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Transposed δ-Poisson algebra structures
on null-filiform associative algebras

Nigora Daukeyeva, Maqpal Eraliyeva and Feruza Toshtemirova

Abstract. In this paper, we consider transposed δ-Poisson algebras, which are a
generalization of transposed Poisson algebras. In particular, we classify all transposed
δ-Poisson structures on null-filiform associative algebras. A complete classification
of transposed δ-Poisson algebras corresponding to each value of the parameter δ is
provided. Furthermore, we construct all δ-Poisson algebra structures on null-filiform
associative algebras, and show that they are trivial δ-Poisson algebras.
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1 Introduction

Poisson algebras were first studied in connection with Poisson geometry in the 1970s.
Since that time, they have appeared in a wide range of mathematical and physical dis-
ciplines, including Poisson manifolds, algebraic geometry, operads, quantization theory,
quantum groups, and both classical and quantum mechanics. More recently, the notion of
transposed Poisson algebras was introduced in [7], providing a dual perspective on Poisson
structures and leading to novel algebraic frameworks. This concept has found applications
in various algebraic structures, including Novikov–Poisson algebras and 3-Lie algebras [9].
Further developments include Poisson structures on canonical algebras and finitary inci-
dence algebras of arbitrary posets over commutative unital rings [15, 18,28, 32], as well as
modified double Poisson brackets and mixed double Poisson algebras [11].

The study of δ-versions of Poisson algebras has also been advanced. In [2], two new
types of δ-Poisson and transposed δ-Poisson algebras were studied. The δ-Poisson algebras
emerged as a generalization of both Poisson and anti-Poisson algebras, and are closely
related to δ-derivations introduced by Filippov [14] (see also [16,34]). It was shown in that
paper that transposed δ-Poisson algebras share many similarities with those studied in [7].
However, unlike transposed Poisson algebras, transposed anti-Poisson algebras possess
simple algebras in the complex finite-dimensional case. Furthermore, it was proven that
the tensor product of two δ-Poisson (respectively, transposed δ-Poisson) algebras is again
a δ-Poisson (respectively, transposed δ-Poisson) algebra.

A related line of research concerns δ-Novikov and δ-Novikov–Poisson algebras. In
[17], their structure and properties were investigated as a generalization of Novikov and
Novikov–Poisson algebras characterized by a scalar parameter δ. From these results, a cru-
cial difference between Novikov and anti-Novikov algebras was observed: unlike Novikov
algebras, anti-Novikov algebras admit complex non-commutative simple finite-dimensional
algebra. The article also provided constructions of δ-Novikov algebras, proving that the
Kantor product of two multiplications of a δ-Novikov–Poisson algebra yields a δ-Novikov
algebra, and that the tensor product of two δ-Novikov–Poisson algebras again admits a δ-
Novikov–Poisson structure under the standard multiplication. Moreover, relations between
δ-derivations, (transposed) δ-Poisson algebras, and δ-Novikov–Poisson algebras were estab-
lished. In particular, a δ-Novikov–Poisson algebra under the commutator product gives
rise to a transposed (δ + 1)-Poisson algebra, and the notion of δ-Gelfand–Dorfman alge-
bras was introduced, with commutative δ-Gelfand–Dorfman algebras yielding transposed
(δ + 1)-Poisson algebras.

Research on transposed Poisson structures themselves has gained significant traction
in recent years. A comprehensive algebraic and geometric classification was given in [8],
expanding the understanding of their structural properties. Various works have explored
transposed Poisson structures on different classes of Lie algebras: Block Lie algebras and
superalgebras, and Witt-type algebras [19, 20, 21], as well as quasi-filiform Lie algebras of
maximum length [4]. Further investigations considered upper triangular matrix Lie alge-
bras [23], incidence algebras [22], and the connection between transposed Poisson algebras
and 1

2
-derivations of Lie algebras [13]. Transposed Poisson structures on not-finitely graded
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Witt-type and Virasoro-type algebras were also studied in [25, 26], emphasizing their rel-
evance in theoretical physics and representation theory. Descriptions of all transposed
Poisson structures on certain Lie algebras were obtained in [3, 24, 27, 29, 30, 31, 33]. More
recent contributions include connections to Jordan superalgebras [12], and applications to
classification problems in non-associative algebras [16].

Finally, regarding null-filiform associative algebras, all Poisson algebra structures were
constructed in [1], and a classification of all transposed Poisson algebra structures on these
algebras was given in [5]. This paper continues this direction by providing a complete
classification of all transposed δ-Poisson algebra structures on null-filiform associative al-
gebras. In Section 2, we introduce the necessary definitions and results that form the basis
of our study, and in Section 3, we describe all such structures.

Using the Theorems 3.10 and 3.24, we derive the classification of 4-dimensional complex
transposed δ-Poisson algebra associated on null-filiform associative algebra µ4

0.

Main Theorem. Let (µ4
0, ·, [−,−]) be a transposed δ-Poisson algebra. Then, this algebra

is isomorphic to one of the following pairwise non-isomorphic algebras:

TP0(1, 0, 0, 0), TP1(0, 1, α, 0), TP1(0, 1, 0, α),

TPδ(0, 1, 0, 0), TPδ(0, 0, α, 0),TPδ(0, 0, 0, 1),TP−4(0, 1, 0, α),TP 3
2
(0, 0, α, 1) α ∈ C.

2 Preliminaries

In this section, we introduce the relevant concepts and known results. Unless stated
otherwise, all algebras considered here are over the field C. All parameters, including δ,
are complex numbers as well.

Definition 2.1 ( [7]). Let L be a vector space equipped with two bilinear operations

·, [−,−] : L⊗ L → L,

where (L, ·) is a commutative associative algebra and (L, [−,−]) is a Lie algebra.
The triple (L, ·, [−,−]) is called a δ-Poisson algebra if

[x, y · z] = δ([x, y] · z + y · [x, z]), for all x, y, z ∈ L. (1)

The triple (L, ·, [−,−]) is called a transposed δ-Poisson algebra if:

δz · [x, y] = [z · x, y] + [x, z · y]. (2)

If we take δ = 1 and δ = 2, respectively, in identities (1) and (2), then we obtain the
definitions of the Poisson and the transposed Poisson algebras, respectively.

A (transposed) δ-Poisson algebra L is called trivial, if L · L = 0 or [L,L] = 0.
Similar to the results in [7], the following proposition shows that the compatibility

relations of the δ-Poisson algebra and the transposed δ-Poisson algebra are independent.

3



Nigora Daukeyeva, Maqpal Eraliyeva and Feruza Toshtemirova

Proposition 2.2. Let (L, ·) be a commutative associative algebra and (L, [−,−]) be a Lie
algebra. Then for any δ ̸= 0, (L, ·, [−,−]) is both a δ-Poisson algebra and a transposed
δ-Poisson algebra if and only if

x · [y, z] = [x · y, z] = 0.

Proof. Let (L, ·, [−,−]) be a δ-Poisson and transposed δ-Poisson algebra, then according
to [2], it satisfies the following identities, respectively:

[x, y · z] + [y, z · x] + [z, x · y] = 0, (3)

x · [y, z] + y · [z, x] + z · [x, y] = 0 (4)

for all x, y, z ∈ L
It is easy to see that

0 = δz · [x, y] + [y, x · z]− [x, y · z] (1)
=

δ
(
z · [x, y] + [y, x] · z + x · [y, z]− [x, y] · z − y · [x, z]

)
=

δ
(
x · [y, z] + y · [z, x]− z · [x, y]

)
.

Then by Eq. (4), we have z · [x, y] = 0. By Eq. (1) again, we have [x, y · z] = 0.

Remark 2.3. If we take δ = 0 in Proposition 2, the condition [x · y, z] = 0 is necessary and
sufficient for (L, ·, [−,−]) to be both a 0-Poisson and a transposed 0-Poisson algebra.

For an algebra A, we consider the series

A1 = A, Ai+1 =
i∑

k=1

AkAi+1−k, i ≥ 1.

We say that an algebra A is nilpotent if Ai = 0 for some i ∈ N. The smallest integer i
satisfying Ai = 0 is called the nilpotency index of A.

Definition 2.4. An n-dimensional algebra A is called null-filiform if dimAi = (n + 1) −
i, 1 ≤ i ≤ n+ 1.

All null-filiform associative algebras were classified in [10, Proposition 5.3].

Theorem 2.5 (see [10]). An arbitrary n-dimensional null-filiform associative algebra is
isomorphic to the algebra:

µn
0 : ei · ej = ei+j, 2 ≤ i+ j ≤ n,

where {e1, e2, . . . , en} is a basis of the algebra µn
0 and all other products are defined to be

zero.
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Theorem 2.6 ( [6]). A linear map φ : µn
0 → µn

0 is an automorphism of the algebra µn
0 if

and only if the map φ has the following form:

φ(e1) =
n∑

i=1

Aiei, φ(ei) =
n∑

j=i

∑
k1+k2+...+ki=j

Ak1Ak2 . . . Akiej, 2 ≤ i ≤ n,

where Ai ∈ C, and A1 ̸= 0.

2.1 Transposed Poisson algebra structures on null-filiform associative algebras

For the case δ = 2, all transposed Poisson algebra structures on null-filiform associative
algebras were completely classified in [5], where the following three theorems were obtained.

Theorem 2.7. Let (µn
0 , ·, [−,−]) be a transposed Poisson algebra defined on the associative

algebra (µn
0 , ·). Then the multiplication of (µn

0 , ·, [−,−]) has the following form:

TP2(α2, . . . , αn) :


ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[ei, ej] = (j − i)
n∑

t=i+j−1

αt−i−j+3et, 3 ≤ i+ j ≤ n+ 1.

The following theorem establishes a necessary and sufficient condition for two algebras
in the family TP2(α2, . . . , αn) to be isomorphic.

Theorem 2.8. Let TP2(α2, . . . , αn) and TP′
2(α

′
2, . . . , α

′
n) be isomorphic algebras. Then

there exists an automorphism φ between these algebras such that the following relation
holds for 2 ≤ t ≤ n:

t∑
i=2

∑
k1+···+ki=t

Ak1 ...Akiα
′
i =

t∑
j=2

t−j+1∑
i=1

∑
k1+k2=t−i−j+3

(t− 2i− j + 3)AiAk1Ak2αj. (5)

Theorem 2.9. Let (µn
0 , ·, [−,−]) be a transposed Poisson algebra and n ≥ 5. Then this

algebra is isomorphic to one of the following pairwise non-isomorphic algebras:

TP2(1, 0, . . . , 0), TP2(0, α, 0, . . . , 0),

TP2(0, . . . , 0, 1s, 0, . . . , 0, α2s−3, 0, . . . , 0), 4 ≤ s ≤ n, α ∈ C.

The cases for dimensions 2, 3, and 4 are presented below. In the 2-dimensional associa-
tive algebra with multiplication given by e1 · e1 = e2, [7] proved that every 2-dimensional
complex transposed Poisson algebra is isomorphic to one of the following transposed Pois-
son algebras:

TP2(0) : e1 · e1 = e2; TP2(1) : e1 · e1 = e2, [e1, e2] = e2.
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In the 3-dimensional associative algebra, every 3-dimensional complex transposed Pois-
son algebra is isomorphic to one of the following transposed Poisson algebras:

TP2(1, 0), TP2(0, α), α ∈ C.

Finally, in the 4-dimensional associative algebra, every 4-dimensional complex trans-
posed Poisson algebra is isomorphic to one of the following transposed Poisson algebras:

TP2(1, 0, 0), TP2(0, α, 0), TP2(0, 0, 1), α ∈ C.

3 Transposed δ-Poisson algebra structures on null-filiform associative
algebras

Let (µn
0 , ·, [−,−]) be a transposed δ-Poisson algebra. To determine the Lie multiplica-

tion table of the transposed δ-Poisson algebra structure, we set

[e1, e2] =
n∑

t=1

αtet.

Theorem 3.1. Let (µn
0 , ·, [−,−]) be a transposed δ-Poisson algebra. Then, for n ≥ 5, the

following restriction holds:

(δ3 − 3δ2 + 2δ)e3 · [e1, e2] = 0.

Proof. By considering the identity (2) for triples {e1, e1, ei} and {ei−1, e1, e2}:

δe1 · [e1, ei] = [e2, ei] + [e1, ei+1],

δei−1 · [e1, e2] = [ei, e2] + [e1, ei+1],

we derive the following recurrence relation

[e1, ei+1] =
δ

2

(
e1 · [e1, ei] + ei−1 · [e1, e2]

)
.

From this, we derive the following products

[e1, e3] = δe1 · [e1, e2], [e1, e4] =
δ2 + δ

2
e2 · [e1, e2], [e1, e5] =

δ3 + δ2 + 2δ

4
e3 · [e1, e2]. (6)

Now we consider Eq. (2) for the triple {e2, e1, e3} :

δe2 · [e1, e3] = [e3, e3] + [e1, e5].

From this we obtain
[e1, e5] = δ2e3 · [e1, e2]. (7)

From the Eqs. (6) and (7) we get the following

(δ3 − 3δ2 + 2δ)e3 · [e1, e2] = 0.

Thus, the theorem is proved.
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Corollary 3.2. Let (µn
0 , ·, [−,−]) be a transposed δ-Poisson algebra and n ≥ 5. Then

• If δ = 0, then [e1, e2] =
n∑

t=1

αtet and [e1, ei] = 0 for 3 ≤ i ≤ n. Note that this result

holds when n = 3 and n = 4 as well;

• If δ = 1, then [e1, ei] =
n∑

t=i−1

αt−i+2et for 2 ≤ i ≤ n;

• If δ = 2, then [e1, ei] = (i− 1)
n∑

t=i−1

αt−i+2et for 2 ≤ i ≤ n;

• If δ3 − 3δ2 + 2δ ̸= 0, then αt = 0 for 1 ≤ t ≤ n− 3 and

[e1, e2] = αn−2en−2 + αn−1en−1 + αnen, [e1, e4] =
δ2+δ
2

αn−2en,

[e1, e3] = δ(αn−2en−1 + αn−1en), [e1, ei] = 0, 5 ≤ i ≤ n.

3.1 Transposed 0-Poisson algebra structures on null-filiform associative algebras

Theorem 3.3. Let (µn
0 , ·, [−,−]) be a transposed 0-Poisson algebra. Then the multiplication

of (µn
0 , ·, [−,−]) has the following form:

TP0(α1, . . . , αn) :


ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, e2] =
n∑

t=1

αtet.

Proof. Let (µn
0 , ·, [−,−]) be a transposed 0-Poisson algebra. We consider the identity (2)

for the triple {ei−1, e1, e2}:

0 = [ei−1 · e1, e2] + [e1, ei−1 · e2],

or
[ei, e2] + [e1, ei+1] = 0. (8)

From Eq. (8) and Corollary 3.2, we deduce [ei, e2] = 0 for 2 ≤ i ≤ n.
Applying induction and the identity (2) for 3 < i+ j, we establish:

[ei, ej] = 0. (9)

We can write

0 = [ei · e1, ej] + [e1, ei · ej] = [ei+1, ej] + [e1, ei+j] = [ei+1, ej].

It is known that the Jacobi identity is observed for 3 different elements {x, y, z}. The
identity is satisfied if any 2 of these elements are equal. In our case, the elements e3, . . . , en
lie in the center of the Lie algebra. Therefore, the Jacobi identity is satisfied for all
elements. Hence, we obtain the transposed 0-Poisson algebras TP0(α1, . . . , αn).
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The following theorem establishes a necessary and sufficient condition for two algebras
in the family TP0(α1, . . . , αn) to be isomorphic.

Theorem 3.4. Let TP0(α1, . . . , αn) and TP′
0(α

′
1, . . . , α

′
n) be isomorphic algebras. Then

there exists an automorphism φ between these algebras such that the following relation
holds for 1 ≤ t ≤ n:

t∑
i=1

∑
k1+···+ki=t

Ak1 ...Akiα
′
i = A3

1αt. (10)

Proof. Using the automorphism of the algebra µn
0 from Theorem 2.6, we introduce the

following notations:

e′i = φ(ei), 1 ≤ i ≤ n.

Thus, we consider

[e′1, e
′
2] =

n∑
i=1

α′
ie

′
i =

n∑
i=1

α′
i

n∑
j=i

∑
k1+···+ki=j

Ak1 ...Akiej

=
n∑

i=1

n∑
j=i

∑
k1+···+ki=j

α′
iAk1 ...Akiej =

n∑
t=1

t∑
i=1

∑
k1+···+ki=t

α′
iAk1 ...Akiet.

On the other hand, we have

[e′1, e
′
2] = [

n∑
i=1

Aiei,
n∑

j=2

∑
k1+k2=j

Ak1Ak2ej] =
∑

k1+k2=2

A1Ak1Ak2

n∑
t=1

αtet =
n∑

t=1

A3
1αtet.

Comparing the coefficients of the obtained expressions for the basis elements for 1 ≤
t ≤ n, we get the following restrictions:

t∑
i=1

∑
k1+···+ki=t

Ak1 ...Akiα
′
i = A3

1αt.

Lemma 3.5. Let TP0(0, . . . , 0, αs, . . . , αn), with αs ̸= 0, be a transposed Poisson algebra
defined above. Then, there exists A ∈ C such that the relation α′

s = αsA
3−s holds for any

1 ≤ s ≤ n.

Proof. Let TP0(0, . . . , 0, αs, . . . , αn) be a transposed 0-Poisson algebra and consider a gen-
eral change of basis. Then, we have the following restriction (10):

s∑
i=1

∑
k1+···+ki=s

Ak1 ...Akiα
′
i = A3

1αs.
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Now, considering that αi = 0, α′
i = 0 for 1 ≤ i < s− 1, this reduces to∑

k1+···+ki=s

Ak1 ...Akiα
′
s = A3

1αs,

which simplifies further to As
1α

′
s = A3

1αs. From this equality, we obtain α′
s = αsA

3−s
1 .

Lemma 3.6. If α1 ̸= 0, then TP0(α1, . . . , αn) is isomorphic to the algebra TP0(1, 0, . . . , 0).

Proof. We begin by outlining the strategy of the proof.
Step 1. Consider the algebra TP0(α1, α2, . . . , αn). If α1 ̸= 0, we perform the basis

change e′1 = Ae1. Since the multiplication is given by ei · ej = ei+j, it reduces the algebra
to the form

TP0(1, α
′
2, . . . , α

′
n).

Step 2. Next, we apply the basis change e′1 = e1 + Be2. With respect to the product
ei · ej, this eliminates the coefficient α2 in the relation

[e1, e2] = e1 + α2e2 + · · ·+ αnen,

yielding the algebra
TP0(1, 0, α

′
3, . . . , α

′
n).

By continuing this procedure, we can analyze the subsequent coefficients in the same
manner.

Let α1 ̸= 0 and consider the following change of basis: e′i =
1√
αi
1

ei, 1 ≤ i ≤ n, then we

have α′
1 = 1.

Next, consider another change of basis e′1 = e1 + α2e2. From the relations ei · ej = ei+j

for 2 ≤ i+ j ≤ n, we obtain

e′i =
i∑

t=0

(
i
t

)
αt
2ei+t, 1 ≤ i ≤ n,

We conclude that α′
2 = 0.

Now, we prove by induction that it is possible to set αj = 0 for all 2 ≤ j ≤ n. The
base case j = 2 is already established. Assuming the claim holds for some j, we show it
also holds for j + 1. Consider the change of basis:

e′1 = e1 + αj+1ej+1.

Using ei · ej = ei+j for 2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)
αt
j+1ei+tj, 1 ≤ i ≤ n,
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where we assume that et = 0 for t > n in this sum. We obtain that αj+1 = 0.
By induction, we have αj = 0 for all 2 ≤ j ≤ n. Hence, we get the algebra

TP0(1, 0, . . . , 0), with the following multiplication rules:{
ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, e2] = e1.

The strategy outlined in this Lemma will be used in several lemmas below.

Lemma 3.7. If α2 ̸= 0, then TP0(0, α2, . . . , αn) ∼= TP0(0, 1, 0, . . . , 0).

Proof. Let α2 ̸= 0 and consider the following change of basis: e′i = α−i
2 ei, 1 ≤ i ≤ n. Then,

we have α′
2 = 1.

Next, consider the following change of basis:

e′1 = e1 +
α3

2
e2.

From the products ei · ej = ei+j for 2 ≤ i+ j ≤ n, we obtain

e′i =
i∑

t=0

(
i
t

)(α3

2

)t
ei+t, 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. A direct computation shows that α′
3 = 0.

Now, we prove by induction that we can eliminate αj for all 3 ≤ j ≤ n. The base case
j = 3 follows from the above step. Assuming that αj = 0 holds for some j ≥ 3, we prove
it for j + 1. Consider the change of basis:

e′1 = e1 +
αj+1

2
ej.

From the products ei · ej = ei+j for 2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(αj+1

2

)t
ei+t(j−1), 1 ≤ i ≤ n.

Similarly, we assume that et = 0 for t > n. One can verify that αj+1 = 0.
As a result, we have shown that αj = 0 for 3 ≤ j ≤ n, and obtained the algebra

TP0(0, 1, 0, . . . , 0): {
ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, e2] = e2.

Lemma 3.8. If α3 ̸= 0, then TP0(0, 0, α3 . . . , αn) ∼= TP0(0, 0, α, 0, 0, . . . , 0).
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Proof. From the Eq. (10), we obtain α′
3 = α3.

Now, we define a new basis via: e′1 = e1 +
α4

3α3
e2. From the products ei · ej = ei+j for

2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(
α4

3α3

)t

ei+t, 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. Then, a direct computation shows that α′
4 = 0.

Now we prove by induction that it is possible to set αj = 0 for 4 ≤ j ≤ n. The base
case j = 4 holds by the above argument. Now, assuming it holds for some j, we prove it
for j + 1. Consider basis change: e′1 = e1 +

αj+1

3α3
ej−1. From the products ei · ej = ei+j for

2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(
αj+1

3α3

)t

ei+t(j−2), 1 ≤ i ≤ n,

where we assume that et = 0 for t > n in this sum. We obtain that αj+1 = 0.
As a result, we have shown that αj = 0 for 4 ≤ j ≤ n, and obtained the algebra

TP0(0, 0, α, 0, . . . , 0): {
ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, e2] = αe3

Lemma 3.9. If αs ̸= 0, s ≥ 4 then TP0(0, . . . , 0, αs, . . . , αn) ∼= TP0(0, . . . , 0, 1s, 0, . . . , 0).

Proof. Let αs ̸= 0 and consider the change of basis as follows e′i = α
i

s−3
s ei, 1 ≤ i ≤ n.

Then, we have α′
s = 1.

Now consider the change of basis as follows: e′1 = e1 +
αs+1

s
e2. From the products

ei · ej = ei+j for 2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(αs+1

s

)t
ei+t, 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. A direct computation shows that αs+1 = 0.
We proceed by induction on j to show that a sequence of basis transformations can

set αj = 0 for all s + 1 ≤ j ≤ n. If j = i, the relation holds according to the above
equalities. Now, assuming that it holds for some j, we prove it for j + 1. We consider the
change of the basis element e1 as e

′
1 = e1 +

αj+1

s
ej−s+2. From the products ei · ej = ei+j for

2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(αj+1

s

)t
ei+t(j−s+1), 1 ≤ i ≤ n.

11
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Here we assume that et = 0 for t > n. Thus, one can verify that α′
j+1 = 0.

Thus, we have shown that αj = 0 for s + 1 ≤ j ≤ n, and obtained the algebra
TP0(0, . . . , 0, 1s, 0, . . . , 0): {

ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, e2] = es.

Theorem 3.10. Let (µn
0 , ·, [−,−]) be a transposed 0-Poisson algebra and n ≥ 4. Then, this

algebra is isomorphic to one of the following pairwise non-isomorphic algebras:

TP0(1, 0, . . . , 0), TP0(0, 1, 0, . . . , 0),

TP(0, 0, α, 0, . . . , 0), TP0(0, . . . , 0, 1s, 0, . . . , 0), 4 ≤ s ≤ n, α ∈ C.

Proof. Let (µn
0 , ·, [−,−]) be a transposed Poisson algebra. Then Theorem 3.3 implies that

it is isomorphic to the algebra TP0(α1, . . . , αn). Moreover,

• If α1 ̸= 0, then by Lemma 3.6, we obtain the algebra TP0(1, 0, . . . , 0).

• If α1 = 0, α2 ̸= 0, then from Lemma 3.7, we get the algebra TP0(0, 1, 0, . . . , 0),
where α ̸= 0;

• If α1 = α2 = 0, α3 ̸= 0, then it follows from Lemma 3.8 that the resulting algebra is
TP0(0, 0, α, 0, . . . , 0);

• If α1 = · · · = αs−1 = 0, αs ̸= 0, s ≥ 4, then from Lemma 3.9, we have the algebra

TP0(0, . . . , 0, 1s, 0, . . . , 0);

• If αi = 0, 1 ≤ i ≤ n, then we have the algebra TP0(0, . . . , 0).

According to Lemma 3.5, for the first non-zero parameter αs, the relation αs ̸= 0 is an
invariant of the algebra TP0(α1, . . . , αn). Therefore, an algebra in which αs = 0 cannot
be isomorphic to one in which αs ̸= 0.

3.2 Transposed 1-Poisson algebra structures on null-filiform associative algebras

Now we consider the transposed 1-Poisson algebra structures on null-filiform associative
algebras.

Theorem 3.11. Let (µn
0 , ·, [−,−]) be a transposed 1-Poisson algebra. Then, the multiplica-

tion of (µn
0 , ·, [−,−]) has the following form:

TP1(α2, . . . , αn) :


ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, ei] =
n∑
t=i

αt−i+2et, 2 ≤ i ≤ n.

12
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Proof. Let (µn
0 , ·, [−,−]) be a transposed 1-Poisson algebra. We consider the identity (2)

for the triple {ei−1, e1, e2}, 2 ≤ i ≤ n+ 1:

ei−1 · [e1, e2] = [ei−1 · e1, e2] + [e1, ei−1 · e2],

or

[ei, e2] + [e1, ei+1] =
n∑
t=i

αt−i+1et. (11)

From Corollary (3.2), we deduce [ei, e2] = 0 for 2 ≤ i ≤ n.
Applying induction and the identity (2) for 2 ≤ i, j ≤ n, we establish:

[ei, ej] = 0. (12)

We will prove this equality by induction on the value of j. For j = 2, we have [ei, e2] = 0
for all i with 2 ≤ i ≤ n. Assuming that [ei, ej] = 0 holds for 2 ≤ i ≤ n, we will prove the
equality for j + 1. We can write

0 = e1 · [ei, ej] = [e1 · ei, ej] + [ei, e1 · ej] = [ei+1, ej] + [ei, ej+1] = [ei, ej+1].

Thus, [ei, ej] = 0 for 2 ≤ j ≤ n. Thus we have proven the Eq. (12).
Next, applying the Jacobi identity to {e1, e2, en}, we get:

0 = [[e1, e2], en] + [[e2, en], e1] + [[en, e1], e2] =

= [
n∑

t=1

αtet, en]− [
n∑

t=n−1

αt−n+2et, e2] = α1(α1en−1 + α2en).

From the last equality, we obtain the relation α1 = 0.
Hence, we obtain the transposed 1-Poisson algebras TP1(α2, . . . , αn) given by the fol-

lowing multiplications: 
ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, ei] =
n∑
t=i

αt−i+2et, 2 ≤ i ≤ n.

The following theorem establishes a necessary and sufficient condition for two algebras
in the family TP1(α2, . . . , αn) to be isomorphic.

Theorem 3.12. Let TP1(α2, . . . , αn) and TP′
1(α

′
2, . . . , α

′
n) be isomorphic algebras. Then

there exists an automorphism φ between these algebras such that the following relation
holds for 2 ≤ t ≤ n:

t∑
i=2

∑
k1+···+ki=t

Ak1 ...Akiα
′
i =

t∑
j=2

∑
k1+k2=t−j+2

A1Ak1Ak2αj. (13)

13
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Proof. Using the automorphism of the algebra µn
0 from Theorem 2.6, we introduce the

following notations:

e′i = φ(ei), 1 ≤ i ≤ n.

Thus, we consider

[e′1, e
′
2] =

n∑
i=2

α′
ie

′
i =

n∑
i=2

α′
i

n∑
j=i

∑
k1+...+ki=j

Ak1 ...Akiej

=
n∑

i=2

n∑
j=i

∑
k1+···+ki=j

α′
iAk1 ...Akiej =

n∑
t=2

t∑
i=2

∑
k1+···+ki=t

α′
iAk1 ...Akiet.

On the other hand, we have

[e′1, e
′
2] = [

n∑
i=1

Aiei,
n∑

j=2

∑
k1+k2=j

Ak1Ak2ej] = [A1e1,
n∑

j=2

∑
k1+k2=j

Ak1Ak2ej]

=
n∑

j=2

∑
k1+k2=j

A1Ak1Ak2 [e1, ej]

=
n∑

j=2

∑
k1+k2=j

A1Ak1Ak2

n∑
t=j

αt−j+2et

=
n∑

t=2

t∑
j=2

∑
k1+k2=j

A1Ak1Ak2αt−j+2et.

By comparing the coefficients at the basis elements for 2 ≤ t ≤ n, we obtain the
following restrictions.

t∑
i=2

∑
k1+···+ki=t

Ak1 ...Akiα
′
i =

t∑
j=2

∑
k1+k2=j

A1Ak1Ak2αt−j+2.

If we denote t − j + 2 as j on the right hand side of this relation, we can rewrite the
sum as follows:

t∑
i=2

∑
k1+···+ki=t

Ak1 ...Akiα
′
i =

t∑
j=2

∑
k1+k2=t−j+2

A1Ak1Ak2αj.

Lemma 3.13. Let TP1(0, . . . , 0, αs, . . . , αn), with αs ̸= 0, be a transposed 1-Poisson algebra
defined above. Then, there exists A ∈ C such that the relation α′

s = αsA
3−s holds for any

2 ≤ s ≤ n.

Proof. Let TP1(α2, . . . , αn) be a transposed 1-Poisson algebra, and consider a general
change of basis. Let αi = 0 for 2 ≤ i < s − 1 then α′

i = 0. Then, we have the following
restriction (13):

s∑
i=2

∑
k1+···+ki=s

Ak1 ...Akiα
′
i =

s∑
j=2

∑
k1+k2=j

A1Ak1Ak2αs−j+2

14
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or ∑
k1+k2=2

Ak1Ak2α
′
2 +

∑
k1+···+ks=s

Ak1 ...Aksα
′
s =

∑
k1+k2=2

A1Ak1Ak2α2 +
∑

k1+k2=s

A1Ak1Ak2αs.

For s = 2, we derive α′
2 = A1α2. In the next steps we will have the following∑

k1+···+ks=s

Ak1 ...Aksα
′
s =

∑
k1+k2=2

A1Ak1Ak2αs.

From this equality, we obtain the relation α′
s = αsA

3−s
1 .

Lemma 3.14. If the parameters α2 ̸= 0 and αs ̸= 0 for 3 ≤ s ≤ n, then the algebra
TP1(α2, 0, . . . , 0, αs, . . . , αn) is isomorphic to the algebra TP1(1, 0, . . . , 0, αs, 0, . . . , 0).

Proof. By general substitution and according to Lemma 3.13, we obtain the following
equality.

α′
2 = A1α2, α′

s = αsA
3−s
1 .

Since α2 ̸= 0, making the substitution e′i = α−i
2 ei, for 1 ≤ i ≤ n, we obtain the relation

α′
2 = 1.
Next, consider another change of basis for e1 :

e′1 = e1 +
αs+1

(s− 2)αs

e2.

From the relations ei · ej = ei+j for 2 ≤ i+ j ≤ n, we obtain

e′i =
i∑

t=0

(
i
t

)(
αs+1

(s− 2)αs

)t

ei+t, 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. Thus, a direct computation shows that αs+1 = 0.
Now, we prove by induction that it is possible to set αj = 0 for all s+ 1 ≤ j ≤ n. The

base case j = s + 1 is already established. Assuming that the claim holds for some j, we
show that it also holds for j + 1. Consider the change of basis:

e′1 = e1 +
αj+1

(s− 2)αs

ej−s+2.

Using ei · ej = ei+j for 2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(
αj+1

(s− 2)αs

)t

ei+t(j−s+1), 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. One can verify that αj+1 = 0.
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By induction, we obtain αj = 0 for all s + 1 ≤ j ≤ n, and hence the algebra
TP1(1, 0, . . . , 0, αs, 0, . . . , 0) with the following multiplication rules:{

ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, ei] = ei + αes+i−2, 2 ≤ i ≤ n− s+ 2.

Lemma 3.15. If α3 ̸= 0, then TP1(0, α3, . . . , αn) ∼= TP1(0, α, 0, . . . , 0).

Proof. By general substitution and according to Lemma 3.13, we obtain α′
3 = α3. Next,

consider another change of basis e′1 = e1 +
α4

α3
e2. From the relations ei · ej = ei+j for

2 ≤ i+ j ≤ n, we obtain

e′i =
i∑

t=0

(
i
t

)(
α4

α3

)t

ei+t, 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. It follows that α′
4 = 0.

Now, we prove by induction that αj = 0 for all 4 ≤ j ≤ n. The base case j = 4 is
already established. Assuming that the claim holds for some j, we show that it also holds
for j + 1. Consider the change of basis:

e′1 = e1 +
αj+1

α3

ej−1.

Using ei · ej = ei+j for 2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(
αj+1

α3

)t

ei+t(j−2), 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n, which yields αj+1 = 0.
By induction, we have αj = 0 for all 4 ≤ j ≤ n, and get the algebra TP1(0, α, 0, . . . , 0),

with the following multiplication rules:{
ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, ei] = αei+1, 2 ≤ i ≤ n− 1.

Lemma 3.16. If αs ̸= 0, s ≥ 4, then TP1(0, . . . , 0, αs, . . . , αn) ∼= TP1(0, . . . , 0, 1s, 0, . . . , 0).

Proof. By general substitution and according to Lemma 3.13, we obtain the following
equality

α′
s = αsA

3−s
1 .
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If we perform the substitution e′i = α
i

s−3
s ei, for 1 ≤ i ≤ n, then we obtain the relation

α′
s = 1.
Next, consider another change of basis for e1 :

e′1 = e1 +
αs+1

(s− 2)
e2.

From the relations ei · ej = ei+j for 2 ≤ i+ j ≤ n, we obtain

e′i =
i∑

t=0

(
i
t

)(
αs+1

(s− 2)

)t

ei+t, 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. A direct computation shows that αs+1 = 0.
Now, we prove by induction that αj = 0 for all s+ 1 ≤ j ≤ n. The base case j = s+ 1

is already established. Assuming that the claim holds for some j, we show that it also
holds for j + 1. Consider the change of basis:

e′1 = e1 +
αj+1

(s− 2)
ej−s+2.

Using ei · ej = ei+j for 2 ≤ i+ j ≤ n, we derive

e′i =
i∑

t=0

(
i
t

)(
αj+1

(s− 2)

)t

ei+t(j−s+1), 1 ≤ i ≤ n.

Here we assume that et = 0 for t > n. It follows that αj+1 = 0.
By induction, we obtain αj = 0 for all s + 1 ≤ j ≤ n, and hence the algebra

TP1(0, 0, . . . , 0, 1s, 0, . . . , 0) with the following multiplication rules:{
ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, ei] = es+i−2, 2 ≤ i ≤ n+ 2− s.

Theorem 3.17. Let (µn
0 , ·, [−,−]) be a 1-transposed Poisson algebra. Then this algebra is

isomorphic to one of the following pairwise non-isomorphic algebras:

TP1(1, 0, . . . , 0, αs, 0, . . . , 0), TP1(0, α, 0, . . . , 0),

TP1(0, . . . , 0, 1p, 0, . . . , 0), 3 ≤ s ≤ n, 4 ≤ p ≤ n, α ∈ C.

Proof. Let (µn
0 , ·, [−,−]) be a transposed 1-Poisson algebra. Then Theorem 3.11 implies

that it is isomorphic to the algebra TP1(α2, . . . , αn). Moreover,

• If α2 ̸= 0, α3 = · · · = αs−1 = 0 and αs ̸= 0 for s ≥ 3, then from Lemma 3.14, we
have the algebra TP1(1, 0, . . . , 0, αs, 0, . . . , 0).

17
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• If α2 = 0, α3 ̸= 0 then from Lemma 3.15, we have the algebra TP1(0, α, 0, . . . , 0).

• If α2 = · · · = αp−1 = 0, αp ̸= 0, p ≥ 4 then from Lemma 3.16, we have the algebra

TP1(0, . . . , 0, 1p, 0, . . . , 0), 4 ≤ p ≤ n.

• If αi = 0, 2 ≤ i ≤ n then we have the algebra TP1(0, . . . , 0).

3.3 Transposed δ-Poisson algebra structures on null-filiform associative algebras

Now we consider transposed δ-Poisson algebra structures on null-filiform associative
algebras for δ ̸= 0, 1, 2.

Theorem 3.18. Let (µn
0 , ·, [−,−]) be a transposed δ-Poisson algebra and δ ̸= 0, 1, 2. Then

the multiplication of (µn
0 , ·, [−,−]) has the following form:

TPδ(αn−2, αn−1, αn) :



ei · ej = ei+j, 2 ≤ i+ j ≤ n,

[e1, e2] = αn−2en−2 + αn−1en−1 + αnen,

[e1, e3] = δ(αn−2en−1 + αn−1en),

[e2, e3] =
δ2−δ
2

αn−2en,

[e1, e4] =
δ2+δ
2

αn−2en.

Proof. Let (µn
0 , ·, [−,−]) be a transposed δ-Poisson algebra. Then, according to Corollary

3.2, we have the multiplications

[e1, e2] = αn−2en−2 + αn−1en−1 + αnen, [e1, e4] =
δ2+δ
2

αn−2en,

[e1, e3] = δ(αn−2en−1 + αn−1en), [e1, ei] = 0, 5 ≤ i ≤ n.

Now we check the identity (2) for the triple {e1, e1, e3}:

δe1 · [e1, e3] = [e2, e3] + [e1, e4].

From this, we derive the following product

[e2, e3] =
δ2 − δ

2
αn−2en.

Applying induction by i+ j, we prove [ei, ej] = 0 for i+ j ≥ 6.
Now, we consider the condition (2) for the triple {e1, ei, ej}:

0 = δei · [e1, ej] = [ei · e1, ej] + [e1, ei · ej] = [ei+1, ej].

So we get [ei, ej] = 0 for i+ j ≥ 6. Thus, we get the proof of the theorem.
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The following theorem establishes a necessary and sufficient condition for two algebras
in the family TPδ(αn−2, αn−1, αn) to be isomorphic.

Theorem 3.19. Let TPδ(αn−2, αn−1, αn) and TP′
δ(α

′
n−2, α

′
n−1, α

′
n) be isomorphic algebras.

Then there exists an automorphism φ between these algebras such that:

α′
n−2 =

αn−2

An−5
1

, α′
n−1 =

A1αn−1+A2αn−2(2δ−n+2)

An−3
1

,

α′
n =

2αnA2
1+2αn−1A1A2(2δ−n+1)+αn−2(A1A3(δ2+3δ−2n+4)+A2

2(3δ
2+δ(3−4n)+n2−n−2))

2An−1
1

.

Proof. Using the automorphism of the algebra µn
0 from Theorem 2.6, we introduce the

following notations:

e′1 =
n∑

i=1

Aiei, e′2 =
n∑

i=2

∑
k1+k2=i

Ak1Ak2ei,

e′n−2 = An−2
1 en−2 + (n− 2)An−3

1 A2en−1 +

(
(n− 2)(n− 3)

2
An−4

1 A2
2 + (n− 2)An−3

1 A3

)
en,

e′n−1 = An−1
1 en−1 + (n− 1)An−2

1 A2en, e′n = An
1en.

Thus, we consider
[e′1, e

′
2] = α′

n−2e
′
n−2 + α′

n−1e
′
n−1 + α′

ne
′
n

= α′
n−2

(
An−2

1 en−2 + (n− 2)An−3
1 A2en−1+

(
(n− 2)(n− 3)

2
An−4

1 A2
2 + (n− 2)An−3

1 A3

)
en

)
+α′

n−1(A
n−1
1 en−1 + (n− 1)An−2

1 A2en) + α′
nA

n
1en.

On the other hand, we have

[e′1, e
′
2] = [

n∑
i=1

Aiei,
n∑

i=2

∑
k1+k2=i

Ak1Ak2ei]

= A3
1(αn−2en−2 + αn−1en−1 + αnen) + 2δA2

1A2(αn−2en−1 + αn−1en)

+
δ2 + δ

2
(2A2

1A3 + A1A
2
2)αn−2en +

δ2 − δ

2
(2A1A

2
2 − A2

1A3)αn−2en

= A3
1αn−2en−2 + (A3

1αn−1 + 2δA2
1A2αn−2)en−1

+

(
A3

1αn + 2δA2
1A2αn−1 +

δ2 + δ

2
(2A2

1A3 + A1A
2
2)αn−2 +

δ2 − δ

2
(2A1A

2
2 − A2

1A3)αn−2

)
en.

By comparing the coefficients at the basis elements, we obtain the expressions given in
the lemma for α′

n−2, α
′
n−1, and α′

n.
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Theorem 3.20. Let (µn
0 , ·, [−,−]) be a transposed δ-Poisson algebra, and n ≥ 5. Then this

algebra is isomorphic to one of the following pairwise non-isomorphic algebras:

TPδ(1, 0, 0), TPδ(0, 1, 0), TPδ(0, 0, 1),

TPn−2
2
(1, α, 0), TPδ2+3δ=2n−4(1, 0, α), TPn−1

2
(0, 1, α), α ∈ C \ {0}.

Proof. If we make a general substitution on the δ-Poisson algebra TPδ(αn−2, αn−1, αn),
then according to Theorem 3.19, for two algebras in this family to be isomorphic, the
following conditions must be satisfied.

α′
n−2 =

αn−2

An−5
1

, α′
n−1 =

A1αn−1+A2αn−2(2δ−n+2)

An−3
1

,

α′
n =

2αnA2
1+2αn−1A1A2(2δ−n+1)+αn−2(A1A3(δ2+3δ−2n+4)+A2

2(3δ
2+δ(3−4n)+n2−n−2))

2An−1
1

.

One can notice that the relation αn−2 = 0 is an invariant. Thus we consider the
following two cases.

(1) Let αn−2 ̸= 0. Then we choose A1 = n−5
√
αn−2 and we have α′

n−2 = 1. We apply the
automorphism in Theorem 2.6 to obtain the following relations:

α′
n−1 = αn−1 + A2(2δ − n+ 2),

α′
n = αn + αn−1A2(2δ − n+ 1)+

A3(δ
2 + 3δ − 2n+ 4) + A2

2(3δ
2 + δ(3− 4n) + n2 − n− 2)

2
.

We obtain the following possible cases:

(a) If δ = n−2
2
, then we derive

α′
n−1 = αn−1, α′

n =
8αn − 8αn−1A2 + A3(n

2 − 6n+ 8)− A2(n
2 − 6n+ 8)

8
.

Then, by choosing A2 = 0, A3 = − 8αn

n2−6n+8
, we have the algebra TPn−2

2
(1, α, 0).

(b) If δ ̸= n−2
2
, then, by putting A2 =

αn−1

n−2−2δ
, we conclude that α′

n−1 = 0. We use
the automorphism in Theorem 2.6 to obtain the following relation:

α′
n =

2αn + A3(δ
2 + 3δ − 2n+ 4)

2
.

If δ2 + 3δ = 2n− 4, then we have the algebra TPδ2+3δ=2n−4(1, 0, α).

If δ2 + 3δ ̸= 2n− 4, then we obtain the algebra TPδ2+3δ ̸=2n−4(1, 0, 0).
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(2) Let αn−2 = 0. Then, we get

α′
n−2 = 0, α′

n−1 =
αn−1

An−4
1

, α′
n =

2αnA1 + 2αn−1A2(2δ − n+ 1)

2An−2
1

.

In this case, the relation αn−1 = 0 is an invariant. Hence, we consider the following
two cases.

(a) αn−1 ̸= 0. Then, we choose A1 = n−4
√
αn−1 and we have α′

n−1 = 1. We again
apply the automorphism in Theorem 2.6 to obtain the following expression:

α′
n = αn + A2(2δ − n+ 1).

If δ = n−1
2
, then we have TPn−1

2
(0, 1, α).

If δ ̸= n−1
2
, then we have TPδ ̸=n−1

2
(0, 1, 0).

(b) If αn−1 = 0, then we derive α′
n = αn

An−3
1

and choosing A1 = n−3
√
αn, we obtain

the algebra TPδ(0, 0, 1).

In the following theorems, we consider 2, 3 and 4-dimensional cases. For δ ̸= 0, in [7]
it was proved that any 2-dimensional complex transposed δ-Poisson algebra on the 2-
dimensional associative algebra whose product is given by e1 · e1 = e2 is isomorphic to one
of the following transposed Poisson algebras:

TPδ(0, 0) : e1 · e1 = e2; TPδ(0, 1) : e1 · e1 = e2, [e1, e2] = e2, δ ∈ C \ {0}.

If δ = 0, then we have a transposed 0-Poisson algebra with the multiplication

TP0 : e1 · e1 = e2, [e1, e2] = α1e1 + α2e2.

Then, by applying the Theorem 2.6, we obtain the following expressions:

α′
1 = A2

1α1, α′
2 = A1α2 − A2α1.

By considering the possible values of the parameters α1 and α2, we obtain the following
transposed 0-Poisson algebras:

TP0(0, 0) : e1 · e1 = e2; TP0(0, 1) : e1 · e1 = e2, [e1, e2] = e2;

TP0(1, 0) : e1 · e1 = e2, [e1, e2] = e1.

Thus, we have obtained the following 2-dimensional transposed δ-Poisson algebras.

TPδ(0, 0), TPδ(0, 1), TP0(1, 0), δ ∈ C.
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Now we consider the transposed δ-Poisson algebra structures on the 3-dimensional
null-filiform associative algebra µ3

0. In this case, we set

[e1, e2] = α1e1 + α2e2 + α3e3.

By analyzing the identity (2) for the triples {e1, e1, e2}, {e1, e1, e3}, {e2, e1, e2} and also
by considering the Jacobi identity for triple {e1, e2, e3} we have

[e1, e2] = α1e1 + α2e2 + α3e3, [e1, e3] = δα2e3, [e2, e3] = 0, δα1 = 0. (14)

Theorem 3.21. Let (µ3
0, ·, [−,−]) be a transposed δ-Poisson algebra and δ ̸= 0. Then it is

isomorphic to one of the following pairwise non-isomorphic algebras:

TPδ(0, 1, 0), TPδ(0, 0, α), TP1(0, 1, α), α ∈ C.

Proof. Let (µ3
0, ·, [−,−]) be a transposed δ-Poisson algebra and δ ̸= 0. Then, according to

(14), we have the following

TP(0, α2, α3) :

e1 · e1 = e2, e1 · e2 = e3, e2 · e1 = e3,

[e1, e2] = α2e2 + α3e3, [e1, e3] = δα2e3.

By applying the automorphism in Theorem 2.6, we get the following relations:

α′
2 = A1α2, α′

3 =
A1α3 + (2δ − 2)A2α2

A1

.

(1) Let δ = 1. Then, we have α′
2 = A1α2, α′

3 = α3. In this case we obtain the algebras
TP1(0, 1, α) and TP1(0, 0, α), where α ∈ C.

(2) Let δ ̸= 1. Then:

If α2 ̸= 0, then by choosing A1 = 1
α2
, A2 = − α3

(2δ−2)α2
2
, we have the algebra

TPδ(0, 1, 0).

If α2 = 0, then α′
3 = α3 and we derive the algebra TPδ(0, 0, α).

Theorem 3.22. Let (µ3
0, ·, [−,−]) be a transposed 0-Poisson algebra. Then, it is isomorphic

to one of the following pairwise non-isomorphic algebras:

TP0(1, 0, 0), TP0(0, 1, 0), TP0(0, 0, α), α ∈ C.

Proof. Let (µ3
0, ·, [−,−]) be a transposed 0-Poisson algebra. Then, according to (14), we

have the following

TP(α1, α2, α3) :

e1 · e1 = e2, e1 · e2 = e3, e2 · e1 = e3,

[e1, e2] = α1e1 + α2e2 + α3e3.
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By applying the automorphism in Theorem 2.6, we get the following relations:

α′
1 = A2

1α1, α′
2 = A1α2 − A2α1, α′

3 =
A2

1α3 + (2A2
2 − A1A3)α1 − 2A1A2α2

A2
1

.

By checking all possible cases of the parameters α1, α2 and α3, we obtain the above
algebras.

Corollary 3.23. Let (µ3
0, ·, [−,−]) be a transposed δ-Poisson algebra. Then it is isomorphic

to one of the following pairwise non-isomorphic algebras:

TP0(1, 0, 0), TPδ(0, 1, 0), TPδ(0, 0, α), TP1(0, 1, α), α ∈ C.

Now we consider the transposed δ-Poisson algebra structures on the 4-dimensional
null-filiform associative algebra µ4

0. In this case, we set

[e1, e2] = α1e1 + α2e2 + α3e3 + α4e4.

By analyzing the identity (2) for the triples

{e1, e1, e2}, {e1, e1, e3}, {e2, e1, e2}, {e1, e1, e4}, {e2, e1, e3}

we have δα1 = 0 and

TPδ(α1, α2, α3, α4) :



ei · ej = ei+j, 2 ≤ i+ j ≤ 4,

[e1, e2] = α1e1 + α2e2 + α3e3 + α4e4,

[e1, e3] = δ(α2e3 + α3e4),

[e2, e3] =
δ2−δ
2

α2e4,

[e1, e4] =
δ2+δ
2

α2e4.

Theorem 3.24. Let (µ4
0, ·, [−,−]) be a transposed δ-Poisson algebra, and δ ̸= 0. Then it is

isomorphic to one of the following pairwise non-isomorphic algebras:

TP1(0, 1, α, 0), TP1(0, 1, 0, α),

TPδ(0, 1, 0, 0), TPδ(0, 0, α, 0),TPδ(0, 0, 0, 1),TP−4(0, 1, 0, α),TP 3
2
(0, 0, α, 1) α ∈ C.

Proof. Let (µ4
0, ·, [−,−]) be a transposed Poisson algebra. According to the above, this

algebra is isomorphic to the algebra TPδ(0, α2, α3, α4). Applying a change of basis of
Theorem 2.6, we get the following relations:

α′
2 = A1α2, α′

3 =
A1α3 + (2δ − 2)A2α2

A1

,

α′
4 =

2A2
1α4 + 2(2δ − 3)A1A2α3 + ((δ2 + 3δ − 4)A1A3 + (3δ2 − 13δ + 10)A2

2)α2

2A3
1

.
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(1) Let δ = 1. Then

α′
2 = A1α2, α′

3 = α3, α′
4 =

A1α4 − A2α3

A2
1

.

(a) If α2 ̸= 0 and α3 ̸= 0, then by putting A1 =
1
α2
, A2 =

α4

α2α3
, we have the algebra

TP1(0, 1, α, 0).

(b) If α2 ̸= 0 and α3 = 0, then by putting A1 = 1
α2
, we obtain the algebra

TP1(0, 1, 0, α).

(c) If α2 = 0 and α3 ̸= 0, then by choosing A2 = A1α4

α3
, we obtain the algebra

TP1(0, 0, α, 0).

(d) If α2 = α3 = 0 and α4 ̸= 0, then by choosing A1 = α4, we obtain the algebra
TP1(0, 0, 0, 1).

(e) If α2 = α3 = α4 = 0, then we have the algebra TP1(0, 0, 0, 0).

(2) Let δ ̸= 1. Then:

(a) α2 ̸= 0, then by choosing A1 = 1
α2
, A2 = − α3

(2δ−2)α2
2
, we have α′

2 = 1, α′
3 = 0.

We apply the automorphism in Theorem 2.6 to obtain the following relation.

α′
4 =

2α4 + (δ2 + 3δ − 4)A3

2
.

If δ ̸= −4, then we put A3 = − 2α4

δ2+3δ−4
and obtain the algebra TPδ ̸=−4(0, 1, 0, 0).

If δ = −4, then we derive the algebra TP−4(0, 1, 0, α).

(b) Let α2 = 0 and α3 ̸= 0. Then, we have

α′
3 = α3, α′

4 =
A1α4 + (2δ − 3)A2α3

A2
1

.

If δ ̸= 3
2
, choosing A1 = 1, A2 =

α4

(3−2δ)α3
, we derive the algebra TPδ ̸= 3

2
(0, 0, α, 0).

If δ = 3
2
, then we have

α′
3 = α3, α′

4 =
α4

A1

.

Depending on whether α4 = 0 or not, we derive the algebras TP 3
2
(0, 0, α, 0)

and TP 3
2
(0, 0, α, 1), respectively.

(c) Let α2 = α3 = 0 and α4 ̸= 0. Then, by setting A1 = α4, we obtain the algebra
TPδ(0, 0, 0, 1).

(d) If α2 = α3 = α4 = 0, then we obtain the algebra TPδ(0, 0, 0, 0).

Using the Theorems 3.10 and 3.24, we derive the classification of 4-dimensional complex
transposed δ-Poisson algebra associated on µ4

0.
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Theorem 3.25. Let (µ4
0, ·, [−,−]) be a transposed δ-Poisson algebra. Then, this algebra is

isomorphic to one of the following pairwise non-isomorphic algebras:

TP0(1, 0, 0, 0), TP1(0, 1, α, 0), TP1(0, 1, 0, α),

TPδ(0, 1, 0, 0), TPδ(0, 0, α, 0),TPδ(0, 0, 0, 1),TP−4(0, 1, 0, α),TP 3
2
(0, 0, α, 1) α ∈ C.

4 δ-Poisson algebra structures on null-filiform associative algebras

All Poisson algebra structures and the trivial Poisson algebra on null-filiform associative
algebras have been obtained in [1]. Below, we construct all δ-Poisson algebra structures
on null-filiform associative algebras.

Theorem 4.1. Let (µn
0 , ·, [−,−]) be a δ-Poisson algebra. Then, (µn

0 , ·, [−,−]) is a trivial
δ-Poisson algebra.

Proof. Let (µn
0 , ·, [−,−]) be a δ-Poisson algebra. To establish the table of multiplications for

the operation [−,−] in this algebra, we consider the following computation for 1 ≤ i ≤ n−1:

[e1, ei+1] = [e1, e1 · ei] = δ([e1, e1] · ei + e1 · [e1, ei]) = δe1 · [e1, ei].

From this we get [e1, ei] = 0 for 2 ≤ i ≤ n.
Next, considering the following equalities

[ei, e2] = [ei, e1 · e1] = δ([ei, e1] · e1 + e1 · [ei, e1]) = 0, 3 ≤ i ≤ n− 1,

[ei, ej] = [ei, e1 · ej−1] = δ([ei, e1] · ej−1 + e1 · [ei, ej−1]) = 0, 3 ≤ i, j ≤ n,

we obtain
[ei, ej] = 0, 1 ≤ i, j ≤ n.
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