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Some arithmetic properties of Weil polynomials of the form
t2g + atg + qg

Alejandro J. Giangreco Maidana

Abstract. An isogeny class A of abelian varieties defined over a finite field is said to
be cyclic if every variety in A has a cyclic group of rational points. In this paper we
study the local cyclicity of Weil-central isogeny classes of abelian varieties, i.e. those
with Weil polynomials of the form fA(t) = t2g + atg + qg, as well as the local growth
of the groups of rational points of the varieties in A after finite field extensions. We
exploit the criterion: an isogeny class A with Weil polynomial f is cyclic if and only
if f ′(1) is prime with f(1) divided by its radical.

Contents

1 Introduction 1

2 Generalities on abelian varieties 4

3 Weil-central isogeny classes 4

3.1 Weil polynomial after field extension . . . . . . . . . . . . . . . . . . . . . 5
3.2 Local growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Local cyclicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Examples 11

1 Introduction

In this paper we study abelian varieties defined over finite fields with a cyclic group
of rational points, and “cyclic base field extensions”. This subject is motivated by both
applications and theory.
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• Finite subgroups of abelian varieties over finite fields are suitable for multiple appli-
cations. Cyclic subgroups of the group of rational points are used, for example, in
cryptography, where the discrete logarithm problem is exploited. Abelian varieties
can be very abstract objects. Jacobians of algebraic curves are abelian varieties and
they are more tractable for application purposes.

• The statistics on cyclic varieties are related to Cohen-Lenstra heuristics (see [1]),
which, roughly speaking, states that random abelian groups tend to be cyclic. His-
torically, the question of cyclicity arose in the context of the conjectures of Lang and
Trotter (see [7]): given an elliptic curve defined over the rational numbers, we are
interested in the set of primes such that the reduction is a cyclic elliptic curve. This
question was studied also by Serre, Gupta, and Murty. Generalizations to higher
dimensions were also done.

We restrict our study to abelian varieties with Weil polynomial that have the form
t2g + atg + qg. This includes elliptic curves, widely used in cryptography, such as isogeny-
based cryptography. It also includes abelian surfaces with zero trace, “almost all” of them
being isogenous to a principally polarizable abelian surface and to a Jacobian of a genus 2
curve.

This leads to give the following:

Definition 1.1. Given an abelian variety A defined over a finite field k, an isogeny class A
of abelian varieties defined over k and a rational prime ℓ, we say that

1. A is cyclic if its group A(k) of rational points is cyclic;

2. A is ℓ-cyclic if the ℓ-primary component A(k)ℓ of its group A(k) of rational points
is cyclic;

3. A is cyclic if the abelian variety A is cyclic for all A ∈ A;

4. A is ℓ-cyclic if the abelian variety A is ℓ-cyclic for all A ∈ A.

This paper concerns the cyclicity of isogeny classes. The Honda–Tate theory simplifies
the study of isogeny classes by studying their Weil polynomials. Moreover, it is easy to
verify the cyclicity of an isogeny class A given its Weil polynomial fA. Let n̂ denote the
ratio of an integer n to its radical, then, the cyclicity criterion is stated as follows.

Theorem 1.2 (A. Giangreco, 2019, [2]). Let A be a g-dimensional Fq-isogeny class of abelian
varieties corresponding to the Weil polynomial fA(t). Then A is cyclic if and only if f ′

A(1)

is coprime with f̂A(1).

This is in fact a local criterion (see Section 3.3) that can be easily deduced from the
proof of Theorem 1.2. Asymptotic results about the cyclicity of abelian varieties were
found in [3]. Studying abelian varieties in all their generality is very complicated, so we
will focus on the following family.
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Definition 1.3. An isogeny class A of g-dimensional abelian varieties defined over the finite
field Fq is said to be Weil-central if its Weil polynomial has the form

fA(t) = t2g + atg + qg.

In this paper we study the local cyclicity of Weil-central isogeny classes after base field
extension as well as the local growth of their group of rational points. Given an abelian
variety A defined over the finite field Fq with q elements, and belonging to an isogeny class
A, we denote by An the Fqn-isogeny class of A. For any prime number ℓ, let vℓ(·) be the
usual ℓ-adic valuation over the rational numbers. Thus, for an ℓ-cyclic isogeny class A we
are interested in the following sets:

gℓ(A) := {n ∈ N : vℓ(fAn
(1)) > vℓ(fA(1))} ∪ {1}, and,

cℓ(A) := {n ∈ N : An is ℓ-cyclic and vℓ(fAn
(1)) > vℓ(fA(1))} ∪ {1}.

The first set gives the extensions for which the ℓ-primary component of the group of
rational points is strictly bigger than the one over the base field. The second set gives the
cyclic behavior of the ℓ-component after such finite field extensions. Observe that we have

cℓ(A) = gℓ(A) \ {n ∈ N : An is not ℓ-cyclic}.

For an integer z we denote by ωℓ(z) the order of z in the multiplicative group (Z/ℓZ)×,
i.e. the smallest integer m such that zm ≡ 1 (mod ℓ). Then, our main result is stated as
follows.

Theorem 1.4. Let ℓ be a prime and A be an ℓ-cyclic Weil-central isogeny class of ordinary
abelian varieties of dimension g defined over Fq. Suppose that ℓ does not divide g(qg − 1).
Let Sg,ℓ be the set of positive odd multiples of ℓ which are coprime with g. Then, provided
that vℓ(fA(1)) ≥ 1, the set gℓ(A) contains Sg,ℓ and the set cℓ(A) contains the numbers in
Sg,ℓ which are not divisible by ωℓ(q

g).

Remark 1.5. From Lemma 3.5 about the cyclicity, it follows that vℓ(fA(1)) ≥ 2 implies
that ℓ does not divide qg − 1, provided that the cyclicity hypothesis of Theorem 1.4 holds.

Organization of the paper

In Section 2 we recall some generalities about abelian varieties. Section 3 is devoted
to the proof of Theorem 1.4. It will be proved in different lemmas that can be useful by
themselves. We first study (Lemma 3.1) for which extensions a Weil-central isogeny class
“remains” Weil-central. Then we study in Lemma 3.3 the growth behavior and we prove
the assertion of Theorem 1.4 about the set gℓ(A). Finally, we study the cyclicity and
prove, as a consequence of Corollary 3.6, the assertion of Theorem 1.4 about the set cℓ(A).
We discuss some examples in Section 4.
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2 Generalities on abelian varieties

We refer the reader to [9] for the general theory of abelian varieties, and to [13] for
abelian varieties over finite fields.

Let q = pr be a power of a prime, and let k = Fq be a finite field with q elements. Let
A be an abelian variety of dimension g over k. The set A(k) of rational points of A is a
finite abelian group. It is the kernel of the endomorphism 1−F , where F is the well known
Frobenius endomorphism of A. Multiplication by an integer n is a group homomorphism
whose kernel An is a finite group scheme of rank n2g. The group structure of the groups
of points over k is known:

An(k) ∼= (Z/nZ)2g, p ∤ n

Ap(k) ∼= (Z/pZ)i, 0 ≤ i ≤ g.
(1)

For a fixed prime ℓ ( 6= p), the Aℓn form an inverse system under An+1
ℓ→ An, and we

can define the Tate module Tℓ(A) by its inverse limit lim←−Aℓn(k). This is a free Zℓ-module

of rank 2g and the absolute Galois G group of k over k operates on it by Zℓ-linear maps.
The Frobenius endomorphism F of A acts on Tℓ(A) by a semisimple linear operator, and

its characteristic polynomial fA(t) is called Weil polynomial of A (also called characteristic
polynomial of A). The Weil polynomial is independent of the choice of the prime ℓ. Tate
proved in [10] that a k-isogeny class A is determined by the Weil polynomial fA of any
A ∈ A, i.e. two abelian varieties A and B defined over k are isogenous (over k) if and
only if fA = fB. Thus the notation fA is justified. If A is simple, fA(t) = hA(t)

e for some
irreducible polynomial hA.

Weil proved that all of the roots of a Weil polynomial have absolute value
√
q (they are

called q-Weil numbers). Thus, the Weil polynomial of an isogeny class A has the general
form

fA(t) = t2g + a1t
2g−1 + · · ·+ agt

g + ag−1qt
g−1 + · · ·+ a1q

g−1t+ qg.

The cardinality of the group A(k) of rational points of A equals fA(1), and thus it is
an invariant of the isogeny class. An abelian variety A is said to be ordinary if it has a
maximal p-rank. This is equivalent of having the central term ag of its Weil polynomial
coprime with p. Thus, ordinariness it is also an invariant of the isogeny class.

Let {αi}2gi=1 be the set of roots of the Weil polynomial of the abelian variety A ∈ A
defined over Fq. For a positive integer n, we denote by An the Fqn-isogeny class of the
variety A as defined over Fqn. If the polynomial

∏
(t− αn

i ) has no repeated roots, then it
corresponds to the Weil polynomial of An.

3 Weil-central isogeny classes

As we stated, we are interested in Weil-central isogeny classes of abelian varieties. They
have a Weil polynomial as follows

fA(t) = t2g + atg + qg. (2)
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Among these isogeny classes are those of elliptic curves and zero-trace abelian surfaces,
with Weil polynomials fE(t) = t2 + at+ q and fS(t) = t4 + at2 + q2, respectively. Cyclicity
of elliptic curves and their extensions were studied by Vlăduţ in [11] and [12].

The following facts motivate the study of such isogeny classes. We know from [4] that
among Weil-central isogeny classes of abelian surfaces, only such with Weil polynomial
t4 − qt2 + q2, and p ≡ 1 (mod 3) do not contain a principally polarizable variety. Also,
from [5], very few do not contain the Jacobian of a 2-genus curve.

Note that in order that a polynomial of the form (2) to be a Weil polynomial, we need
that 0 ≤| a |≤ 2

√
qg. Indeed, if not, the polynomial x2 + ax+ qg would have two different

real roots, which would imply that (2) has complex roots of absolute value different than√
q. This also implies that the real part of the roots of x2 + ax+ qg is exactly −a/2.
Notations. We denote simply by (a, q)g the Weil-central isogeny class A with Weil

polynomial given by the expression (2) above. We denote by Ng,n(a) the cardinalities of
the groups of rational points of the varieties in An, where A is defined by (a, q)g. If A is
clear from the context, we write Ng,n. We write N instead of Ng,1 and Nn instead of Ng,n

if the dimension g is clear from the context. We recall that Ng,n(A) = fAn
(1).

3.1 Weil polynomial after field extension

Our results on cyclicity and growth are for Weil-central isogeny classes. Thus, in this
section we study which extensions An of a Weil-central isogeny class A are Weil-central
as well. Lemma 3.1 below gives the answer and is from where the set Sg,ℓ of Theorem 1.4
contains only numbers which are coprime with g.

When dealing with cyclicity, it is natural to ask about the simplicity or not of the
abelian variety. For example, in the case of a Weil-central isogeny class A of abelian
surfaces, we know that An splits for n even (see [6, Theorem 6]). However, our results
about Weil-central isogeny classes (as well as our results on cyclicity) are independent on
the simplicity or not of the considered abelian variety.

Lemma 3.1. Suppose the isogeny class A has Weil polynomial fA(t) = t2g+a1t
g+ qg, with

gcd(a1, p) = 1, i.e. it is an ordinary isogeny class. Then, its extensions An have Weil
polynomials fAn

(t) = t2g + ant
g + qng for every n such that gcd(n, g) = 1, where an is

obtained recursively

an = (−1)nan1 −
⌊n/2⌋∑

i=1

(
n

i

)
an−2iq

gi.

Proof. We first prove that if R = {α1, . . . , αg, q/α1, . . . , q/αg} is the set of roots of fA,
then

{αn
1 , . . . , α

n
g , (q/α1)

n, . . . , (q/αg)
n}

is the set of roots of fn(t) := t2g + ant
g + qng. Then we will prove that fn has no repeated

roots if and only if gcd(n, g) = 1. Thus, for β ∈ R, we will show that βn is a root of

t2g + ant
g + qng.
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It is clear that βn is a root of

t2g − (βng + (q/β)ng)tg + qng ∈ C[t].

Thus we have to show that

an = −(βng + (q/β)ng) ∈ Z.

In general, if we define cn = −xn − (z/x)n for n > 0 and c0 = −1, we have that

(−1)ncn1 = (x+ z/x)n

= xn + (z/x)n +

(
n

1

)[
xn−1(z/x) + x(z/x)n−1

]
+ . . .

. . .+

(
n

i

)[
xn−i(z/x)i + xi(z/x)n−i

]
+ . . .

. . .+

(
n

⌊n/2⌋

)
A,

where (observe that for n odd we have that ⌊n/2⌋ = (n− 1)/2)

A = xn/2(z/x)n/2 or A = x(n+1)/2(z/x)(n−1)/2 + x(n−1)/2(z/x)(n+1)/2

for n even or odd, respectively. Equivalently,

A = z⌊n/2⌋(x+ z/x)2(n/2−⌊n/2⌋).

Then

(−1)ncn1 = −cn −
(
n

1

)
zcn−2 − . . .−

(
n

i

)
zicn−2i − . . .−

(
n

⌊n/2⌋

)
z⌊n/2⌋cǫ,

where ǫ = 0, 1 for n even or odd, respectively. Finally

cn = (−1)n+1cn1 −
⌊n/2⌋∑

i=1

(
n

i

)
cn−2iz

i.

By taking x = αg and z = qg, we finish the first part of the proof.
Now we prove that fn(t) has no repeated roots if and only if gcd(n, g) = 1. For

k = 0, 1, . . . , g − 1, let

θ/g + k2π/g, and − θ/g − k2π/g,

be the arguments of the complex roots in R of fA, respectively, where θ and −θ are the
arguments of the roots of t2 + a1t + qg, and 0 < θ < π. The polynomial fn has repeated
roots if and only if two of the roots in R to the n-th power are equal. We have
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1. either αn
i = αn

j for some i 6= j ∈ {0, . . . , g − 1}. Then

2πn

g
(i− j) ≡ 0 (mod 2π),

which holds if and only if n(i− j)/g ∈ Z if and only if gcd(n, g) > 1;

2. either αn
i = (qg/αj)

n for some i, j ∈ {0, . . . , g − 1}. Then
n

g
[2θ + 2π(i+ j)] ≡ 0 (mod 2π).

A necessary condition is that θ ∈ πQ. Note that cos(θ) = −a1/(2
√
qg). On one hand,

it can be shown (from [8, Thm. 1], for example) that 2 cos(θ) is an algebraic integer
if θ ∈ πQ. On the other hand, a1/

√
qg is an algebraic number of degree ≤ 2 which

is not an algebraic integer since gcd(a1, p) = 1. Thus, this would be a contradiction.

The Honda-Tate theory for ordinary abelian varieties ensures that the polynomial
fn(t) = t2g+ant

g+ qg obtained is indeed the Weil polynomial fAn
of the extension An.

3.2 Local growth

Given an ℓ-cyclic isogeny class A (with ℓ | fA(1), i.e. with non trivial ℓ-primary
component) it is clear that for all n, ℓ | fAn

(1) since A(Fq) ⊂ A(Fqn). Thus, it is more
interesting to know for which of these values of n the ℓ-part increases (relatively to the
base field). Lemma 3.3 below gives an answer.

We first fix a polynomial that will be useful. For every positive integer n, we set

Pn(x) :=

n−1∑

i=0

xi.

Note that (x− 1)Pn(x) = xn− 1. Notice that Lemma 3.3 below is only valid for n odd (so
only odd integers are considered in Theorem 1.4). We write first the polynomial Pn in a
convenient way:

Lemma 3.2. For n odd, the polynomial Pn(x) can be obtained recursively:

Pn(x) = (x+ 1)n−1 −
(n−1)/2∑

i=1

[(
n

i

)
− 2

(
n− 1

i− 1

)]
xiPn−2i(x),

with P1(x) = 1.

Proof. The proof is straightforward by using induction on n and showing directly that the
equality (x− 1)Pn(x) = (x− 1)“right-hand-side” holds.
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Lemma 3.3. For every positive odd integer n and any prime integer ℓ, we have

vℓ(Nn) ≥ min{2vℓ(N1), vℓ(N1) + vℓ(nPn(q
g))},

provided that ℓ | N1.

Proof. We suppose n odd. Recall that for Weil-central isogeny classes

Ng,1 = qg + a1 + 1, and,

Ng,n = qgn + an + 1,

where an can be computed by using Lemma 3.1. From the hypothesis vℓ(N1) := m > 0 we
have

Ng,1 ≡ qg + a1 + 1 ≡ zℓm (mod ℓ2m), 0 < z < ℓm, ℓ ∤ z.

From now, all congruences are modulo ℓ2m. First, we show by induction on n that:

an ≡ −qgn − 1 + zℓmnPn(q
g).

For n = 1,

a1 ≡ −qg − 1 + zℓmP1(q
g),

with P1 = 1.
Using the induction hypothesis for i = 1, . . . , (n − 1)/2 (so that n − 2i < n), we have

that

an−2iq
gi ≡

[
−qg(n−2i) − 1 + zℓm(n− 2i)Pn−2i(q

g)
]
qgi

≡ −qgn−gi − qgi + zℓmqgi(n− 2i)Pn−2i(q
g),

then taking the sum over i = 1, . . . , (n− 1)/2

∑(
n

i

)
an−2iq

gi ≡
(n−1)/2∑

i=1

(
n

i

)[
−qgn−gi − qgi + zℓmqgi(n− 2i)Pn−2i(q

g)
]

≡ −(qg + 1)n + qgn + 1 + zℓm
(n−1)/2∑

i=1

(
n

i

)
(n− 2i)

[
qgiPn−2i(q

g)
]
.

From Lemma 3.1, and using the fact that for m > 0,

(x+ yℓm)n ≡ xn + nxn−1yℓm (mod ℓ2m)

8
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at the step marked with (∗), we have

an ≡ an1 −
∑(

n

i

)
an−2iq

gi

≡ [−(qg + 1) + zℓm]n −
[
− (qg + 1)n + qgn + 1 + zℓm

(n−1)/2∑

i=1

(
n

i

)
(n− 2i)

[
qgiPn−2i(q

g)
]]

(∗)≡ −(qg + 1)n + n(qg + 1)n−1zℓm

−
[
− (qg + 1)n + qgn + 1 + zℓm

(n−1)/2∑

i=1

(
n

i

)
(n− 2i)

[
qgiPn−2i(q

g)
]]

≡ −qgn − 1 + zℓm
[
n(qg + 1)n−1 −

(n−1)/2∑

i=1

(
n

i

)
(n− 2i)

[
qgiPn−2i(q

g)
] ]

≡ −qgn − 1 + zℓmn

[
(qg + 1)n−1 −

(n−1)/2∑

i=1

[(
n

i

)
− 2

(
n− 1

i− 1

)][
qgiPn−2i(q

g)

]]

︸ ︷︷ ︸
Pn(qg)

,

which completes the induction part. Then we compute Nn:

Nn ≡ qgn + an + 1

≡ qgn + [−qgn − 1 + zℓmnPn(q
g)] + 1

≡ zℓmnPn(q
g).

Finally, we have Nn = zℓmnPn(q
g) + sℓ2m, for some integer s. The result follows.

Since vℓ(nPn(q
g)) ≥ 1 if ℓ | n, we have then proved the assertion about gℓ(A) of

Theorem 1.4.

Remark 3.4. From Lemma 3.3 above, we also have that gℓ(A) ⊃ {n ∈ N : ℓ | Pn(q
g)}.

However, from Lemma 3.5 (see Section 3.3 below), ℓ | Pn(q
g) implies ℓ | (qg)n− 1, then An

is not necessarily ℓ-cyclic.

3.3 Local cyclicity

In this section we will give the characterization of the local cyclicity of Weil-central
isogeny classes and their extensions. Following the definition of cyclicity for isogeny classes,
a local version of [2, Theorem 2.2] gives the cyclicity criterion: for any prime ℓ and for
any isogeny class A we have that

A is ℓ-cyclic if and only if ℓ does not divide gcd(f̂A(1), f
′
A(1)). (3)

This has a meaning only if A(k)ℓ is not trivial for some A ∈ A (and thus for all A ∈ A),
equivalently if ℓ divides fA(1). Sometimes we use a weaker version of the cyclicity criterion,
namely ℓ ∤ gcd(fA(1), f

′
A(1)) implies that the isogeny class is ℓ-cyclic. We give a complete

description of the local cyclicity:
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Lemma 3.5. Given a Weil-central isogeny class (a, q)g and a rational prime ℓ:

1. if ℓ ∤ g and ℓ ∤ qg − 1, then (a, q)g is ℓ-cyclic;

2. if ℓ ∤ g, ℓ | qg − 1 and ℓ | f(1), then (a, q)g is ℓ-cyclic if and only if ℓ2 ∤ f(1);

3. if ℓ | g, then (a, q)g is ℓ-cyclic if and only if ℓ2 ∤ f(1).

Proof. Recall that (a, q)g corresponds to the isogeny class with Weil polynomial of the
form f(t) = t2g + atg + qg. Then we have

f(1) = 1 + a + qg = (qg − 1) + (a + 2),

f ′(1) = g(2 + a).

Then we prove the lemma point by point using the cyclicity criterion (3), which is equiv-
alent to

A is not ℓ-cyclic if and only if ℓ2 | f(1) and ℓ | f ′(1). (4)

1. If we suppose that (a, q)g is not ℓ-cyclic, then ℓ2 | (qg − 1) + (a + 2) and ℓ | a + 2.
This implies ℓ | qg − 1, a contradiction.

2. We prove the assertion by contraposition:

(a, q)g is not ℓ-cyclic⇔ ℓ2 | f(1), ℓ | f ′(1) from criterion (4)

⇔ ℓ2 | f(1), ℓ | a + 2 since ℓ ∤ g

⇔ ℓ2 | f(1) since ℓ | qg − 1.

3. In the case ℓ | g, we have that ℓ | f ′(1). The result can be deduced from the
contrapositive version (4) of the cyclicity criterion.

As we consider here Weil-central isogeny classes such that the ℓ-part grows, this implies
in particular that ℓ2 | fn(1). Thus, Lemma 3.5 says that the local cyclicity at a prime ℓ is
possible only if ℓ ∤ g and ℓ ∤ (qn)g − 1.

Corollary 3.6. Suppose ℓ ∤ g and ℓ ∤ qg − 1 (in particular A1 is ℓ-cyclic), then

{n ∈ N : An is ℓ-cyclic}

contains the set of positive integers with no common factor with g and which are not
multiple of ωℓ(q

g).

10
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Proof. In order to have that An is Weil-central, we do not consider n with a common factor
with g (see Lemma 3.1). For the ℓ-cyclicity of (an, q

n)g we use item (1) of Lemma 3.5.
Observe that in this case, the cyclicity is independent of the value an. We set δ := ωℓ(q

g)
and we consider the Euclidean division

n = cδ + r, 0 ≤ r < δ.

Then we have

qgn ≡ qg(cδ+r) ≡ qgcδqgr ≡ qgr (mod ℓ),

which is congruent to 1 if and only if r is zero, if and only if n is a multiple of δ.

Observe that here we do not consider the growth of the ℓ-part, only the cyclicity.
Moreover, the isogeny classes An can be “ℓ-trivial”. We have then proved the assertion
about cℓ(A). Finally, this completes the proof of Theorem 1.4.

4 Examples

Consider the ordinary elliptic curve (g = 1) defined by the Weil polynomial

fE(t) = t2 + t + 73.

We have fE(1) = 75 = 3× 52 and qg − 1 = 72 is not divisible by 5. Then the isogeny class
E = (1, 73)1 is 5-cyclic and so the conditions of Theorem 1.4 are verified. We also have
ω5(73) = 4. Consequently

g5(E) ⊃ {n ∈ N : 5 | n, 2 ∤ n},
c5(E) ⊃ {n ∈ N : 5 | n, 2 ∤ n, 4 ∤ n} = {n ∈ N : 5 | n, 2 ∤ n}.

Note that the elliptic curve E is 3-cyclic since v3(fE(1)) = 1. However, we cannot apply
Theorem 1.4 for ℓ = 3 since qg − 1 = 72 is divisible by 3. This and another few examples
are listed in Table 1.

(a, q)g fA(1) ℓ ωℓ(q
g) ⊂ gℓ(A) ⊂ cℓ(A)

(1, 73)1 3× 52 5 4 {n ∈ N : 5 | n, 2 ∤ n} {n ∈ N : 5 | n, 2 ∤ n}
(11, 17)3 52 × 197 5 4 {n ∈ N : 5 | n, 2 ∤ n, 3 ∤ n} {n ∈ N : 5 | n, 2 ∤ n, 3 ∤ n}
(17, 19)3 13× 232 23 22 {n ∈ N : 23 | n, 2 ∤ n, 3 ∤ n} {n ∈ N : 23 | n, 2 ∤ n, 3 ∤ n, 22 ∤ n}
(20, 7)6 70× 412 41 20 {n ∈ N : 41 | n, 2 ∤ n, 3 ∤ n} {n ∈ N : 41 | n, 2 ∤ n, 3 ∤ n, 20 ∤ n}

Table 1: Examples related to Theorem 1.4

Note that in the last two rows of Table 1, the parts 22 ∤ n and 20 ∤ n are unnecessary.
For all cases, the sets obtained and included in gℓ(A) and cℓ(A), respectively, are the same.
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Table 2 shows the valuations vℓ(A5), vℓ(A15), vℓ(A25), . . . for the elliptic curve case, as well
as the valuations for the other examples of Table 1.

(a, q)g ℓ vℓ(A) vℓ(An) Last n
(1, 73)1 5 2 3 3 4 3 3 3 3 4 3 3 3 3 5 3 3 3 3 4 175
(11, 17)3 5 2 3 4 3 3 3 3 3 3 5 3 3 4 3 3 3 3 3 3 265
(17, 19)3 23 2 4 4 4 6 4 4 4 6 4 4 4 4 4 4 4 4 4 4 1219
(20, 7)6 41 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 2173

Table 2: Valuation vℓ(An) for n in the sets of Table 1

Consider the example given previously A1 = (11, 17)3, that is, defined by the Weil
polynomial

fA(t) = t6 + 11t3 + 173.

Table 3 shows information about extensions An for n up to 10. As expected from (the
proof of) Lemma 3.1, when n and g have a common factor, the isogeny class An is not
Weil-central. The Weil polynomial of An is of the form he, with h irreducible and ordinary.
So An is the power of a lower dimensional class of abelian varieties, which are Weil central.
We represent them as (a, q)eg′ in Table 3. For example, A3 is the product of three copies of
the isogeny class of elliptic curves with Weil polynomial t2 + 11t+ 173. Theorem 1.4 says
that the 5-part grows with respect to the base field for n = 5. Besides that, we see that for
n ∈ {4, 8, 10} the 5-part grows as well. Among these extensions, An is 5-cyclic for n = 5
(Theorem 1.4). It is not 5-cyclic for n = 4, and thus for n = 8 (since A8 is an extension of
A4), but it is 5-cyclic for n = 10.

n An Simple? Weil-central? v5(fn(1)) 5-cyclic?

1 (11, 171)3 Yes Yes 2 Yes
2 (9705, 172)3 Yes Yes 2 Yes
3 (11, 173)3

1
No No 2 No

4 (−45911887, 174)3 Yes Yes 3 No
5 (1295031331, 175)3 Yes Yes 3 Yes
6 (9705, 176)3

1
No No 2 No

7 (−8687006247293, 177)3 Yes Yes 2 Yes
8 (−942656893441247, 178)3 Yes Yes 3 No
9 (−160798, 179)3

1
No No 2 No

10 (4047739954748000025, 1710)3 Yes Yes 3 Yes

Table 3: An for n up to 10, where A1 = (11, 17)3
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2:521–560, 1969.

Received: June 27, 2025
Accepted for publication: September 19, 2025
Communicated by: Tiago Macedo, Jaqueline Mesquita, Mariel Saez and Rafael Potrie

13


	Introduction
	Generalities on abelian varieties
	Weil-central isogeny classes
	Weil polynomial after field extension
	Local growth
	Local cyclicity

	Examples

