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Transposed J-Poisson algebra structures
on null-filiform associative algebras

Nigora Daukeyeva, Magpal Eraliyeva and Feruza Toshtemirova

Abstract. In this paper, we consider transposed §-Poisson algebras, which are a
generalization of transposed Poisson algebras. In particular, we classify all transposed
d-Poisson structures on null-filiform associative algebras. A complete classification
of transposed d-Poisson algebras corresponding to each value of the parameter ¢ is
provided. Furthermore, we construct all d-Poisson algebra structures on null-filiform
associative algebras, and show that they are trivial d-Poisson algebras.
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1 Introduction

Poisson algebras were first studied in connection with Poisson geometry in the 1970s.
Since that time, they have appeared in a wide range of mathematical and physical dis-
ciplines, including Poisson manifolds, algebraic geometry, operads, quantization theory,
quantum groups, and both classical and quantum mechanics. More recently, the notion of
transposed Poisson algebras was introduced in [7], providing a dual perspective on Poisson
structures and leading to novel algebraic frameworks. This concept has found applications
in various algebraic structures, including Novikov—Poisson algebras and 3-Lie algebras [9].
Further developments include Poisson structures on canonical algebras and finitary inci-
dence algebras of arbitrary posets over commutative unital rings [15, 18,28, 32], as well as
modified double Poisson brackets and mixed double Poisson algebras [11].

The study of §-versions of Poisson algebras has also been advanced. In [2], two new
types of 0-Poisson and transposed §-Poisson algebras were studied. The d-Poisson algebras
emerged as a generalization of both Poisson and anti-Poisson algebras, and are closely
related to d-derivations introduced by Filippov [14] (see also [16,34]). It was shown in that
paper that transposed d-Poisson algebras share many similarities with those studied in [7].
However, unlike transposed Poisson algebras, transposed anti-Poisson algebras possess
simple algebras in the complex finite-dimensional case. Furthermore, it was proven that
the tensor product of two §-Poisson (respectively, transposed §-Poisson) algebras is again
a 0-Poisson (respectively, transposed J-Poisson) algebra.

A related line of research concerns d-Novikov and d-Novikov—Poisson algebras. In
[17], their structure and properties were investigated as a generalization of Novikov and
Novikov—Poisson algebras characterized by a scalar parameter §. From these results, a cru-
cial difference between Novikov and anti-Novikov algebras was observed: unlike Novikov
algebras, anti-Novikov algebras admit complex non-commutative simple finite-dimensional
algebra. The article also provided constructions of J-Novikov algebras, proving that the
Kantor product of two multiplications of a d-Novikov—Poisson algebra yields a d-Novikov
algebra, and that the tensor product of two J-Novikov—Poisson algebras again admits a o-
Novikov—Poisson structure under the standard multiplication. Moreover, relations between
d-derivations, (transposed) d-Poisson algebras, and d-Novikov—Poisson algebras were estab-
lished. In particular, a §-Novikov—Poisson algebra under the commutator product gives
rise to a transposed (6 + 1)-Poisson algebra, and the notion of J-Gelfand-Dorfman alge-
bras was introduced, with commutative d-Gelfand—Dorfman algebras yielding transposed
(0 4 1)-Poisson algebras.

Research on transposed Poisson structures themselves has gained significant traction
in recent years. A comprehensive algebraic and geometric classification was given in [8],
expanding the understanding of their structural properties. Various works have explored
transposed Poisson structures on different classes of Lie algebras: Block Lie algebras and
superalgebras, and Witt-type algebras [19,20,21], as well as quasi-filiform Lie algebras of
maximum length [4]. Further investigations considered upper triangular matrix Lie alge-
bras [23], incidence algebras [22], and the connection between transposed Poisson algebras
and %—derivations of Lie algebras [13]. Transposed Poisson structures on not-finitely graded
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Witt-type and Virasoro-type algebras were also studied in [25,26], emphasizing their rel-
evance in theoretical physics and representation theory. Descriptions of all transposed
Poisson structures on certain Lie algebras were obtained in [3,24,27,29,30, 31, 33]. More
recent contributions include connections to Jordan superalgebras [12], and applications to
classification problems in non-associative algebras [16].

Finally, regarding null-filiform associative algebras, all Poisson algebra structures were
constructed in [1], and a classification of all transposed Poisson algebra structures on these
algebras was given in [5]. This paper continues this direction by providing a complete
classification of all transposed d-Poisson algebra structures on null-filiform associative al-
gebras. In Section 2, we introduce the necessary definitions and results that form the basis
of our study, and in Section 3, we describe all such structures.

Using the Theorems 3.10 and 3.24, we derive the classification of 4-dimensional complex
transposed d-Poisson algebra associated on null-filiform associative algebra yg.

Main Theorem. Let (i3, -,[—, —]) be a transposed §-Poisson algebra. Then, this algebra
is isomorphic to one of the following pairwise non-isomorphic algebras:

TP,(1,0,0,0), TP;(0,1,c,0), TP;(0,1,0, ),

TP;(0,1,0,0), TP;(0,0,a,0), TP5(0,0,0,1), TP_4(0,1,0,a), TP;(0,0,a,1) a € C.

2 Preliminaries

In this section, we introduce the relevant concepts and known results. Unless stated
otherwise, all algebras considered here are over the field C. All parameters, including 9,
are complex numbers as well.

Definition 2.1 ( [7]). Let £ be a vector space equipped with two bilinear operations

Sl -] LeL— L
where (£, ) is a commutative associative algebra and (£, [—, —]) is a Lie algebra.
The triple (£, -, [—, —]) is called a j-Poisson algebra if
[z, y-z] =0(x,y]-z+y-[x,2]), foraluxyzel (1)
The triple (£, -, [—, —]) is called a transposed ¢-Poisson algebra if:
0z [z,yl = [z-x,y] + [z, 2y (2)

If we take § = 1 and § = 2, respectively, in identities (1) and (2), then we obtain the
definitions of the Poisson and the transposed Poisson algebras, respectively.

A (transposed) d-Poisson algebra £ is called trivial, if £- £ =0 or [£, £] = 0.

Similar to the results in [7], the following proposition shows that the compatibility
relations of the d-Poisson algebra and the transposed §-Poisson algebra are independent.
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Proposition 2.2. Let (£,-) be a commutative associative algebra and (£,[—, —]) be a Lie
algebra. Then for any 6 # 0, (£,-,[—,—]) is both a 0-Poisson algebra and a transposed
0-Poisson algebra if and only if

-y, z] =[xy, z]=0.

Proof. Let (£,-,|—, —]) be a d-Poisson and transposed é-Poisson algebra, then according
to [2], it satisfies the following identities, respectively:
[v,y- 2]+ [y, 2 2]+ [z,2-y] =0, (3)
- ly, 2l +y-[zal+ 2z y] =0 (4)
for all z,y,z € £
It is easy to see that
0 = bz-[ayl+lya-2]—[ry-2] <

6(2- eyl + [l -2+ ly, 2] — [oyy] -2 =y [o2]) =
6(x- [y 2l +y- [zl -2 2.9]).

Then by Eq. (4), we have z - [x,y] = 0. By Eq. (1) again, we have [z,y - z] = 0. O

Remark 2.3. If we take § = 0 in Proposition 2, the condition [z -y, z] = 0 is necessary and
sufficient for (£, -,[—, —]) to be both a 0-Poisson and a transposed 0-Poisson algebra.

For an algebra A, we consider the series
Al = .A, At — ZAk‘AiJrlfk, i > 1.
k=1

We say that an algebra A is nilpotent if A = 0 for some i € N. The smallest integer 4
satisfying A* = 0 is called the nilpotency index of A.

Definition 2.4. An n-dimensional algebra A is called null-filiform if dim A" = (n + 1) —
1, 1<i<n+1.

All null-filiform associative algebras were classified in [10, Proposition 5.3].

Theorem 2.5 (see [10]). An arbitrary n-dimensional null-filiform associative algebra is
1somorphic to the algebra:

po o €irej=¢€iyj, 2<i+j<mn,

where {e1,ea,...,e,} is a basis of the algebra uf and all other products are defined to be
zero.
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Theorem 2.6 ( [6]). A linear map ¢ : py — pg is an automorphism of the algebra uf if
and only if the map o has the following form:

@(61) = ZAZBZ‘, gO(@Z) = Z Z AklAkg .. .Akiej, 2 S 1 S n,
=1

J=t k1t+ko+... k=]

where A; € C, and Ay # 0.

2.1 Transposed Poisson algebra structures on null-filiform associative algebras

For the case 6 = 2, all transposed Poisson algebra structures on null-filiform associative
algebras were completely classified in [5], where the following three theorems were obtained.

Theorem 2.7. Let (ug, -, [—, —|) be a transposed Poisson algebra defined on the associative
algebra (ug, ). Then the multiplication of (uf, -, [—, —]) has the following form:
€; " €j = €4y, 2<i+75<nm,

TPz(CYz,...,Oén) : [6i7€j] = (j—’L) Z at—i—j+3€ta 3 S Z+] S n+1
t=i4+j—1

The following theorem establishes a necessary and sufficient condition for two algebras

in the family TPy(as, ..., a,) to be isomorphic.

Theorem 2.8. Let TPy(ay,...,a,) and TPL(dd, ..., al) be isomorphic algebras. Then
there exists an automorphism ¢ between these algebras such that the following relation
holds for 2 <t <mn:

¢ tt—jt1
>N A A=) > (t-2i—j+3)AAL Ay (5)

1=2 ky+-+ki=t Jj=2 =1 ki+ka=t—i—j+3
Theorem 2.9. Let (uf,-,[—,—]) be a transposed Poisson algebra and n > 5. Then this

algebra is isomorphic to one of the following pairwise non-isomorphic algebras:
TP,(1,0,...,0), TPy(0,«,0,...,0),

TPQ(O,..-,O,1570,...,0,@23_3,07...,()), 4 < s <n, a e C.

The cases for dimensions 2, 3, and 4 are presented below. In the 2-dimensional associa-
tive algebra with multiplication given by e; - e; = es, [7] proved that every 2-dimensional
complex transposed Poisson algebra is isomorphic to one of the following transposed Pois-
son algebras:

TPQ(O) . €1 €1 = €9; TP2(1) . €1 €1 = €9, [61,62] = €9.
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In the 3-dimensional associative algebra, every 3-dimensional complex transposed Pois-
son algebra is isomorphic to one of the following transposed Poisson algebras:

TP,(1,0), TP2(0,«), o € C.

Finally, in the 4-dimensional associative algebra, every 4-dimensional complex trans-
posed Poisson algebra is isomorphic to one of the following transposed Poisson algebras:

TP,(1,0,0), TP»(0,,0), TP5(0,0,1), a € C.

3 Transposed d-Poisson algebra structures on null-filiform associative
algebras

Let (p, -, [—, —]) be a transposed J-Poisson algebra. To determine the Lie multiplica-
tion table of the transposed d-Poisson algebra structure, we set

Theorem 3.1. Let (ug, -, [—, —]) be a transposed §-Poisson algebra. Then, for n > 5, the
following restriction holds:

(53 — 3(52 + 25)63 : [61, 62] =0.
Proof. By considering the identity (2) for triples {e1, e, e;} and {e;_1,e1,e2}:
der - [er, e = [ea, €] + [en, eiqa],
Oeiy - [e1,e2] = lei, ea] + [e1, €],

we derive the following recurrence relation

le1, eiv1] = 5(61 - le1, €] + i1 - [eq, 62])-

From this, we derive the following products

) 5% 4+ 62426
5 es - [e1, ea], [e1,es) =—F

Now we consider Eq. (2) for the triple {ez, €1, €3} :

le1, €3] = deq - [e1, ea], [e1,e4] = es - [e1, €] (6)

deg - [e1,e3] = [es, es] + [e1, e5).

From this we obtain
[617 65] = 5263 : [61, 62]- (7)

From the Egs. (6) and (7) we get the following
((53 - 352 + 26)63 : [61, 62] =0.

Thus, the theorem is proved. O



Transposed §-Poisson algebra structures on null-filiform associative algebras

Corollary 3.2. Let (uf),-,[—, —]) be a transposed 0-Poisson algebra and n > 5. Then

o [f§ =0, then [e1,e3] = > auey and ler,e;] =0 for 3 < i < n. Note that this result
t=1
holds when n = 3 and n =4 as well,

o Ifd =1, then [e1,e;] = > ay_iroe; for 2 <i < n;

t=i—1

o [f6 =2 then[er,e;] = (i —1) > yiyoes for2 <i<m;

t=i—1

o If5% —302+20#0, thenay =0 for 1 <t <n—3 and

— _ 0244
[e1,€a] = Qi nen o+ ap1€n 1+ apen, [e1, e = S50, a6y,

le1, €3] = 0(an_oen_1 + an_16,), le1, ;] =0, 5<i<n.

3.1 Transposed 0-Poisson algebra structures on null-filiform associative algebras

Theorem 3.3. Let (ug, -, [—, —]) be a transposed 0-Poisson algebra. Then the multiplication
of (uy,-,[—,—]) has the following form:
€ €j = €itj, 2§Z—|—j§n,
TPo(aq,...,ap) :

n
le1, ea] = > ayey.
t=1

Proof. Let (pug,-,[—,—]) be a transposed 0-Poisson algebra. We consider the identity (2)
for the triple {e;_1,e1,e2}:

0=[ej_1-e1,e] + [e1, €1 - €3],

les, ea] + [e1, ei41] = 0. (8)

From Eq. (8) and Corollary 3.2, we deduce [e;, e5] = 0 for 2 < i < n.
Applying induction and the identity (2) for 3 < i + j, we establish:

[ei, e5] = 0. (9)
We can write
0= [ei-e1,e5] + [e1, e - ej] = [ei1, e5] + [e1, eirj] = [eiv1, €]

It is known that the Jacobi identity is observed for 3 different elements {x,y, z}. The

identity is satisfied if any 2 of these elements are equal. In our case, the elements es, ... e,
lie in the center of the Lie algebra. Therefore, the Jacobi identity is satisfied for all
elements. Hence, we obtain the transposed 0-Poisson algebras TPq(ay, ..., ay).

O
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The following theorem establishes a necessary and sufficient condition for two algebras
in the family TPq(aq, ..., a,) to be isomorphic.

Theorem 3.4. Let TPy(ay,...,a,) and TPy(c, ..., al) be isomorphic algebras. Then
there exists an automorphism ¢ between these algebras such that the following relation
holds for 1 <t <mn:

t

YY) Ay Agal = Ay, (10)

i=1 ky+-tk;=t

Proof. Using the automorphism of the algebra pf from Theorem 2.6, we introduce the
following notations:

Thus, we consider

n n n
[ee5] = D=2 ), 3 ApAye
=1 =1 J=t k1+-+k;=j
n n n t
= 22 2 A Awe =20 ) 0Ag . Age
i=1j=t k1+--+ki=jJ t=1i=1ki+---+k;=t

On the other hand, we have

€], e5] = ZA 6“2 Z Ap Apyej] = Z AAklAkQZatet ZAi’atet.
t=1

J=2 k1+ko=j k14ko=2

Comparing the coefficients of the obtained expressions for the basis elements for 1 <
t < n, we get the following restrictions:

t
Y Ay Apal = Al

=1 ky+-+k;=t
]

Lemma 3.5. Let TPy(0,...,0,q4,...,ay), with as # 0, be a transposed Poisson algebra
defined above. Then, there exists A € C such that the relation o, = azA3~* holds for any
1 <s<n.

Proof. Let TPy(0,...,0,as,...,a,) be a transposed 0-Poisson algebra and consider a gen-
eral change of basis. Then, we have the following restriction (10):

i Z Ak1 Ak C( = A?C(s

i=1 kyd-th;=s
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Now, considering that a; = 0, o/, = 0 for 1 <i < s — 1, this reduces to

§ I __ A3
Akl...Akias = AlOéS,

which simplifies further to Aja’, = A3a,. From this equality, we obtain o/, = a,A3~*.
O

Lemma 3.6. Ifa; # 0, then TPo(av, . .., ) is isomorphic to the algebra TPy(1,0,...,0).

Proof. We begin by outlining the strategy of the proof.

Step 1. Consider the algebra TPo(ay, as,...,a,). If a5 # 0, we perform the basis
change €} = Ae;. Since the multiplication is given by e; - e; = e,4;, it reduces the algebra
to the form

TPo(1,as,...,a)).

n

Step 2. Next, we apply the basis change €| = e; + Bes. With respect to the product
e; - €, this eliminates the coefficient c in the relation

[61, 62] = e1 + agen + -+ QpCp,

yielding the algebra
TPy(1,0,a3,...,0a0).

n

By continuing this procedure, we can analyze the subsequent coefficients in the same
manner.
Let a; # 0 and consider the following change of basis: e} = \/%ei, 1 <1 < n, then we
1
have o = 1.
Next, consider another change of basis €] = e; + ages. From the relations e; - e; = e;4;
for 2 < i+ j <n, we obtain

We conclude that af = 0.

Now, we prove by induction that it is possible to set o; = 0 for all 2 < j < n. The
base case j = 2 is already established. Assuming the claim holds for some j, we show it
also holds for j + 1. Consider the change of basis:

/
€] = €1 + Qj11€41.

Using e; - ¢; = e;4; for 2 < i+ j < n, we derive

% .
] t .
@;:Z<t>&j+1€i+tj, 1§z§n,
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where we assume that e; = 0 for ¢ > n in this sum. We obtain that o;;; = 0.
By induction, we have o; = 0 for all 2 < j < n. Hence, we get the algebra
TPy(1,0,...,0), with the following multiplication rules:

{ei-ej:eiﬂ, 2<i+j<n,

[e1, €2] = €.

The strategy outlined in this Lemma will be used in several lemmas below.
Lemma 3.7. If as # 0, then TPy(0, ag, ..., a,) = TPy(0,1,0,...,0).

Proof. Let a # 0 and consider the following change of basis: €, = a;‘e;, 1 < i < n. Then,
we have af = 1.
Next, consider the following change of basis:

a3
/
e =€ + —éa.

2

From the products e; - e; = e;1; for 2 < i+ 57 < n, we obtain

/o d ? a3t .
ei_;(t)(?) eirt, 1 <1< n.

Here we assume that e; = 0 for ¢ > n. A direct computation shows that af = 0.

Now, we prove by induction that we can eliminate o for all 3 < j < n. The base case
J = 3 follows from the above step. Assuming that «; = 0 holds for some j > 3, we prove
it for 7 + 1. Consider the change of basis:

Qj+1
2

!/
e =e1+ €.

From the products e; - e; = e;4; for 2 <i+ j < n, we derive

! ) a1 t .
5 () 1605

t=0

Similarly, we assume that e; = 0 for ¢ > n. One can verify that o, = 0.
As a result, we have shown that a; = 0 for 3 < j < n, and obtained the algebra
TP(0,1,0,...,0):

€€ = €itj, 2§Z+] Sn,
[61,62] = €9.

Lemma 3.8. If a3 # 0, then TPy(0,0,a3...,a,) = TPy(0,0,a,0,0,...,0).

10
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Proof. From the Eq. (10), we obtain ozg = as.
Now, we define a new basis via: €] = e; + —62 From the products e; - e; = ¢4, for
2 <147 <n, we derive

i . t
;o 1 Qy .
€, = E ( + ) (37@3) Citt, 1 S ] S n.

t=0

Here we assume that e, = 0 for ¢ > n. Then, a direct computation shows that o/ = 0.

Now we prove by induction that it is possible to set a; = 0 for 4 < j < n. The base
case j = 4 holds by the above argument. Now, assuming it holds for some j, we prove it
for 4+ 1. Consider basis change: €] = e; + J“ej 1. From the products e; - e; = e;; for
2 <i+ 7 <n, we derive

i . ¢
(3 Oé‘+1 .
e; = E ( " ) (3#3) Citt(j—2), 1 <1<,

t=0

where we assume that e; = 0 for ¢ > n in this sum. We obtain that o;; = 0.
As a result, we have shown that a; = 0 for 4 < j < n, and obtained the algebra
TP (0,0,,0,...,0):
{ €€ =€y, 251470,
[e1, €2] = aves

]

Lemma 3.9. If a; #0, s >4 then TPy(0,...,0,q,,...,0,,) = TP(0,...,0,1,,0,...,0).
Proof. Let a, # 0 and consider the change of basis as follows €} = a5 *¢;, 1 < i < n.
Then, we have o, = 1.

Now consider the change of basis as follows: €] = e; + ey, From the products
e - €j = ey for 2 <i+4 7 < n, we derive

el :Z< )(a8+1> eirt, 1 <1< n.

Here we assume that e; = 0 for ¢ > n. A direct computation shows that a,,; = 0.

We proceed by induction on j to show that a sequence of basis transformations can
set aj = 0 for all s +1 < j < n. If j =1, the relation holds according to the above
equalities. Now, assuming that it holds for some 7, we prove it for j + 1. We consider the
change of the basis element e; as €] = e; + & —He;_syo. From the products e; - e; = e;4; for
2 <i+ 7 <n, we derive

: ? i1\t .
62 = Z ( + ) (JT) €itt(j—s+1) 1<i<n

11
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Here we assume that e; = 0 for ¢ > n. Thus, one can verify that o}, = 0.
Thus, we have shown that o; = 0 for s +1 < j < n, and obtained the algebra
TPy (0,...,0,14,0,...,0):

€ ey = ey 2<i4j<n,
[e1, €2] = es.

[]

Theorem 3.10. Let (uf, -, [—,—]) be a transposed 0-Poisson algebra and n > 4. Then, this
algebra is isomorphic to one of the following pairwise non-isomorphic algebras:

TP,(1,0,...,0), TPy(0,1,0,...,0),
TP(0,0,,0,...,0), TPy(0,...,0,1,,0,...,0), 4<s<n, acC.

Proof. Let (ug,-,[—,—]) be a transposed Poisson algebra. Then Theorem 3.3 implies that
it is isomorphic to the algebra TPo(ay, ..., a,). Moreover,

e If ay # 0, then by Lemma 3.6, we obtain the algebra TPq(1,0,...,0).

If ay = 0, ag # 0, then from Lemma 3.7, we get the algebra TP(0,1,0,...,0),
where a # 0;

If oy = ay =0, az # 0, then it follows from Lemma 3.8 that the resulting algebra is
TP (0,0,,0,...,0);

e lfay=---=a,1=0, ag #0, s > 4, then from Lemma 3.9, we have the algebra

TP,(0,...,0,1,,0,...,0);

e If a; =0, 1 <i<n, then we have the algebra TP(0,...,0).

According to Lemma 3.5, for the first non-zero parameter «y, the relation a, # 0 is an
invariant of the algebra TPy(ay, ..., a,). Therefore, an algebra in which oy = 0 cannot

be isomorphic to one in which ay # 0.
O

3.2 Transposed 1-Poisson algebra structures on null-filiform associative algebras

Now we consider the transposed 1-Poisson algebra structures on null-filiform associative
algebras.

Theorem 3.11. Let (ug, -, [—,—]) be a transposed 1-Poisson algebra. Then, the multiplica-
tion of (ug,-,[—,—]) has the following form:
€; * €5 = €itj, 2§Z+j§n7
TPl(CYQ, .. ,Ckn) :

n
le1, €] =D ap_iqpoer, 2<i<n.

t=1

12
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Proof. Let (ug,-,[—,—]) be a transposed 1-Poisson algebra. We consider the identity (2)
for the triple {e;_1,e1,e2}, 2<i<n+1:
€1+ [e1, €2 = [ei1 - €1, ea] + [e1, €1 - €],
or .
[ei, e2] + [e1, €i1] = Z Q—it1€- (11)
t=i

From Corollary (3.2), we deduce [e;,es] = 0 for 2 < i < n.
Applying induction and the identity (2) for 2 <14, j < n, we establish:

[61‘, ej] =0. (12)

We will prove this equality by induction on the value of j. For j = 2, we have [e;, e5] = 0
for all ¢ with 2 < < n. Assuming that [e;, e;] = 0 holds for 2 < ¢ < n, we will prove the
equality for j + 1. We can write

0=e- [61‘, €j] = [61 ‘€4, €j] + [61‘7 €1 - €j} = [€i+1, €j] + [617 €j+1] = [e’i7 €j+1]-
Thus, [e;,e;] =0 for 2 < j < n. Thus we have proven the Eq. (12).
Next, applying the Jacobi identity to {ey, s, e, }, we get:

0= [[61, 62]7 en] + [[627 en]a 61] + [[Gn, 61]7 62] =

n n
= [Z €y, €n] - [ Z Ay _p+426¢, 62] = 041(%%—1 + (12€n)-
t=1

t=n—1
From the last equality, we obtain the relation o = 0.

Hence, we obtain the transposed 1-Poisson algebras TPy (s, ..., a,) given by the fol-
lowing multiplications:

€ €j = €14, 2§Z+]§TL,

n
ler, €] =Y ay_ipoey, 2< i< m.
t=1

]

The following theorem establishes a necessary and sufficient condition for two algebras
in the family TPy (as, ..., a,) to be isomorphic.

Theorem 3.12. Let TPq(ay, ..., ay) and TP (a), ... al) be isomorphic algebras. Then
there exists an automorphism ¢ between these algebras such that the following relation
holds for 2 <t <mn:

t t
SN Ay A=) > AjAL Ay, (13)

1=2 k14-+k;=t J=2 k1+ko=t—j+2

13
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Proof. Using the automorphism of the algebra pf from Theorem 2.6, we introduce the
following notations:

e =p(e;), 1<i<n.
Thus, we consider

n n n
vl = e =20, 2, Ane A
1= (2

= Jj=t k1++k‘Z=j

n o n n t
= Z Z Z a;Akl...Akiej = Z Z Z O‘;AklmAlciet-

=2 j=t k1+--+k;=7J t=21=2 ky+---+k;=t

On the other hand, we have

n n n
[6/176/2] - [Z Aieiv Z Z Ak1Ak26j] = [Aleh Z 2 Ak1Ak2ej]
i=1 §=2 k1+ko=j J=2 k1+ka=j
n
= > 2. AAyApler el
3=2 k1 +ha=j
n n
= > > AARAL Y a e
J=2 k1+ko=j t=j

n t
= 2> 2 ArAgy Ay 26y

t=2 j=2 k1 +ka=j
By comparing the coefficients at the basis elements for 2 < ¢t < n, we obtain the
following restrictions.

t t

SN A A=) Y AAL Aor .

=2 ki+--+ki=t J=2 k1+ko=j

If we denote t — 5 + 2 as j on the right hand side of this relation, we can rewrite the
sum as follows:

t t
YD) A A=) > AAL Ay,

i=2 ko othy=t =2 k1+hka—t—j+2
]

Lemma 3.13. Let TP(0,...,0,as, ..., ), with as # 0, be a transposed 1-Poisson algebra
defined above. Then, there exists A € C such that the relation o, = azA3™* holds for any
2<s<n.

Proof. Let TPy(aw,...,a,) be a transposed 1-Poisson algebra, and consider a general
change of basis. Let a; =0 for 2 <i < s — 1 then o, = 0. Then, we have the following
restriction (13):

S S

S>> A A=Y > AlALApa o

1=2 ki+-+k;=s 7=2 k1+ko=j

14
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or

S AnAnoh+ Y Al Agal= > AALApas+ Y AjAL Apa,.

k1+ko=2 ki+-+ks=s ki1+ko=2 ki+ko=s

For s = 2, we derive afy = Ajan. In the next steps we will have the following

> Ay And= ) AAL Ao,

ki+-+ks=s k1+ko=2
From this equality, we obtain the relation o/, = a,A3~*. O

Lemma 3.14. If the parameters ay # 0 and as # 0 for 3 < s < n, then the algebra
TPi(a2,0,...,0,as,...,q,) is isomorphic to the algebra TP1(1,0,...,0,a4,0,...,0).

Proof. By general substitution and according to Lemma 3.13, we obtain the following
equality.
oy = Ajan, o, = a AP0

Since ap # 0, making the substitution e} = a;’e;, for 1 < i < n, we obtain the relation
ah = 1.
Next, consider another change of basis for e; :

Q11

A=t g,

€9.

From the relations e; - e; = e;4; for 2 <i+ j < n, we obtain

i . t
r 1 Qsy1 .
=3 (1) (6255) e 1=isn

t=0

Here we assume that e; = 0 for ¢ > n. Thus, a direct computation shows that as,q = 0.
Now, we prove by induction that it is possible to set a; = 0 for all s+1 < j < n. The

base case j = s + 1 is already established. Assuming that the claim holds for some 7, we

show that it also holds for 57 + 1. Consider the change of basis:

Qjt1

=t o2,

€j—s+2-

Using e; - €j = e, for 2 < i+ j < n, we derive

i . t
/ 1 i1 .
; = E v | Citt(j-s+1), 1 <1< n.
: t=0 ( t ) ((3 - 2)a5> GO =

Here we assume that e, = 0 for ¢ > n. One can verify that o;; = 0.
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By induction, we obtain a; = 0 for all s +1 < j < n, and hence the algebra
TP,(1,0,...,0,as,0,...,0) with the following multiplication rules:

€+ €j = Ciyj, 2<i+j<n,
le1, 6] =€ +aesyio, 2<i<n—s+2.

Lemma 3.15. If a3 # 0, then TP1(0, a3, ..., qa,) = TP1(0,,0,...,0).

Proof. By general substitution and according to Lemma 3.13, we obtain o = ag3. Next,
consider another change of basis ] = e; + g—;‘eg. From the relations e; - e; = e;4; for

2 < i+ 7 <n, we obtain
: Z g t
e - . 1<i<n.
€ E (t) (a3> Ci+tt, S1sn

t=0

Here we assume that e, = 0 for ¢ > n. It follows that o/, = 0.

Now, we prove by induction that a; = 0 for all 4 < j < n. The base case j = 4 is
already established. Assuming that the claim holds for some j, we show that it also holds
for j + 1. Consider the change of basis:

Qj+1
as

/
€, =€ + €j—1-

Using e; - €j = e;4; for 2 < i+ j < n, we derive

i . ¢
Q1 .
e = ! =) ey, 1<i<n.
: ;(t ) g, 1SS

Here we assume that e, = 0 for ¢ > n, which yields a;;1; = 0.
By induction, we have a; = 0 for all 4 < j < n, and get the algebra TP;(0, «,0, ..., 0),
with the following multiplication rules:

€ €j = €14, 2§Z+]STL,
ler, 6] = aeipq, 2<i<n—1

]

Lemma 3.16. Ifa, # 0,s > 4, then TP1(0,...,0,qs,...,a,) = TP(0,...,0,15,0,...,0).

Proof. By general substitution and according to Lemma 3.13, we obtain the following
equality

! 3—s
a, = a;A7°.
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i

If we perform the substitution e, = as¢;, for 1 < i < n, then we obtain the relation
ol =1.
Next, consider another change of basis for e; :

Qg1
(s —2)

/
e, =e€;+ €.

From the relations e; - e; = e;1; for 2 <1+ 5 < n, we obtain

7 . t
/ 1 Od,gJ,»l .
:E i, 1<i<n.
o to(t)(@—z))e“ ==

Here we assume that e; = 0 for ¢ > n. A direct computation shows that a,.; = 0.

Now, we prove by induction that a;; = 0 for all s +1 < 57 < n. The base case j = s +1
is already established. Assuming that the claim holds for some j, we show that it also
holds for 7 + 1. Consider the change of basis:

Qj+1
(8 _ 2) ej—8+2'

/

Using e; - €j = e;4; for 2 <i 4 j < n, we derive

i . t
1 A .
€ = E ( ; ) ((51_2)) Citt(j—st+1), 1<t <.

t=0

Here we assume that e, = 0 for ¢ > n. It follows that a;; = 0.
By induction, we obtain a; = 0 for all s +1 < j < n, and hence the algebra
TP,(0,0,...,0,1,,0,...,0) with the following multiplication rules:

€ €j = €iytj, 2§’l+]§n,
[el,ei] = €542, 2§Z§n+2—8

O

Theorem 3.17. Let (ug, -, [—, —]) be a 1-transposed Poisson algebra. Then this algebra is
isomorphic to one of the following pairwise non-isomorphic algebras:
TP,(1,0,...,0,as,0,...,0), TP:(0,q,0,...,0),

TP,(0,...,0,1,,0,...,0), 3<s<n, 4<p<n, acC.
Proof. Let (ug,-,[—,—]) be a transposed 1-Poisson algebra. Then Theorem 3.11 implies
that it is isomorphic to the algebra TP; (s, ..., a,). Moreover,
e Ifay #0, ag =+ =a, 1 =0 and oy # 0 for s > 3, then from Lemma 3.14, we

have the algebra TP¢(1,0,...,0,a,0,...,0).

17
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o If vy =0, a3 # 0 then from Lemma 3.15, we have the algebra TP;(0,«,0,...,0).
o Ifay=---=0a, 1 =0, ap, #0, p >4 then from Lemma 3.16, we have the algebra

TP,(0,...,0,1,,0,...,0), 4 <p <n.

o If ; =0, 2 <i <n then we have the algebra TP(0,...,0).
]

3.3 Transposed §-Poisson algebra structures on null-filiform associative algebras

Now we consider transposed d-Poisson algebra structures on null-filiform associative
algebras for § # 0,1, 2.

Theorem 3.18. Let (u, -, [—, —]) be a transposed §-Poisson algebra and 6 # 0,1,2. Then
the multiplication of (ug, -, [—, —]) has the following form:
((ei-ej = ey, 2<i1+7<n,
€1,€2] = Qp_2€p_2 + Qp_1€p_1 T Qpeyp,

[e1, €3]

TPs(vy—2, apn_1, ) : < [e1, €3] = d(an—2en_1 + an_16n),
[e2, €3]
[e1, €4]

2_
€2, €3] = ey,
2
| 61, 64] = 5;60671—2671
Proof. Let (ug,-,[—,—]) be a transposed 6-Poisson algebra. Then, according to Corollary

3.2, we have the multiplications

_ _ 6244
[e1,€a] = Qo€ o + ap1€n 1+ anen, ler, e = S50, a6y,

le1, €3] = 0(an_oen_1 + an_16,), le1, ;] =0, 5<i<n.
Now we check the identity (2) for the triple {ej, €1, e3}:
dey - [er, e3] = [ea, €3] + [e1, e4].

From this, we derive the following product

62 =9

[627 63] = Ap—2€p.

Applying induction by i+ j, we prove [e;, e;] = 0 for i +j > 6.
Now, we consider the condition (2) for the triple {ey,e;, e;}:

0= (5ei . [61,6]‘] = [61‘ . 61,€j] + [61, €; Gj] = [6i+1,6j].

So we get [e;,e;] =0 for ¢ + j > 6. Thus, we get the proof of the theorem.
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The following theorem establishes a necessary and sufficient condition for two algebras
in the family TPs(cv,_2, a,_1, @) to be isomorphic.

Theorem 3.19. Let TPs(v,_2, a1, ) and TPy(a, 5, 1, ) be isomorphic algebras.
Then there exists an automorphism ¢ between these algebras such that:

/ __ Qn-2 / _ Ajap_1+Aran_2(20—n+2)

an—? - A’"« 5 Oén 1 — An 3 9

o — 2anA1+2an 1A1A2(26—n+1)+am— 2(A1A3(62+36 2n+4)+A2(36%2+6(3—4n)+n2—n— 2))
n - 2An T

Proof. Using the automorphism of the algebra pf from Theorem 2.6, we introduce the
following notations:

n n
/ z : / 2 : 2 :
€ = A,-ei, €y = AklA;@ei,
=1

i=2 ki+ho=i
(n—2)(n—3
2
= A", 1+ (n—1)AY 2 Age,, €, = Ale,.

€ns = Al en o+ (n— 2) A7 Age, 1 + ( )A?“*A% + (n— 2),47;—3,43) en,
en—l

Thus, we consider

/ !
617 62] Q, 26 g+ a —1 + e,

= Oén 2(14711 2€n 2+ n—2)A" 3A2€n 1+

<(n — . )An 142 + (n — 2)A?—3A3) en>

+a!, (AT e, 1+ (n— 1) AT 2 Age,,) + o, Ale,,.
On the other hand, we have

€], eh] = ZAG“Z Z Ay, Ap,eil

1=2 k1+ko=1i
= A?(an72€n72 + ap_1€p—1 + anen) + 26A%A2<05n726n71 + Oénflen)
2+ )
+ 9 (2A%A3 + AlAg)ozn_gen + (QAlAg — A%Ag)an_gen

= A?an—Qen—Q + (A?an—l + 2(514%14204”_2)@”_1

62 +4 62—
(2A7A3 + A1 Ay, o +

+ (A‘;’an + 26 A2 Ay0r,_y + (2A, 43 — A%Ag)@n_g) en-

By comparing the coefficients at the basis elements, we obtain the expressions given in

/ /
the lemma for o/, ,, a/,_;, and o,. O
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Theorem 3.20. Let (puf, -, [—, —]) be a transposed 6-Poisson algebra, and n > 5. Then this
algebra is isomorphic to one of the following pairwise non-isomorphic algebras:

TP;(1,0,0), TP;(0,1,0), TP;(0,0,1),
TP"TJ(LC%O)a TP52+35:2n—4(1707a)7 TP"T’l(OaLa/% o€ C\{O}

Proof. If we make a general substitution on the §-Poisson algebra TPgs(ay,_o, a,_1, ),
then according to Theorem 3.19, for two algebras in this family to be isomorphic, the
following conditions must be satisfied.

/ — Qn—2 / _ Arap—1+Azan_2(20— n+2)

an_Q - An 59 an 1 — An 3
’ 2anA1+2an 1A1A2(26—n+1)+an— 2(A1A3(62+35 2n+4)+A2(352+5(3 4n)+n2—n—2))
n 2An 1 .

One can notice that the relation a,,_ = 0 is an invariant. Thus we consider the
following two cases.

(1) Let c,—2 # 0. Then we choose A} = »~3/a,,_5 and we have o/, _, = 1. We apply the
automorphism in Theorem 2.6 to obtain the following relations:

al 1=, 1+ Ay(20 —n+2),

n

al = an + a, 142(20 —n+ 1)+
A3(0*+30 —2n+4) + A3(302 +6(3 —4n) +n* —n — 2)
5 :

We obtain the following possible cases:

(a) If 6 = 2=, then we derive

, , 8ay, — 8y, 1Ay + Az(n? — 6n + 8) — Ay(n? — 6n + 8)
o | =ap, o = ,

n n 8

Then, by choosing Ay =0, A3 = m, we have the algebra TPn 2 (1, 0, 0).
(b) If § # 5=, then, by putting Ay = —*2=1<, we conclude that o, _; = 0. We use

the automorphlsm in Theorem 2.6 to obtain the following relation:

, 20, + Ag(62 430 — 2n+4)
n - 2 :

If 62 4+ 30 = 2n — 4, then we have the algebra TPs235-2,_4(1,0, ).
If 62 + 38 # 2n — 4, then we obtain the algebra TPz, 35.40,-4(1,0,0).
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(2) Let a,—2 = 0. Then, we get

o =0 aflzﬁt% a/:2mﬂl+m%4A§%—n+4)
n— ) n— —, n - ‘

Ay QA"
In this case, the relation a,_; = 0 is an invariant. Hence, we consider the following

two cases.

(a) ap—1 # 0. Then, we choose A} = »~¥a,_; and we have o/, ; = 1. We again
apply the automorphism in Theorem 2.6 to obtain the following expression:

al, = an+ As(26 —n+1).
If o = ”T_l, then we have TPanl(O, 1, ).

If 6 # 5%, then we have TP(#nTA(O, 1,0).

(b) If a,—1 = 0, then we derive o/, = ~#s and choosing Ay = »¥/a,, we obtain
1
the algebra TP4(0,0,1).

]

In the following theorems, we consider 2, 3 and 4-dimensional cases. For ¢ # 0, in [7]
it was proved that any 2-dimensional complex transposed d-Poisson algebra on the 2-
dimensional associative algebra whose product is given by e; - e; = ey is isomorphic to one
of the following transposed Poisson algebras:

TPs(0,0) : e1-e1 =e3; TPs(0,1): e1-e; =ea, [e1,e2] = €3, 6 € C\ {0}.
If 9 = 0, then we have a transposed 0-Poisson algebra with the multiplication
TPy : e -e1 = eq, [e1,e2] = ajge + azes.
Then, by applying the Theorem 2.6, we obtain the following expressions:
o) = Ay, o = Aoy — Ay,

By considering the possible values of the parameters a; and as, we obtain the following
transposed 0-Poisson algebras:

TP0<070) D1 €1 = €y TP0<07 1) 1€ e = ey, [61,62] = €3;

TPy(1,0) : e1-e1 = ea, [e1,e0] = e1.

Thus, we have obtained the following 2-dimensional transposed d-Poisson algebras.

TP;(0,0), TP;(0,1), TP,(1,0), § € C.
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Now we consider the transposed d-Poisson algebra structures on the 3-dimensional
null-filiform associative algebra p3. In this case, we set

le1, e2] = areq + ages + ases.

By analyzing the identity (2) for the triples {eq,e1,ea}, {e1,€e1,e3}, {e2, e1,e2} and also
by considering the Jacobi identity for triple {eq, es, 3} we have

le1, 2] = aner + anen + ases, [e1, e3] = dases, [eq,e3] =0, da = 0. (14)

Theorem 3.21. Let (u,-,[—, —|) be a transposed §-Poisson algebra and § # 0. Then it is
isomorphic to one of the following pairwise non-isomorphic algebras:

TP;(0,1,0), TP;(0,0,a), TP;(0,1,q), a € C.

Proof. Let (u3,-,[—, —]) be a transposed d-Poisson algebra and ¢ # 0. Then, according to
(14), we have the following

TP(O ) €1°€1 = €2, €1 €2 = €3, €2-€1 = €3,
Qo, 3 -
9 )

[61, 62] = apey + aszes, [61; 63] = dases.

By applying the automorphism in Theorem 2.6, we get the following relations:

A 20 —2)A
0f = Avag, o= 1T B2
1

(1) Let § = 1. Then, we have of, = Ajas, af = asz. In this case we obtain the algebras
TP,(0,1,a) and TP4(0,0, ), where o € C.

(2) Let 0 # 1. Then:
If ap # 0, then by choosing A; =
TP;(0, 1,0).
If ay = 0, then o = a3 and we derive the algebra TP(0,0, «).

Ay = =, we have the algebra

- a3
as’ (20—2)a3

]

Theorem 3.22. Let (13, -, [—, —]) be a transposed 0-Poisson algebra. Then, it is isomorphic
to one of the following pairwise non-isomorphic algebras:

TPy(1,0,0), TPy(0,1,0), TPy(0,0,a), a € C.

Proof. Let (u3,-,[—,—]) be a transposed 0-Poisson algebra. Then, according to (14), we
have the following

€1-€1 = €2, €1 €2 = €3, €€ = €3,
TP (o, ag, a3) : B
le1, e2] = areq + ages + ases.
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By applying the automorphism in Theorem 2.6, we get the following relations:
/ A%Ozg + (QAg — A1A3)O[1 — 2A1A2042

/ 2 /
ay = Afon, o = Ajon — Asan, o =

A
By checking all possible cases of the parameters oy, @y and a3, we obtain the above
algebras. n
Corollary 3.23. Let (i3, -, [—, —]) be a transposed §-Poisson algebra. Then it is isomorphic

to one of the following pairwise non-isomorphic algebras:
TPy(1,0,0), TPs(0,1,0), TPs(0,0,a), TP1(0,1,), v € C.

Now we consider the transposed 6-Poisson algebra structures on the 4-dimensional
null-filiform associative algebra yg. In this case, we set

le1, e2] = arer + ages + ases + aqey.
By analyzing the identity (2) for the triples
{er,er,ea}, {er,er,es}, {ea,er,eaf, {e1,e1,ea}, {€2,€1,€3}

we have da; = 0 and

€ €j = €itj, 2<i+7 <4,
le1, ea] = arer + ages + ases + agey,
TPs(ay, s, az,a4) : < le1, e3] = d(azes + azey),
2, €3] = %%64,
\[61764] = 62;50526
Theorem 3.24. Let (ug, -, [—, —]) be a transposed 6-Poisson algebra, and § # 0. Then it is

1somorphic to one of the following pairwise non-isomorphic algebras:
TP,(0,1,a,0), TP(0,1,0, @),
TP;(0,1,0,0), TPs(0,0,,0), TPs(0,0,0,1), TP _4(0, 1,0,&),TP%(0,0,Q, 1) a e C.

Proof. Let (u,-,[—,—]) be a transposed Poisson algebra. According to the above, this
algebra is isomorphic to the algebra TPs(0, g, a3, y). Applying a change of basis of
Theorem 2.6, we get the following relations:

A 20 —2)A
O/Q :AlOé27 Olé = 1&3+(A ) 20[2’
1

O/ o 214%044 + 2(2(5 - 3)A1A20[3 + ((52 + 35 - 4)A1A3 + (3(52 - 135 + 10)A%)042
t 2A3 '
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(1) Let = 1. Then

/_A r /_A10{4—AQO{3
oy = Ay, oy = a3, oy = —5—

AR

(a) If as # 0 and a3 # 0, then by putting A; = aiz, Ay = 22—, we have the algebra
TP, (0,1, a,0).

(b) If o # 0 and a3 = 0, then by putting A; = 0%7 we obtain the algebra
TP, (0, 1,0, ).

(c) If ag = 0 and ag # 0, then by choosing Ay = A;—‘:‘*, we obtain the algebra
TP, (0,0, ,0).

(d) If ap = a3 = 0 and ay # 0, then by choosing A; = ay, we obtain the algebra
TP, (0,0,0,1).

(e) If vy = a3 = ay = 0, then we have the algebra TP1(0,0,0,0).
(2) Let 6 # 1. Then:

(a) ag # 0, then by choosing A; = Ay = W’ we have o, = 1, a4 = 0.

We apply the automorphism in Theorem 2.6 to obtain the following relation.

az’

ail _ 20(4 + (52 —g 30 — 4)143

If § # —4, then we put Az = 52+35 ;7 and obtain the algebra TP;._4(0,1,0,0).
If 6 = —4, then we derive the algebra TP_4(0, 1,0, ).

(b) Let ap = 0 and ag # 0. Then, we have

’ ’ AlOé4 + (25 - 3)A20z3
1

Ifo # %, choosing A; =1, Ay =
If 6 = %, then we have

B—gﬁ’ we derive the algebra TP(#% (0,0, a,0).
Qg

A

Depending on whether ay = 0 or not, we derive the algebras TP%(0,0,a,O)
and TP%(O, 0,, 1), respectively.

/ /

(c) Let ag = a3 = 0 and ay # 0. Then, by setting A; = a4, we obtain the algebra
TP;(0,0,0,1).

(d) If ay = a3 = a4 = 0, then we obtain the algebra TP;(0,0,0,0).
[l

Using the Theorems 3.10 and 3.24, we derive the classification of 4-dimensional complex
transposed d-Poisson algebra associated on jug.
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Theorem 3.25. Let (ug, -, [—, —]) be a transposed 6-Poisson algebra. Then, this algebra is
isomorphic to one of the following pairwise non-isomorphic algebras:

TPy(1,0,0,0), TP;(0,1,,0), TP(0,1,0, a),

TP;(0,1,0,0), TP,(0,0,a,0), TP5(0,0,0,1), TP_4(0,1,0,a), TP3(0,0,0,1) a € C.

4 $-Poisson algebra structures on null-filiform associative algebras

All Poisson algebra structures and the trivial Poisson algebra on null-filiform associative
algebras have been obtained in [1]. Below, we construct all §-Poisson algebra structures
on null-filiform associative algebras.

Theorem 4.1. Let (ug,-,|—, —]) be a 0-Poisson algebra. Then, (ug,-,[—,—]) is a trivial
0-Poisson algebra.

Proof. Let (ug, -, [—, —]) be a 0-Poisson algebra. To establish the table of multiplications for
the operation [—, —] in this algebra, we consider the following computation for 1 <1i < n—1:

[elvei+1] = [61761 . 62‘] = 6([61761] e ter: [617€i]> = 561 ’ [617€i]'

From this we get [e1,e;] =0 for 2 < i <n.
Next, considering the following equalities

le;, e2] = [es,e1-e1] = 0([es,e1] - e1 +e1-[ei,e1]) =0, 3<i<n—1,
lei,e;] = [ei er - ej—1] = 0([es, e1] - ej_1 +e1-[es, e5-1]) =0, 3<1i,5 <mn,
we obtain
[ezvej] 07 1< W, <n
Il
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