_5$	$e_2e_1 = -e_3$	$e_2e_2 = \alpha e_5$
		$e_2e_3=e_4$	$e_2e_4=e_5$	$e_3e_1 = -e_5$	$e_3e_2=-e_4$	$e_4e_2 = -e_5$
\mathfrak{V}_{4+1}	:	$e_1e_2 = e_5$	$e_2e_1=\lambda e_5$	$e_3e_4=e_5$	$e_4e_3 = \mu e_5$	
\mathfrak{V}_{3+2}	:	$e_1e_1=e_4$	$e_1e_2 = \mu_1e_5$	$e_1e_3 = \mu_2e_5$	$e_2e_1=\mu_3e_5$	$e_2e_2 = \mu_4e_5$
		$e_2e_3=\mu_5e_5$	$e_3e_1 = \mu_6e_5$	$e_3e_2 = \lambda e_4 +$	$\mu_7 e_5$	$e_3e_3=e_5$
\mathfrak{V}_{2+3}	:	$e_1e_1 = e_3 + \lambda e_5$	$e_1e_2=e_3$	$e_2e_1=e_4$	$e_2e_2=e_5$	

Thanks to [6], all irreducible components of 4-dimensional Lie algebras are given below.

$\mathfrak{r}_2 \oplus \mathfrak{r}_2$:	$e_1e_2=e_2$	$e_2e_1=-e_2$	$e_3e_4=e_4$	$e_4 e_3 = -e_4$
$\mathfrak{sl}_2\oplus\mathbb{C}$:	$e_1e_2=e_2$	$e_1e_3 = -e_3$	$e_2e_3=e_1$	
		$e_2e_1=-e_2$	$e_3e_1=e_3$	$e_3e_2=-e_1$	
$\mathfrak{g}_5(lpha)$:	$e_1e_2=e_2$	$e_1e_3 = e_2 + \alpha e_3$	$e_1 e_4 = (\alpha + 1)e_4$	$e_2e_3=e_4$
		$e_2e_1 = -e_2$	$e_3e_1 = -e_2 - \alpha e_3$	$e_4 e_1 = -(\alpha + 1)e_4$	$e_3e_2 = -e_4$
$\mathfrak{g}_4(\alpha,\beta)$:	$e_1e_2 = e_2$	$e_1e_3 = e_2 + \alpha e_3$	$e_1e_4 = e_3 + \beta e_4$	
		$e_2e_1=-e_2$	$e_3e_1 = -e_2 - \alpha e_3$	$e_4 e_1 = -e_3 - \beta e_4$	

Thanks to [2], all irreducible non-Lie components of 4-dimensional symmetric Leibniz algebras are given below.

$\mathfrak{N}_2(lpha)$:	$e_1e_1=e_3$	$e_1e_2=e_4$	$e_2e_1 = -\alpha e_3$	$e_2e_2 = -e_4$	
$\mathfrak{N}_3(\alpha)$:	$e_1e_1=e_4$	$e_1e_2 = \alpha e_4$	$e_2e_1 = -\alpha e_4$	$e_2e_2=e_4$	$e_3e_3=e_4$
\mathfrak{L}_{02}	:	$e_1e_1=e_4$	$e_1e_2 = -e_2$	$e_1e_3=e_3$	$e_2e_1=e_2$	
		$e_2e_3=e_4$	$e_3e_1=-e_3$	$e_3e_2 = -e_4$		
\mathfrak{L}^{lpha}_{15}	:	$e_1e_1 = \alpha e_4$	$e_1e_2=e_4$	$e_1e_3 = -e_3$	$e_2e_2=e_4$	$e_3e_1=e_3$
\mathfrak{L}^{lpha}_{24}	:	$e_1e_1=e_4$	$e_1e_2 = -e_2$	$e_1e_3 = -\alpha e_3$	$e_2e_1=e_2$	$e_3e_1=\alpha e_3$

Let us note that algebras $\mathfrak{N}_2(\alpha)$ and $\mathfrak{N}_3(\alpha)$, considered as 5-dimensional algebras, are nilpotent algebras, and they are in the suitable irreducible components of nilpotent 5-dimensional symmetric Leibniz algebras. Hence, they will be omitted.

From [9] we obtain the list of complex 5-dimensional solvable (non-split, non-nilpotent, non-Lie) symmetric Leibniz algebras.

\mathcal{L}^{lpha}_{01}	:	$e_1e_1 = \alpha e_5$	$e_1e_2=e_3$	$e_1e_3=e_5$	$e_1e_4 = e_4$
		$e_2e_1=-e_3$	$e_2e_2=-e_5$	$e_3e_1 = -e_5$	$e_4e_1 = -e_4$
\mathcal{L}^{lpha}_{02}	:	$e_1e_2 = -e_3 + \alpha e_5$	$e_1e_3=e_5$	$e_1e_4 = e_4$	
		$e_2e_1 = e_3 + \alpha e_5$	$e_3e_1=-e_5$	$e_4e_1 = -e_4$	
\mathcal{L}_{03}	:	$e_1e_1 = e_5$	$e_1e_2 = e_3$	$e_1e_3=e_5$	$e_1e_4 = e_4$
		$e_2e_1 = -e_3$	$e_3e_1 = -e_5$	$e_4e_1 = -e_4$	

$\mathcal{L}^{\alpha}_{04}$:	$e_1e_1 = \alpha e_5$	$e_1e_2 = e_5$	$e_1e_3 = e_3 + e_4$	$e_1e_4 = e_4$
		$e_2e_2=e_5$	$e_2e_1=-e_5$	$e_3e_1 = -e_3 - e_4$	$e_4 e_1 = -e_4$
$\mathcal{L}^{\alpha}_{05}$:	$e_1e_2 = (\alpha + 1)e_5$	$e_1e_3 = e_3 + e_4$	$e_1e_4 = e_4$	
		$e_2e_1 = (\alpha - 1)e_5$	$e_3e_1 = -e_3 - e_4$	$e_4e_1 = -e_4$	
\mathcal{L}_{06}	:	$e_1e_1 = e_5$	$e_1e_2 = e_5$	$e_1e_3 = e_3 + e_4$	$e_1e_4 = e_4$
		$e_2e_1 = -e_5$	$e_3e_1 = -e_3 - e_4$	$e_4e_1 = -e_4$	
$\mathcal{L}_{07}^{lpha,eta}$:	$e_1e_1 = \beta e_5$	$e_1e_2 = e_5$	$e_1e_3 = e_3$	$e_1e_4 = \alpha e_4$
01		$e_2e_1 = -e_5$	$e_2 e_2 = e_5$	$e_3e_1 = -e_3$	$e_4e_1 = -\alpha e_4$
$\mathcal{L}_{08}^{lpha,eta}$:	$e_1e_2 = (\beta + 1)e_5$	$e_1e_3 = e_3$	$e_1e_4 = \alpha e_4$	
1-08		$e_2e_1 = (\beta - 1)e_5$	$e_3e_1 = -e_3$	$e_4 e_1 = -\alpha e_4$	
\mathcal{L}^{lpha}_{09}	:		$e_1e_2 = e_5$	$e_1e_3 = e_3$	$e_1e_4 = \alpha e_4$
09		$e_2e_1 = -e_5$	$e_3e_1 = -e_3$	$e_4e_1 = -\alpha e_4$	1 1 1
\mathcal{L}^{lpha}_{10}	:	$e_1e_1 = \alpha e_5$	$e_1e_2 = e_4$	$e_1e_4 = e_5$	$e_2e_1 = -e_4$
10		$e_2e_3 = -e_3$	$e_3e_2 = e_3$	$e_4e_1 = -e_5$	2.1
\mathcal{L}^{lpha}_{11}	:		$e_1e_2 = e_3$	$e_1e_4 = e_4$	$e_2e_1 = -e_3$
11		$e_2e_2 = \alpha e_5$	$e_2e_3 = e_5$	$e_3e_2 = -e_5$	$e_4e_1 = -e_4$
$\mathcal{L}_{12}^{lpha,eta}$:	$e_1e_1 = \beta e_5$	$e_1e_2 = e_3 - e_5$	$e_1e_4 = e_4$	$e_2e_1 = -e_3 - e_5$
~12	-	$e_2e_2 = \alpha e_5$	$e_2e_3 = e_5$	$e_3e_2 = -e_5$	$e_4e_1 = -e_4$
\mathcal{L}^{lpha}_{13}	:	$e_1e_1 = \alpha e_5$	$e_1e_2 = e_5$	$e_1e_3 = e_3$	$e_1e_4 = -e_4$
13		$e_2e_1 = -e_5$	$e_2 e_2 = e_5$	$e_3e_1 = -e_3$	1.4
		$e_3e_4 = -e_5$	$e_4e_1=e_4$	$e_4e_3 = e_5$	
\mathcal{L}^{lpha}_{14}	:	$e_1e_2 = (\alpha - 1)e_5$	$e_1e_3 = e_3$	$e_1e_4 = -e_4$	$e_2e_1 = (\alpha + 1)e_5$
14		$e_3e_1 = -e_3$	$e_3e_4 = e_5$	$e_4e_1=e_4$	$e_4e_3 = -e_5$
\mathcal{L}_{15}	:	$e_1e_1 = e_5$	$e_1e_2 = -e_5$	$e_1e_3 = e_3$	
		$e_1e_4 = -e_4$	$e_2e_1 = e_5$	$e_3e_1 = -e_3$	
		$e_3e_4=e_5$	$e_4e_1=e_4$	$e_4e_3 = -e_5$	
\mathcal{L}^{lpha}_{16}	:	$e_1e_1 = e_5$	$e_1e_2 = -e_2$	$e_1e_3 = e_3$	
10		$e_1e_4 = -\alpha e_4$	$e_2e_1=e_2$	$e_2e_3=-e_5$	
		$e_3e_1=-e_3$	$e_3e_2 = e_5$	$e_4e_1=\alpha e_4$	
\mathcal{L}_{17}	:	$e_1e_1 = e_5$	$e_1e_2 = e_2$	$e_1e_3 = -e_3 - e_4$	
		$e_1e_4 = -e_4$	$e_2e_1 = -e_2$	$e_2e_3 = -e_5$	
		$e_3e_1 = e_3 + e_4$	$e_3e_2=e_5$	$e_4e_1=e_4$	
\mathcal{L}_{18}	:	$e_1e_1 = e_5$	$e_1e_2 = -e_5$	$e_1e_3 = -e_3$	
		$e_1e_4 = -e_4$	$e_2e_1=e_5$	$e_2e_3=e_4$	
		$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$	
\mathcal{L}_{19}	:	$e_1e_3 = e_3$	$e_1e_4 = e_4$	$e_2e_1 = -2e_5$	$e_2e_3=e_4$
		$e_3e_1=-e_3$	$e_3e_2 = -e_4$	$e_4e_1 = -e_4$	
\mathcal{L}_{20}	:	$e_1e_1 = e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -e_4$	$e_2e_1=2e_5$
		$e_2e_3=e_4$	$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$
\mathcal{L}_{21}	:	$e_1e_2 = -e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -e_4$	
		$e_2e_1=e_5$	$e_2e_2=e_5$	$e_2e_3=e_4$	
		$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$	
\mathcal{L}_{22}	:	$e_1e_1 = e_5$	$e_1e_2 = -e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -e_4$
		$e_2e_1=e_5$	$e_2e_2=e_5$	$e_2e_3=e_4$	$e_3e_1=e_3$

		$e_3e_2 = -e_4$	$e_4e_1=e_4$		
\mathcal{L}^{lpha}_{23}	:	$e_1e_1 = \alpha e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -e_4$	
		$e_2e_1=2e_5$	$e_2e_2=e_5$	$e_2e_3=e_4$	
		$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$	
\mathcal{L}_{24}	:	$e_1e_1 = e_5$	$e_1e_2 = -e_2$	$e_1e_3 = 2e_3$	$e_1e_4 = -e_4$
		$e_2e_1=e_2$	$e_2e_3=e_4$	$e_2e_4=e_5$	$e_3e_1 = -2e_3$
		$e_3e_2 = -e_4$	$e_4e_1=e_4$	$e_4 e_2 = -e_5$	
$\mathcal{L}_{25}^{lpha,eta,\gamma}$:	$e_1e_1 = \gamma e_5$	$e_1e_2 = (\beta - 1)e_5$	$e_1e_3 = -e_3$	$e_2e_1 = (\beta + 1)e_5$
		$e_2e_2=\alpha e_5$	$e_2e_4 = -e_4$	$e_3e_1=e_3$	$e_4e_2=e_4$
$\mathcal{L}_{26}^{lpha,eta}$:	$e_1e_1 = \beta e_4 + e_5$	$e_1e_2 = (\alpha - 1)e_4$	$e_1e_3 = -e_3$	
		$e_2e_1 = (\alpha + 1)e_4$	$e_2e_2=e_5$	$e_3e_1=e_3$	
\mathcal{L}^{lpha}_{27}	:	$e_1e_1 = e_4$	$e_1 e_2 = (\alpha - 1)e_4$	$e_1e_3 = -e_3$	
		$e_2 e_1 = (\alpha + 1)e_4$	$e_2e_2=e_5$	$e_3e_1=e_3$	
\mathcal{L}^{lpha}_{28}	:	$e_1 e_2 = (\alpha - 1)e_4$	$e_1e_3=-e_3$	$e_2e_1 = (\alpha + 1)e_4$	
		$e_2e_2=e_5$	$e_3e_1=e_3$		
\mathcal{L}^{lpha}_{29}	:	$e_1e_1 = \alpha e_4$	$e_1 e_2 = -e_4 + e_5$	$e_1e_3 = -e_3$	
		$e_2e_1 = e_4 + e_5$	$e_2e_2=e_4$	$e_3e_1=e_3$	
\mathcal{L}_{30}	:	$e_1e_1=e_4$	$e_1 e_2 = -e_4 + e_5$	$e_1e_3 = -e_3$	
		$e_2e_1 = e_4 + e_5$	$e_3e_1=e_3$		
\mathcal{L}_{31}	:	$e_1 e_2 = -e_4 + e_5$	$e_1e_3 = -e_3$	$e_2e_1 = e_4 + e_5$	$e_3e_1=e_3$
\mathcal{L}_{32}	:	1 1 0	$e_1e_2 = -e_4$	$e_1e_3=-e_3$	
		$e_2e_1=e_4$	$e_2e_2 = e_4$	$e_3e_1=e_3$	
\mathcal{L}^{lpha}_{33}	:	$e_1e_1 = e_5$	$e_1 e_2 = (\alpha - 1)e_4$	$e_1e_3 = -e_3$	
		$e_2e_1 = (\alpha + 1)e_4$	$e_3e_1=e_3$		
\mathcal{L}^{lpha}_{34}	:	$e_1e_1 = \alpha e_5$	$e_1e_2 = -e_5$	$e_1e_4 = -e_4$	$e_2e_1=e_5$
<u></u>		$e_2e_2 = e_5$	$e_3e_3 = e_5$	$e_4e_1 = e_4$	
\mathcal{L}^{lpha}_{35}	:	$e_1e_2 = (\alpha - 1)e_5$	$e_1e_4 = -e_4$	$e_2e_1 = (\alpha + 1)e_5$	
\mathcal{L}_{36}		$e_3e_3 = e_5$	$e_4e_1=e_4$	0.0. — 0.	
\mathcal{L}_{36}	•	$e_1e_1 = e_5$	$e_1e_2 = -e_5$	$e_1e_4 = -e_4$	
\mathcal{L}_{37}	:	$e_2e_1 = e_5$	$e_3e_3 = e_5$ $e_1e_4 = -e_4$	$e_4e_1 = e_4$	
L 37	•	1 2 0		$e_2e_1 = e_5$	
\mathcal{L}_{38}		$e_2e_3 = e_5$ $e_1e_1 = e_5$	$e_3 e_2 = e_5 \\ e_1 e_2 = -e_5$	$e_4 e_1 = e_4$ $e_1 e_4 = -e_4$	$e_2e_1 = e_5$
~38	•	$e_1e_1 - e_5$ $e_2e_3 = e_5$	$e_{1}e_{2} = e_{5}$ $e_{3}e_{2} = e_{5}$	$e_{1}e_{4} = e_{4}$ $e_{4}e_{1} = e_{4}$	$c_2c_1 - c_0$
\mathcal{L}_{39}	•	$\frac{e_2e_3}{e_1e_2 = -e_5}$	$e_1e_3 = e_5$	$\frac{e_{1}e_{4} = -e_{4}}{e_{1}e_{4} = -e_{4}}$	
~59	•	$e_2e_1 = e_5$	$e_3e_1 = e_5$	$e_4 e_1 = e_4$	
\mathcal{L}_{40}	:	$e_1e_2 = -e_5$	$e_1e_3 = e_5$	$e_1e_4 = -e_4$	$e_2e_1 = e_5$
10		$e_2e_2=e_5$	$e_3e_1 = e_5$		2 1 0
\mathcal{L}_{41}	:	$e_1e_1 = e_5$		$e_1e_3 = -e_3 - e_4$	$e_1e_4 = -e_4$
		$e_2e_1 = e_2 + e_3$	$e_3e_1 = e_3 + e_4$		·
$\mathcal{L}_{42}^{lpha,eta}$:		$e_1e_2 = -\alpha e_2$		$e_1e_4 = -e_4$
42		$e_2e_1 = \alpha e_2$	$e_3e_1 = \beta e_3$	$e_4e_1=e_4$	
\mathcal{L}^{lpha}_{43}	:	$e_1e_1 = e_5$	$e_1 e_2 = -e_2 - e_4$		$e_1e_4 = -e_4$
-10		$e_2e_1 = e_2 + e_4$	$e_3e_1 = \alpha e_3$	$e_4e_1 = e_4$	
-			-		

\mathcal{L}_{44} ‡	:	$e_1e_1=e_5$	$e_1e_2 = -e_2$	$e_1e_3=e_3$	$e_2e_1=e_2$
		$e_2e_3=e_4$	$e_3e_1 = -e_3$	$e_3e_2 = -e_4$	
\mathcal{L}_{45}	:	$e_1e_1=e_5$	$e_2e_3=e_3$	$e_2e_4 = -e_4$	$e_3e_2=-e_3$
		$e_3e_4 = -e_5$	$e_4e_2=e_4$	$e_4e_3=e_5$	
\mathcal{L}_{46}	:	$e_1e_1 = e_5$	$e_2e_2=e_5$	$e_2e_3=e_3$	$e_2e_4 = -e_4$
		$e_3e_2 = -e_3$	$e_3e_4 = -e_5$	$e_4 e_2 = e_4$	$e_4e_3=e_5$
\mathcal{L}_{47}	:	$e_1e_2=e_5$	$e_2e_1=e_5$	$e_2e_3 = e_3$	$e_2e_4 = -e_4$
		$e_3e_2 = -e_3$	$e_3e_4 = -e_5$	$e_4e_2=e_4$	$e_4e_3=e_5$
\mathcal{L}^{lpha}_{48}	:	$e_1e_1=e_5$	$e_1e_2 = -e_2$	$e_1e_3 = -\alpha e_3$	
		$e_1e_4 = -(\alpha + 1)e_4$	$e_2e_1=e_2$	$e_2e_3=e_4$	
		$e_3e_1=\alpha e_3$	$e_3e_2 = -e_4$	$e_4 e_1 = (\alpha + 1)e_4$	
\mathcal{L}_{49}	:	$e_1e_1 = e_5$	$e_1e_2 = -e_2 - e_3$	$e_1e_3 = -e_3$	
		$e_1e_4 = -2e_4$	$e_2e_1 = e_2 + e_3$	$e_2e_3=-e_4$	
		$e_3e_1=e_3$	$e_3e_2=e_4$	$e_4e_1=2e_4$	
\mathcal{L}_{50}	:	$e_1e_1=e_5$	$e_1e_3=-e_3$	$e_1e_4 = -e_4$	$e_2e_3 = e_4$
		$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$	
\mathcal{L}_{51}	:	$e_1e_2=e_5$	$e_1e_3=-e_3$	$e_1e_4 = -e_4$	$e_2e_1=e_5$
		$e_2e_3=e_4$	$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$
\mathcal{L}_{52}	:	$e_1e_1 = e_5$	$e_1e_2=e_5$	$e_1e_3 = -e_3$	
		$e_1e_4 = -e_4$	$e_2e_1=e_5$	$e_2e_3=e_4$	
		$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$	
\mathcal{L}_{53}	:	$e_1e_3 = -e_3$	$e_1e_4 = -e_4$	$e_2e_2=e_5$	$e_2e_3 = e_4$
		$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$	
\mathcal{L}_{54}	:	$e_1e_1 = e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -e_4$	$e_2e_2=e_5$
		$e_2e_3=e_4$	$e_3e_1=e_3$	$e_3e_2 = -e_4$	$e_4e_1=e_4$
\mathcal{L}^{lpha}_{55}	:	$e_1e_1 = \alpha e_5$	$e_1e_2=e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -e_4$
		$e_2e_1=e_5$	$e_2e_2=e_5$	$e_2e_3=e_4$	$e_3e_1=e_3$
		$e_3e_2=-e_4$	$e_4e_1=e_4$		
\mathcal{L}_{56}	:	$e_1e_1=e_5$	$e_1e_3=-e_3$	$e_2e_4 = -e_4$	
		$e_3e_1=e_3$	$e_4 e_2 = e_4$		
\mathcal{L}^{lpha}_{57}	:	$e_1e_1 = \alpha e_5$	$e_1e_2=e_5$	$e_1e_3 = -e_3$	$e_2e_1=e_5$
		$e_2e_4 = -e_4$	$e_3e_1=e_3$	$e_4 e_2 = e_4$	
$\mathcal{L}_{58}^{lpha,eta}$:	$e_1e_1 = \alpha e_5$	$e_1e_2 = \beta e_5$	$e_1e_3 = -e_3$	$e_2e_1 = \beta e_5$
		$e_2e_2=e_5$	$e_2e_4 = -e_4$	$e_3e_1=e_3$	$e_4 e_2 = e_4$
\mathcal{L}_{59}	:	$e_1e_1 = e_5$	$e_1e_2 = e_2 + e_3$	$e_1e_3=e_3$	$e_1e_4 = -e_4$
		$e_2e_1 = -e_2 - e_3$	$e_3e_1=-e_3$	$e_4e_1 = -e_4$	
\mathcal{L}_{60}	:	$e_1e_2 = e_5$	$e_2e_1=-e_5$	$e_2e_3 = e_3 + e_4$	
		$e_2e_4=e_4$	$e_3e_2 = -e_3 - e_4$	$e_4e_2 = -e_4$	
\mathcal{L}_{61}	:	$e_1e_1 = e_5$	$e_2e_2=e_5$	$e_2e_3 = e_3 + e_4$	
		$e_2e_4=e_4$	$e_3e_2 = -e_3 - e_4$	$e_4 e_2 = -e_4$	
\mathcal{L}^{lpha}_{62}	:	$e_1e_1 = e_5$	$e_1e_2 = -\alpha e_2$	$e_1e_3 = -e_3$	$e_1e_4=e_4$
		$e_2e_1=\alpha e_2$	$e_3e_1=e_3$	$e_4e_1=e_4$	

 $^{^{\}ddagger}\mathcal{L}_{44} = \mathcal{L}_{48}^{-1}$

\mathcal{L}^{lpha}_{63}	:	$e_1e_2 = e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -\alpha e_4$	
		$e_2e_1=e_5$	$e_3e_1=e_3$	$e_4e_1 = \alpha e_4$	
\mathcal{L}^{lpha}_{64}	:	$e_1e_1 = e_5$	$e_1e_3 = -e_3$	$e_1e_4 = -\alpha e_4$	
		$e_2e_2=e_5$	$e_3e_1=e_3$	$e_4e_1 = \alpha e_4$	
\mathcal{L}_{65}	:	$e_1e_1 = e_4$	$e_1e_2 = e_5$	$e_2e_1 = e_5$	
		$e_2e_3=-e_3$	$e_3e_2=e_3$		
\mathcal{L}_{66}	:	$e_1e_1 = e_4$	$e_1e_2 = e_5$	$e_2e_1=e_5$	
		$e_2e_2=e_4$	$e_3e_2=e_3$	$e_2e_3=-e_3$	
\mathcal{L}_{67}	:	$e_1e_2 = e_5$	$e_2e_1=e_5$	$e_2e_4 = -e_4$	
		$e_3e_3=e_5$	$e_4e_2=e_4$		
\mathcal{L}_{68}	:	$e_1e_3 = e_5$	$e_2e_2=e_5$	$e_2e_4 = -e_4$	
		$e_3e_1=e_5$	$e_4 e_2 = e_4$		
$\mathcal{L}_{69}^{lpha,eta}$:	$e_1e_1 = \beta e_5$	$e_1e_2 = e_5$	$e_1e_4 = -e_4$	$e_2e_1=e_5$
		$e_2e_2 = \alpha e_5$	$e_2e_3=-e_3$	$e_3 e_2 = e_3$	$e_4e_1=e_4$
\mathcal{L}^{lpha}_{70}	:	$e_1e_1 = e_5$	$e_1e_4 = -e_4$	$e_2e_2 = \alpha e_5$	
		$e_2e_3 = -e_3$	$e_3e_2=e_3$	$e_4e_1=e_4$	
$\mathcal{L}^{\alpha}_{71}$:	$e_1e_3 = (\alpha - 1)e_5$	$e_2e_2=e_5$	$e_2e_4 = -e_4$	
		$e_3e_1 = (\alpha + 1)e_5$	$e_4e_2=e_4$		
\mathcal{L}^{lpha}_{72}	:	$e_1e_2 = e_5$	$e_1e_3 = (\alpha - 1)e_5$	$e_2e_1=e_5$	
		$e_2e_4 = -e_4$	$e_3e_1 = (\alpha + 1)e_5$	$e_4 e_2 = e_4$	
$\mathcal{L}^{\alpha}_{73}$:	$e_1e_2 = e_5$	$e_1e_3 = (\alpha - 1)e_5$	$e_2e_1 = e_5$	$e_2e_2=e_5$
		$e_2e_4 = -e_4$	$e_3e_1 = (\alpha + 1)e_5$	$e_4 e_2 = e_4$	
$\mathcal{L}^{lpha,eta}_{74}$:	$e_1e_2 = e_5$	$e_1e_3 = (\alpha - 1)e_5$	$e_2e_1=e_5$	
		$e_2e_2 = \beta e_5$	$e_2e_3=e_5$	$e_2e_4 = -e_4$	
		$e_3e_1 = (\alpha + 1)e_5$	$e_3e_2=e_5$	$e_4e_2=e_4$	
\mathcal{L}_{75}	:	$e_1e_1 = e_5$	$e_1e_3 = -e_5$	$e_2e_2=e_5$	
		$e_2e_4 = -e_4$	$e_3e_1=e_5$	$e_4e_2=e_4$	
\mathcal{L}^{lpha}_{76}	:	$e_1e_1 = e_5$	$e_1e_3 = -e_5$	$e_2e_2 = \alpha e_5$	$e_2e_3=e_5$
		$e_2e_4 = -e_4$	$e_3e_1=e_5$	$e_3e_2=e_5$	$e_4 e_2 = e_4$
\mathcal{L}^{lpha}_{77}	:	$e_1e_1 = e_5$	$e_1e_2 = e_5$	$e_1e_3 = -e_5$	$e_2e_1=e_5$
		$e_2e_2 = \alpha e_5$	$e_2e_4 = -e_4$	$e_3e_1=e_5$	$e_4e_2=e_4$

3 Results and proof

Proposition. Algebras $\mathfrak{r}_2 \oplus \mathfrak{r}_2$, $\mathfrak{sl}_2 \oplus \mathbb{C}$, $\mathfrak{g}_4(\alpha, \beta)$, and $\mathfrak{g}_5(\alpha)$ give irreducible components in the variety of complex 4-dimensional symmetric Leibniz algebras. Algebras $\mathfrak{sl}_2 \oplus \mathfrak{r}_2$, $\mathfrak{sl}_2 \ltimes V_2$, $\overline{R}_5^0(\mathfrak{n}_4)$, $\overline{R}_5^0(\mathfrak{n}_3 \oplus \mathbb{C})$, $\overline{R}_5^0(\mathfrak{n}_3)$, $\overline{R}_5^0(\mathbb{C}^4)$, and $\overline{R}_5^0(\mathbb{C}^3)$ give irreducible components in the variety of complex 5-dimensional symmetric Leibniz algebras.

Proof. It is easy to see that each algebra, excepting $\mathfrak{sl}_2 \oplus \mathbb{C}$, from the presented list, has a trivial annihilator. On the other side, it is known that each non-Lie symmetric Leibniz algebra is a central extension of a suitable Lie algebra [5], and it has a nontrivial annihilator. Hence, no non-Lie symmetric Leibniz algebras can degenerate to algebras from our list. $\mathfrak{sl}_2 \oplus \mathbb{C}$ is rigid due to uniqueness of non-solvable 4-dimensional symmetric algebra.

Summarizing the result from the Proposition above and proof from Theorem E[§] in [2], we have the following statement.

Statement. The variety of complex 4-dimensional symmetric Leibniz algebras has dimension 13 and it has 9 irreducible components defined by

$$\mathcal{C}_1 = \overline{\mathcal{O}(\mathfrak{r}_2 \oplus \mathfrak{r}_2)}, \ \mathcal{C}_2 = \overline{\mathcal{O}(\mathfrak{sl}_2 \oplus \mathbb{C})}, \ \mathcal{C}_3 = \overline{\mathcal{O}(\mathfrak{L}_{02})}, \ \mathcal{C}_4 = \overline{\mathcal{O}(\mathfrak{g}_5(\alpha))}, \ \mathcal{C}_5 = \overline{\mathcal{O}(\mathfrak{N}_2(\alpha))}, \\ \mathcal{C}_6 = \overline{\mathcal{O}(\mathfrak{N}_3(\alpha))}, \ \mathcal{C}_7 = \overline{\mathcal{O}(\mathfrak{L}_{15}^{\alpha})}, \ \mathcal{C}_8 = \overline{\mathcal{O}(\mathfrak{L}_{24}^{\alpha})}, \ and \ \mathcal{C}_9 = \overline{\mathcal{O}(\mathfrak{g}_4(\alpha, \beta))}.$$

In particular, there are only 3 rigid algebras in this variety.

Theorem. The variety of complex 5-dimensional solvable symmetric Leibniz algebras has dimension 24 and it has 20 irreducible components defined by

$$\begin{split} \mathcal{C}_{01} &= \overline{\mathcal{O}(\underline{\mathcal{L}}_{17})}, \ \ \mathcal{C}_{02} = \overline{\mathcal{O}(\underline{\mathcal{L}}_{24})}, \ \ \mathcal{C}_{03} = \overline{\mathcal{O}(\underline{\mathcal{L}}_{46})}, \ \ \mathcal{C}_{04} = \overline{\mathcal{O}(\overline{R}_{5}^{0}(\mathfrak{n}_{3}))}, \ \ \mathcal{C}_{05} = \overline{\mathcal{O}(\overline{R}_{5}^{0}(\mathfrak{n}_{4}))}, \\ \mathcal{C}_{06} &= \overline{\mathcal{O}(\overline{R}_{5}^{0}(\mathfrak{n}_{3} \oplus \mathbb{C}))}, \ \ \mathcal{C}_{07} = \overline{\mathcal{O}(\overline{R}_{5}^{0}(\mathbb{C}^{4}))}, \ \ \mathcal{C}_{08} = \overline{\mathcal{O}(\overline{R}_{5}^{0}(\mathbb{C}^{3}))}, \ \ \mathcal{C}_{09} = \overline{\mathcal{O}(\mathfrak{V}_{2+3})}, \\ \mathcal{C}_{10} &= \overline{\mathcal{O}(\mathfrak{V}_{3+2})}, \ \ \mathcal{C}_{11} = \overline{\mathcal{O}(\mathfrak{V}_{4+1})}, \ \ \mathcal{C}_{12} = \overline{\mathcal{O}(\mathbb{S}_{21}^{\alpha,\beta})}, \ \ \mathcal{C}_{13} = \overline{\mathcal{O}(\mathcal{L}_{13}^{\alpha})}, \ \ \mathcal{C}_{14} = \overline{\mathcal{O}(\mathcal{L}_{16}^{\alpha})}, \\ \mathcal{C}_{15} &= \overline{\mathcal{O}(\mathcal{L}_{25}^{\alpha,\beta\gamma})}, \ \ \mathcal{C}_{16} = \overline{\mathcal{O}(\mathcal{L}_{26}^{\alpha,\beta})}, \ \ \mathcal{C}_{17} = \overline{\mathcal{O}(\mathcal{L}_{42}^{\alpha,\beta})}, \ \ \mathcal{C}_{18} = \overline{\mathcal{O}(\mathcal{L}_{48}^{\alpha})}, \ \ \mathcal{C}_{19} = \overline{\mathcal{O}(\mathcal{L}_{62}^{\alpha})}, \ \ and \\ \mathcal{C}_{20} &= \overline{\mathcal{O}(\mathcal{L}_{74}^{\alpha,\beta})}. \end{split}$$

In particular, there are only 4 rigid algebras in this variety.

Proof. The proof of our Theorem will be based on two big parts: first, we give the list of all necessary degenerations, and then, we present all reasons for non-degeneration.

Degenerations. Let us give some useful degenerations for our proof.

$\mathcal{L}_{25}^{t,\ 1,\ rac{1}{t}-lpha t}$	$\xrightarrow{te_1-e_2, \ te_2-\frac{1}{t}e_3, \ e_3-t^2e_5, \ e_4, \ -t^3e_5} \to$	\mathcal{L}^{lpha}_{01}
$\mathcal{L}_{25}^{0,\;lpha t,\;2lpha}$	$\xrightarrow{te_1-e_2, \ te_2+e_3, \ te_3+t^2e_5, \ te_4+t^4e_5, \ t^3e_5}$	\mathcal{L}^{lpha}_{02}
$\mathcal{L}_{25}^{0,\;0,\;-t}$	$\xrightarrow{te_1-e_2, te_2+e_3, -te_3-t^2e_5, e_4-t^4e_5, -t^3e_5}$	\mathcal{L}_{03}
$\mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{1+t}{t^2}, \frac{1+2t+(1+\alpha t^2)t^2}{t^2}}$	$\xrightarrow{-e_1 + (-1 - t)e_2 + e_4, \ t^2e_2 + te_3, \ e_3 + te_4, \ t^2e_4, \ t^2e_5}$	\mathcal{L}^{lpha}_{04}
$\mathcal{L}_{25}^{0, -\alpha, 2\alpha(1-t)}$	$\xrightarrow{-e_1 + (t-1)e_2, \ t^2e_2 + te_3 + te_4, \ e_3 + (1-t)e_4, \ t(t-1)e_4, \ t^2e_5}$	\mathcal{L}^{lpha}_{05}
$\mathcal{L}_{25}^{-rac{t^2}{(t-1)^2}, \; rac{t^2}{1-t}, \; 0}$	$\xrightarrow{-e_1+(t-1)e_2,\ t^2e_2+te_4,\ e_3-\frac{1}{t}e_4,\ e_4,\ t^2e_5}$	\mathcal{L}_{06}
$\mathcal{L}_{25}^{rac{1}{t},\;-rac{lpha}{t},\;rac{lpha^2+eta t^2}{t}}$	$\xrightarrow{-e_1 - \alpha e_2, \ te_2 + te_3, \ e_3, \ e_4 + \frac{t^2}{\alpha} e_5, \ te_5}$	${\cal L}_{07}^{lpha,eta}$
$\mathcal{L}_{25}^{0,\;-eta,\;2lphaeta}$	$\xrightarrow{-e_1 - \alpha e_2 + e_4, \ te_2 + te_3 - \frac{t}{\alpha}e_4, \ e_3, \ e_4 + t^2e_5, \ te_5} \to$	${\cal L}_{08}^{lpha,eta}$
$\mathcal{L}_{25}^{0,~0,~t}$	$\xrightarrow{-e_1 - \alpha e_2 - \frac{\alpha}{t}e_4, \ te_2 + e_4, \ e_3 + te_4 + (\alpha - 1)t^3e_5, \ e_4 + t^2e_5, \ te_5}$	\mathcal{L}^{lpha}_{09}

[§]In general, due to omitted Lie algebras in the variety of symmetric Leibniz algebras, [2, Theorem E] is not correct. But it gives a description of irreducible non-Lie components in 4-dimensional symmetric Leibniz algebras.

$\mathcal{L}^{0,~0,~-lpha}_{25}$	$\xrightarrow{te_1+te_2, \ e_2-\frac{1}{t}e_3, \ e_4, \ e_3-te_5, \ -t^2e_5} \to$	\mathcal{L}^{lpha}_{10}
$\frac{\mathcal{L}_{25}}{\mathcal{L}_{25}^{\alpha, \alpha t^2, t^2 + \alpha t^4}}$	$\xrightarrow{-e_1+t^2e_2,\ te_2+te_3-e_4,\ t^2e_4+te_5,\ e_3,\ t^2e_5}$	\mathcal{L}_{11}^{lpha}
$\mathcal{L}_{25}^{lpha,\ t,\ eta t^2}$	$\xrightarrow{-e_1 + \frac{1}{t}e_4, \ te_2 + te_3, \ e_4 + te_5, \ e_3, \ t^2e_5}$	$\mathcal{L}_{12}^{lpha,eta}$
$\frac{z_0}{\mathcal{L}_{13}^{-lpha^2}}$	$\xrightarrow{e_1 - \alpha e_2, \ te_2 + t^2 e_4, \ e_3, \ te_4, \ -te_5}$	\mathcal{L}^{lpha}_{14}
$\frac{\mathcal{L}_{25}^{\alpha,\ t,\ \beta t^2}}{\mathcal{L}_{13}^{-\alpha^2}}$ $\frac{\mathcal{L}_{13}^{-t}}{\mathcal{L}_{13}^{-t}}$	$\xrightarrow{e_1, te_2+te_4, te_3, e_4, -te_5}$	\mathcal{L}_{15}
$\mathcal{L}_{25}^{lpha, -lpha, t+lpha}$	$\xrightarrow{e_1 + e_2, \ te_2 + te_3 - e_4, \ e_3 - \frac{1}{t}e_4, \ e_4, \ te_5} \rightarrow$	\mathcal{L}_{18}
$\mathcal{L}_{25}^{0, 1, -2}$	$\xrightarrow{-e_1-e_2, \ te_2, \ e_3-e_4, \ te_4, \ te_5}$	\mathcal{L}_{19}
$\mathcal{L}_{25}^{0, 1, -2+t}$	$\xrightarrow{e_1+e_2+e_4,\ te_2+te_3,\ e_3-e_4,\ te_4,\ te_5}$	\mathcal{L}_{20}
$\mathcal{L}_{25}^{rac{1}{t},\;-rac{1}{t},\;rac{1}{t}}$	$\xrightarrow{e_1+e_2, \ te_2+t^2e_3-t^2e_4, \ e_3-e_4, \ te_4, \ te_5}$	\mathcal{L}_{21}
$\mathcal{L}_{25}^{\alpha}, -\alpha, t+\alpha$ $\mathcal{L}_{25}^{0}, 1, -2$ $\mathcal{L}_{25}^{0}, 1, -2+t$ $\mathcal{L}_{25}^{\frac{1}{t}}, -\frac{1}{t}, \frac{1}{t}$ $\mathcal{L}_{25}^{\frac{1}{t}}, -\frac{1}{t}, \frac{1+t^2}{t}$ $\mathcal{L}_{25}^{\frac{1}{t}}, \frac{t-1}{t}, \frac{\alpha t^2 - 2t + 1}{t}$ $\mathcal{L}_{25}^{\alpha}, \frac{(1-\alpha)t^2 + 1 + \alpha}{t}$ $\mathcal{L}_{26}^{\alpha}$	$\xrightarrow{e_1+e_2,\ te_2+te_3+te_4,\ e_3+e_4,\ -te_4+t^2e_5,\ te_5}$	\mathcal{L}_{22}
$\mathcal{L}_{25}^{rac{1}{t},\;rac{t-1}{t},\;rac{lpha t^2-2t+1}{t}}$	$\xrightarrow{e_1+e_2,\ te_2,\ e_3+e_4,\ -te_4,\ te_5}$	\mathcal{L}^{lpha}_{23}
$\mathcal{L}_{26}^{lpha,rac{(1-lpha)t^2+1+lpha}{t}}$	-	\mathcal{L}^{lpha}_{27}
$E_1^t = e_1 + te_2$	$E_2^t = \frac{(1+\alpha)(1+t^2)}{t}e_2$	21
	$(t^3)e_5 E_4^t = \frac{(1+\alpha)(1+t^2)}{t}e_4 + (1+t^2)e_5$	
$E_5^t = \frac{(1+\alpha)^2(1+t^2)^2}{t^2} e_5$	1 1 1	
$\mathcal{L}^{lpha,\;0}_{26}$	$\xrightarrow{e_1, \frac{1}{t}e_2, e_3 + e_4, \frac{1}{t}e_4, \frac{1}{t^2}e_5} \to$	\mathcal{L}^{lpha}_{28}
$\mathcal{L}_{26}^{1+\frac{1}{t}, \frac{2+4t+(1+\alpha)t^2}{t\sqrt{-1-2t}}}$	$\xrightarrow{e_1 + \frac{t-1}{\sqrt{2t-1}}e_2, \ \frac{-t}{\sqrt{2t-1}}e_2, \ e_3, \ \frac{t^2}{2t-1}e_5, \ \frac{1}{\sqrt{2t-1}}e_4 + \frac{t}{2t-1}e_5}$	\mathcal{L}^{lpha}_{29}
\mathcal{L}_{29}^t	$\xrightarrow{e_1, \ te_2, \ e_3 + t^2 e_4 + t^2 e_5, \ te_4, \ te_5} \to$	\mathcal{L}_{30}
$ \frac{\mathcal{L}_{29}^{t}}{\mathcal{L}_{01}^{\frac{1}{2}}} \\ \frac{\mathcal{L}_{01}^{\frac{1}{2}}}{\mathcal{L}_{26}^{-2, \frac{1+8t}{\sqrt{-t(1+4t)}}}} \\ E_{1}^{t} = e_{1} - \frac{2t}{\sqrt{t(1-4t)}} e_{2} E_{2}^{t} = \frac{-t}{\sqrt{t(1-4t)}} e_{1} \\ E_{1}^{t} = e_{1} - \frac{2t}{\sqrt{t(1-4t)}} e_{2} E_{2}^{t} = \frac{-t}{\sqrt{t(1-4t)}} e_{2} \\ E_{1}^{t} = e_{1} - \frac{2t}{\sqrt{t(1-4t)}} e_{2} E_{2}^{t} = \frac{-t}{\sqrt{t(1-4t)}} e_{2} \\ E_{1}^{t} = e_{1} - \frac{2t}{\sqrt{t(1-4t)}} e_{2} E_{2}^{t} = \frac{-t}{\sqrt{t(1-4t)}} e_{2} \\ E_{2}^{t} = e_{1} - \frac{-t}{\sqrt{t(1-4t)}} e_{2} \\ E_{3}^{t} = e_{1} - \frac{-t}{\sqrt{t(1-4t)}} e_{2} \\ E_{4}^{t} = e_{1} - \frac{-t}{\sqrt{t(1-4t)}} e_{2} \\ E_{4}^{t} = e_{1} - \frac{-t}{\sqrt{t(1-4t)}} e_{2} \\ E_{5}^{t} = e_{1} - \frac{-t}{\sqrt{t(1-4t)}} e_$	$\xrightarrow{-e_1 - \frac{1}{t}e_2, \ te_2, \ e_4, \ te_3, \ e_5}$	\mathcal{L}_{31}
$\frac{-2, \frac{1+8t}{\sqrt{-t(1+4t)}}}{\int_{-\infty}^{+\infty} \sqrt{-t(1+4t)}}$		\mathcal{L}_{32}
$E_1^{t} = e_1 - \frac{2t}{\sqrt{t(1-4t)}}e_2$ $E_2^t = \frac{-t}{\sqrt{t(1-4t)}}$	$= e_2$ $E_3^t = e_3$	~32
$E_4^t = \frac{t}{1-4t}e_5$ $E_5^t = \frac{1}{t/t(1-4)}$	$\frac{1}{1}e_4 + \frac{1}{1-4t}e_5$	
$\mathcal{L}_{26}^{\alpha, -\frac{2\alpha(1+\alpha)\sqrt{t}}{\sqrt{1-t(1+\alpha)^2}}}$		\mathcal{L}^{lpha}_{33}
$E_1^t = e_1 + \frac{(1+\alpha)\sqrt{t}}{\sqrt{1-t(1+\alpha)^2}}e_2$	$E_2^t = \frac{\sqrt{t}}{\sqrt{1 - t(1 + \alpha)^2}} e_2$	~ 33
$E_3^t = e_3 + \frac{\sqrt{1 - t(1 + \alpha)^2}}{\sqrt{1 - t(1 + \alpha)^2}} e_4 + \frac{t^2}{1 - t(1 + \alpha)^2} \epsilon_4$		
$E_5^t = \frac{1}{1 - t(1 + \alpha)^2} e_5$	$\sqrt{1-t(1+\alpha)^2} = 1-t(1+\alpha)^2 = 0$	
	$te_1 + e_2 + \frac{t - \alpha t^3}{1 + \alpha t^2} e_3, \ te_2 + \frac{2t^2}{1 + \alpha t^2} e_3, \ ite_2, \ e_4, \ \frac{2t^3}{1 + \alpha t^2} e_5$	\mathcal{L}^{lpha}_{34}
$ \frac{\mathcal{L}_{74}^{-\frac{1}{t}, -\frac{2t}{1+\alpha t^2}}}{\mathcal{L}_{34}^{-\frac{2}{t}, \frac{2-t^2}{t^2}, -\frac{2}{t^3}}} $	$\underbrace{e_1 + \alpha e_2, \ t^2 e_2 + t e_4, \ t e_3, \ e_4, \ t^2 e_5}_{/}$	$rac{\mathcal{L}_{34}^{lpha}}{\mathcal{L}_{35}^{lpha}}$
$\frac{\sim 34}{c^{-\frac{2}{t}}, \frac{2-t^2}{t^2}, -\frac{2}{t^3}}$	$te_1+e_2, e_3+2e_5, te_2, e_4, -2te_5$	
\mathcal{L}_{25} $^{\iota^-}$		\mathcal{L}_{36}

-		
\mathcal{L}^0_{34}	$\xrightarrow{e_1, -\frac{1}{t}e_2 + \frac{i}{t}e_3 + te_4, ie_3, e_4, -\frac{1}{t}e_5}$	\mathcal{L}_{37}
$\mathcal{L}_{2d}^{-rac{1}{t}}$	$\xrightarrow{e_1, -\frac{1}{t}e_2 + \frac{i}{t}e_3 + te_4, ie_3, e_4, -\frac{1}{t}e_5}$	\mathcal{L}_{38}
$\mathcal{L}_{25}^{\frac{34}{t},-\frac{1}{t^2},0}$	$\xrightarrow{te_1+e_2-e_4,\ e_3-\frac{1}{t}e_5,\ te_2,\ e_4+te_5,\ e_5}$	\mathcal{L}_{39}
$ \frac{\mathcal{L}_{34}^{0}}{\mathcal{L}_{34}^{-\frac{1}{t}}} \\ \frac{\mathcal{L}_{25}^{\frac{1}{t}, -\frac{1}{t^{2}}, 0}}{\mathcal{L}_{74}^{\frac{1}{t^{2}}+1, \frac{2t(2t+1)\left(t^{2}+1\right)}{2t^{4}+t^{3}+4t^{2}+2t+2}}} $		\mathcal{L}_{40}
$E_1^t = -e_1 + e_2 - \frac{t^2(2t^2 + t + 2)}{2t^4 + t^3 + 4t^2 + 2t + 2}e_3$	$E_2^t = te_2 - \frac{2(t^5 + t^3)}{2t^4 + t^3 + 4t^2 + 2t + 2}e_3$	
$E_3^t = -\frac{2t^5(t^2+1)}{2t^4+t^3+4t^2+2t+2}e_3 + te_4$	$E_4^t = e_4 + \frac{2t^4(t^2+1)}{2t^4+t^3+4t^2+2t+2}e_5$	
$E_5^t = \frac{2(t^5 + t^3)}{2t^4 + t^3 + 4t^2 + 2t + 2} e_5$		
$\mathcal{L}_{42}^{rac{1}{1+t^2},rac{1+t}{1+t^2}}$	$\underbrace{(1+t^2)e_1,\;e_2+(1+t)e_3+(1+t)e_4,\;te_3+t^2e_4,\;(t^4-t^3)e_4,\;(1+t^2)^2e_5}_{}$	\mathcal{L}_{41}
$\mathcal{L}_{74}^{t^{2+1}, 2t^{4}+t^{3}+4t^{2}+2t+2}$ $E_{1}^{t} = -e_{1} + e_{2} - \frac{t^{2}(2t^{2}+t+2)}{2t^{4}+t^{3}+4t^{2}+2t+2}e_{3}$ $E_{3}^{t} = -\frac{2t^{5}(t^{2}+1)}{2t^{4}+t^{3}+4t^{2}+2t+2}e_{3} + te_{4}$ $E_{5}^{t} = \frac{2(t^{5}+t^{3})}{2t^{4}+t^{3}+4t^{2}+2t+2}e_{5}$ $\frac{1}{2t^{4}+t^{2}}, \frac{1+t}{1+t^{2}}$ $\frac{1}{2t^{4}+t^{2}}, \frac{1+t}{1+t^{2}}$ $\frac{1}{2t^{4}+t^{2}}, \frac{\alpha}{1+t}$	$\xrightarrow{(1+t)e_1, e_2 + \frac{1}{t}e_4, e_3, e_4, (1+t)^2e_5}$	\mathcal{L}_{43}
\mathcal{L}^{lpha}_{13}	$\xrightarrow{t \cdot 2j \cdot 1j} \xrightarrow{t2 \cdot 0j} \xrightarrow{t2 \cdot 0j}$	\mathcal{L}_{45}
$\mathcal{L}_{13}^{-rac{1}{t^4}}$	$\xrightarrow{e_2 + \frac{1}{t}e_4, \ e_1 + \frac{1}{t^2}e_2, \ e_3, \ \frac{1}{t^2}e_4, \ \frac{1}{t^2}e_5} \to$	\mathcal{L}_{47}
\mathcal{L}_{48}^{1+t}	$\xrightarrow{e_1, e_2+e_3, te_3, -te_4, e_5}$	\mathcal{L}_{49}
${\cal L}_{25}^{0,~0,~1}$	$\xrightarrow{e_1+e_2,\ te_2,\ e_3+e_4,\ -te_4,\ e_5}$	\mathcal{L}_{50}
${\cal L}_{25}^{rac{1+t^2}{t^2},0,-rac{1}{t^2}}$	$\xrightarrow{e_1+e_2, \ te_2, \ e_3+e_4, \ -te_4+e_5, \ \frac{1}{t}e_5}$	\mathcal{L}_{51}
$\mathcal{L}_{25}^{0,\;rac{1}{t^2},\;rac{t-2}{t^2}}$	$\xrightarrow{e_1 + e_2 + te_4, \ te_2, \ e_3 + e_4, \ -te_4 + e_5, \ \frac{1}{t}e_5} \to$	\mathcal{L}_{52}
$\mathcal{L}_{25}^{rac{1}{t^2},\;-rac{1+t^2}{t^2},\;rac{1+2t^2}{t^2}}$	$\xrightarrow{e_1+e_2,\ te_2,\ e_3+e_4,\ -te_4,\ e_5}$	\mathcal{L}_{53}
$\mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{1+t^2}{t^2}, \frac{1+3t^2}{t^2}}$	$\xrightarrow{e_1+e_2,\ te_2,\ e_3+e_4,\ -te_4,\ e_5}$	\mathcal{L}_{54}
$\mathcal{L}_{25}^{\frac{1}{t^3}, \frac{t-1}{t^3}, \frac{1-2t+lpha t^2}{t^3}}$	$\xrightarrow{e_1 + e_2 + te_4, \ te_2, \ e_3 + e_4, \ -te_4 + e_5, \ \frac{1}{t}e_5} \to$	${\cal L}^{lpha}_{55}$
$\mathcal{L}_{25}^{0,\ 1,\ rac{1}{t}}$	$\xrightarrow{e_1,\ e_2,\ e_3,\ e_4,\frac{1}{t}e_5}$	\mathcal{L}_{56}
$\mathcal{L}_{25}^{0,\;rac{1}{t^2},\;rac{lpha}{t^2}}$	$\xrightarrow{e_1 - te_4, \ e_2, \ e_3, \ e_4 + \frac{1}{t}e_5, \ \frac{1}{t^2}e_5} \to$	\mathcal{L}^{lpha}_{57}
$\mathcal{L}_{25}^{rac{1}{t^2},\;rac{eta}{t^2},\;rac{lpha}{t^2}}$	$\xrightarrow{e_1 - te_4, \ e_2, \ e_3, \ e_4 + \frac{1}{t}e_5, \ \frac{1}{t^2}e_5} \to$	$\mathcal{L}_{58}^{lpha,eta}$
$\mathcal{L}_{42}^{-rac{1}{1+t},\;-1}$	$\xrightarrow{(1+t)e_1, e_2+e_3, te_3, e_4, (1+t)^2e_5}$	\mathcal{L}_{59}
$\mathcal{L}_{25}^{0,\ 0,\ 0}$	$\xrightarrow{t^2e_2, -e_1-(1+t)e_2, e_3+e_4, te_4+t^3e_5, -t^2e_5}$	\mathcal{L}_{60}
$\mathcal{L}_{25}^{\frac{1}{t^4}}, \frac{1}{-\frac{1+t+t^4}{t^4}}, \frac{1+2t+t^2+3t^4+2t^5}{t^4}$	$\xrightarrow{t^2e_2, -e_1-(1+t)e_2, e_3+e_4, te_4, e_5}$	\mathcal{L}_{61}
$\mathcal{L}_{25}^{0,\;rac{1}{t^2},\;-rac{2lpha}{t^2}}$	$\xrightarrow{e_1 + \alpha e_2 - e_4, \ te_2, \ e_3, \ e_4 + e_5, \ \frac{1}{t}e_5}$	\mathcal{L}^{lpha}_{63}
$ \begin{array}{c} \mathcal{L}_{42}^{1+t}, \ ^{1+t} \\ \\ \mathcal{L}_{13}^{\alpha} \\ \\ \mathcal{L}_{13}^{-\frac{1}{t^4}} \\ \\ \mathcal{L}_{25}^{0, 0, 1} \\ \\ \mathcal{L}_{25}^{0, \frac{1}{t^2}, \frac{t-2}{t^2}} \\ \\ \mathcal{L}_{25}^{0, \frac{1}{t^2}, \frac{t-2}{t^2}} \\ \\ \mathcal{L}_{25}^{0, \frac{1}{t^2}, \frac{t-2}{t^2}} \\ \\ \mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{1+t^2}{t^2}, \frac{1+2t^2}{t^2}} \\ \\ \mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{1+t^2}{t^2}, \frac{1+3t^2}{t^2}} \\ \\ \mathcal{L}_{25}^{\frac{1}{t^3}, \frac{t-1}{t^3}, \frac{1-2t+\alpha t^2}{t^3}} \\ \\ \mathcal{L}_{25}^{0, 1, \frac{1}{t}} \\ \\ \mathcal{L}_{25}^{0, 1, \frac{1}{t}} \\ \\ \mathcal{L}_{25}^{0, \frac{1}{t^2}, \frac{\alpha}{t^2}} \\ \\ \mathcal{L}_{25}^{0, 0, 0} \\ \\ \\ \mathcal{L}_{25}^{\frac{1}{t^4}, -\frac{1+t+t^4}{t^4}, \frac{1+2t+t^2+3t^4+2t^5}{t^4}} \\ \\ \mathcal{L}_{25}^{0, 0, 0} \\ \\ \\ \mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{2\alpha}{t^2}} \\ \\ \\ \mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{2\alpha}{t^2}} \\ \\ \\ \mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{2\alpha}{t^2}} \\ \\ \\ \\ \\ \mathcal{L}_{25}^{\frac{1}{t^2}, -\frac{2\alpha}{t^2}} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\xrightarrow{e_1+\alpha e_2,\ te_2,\ e_3,\ e_4,\ e_5}$	\mathcal{L}^{lpha}_{64}
${\cal L}_{26}^{rac{1}{t^2},\;-rac{2i}{t^2}}$		\mathcal{L}_{65}

The geometric classification of symmetric Leibniz algebras

Renato Fehlberg Júnior, Ivan Kaygorodov, Azamat Saydaliyev

$$E_{1}^{t} = -\frac{\left(\sqrt{1-4\alpha}-1\right)t}{4\alpha+\sqrt{1-4\alpha}-1}e_{1} - te_{2} + \frac{\left(\sqrt{1-4\alpha}-1\right)t\left(t^{2}+4\right)}{\left(4\alpha+\sqrt{1-4\alpha}-1\right)\left(t^{2}-4\right)}e_{3} - \frac{4}{\left(\sqrt{1-4\alpha}-1\right)t^{2}}e_{4}$$

$$E_{2}^{t} = -\frac{1}{4}\left(\sqrt{1-4\alpha}-1\right)t^{2}e_{2} - \frac{2t^{2}}{t^{2}-4}e_{3} \quad E_{3}^{t} = e_{4} + \frac{\left(\sqrt{1-4\alpha}-1\right)^{3}t^{3}}{\left(2\alpha+\sqrt{1-4\alpha}-1\right)\left(4\alpha+\sqrt{1-4\alpha}-1\right)\left(t^{2}-4\right)}e_{5}$$

$$E_{4}^{t} = \frac{t^{2}}{2}e_{2} + \frac{2}{\left(\sqrt{1-4\alpha}-1\right)t}e_{4} \qquad E_{5}^{t} = -\frac{\left(\sqrt{1-4\alpha}-1\right)^{3}t^{4}}{\left(2\alpha+\sqrt{1-4\alpha}-1\right)\left(4\alpha+\sqrt{1-4\alpha}-1\right)\left(t^{2}-4\right)}e_{5}$$

$$\mathcal{L}_{13}^{\alpha t^{4}} \qquad \qquad \frac{t^{3}e_{2}-\frac{1}{t}e_{3}+\frac{t^{6}}{2}e_{4}, \ te_{1}+\frac{2}{t^{2}}e_{3}, \ e_{3}+\frac{t^{7}}{2}e_{4}, -t^{8}e_{4}-t^{5}e_{5}, \ t^{6}e_{5}}{t^{6}} \qquad \qquad \mathcal{S}_{41}^{\alpha}$$

Non-degenerations. To prove all non-degenerations, we will work with the algebras listed in the table below. The present table also contains some useful information about the nilpotent radical, dimension of orbits, and the dimension of derived algebras. The present information can justify some obvious non-degeneration reasons, which will be omitted without detailed explication.

Algebra	Rad	dim Rad	$\dim A^2$	dim Orb
\mathfrak{V}_{3+2}	\mathfrak{V}_{3+2}	5	2	24
\mathcal{L}_{17}	$\mathfrak{n}_3\oplus\mathbb{C}$	4	4	22
$\mathcal{L}_{25}^{lpha,eta,\gamma}$	\mathbb{C}^3	3	3	22
$\begin{array}{c c} \mathfrak{V}_{3+2} \\ \hline \mathcal{L}_{17} \\ \hline \mathcal{L}_{25}^{\alpha,\beta,\gamma} \\ \hline \mathcal{L}_{25}^{\alpha,\beta} \\ \hline \mathcal{L}_{24} \\ \hline \mathcal{L}_{13}^{\alpha} \\ \hline \mathcal{L}_{26}^{\alpha,\beta} \\ \hline \mathcal{L}_{16}^{\alpha,\beta} \\ \hline \mathcal{L}_{48}^{\alpha} \\ \hline \mathcal{L}_{62}^{\alpha} \\ \hline \mathcal{L}_{42}^{\alpha,\beta} \\ \hline \mathcal{L}_{46}^{\alpha} \\ \hline \mathcal{V}_{4+1} \\ \end{array}$	\mathbb{C}^3	3	2	22
\mathcal{L}_{24}	\mathfrak{n}_4	4	4	21
\mathcal{L}^{lpha}_{13}	\mathfrak{l}_2	4	3	21
${\cal L}_{26}^{lpha,eta}$	$\mathfrak{l}_1\oplus\mathbb{C}^2$	4	3	21
$\mathbb{S}_{21}^{lpha,eta}$	$\mathbb{S}_{21}^{lpha,eta}$	5	3	21
$\overline{\mathcal{L}_{16}^{lpha}}$	$\mathfrak{n}_3\oplus\mathbb{C}$	4	4	20
\mathcal{L}^{lpha}_{48}	$\mathfrak{n}_3\oplus\mathbb{C}$	4	4	20
\mathcal{L}^{lpha}_{62}	\mathbb{C}^4	4	4	20
${\cal L}_{42}^{lpha,eta}$	\mathbb{C}^4	4	4	20
\mathcal{L}_{46}	\mathfrak{n}_3	3	3	20
	\mathfrak{V}_{4+1}	5	1	20
\mathfrak{V}_{2+3}	\mathfrak{V}_{2+3}	5	3	18

Here, we are using the following low-dimensional algebras:

It is known that $\mathfrak{n}_3 \oplus \mathbb{C} \not\to \Big\{\mathfrak{n}_4,\ \mathfrak{l}_2,\ \mathfrak{l}_1 \oplus \mathbb{C}^2\Big\}.$

The list below comprises reasons for all the necessary non-degenerations.

$$\mathcal{L}_{17} \ \, \not \to \ \, \left\{ \begin{split} \mathbb{S}_{21}^{\alpha,\beta}, \ \, \mathcal{L}_{16}^{\alpha}, \ \, \mathcal{L}_{24}^{\alpha}, \ \, \mathcal{L}_{62}^{\alpha}, \ \, \mathcal{L}_{93}^{\alpha}, \ \, \mathcal{L}_{16}^{\alpha}, \ \, \mathcal{L}_{13}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha}, \ \, \mathcal{L}_{15}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha}, \ \, \mathcal{L}_{15}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha}, \ \, \mathcal{L}_{15}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha}, \ \, \mathcal{L}_{14}^{\alpha$$

Corollary. The variety of complex 5-dimensional symmetric Leibniz algebras has dimension 24 and it has 23 irreducible components defined by solvable algebras given in Theorem and

$$\mathcal{C}_{21} = \overline{\mathcal{O}(\mathfrak{sl}_2 \oplus \mathfrak{r}_2)}, \ \mathcal{C}_{22} = \overline{\mathcal{O}(\mathfrak{sl}_2 \ltimes \mathrm{V}_2)}, \ \mathcal{C}_{23} = \overline{\mathcal{O}(\mathfrak{sl}_2 \oplus \mathfrak{l}_1)}.$$

In particular, there are only 7 rigid algebras in this variety.

Proof. It is easy to see that there is only one non-Lie non-solvable symmetric Leibniz algebra:

$$\mathfrak{sl}_2 \oplus \mathfrak{l}_1$$
 : $e_1 e_2 = 2e_1$ $e_1 e_3 = -e_2$ $e_2 e_3 = 2e_3$

$$e_2e_1 = -2e_1$$
 $e_3e_1 = e_2$ $e_3e_2 = -2e_3$ $e_4e_4 = e_5$

Obviously, dim $\mathfrak{Der}(\mathfrak{sl}_2 \oplus \mathfrak{l}_1) = 5$. Hence it can degenerate only to \mathfrak{V}_{2+3} , but it is not the case due to the following condition $\mathcal{R} = \{ c_{kk}^j = 0, 1 \le k \le 5 \& 1 \le j \le 4 \}$. It follows that all irreducible components are defined by all irreducible components from solvable symmetric Leibniz algebras, $\mathfrak{sl}_2 \oplus \mathfrak{r}_2$, $\mathfrak{sl}_2 \ltimes V_2$, and $\mathfrak{sl}_2 \oplus \mathfrak{l}_1$.

References

- [1] K. Abdurasulov, A. Khudoyberdiyev, and F. Toshtemirova. The geometric classification of nilpotent Lie-Yamaguti, Bol and compatible Lie algebras. *Communications in Mathematics*, 33(3):10, 2025.
- [2] M. A. Alvarez and I. Kaygorodov. The algebraic and geometric classification of nilpotent weakly associative and symmetric Leibniz algebras. *Journal of Algebra*, 588:278–314, 2021.
- [3] Sh. Ayupov, A. Khudoyberdiyev, and Z. Shermatova. On complete Leibniz algebras. *International Journal of Algebra and Computation*, 32(2):265–288, 2022.
- [4] A. Ben Hassine, T. Chtioui, M. Elhamdadi, and S. Mabrouk. Cohomology and deformations of left-symmetric Rinehart algebras. *Communications in Mathematics*, 32(2):127–152, 2024.
- [5] S. Benayadi, F. Mhamdi, and S. Omri. Quadratic (resp. symmetric) Leibniz superalgebras. Communications in Algebra, 49(4):1725–1750, 2021.
- [6] D. Burde and C. Steinhoff. Classification of orbit closures of 4-dimensional complex Lie algebras. *Journal of Algebra*, 214(2):729–739, 1999.
- [7] R. Carles and Y. Diakité. Sur les variétés d'algèbres de Lie de dimension ≤ 7. Journal of Algebra, 91(1):53-63, 1984.
- [8] T. Castilho de Mello and M. da Silva Souza. Polynomial identities and images of polynomials on null-filiform Leibniz algebras. *Linear Algebra and Its Applications*, 679:246–260, 2023.
- [9] I. Choriyeva and A. Khudoyberdiyev. Classification of five-dimensional symmetric Leibniz algebras. *Bulletin of the Iranian Mathematical Society*, 50(3):33, 2024.
- [10] A. Dauletiyarova, K. Abdukhalikov, and B. Sartayev. On the free metabelian Novikov and metabelian Lie-admissible algebras. *Communications in Mathematics*, 33(3):3, 2025.
- [11] A. Dzhumadil'daev, N. Ismailov, and B. Sartayev. On the commutator in Leibniz algebras. *International Journal of Algebra and Computation*, 32(4):785–805, 2022.
- [12] J. Feldvoss and F. Wagemann. On the cohomology of solvable Leibniz algebras. *Indagationes Mathematicae*, 35(1):87–113, 2024.
- [13] F. Grunewald and J. O'Halloran. Varieties of nilpotent Lie algebras of dimension less than six. *Journal of Algebra*, 112:315–325, 1988.

- [14] N. Ismailov, I. Kaygorodov, and Yu. Volkov. The geometric classification of Leibniz algebras. *International Journal of Mathematics*, 29(5):1850035, 2018.
- [15] I. Kaygorodov. Non-associative algebraic structures: classification and structure. Communications in Mathematics, 32(3):1–62, 2024.
- [16] I. Kaygorodov, M. Khrypchenko, and P. Páez-Guillán. The geometric classification of non-associative algebras: a survey. *Communications in Mathematics*, 32(2):185–284, 2024.
- [17] A. Khudoyberdiyev and Kh. Muratova. Solvable Leibniz superalgebras whose nilradical has the characteristic sequence (n-1, 1|m) and nilindex n+m. Communications in Mathematics, 32(2):27-54, 2024.
- [18] S. Lopes. Noncommutative algebra and representation theory: symmetry, structure invariants. *Communications in Mathematics*, 32(3):63–117, 2024.
- [19] R. Tang, N. Xu, and Y. Sheng. Symplectic structures, product structures and complex structures on Leibniz algebras. *Journal of Algebra*, 647:710–743, 2024.
- [20] L. Šnobl and P. Winternitz. Classification and Identification of Lie Algebras. American Mathematical Society, Providence, RI, 2014.

Received: June 27, 2025

Accepted for publication: June 27, 2025 Communicated by: Ivan Kaygorodov