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Description of DG-algebra structures via characters on a

groupoid

Andronick Arutyunov and Oleg Muravev

Abstract. We construct a description of graded derivations in group algebras. Us-
ing this result for arbitrary grading of the group algebra, we describe all possible
DG-algebra structures. Examples are given. The description is given in terms of
characters on a groupoid analogous to the groupoid of conjugate action.
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1 Introduction

In several previous papers by A.S. Mishchenko and others [1,3,4], a method for studying
the derivations of group algebras using the character space on the groupoid of conjugacy
action was presented. In the present paper, a similar groupoid and characters on it are con-
structed in order to describe graded derivations on graded group algebras and all possible
DG-algebra structures on group algebras.

DG-algebras and graded derivations occur frequently. See e.g. [10], where they are
studied in the context of algebraic geometry. Graded derivations in isolation are an even
better-known subject, see e.g. [9]. The classification of possible DG-structures has also
been a focus of study [7, 8].

The main object of our study will be the graded group algebra C[G] ∼=
⊕

Ai and its
graded derivations, that is, linear maps d : C[G] → C[G] satisfying the graded Leibniz rule

d(uv) = d(u)v + (−1)|u|ud(v), ∀u, v ∈ ∪Ai.

In Section 2, we present the structure of a groupoid which is connected to the graded al-
gebra structure. We will give a description of graded derivations as locally finite characters
on this groupoid (see Theorem 2.9). In Section 3, we describe the inner, quasi-inner, and
central derivations in the graded case. Using this construction in the case of DG-algebras,
in Section 4, we obtain a description of DG-algebra structures in terms of characters and
an isomorphism criterion for DG-algebras. In addition, at the end of Section 4, we give
several examples of gradings on group algebras and derivations that define a DG-algebra
structure on them. The definitions and properties from combinatorial group theory that
are necessary to understand the present paper can be found in [6].

2 The groupoid, its characters, and graded derivations

Let’s start with the definitions and fix the notation for future reference. We will study
derivations of group algebras with a DG-structure. The standard definition of a group
algebra is

Definition 2.1. Let G be a group and let K be a field. The group algebra K[G] is the
associative algebra over K the elements of which are all possible formal finite sums of the
form

∑

g∈G kgg, g ∈ G, kg ∈ K, and the operations are defined by:

∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g,

(
∑

g∈G

agg)(
∑

g∈G

bgg) =
∑

h∈G

(

∑

xy=h∈G

(axby)h
)

.

The elements of the group G form a basis of K[G]. Multiplication of the basis elements in
the group algebra is induced by the group multiplication.
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Furthermore, we need the notion of a groupoid. Usually, it is defined as a category
in which every morphism is invertible. We will work with the following construction
associated with a finitely generated group G, so this category is small (the classes of
objects and morphisms are sets).

Definition 2.2. A groupoid Γ has a set of objects Obj(Γ) and a set of morphisms Hom(Γ).
Each morphism has a source s(φ) and a target t(φ), i.e. each morphism is in the set
Hom(s(φ), t(φ)). Composable morphisms have an associative operation (composition).
The following conditions hold:

1. For each object a ∈ Obj(Γ), there is a neutral endomorphism 1a ∈ Hom(a, a) such
that ∀φ ∈ Hom(b, a): 1a ◦ φ = φ and ∀φ ∈ Hom(a, b) φ ◦ 1a = φ.

2. Each morphism has an inverse: for every φ ∈ Hom(a, b) there exists ψ ∈ Hom(b, a)
such that φ ◦ ψ = 1b and ψ ◦ φ = 1a.

2.1 Groupoid of conjugacy action

The following construction generalizes the one from [4]. Suppose we have a C–graded
group algebra C[G] ∼=

⊕

Ai. The group G is assumed to be finitely generated. We will
define the groupoid of conjugacy action Γ for the group G (in the sense of Definition 2.2)
as follows:

Γ =

{

Obj(Γ) = {±g | g ∈ G},

Hom(Γ) = {(u, v) ∈ ±G×±G | s((u, v)) = (−1)|v|v−1u, t((u, v)) = uv−1}.

Consider two morphisms φ = (u1, v1) and ψ = (u2, v2) such that t(φ) = s(ψ), that is, the
composition ψ ◦ φ should be defined. Define it as follows:

(u2, v2) ◦ (u1, v1) :=
(

(−1)|v2|v2u1, v2v1
)

.

This formula is conveniently depicted as a diagram.

(−1)|v1|v−1
1 u1 = u2v

−1
2

u1v
−1
1 (−1)|v2|v−1

2 u2

(u2,v2)(u1,v1)

(u2,v2)◦(u1,v1)

Proposition 2.3. Γ is a groupoid.

Proof. First of all, we note that ∃g → h⇔ ∃t : h = (−1)|t|tgt−1.
Consider φ = (u1, v1) and ψ = (u2, v2) such that t(φ) = s(ψ). Define s(φ) = a,

t(φ) = s(ψ) = b and t(ψ) = c.
We need to check that

s(ψ ◦ φ) = a and t(ψ ◦ φ) = c.
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By definition,

s(ψ ◦ φ) = (−1)|v2v1|v
−1
1 v

−1
2 (−1)|v2|v2u1 = (−1)|v1|v

−1
1 u1 = a.

Calculate that

t(ψ ◦ φ) = (−1)|v2|v2u1v
−1
1 v

−1
2 = u2v

−1
2 = c, because u1v

−1
1 = (−1)|v2|v

−1
2 u2.

Here we shall prove that the composition is associative. Let φ1, φ2, φ3 be morphisms such
that s(φ1) = t(φ2) and s(φ2) = t(φ3). We need to show that

φ1 ◦ (φ2 ◦ φ3) = (φ1 ◦ φ2) ◦ φ3.

We have proved above that these compositions are well-defined. The left side is

φ2 ◦ φ3 = ((−1)|v2|v2u3, v2v3))
φ1 ◦ (φ2 ◦ φ3) = (u1, v1) ◦ ((−1)|v2|v2u3, v2v3)) = ((−1)|v1|+|v2|v1v2u3, v1v2v3).

While the right one is equal to it,

(φ1 ◦ φ2) ◦ φ3 = ((−1)|v1|v1u2, v1v2) ◦ (u3, v3) = ((−1)|v1|+|v2|v1v2u3, v1v2v3),

proving associativity.
Let us show that there is an element 1g such that

s(1g) = t(1g) = g,
φ · 1s(φ) = φ = 1t(φ) · φ, ∀φ ∈ Hom(Γ).

Take 1g = (g, e), where e is the identity of the group G :

(−1)|e|e−1g = g = ge−1

(g,e)

Indeed, choosing an arbitrary morphism (u, v), we have:

(uv−1, e)(u, v) = (u, v);

(u, v)((−1)|v|v−1u, e) = ((−1)|v|v(−1)|v|v−1u, e) = (u, v).

We have now shown that Γ is a category. It remains to check the invertibility of the arrows.
We claim the inverse of a morphism of the form (u, v) is ((−1)|v|v−1uv−1, v−1).

Indeed,

(u, v)((−1)|v|v−1uv−1, v−1) = (uv−1, e) = (t(φ), e),

((−1)|v|v−1uv−1, v−1)(u, v) = ((−1)|v|v−1u, e) = (s(φ), e).
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(−1)|v|v−1u uv−1

(u,v)

((−1)|v|v−1uv−1,v−1)

This proves Proposition 2.3.

The following properties of the groupoid are easily verified by direct calculation.

Proposition 2.4. 1. The endomorphisms Hom(a, a), a ∈ ±G, admit the following de-
scription:

Hom(a, a) = {χ ∈ Hom(Γ) | s(χ) = (−1)|t|t−1a, t(χ) = at−1, t ∈ Z(a) and t ∈ A2i}.

2. For [a] := {b ∈ ±G | ∃t ∈ ±G : b = (−1)|t|t−1at}, denote by Γ[a] the subgroupoid
such that Obj(Γ[a]) = [a]. The following properties hold:

(a) Hom(Γ[a]) = {φ ∈ Hom(Γ) | s(φ) ∈ [a], t(φ) ∈ [a]}.

(b) Γ =
∐

Γ[a].

3. The left action Hom(a, a) × Hom(a, b) → Hom(a, b): (φ, ψ) → ψ ◦ φ is free and
transitive.

Let us show that, with the help of characters of Γ, it is possible to describe derivations
satisfying the graded Leibniz rule.

Definition 2.5. The linear operator d: C[G] → C[G] satisfies the graded Leibniz rule if

d(uv) = d(u)v + (−1)|u|ud(v), ∀ u, v ∈ ∪Ai.

Definition 2.6. The map χ : Hom(Γ) → C is a character if it satisfies the identity

χ(ψ ◦ φ) = χ(ψ) + χ(φ) :
•

• •

χ(ψ)χ(φ)

χ(ψ◦φ)=χ(ψ)+χ(φ)

Definition 2.7. A character χ is locally finite if for all v ∈ ±G we have χ(u, v) = 0 for all
except a finite number of u.

We will denote by χ(Γ) the space of locally finite characters. In Section 2.2 we will
show that χ(Γ) has a natural Lie algebra structure.

The graded Leibniz rule in a group algebra can be expressed in terms of characters on
the groupoid Γ as follows.
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Proposition 2.8. For any graded derivation d, there exists a locally finite character χ such
that

d(u) =
∑

g∈G

(

∑

h∈±G

χ(φ(h, g)λh
)

g, ∀u ∈ Ai. (1)

Proof. It is enough to check the statement on the elements g ∈ ±G, since they generate
C[G] as a vector space.

For any element g of group G we have d(g) =
∑

h∈G

dhgh.

Let us define χ(φ(h, g)) := dhg , χ(φ(−h, g)) := −dhg and show that χ it is a character.
We have

d(g2g1) = d(g2)g1 + (−1)|g2|g2d(g1),

or after a basis expansion
∑

h∈G

dhg2g1h =
∑

h∈G

dhg2hg1 + (−1)|g2|g2
∑

h∈G

dhg1h.

It is clear that summing over all h and all gh is equivalent, so we can convert the
right-hand side to the following form:

∑

h∈G

dhg2g1h =
∑

h∈G

dhg
−1

1

g2
h+

∑

h∈G

d(−1)|g2|g−1

2
h

g1
h⇒ dhg2g1 = dhg

−1

1

g2
+ d(−1)|g2|g−1

2
h

g1
. (2)

Let’s make a substitution:

h1 = hg−1
1 , h2 = (−1)|g2|g−1

2 h.

Then the last equality (2) takes the form:

d
(−1)|g2|g2h2
g2g1 = dh1g2 + dh2g1 ⇔ χ(φ((−1)|g2|g2h2, g2g1)) = χ(φ(h1, g2)) + χ(φ(h2, g1)).

It remains only to note that ((−1)|g2|g2h2, g2g1) = (h1, g2)(h2, g1).

A corollary of the above statement is the following theorem, proved similarly to the
non-graded case, see Theorem 1 of [2].

Theorem 2.9. For any graded derivation d there exists a unique locally finite character χd
satisfying

d(a) = (−1)|a|a
(

∑

t∈G

χ((−1)|a|at, a)t
)

.

There is therefore an isomorphism Der(C[G]) ∼= χ(Γ).

Proof. To prove this, we need to apply formula (1) to a ∈ ±G, write an arbitrary element
g ∈ G as g = at, and then drop the terms with a zero coefficient from the sum. See the
proof of Theorem 1 in [2] for more details.
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2.2 Characters

Locally finite characters are isomorphic to derivations, which means that the commuta-
tor of derivations yields a binary operation on characters. Formula (1) allows us to define
a commutator in character space. Let d1, d2 be the derivations defined by the characters
χd1 , χd2 . Denote the character that corresponding to the commutator [d1, d2] by χ[d1,d2].
This defines an operation on the space of characters.

{χd1 , χd2} := χ[d1,d2]. (3)

For this operation, we have the following equality:

Proposition 2.10. The operation on characters above can be expressed as

{χd1 , χd2}(a, g) =
∑

h∈G

(

χd1(a, h)χd2(h, g)− χd2(a, h)χd1(h, g)
)

. (4)

Proof. Let g ∈ G. Then we have

d1(g) =
∑

h∈G

χd1(h, g)h,

d2(g) =
∑

h∈G

χd2(h, g)h,

{χd1 , χd2}(g) =
∑

h∈G

{χd1 , χd2}(a, g)a.

Write down the equation for the commutator

[d1, d2] = d1d2 − d2d1,

d1d2(g) =
∑

h∈G

χd2(h, g)
(

∑

a∈±G

χd1(a, h)a
)

,

d2d1(g) =
∑

h∈G

χd1(h, g)
(

∑

a∈±G

χd2(a, h)a
)

.

Thanks to local finiteness, we can swap the sums in the last equation and get

[d1, d2](h) =
∑

a∈G

(

∑

h∈G

χd2(h, g)χd1(a, h)− χd1(h, g)χd2(a, h)
)

a.

The value of {χd1 , χd2}(a, g) is the coefficient of a, so

{χd1 , χd2}(a, g) =
∑

h∈G

χd1(a, h)χd2(h, g)− χd2(a, h)χd1(h, g).

It follows that (χΓ, {·, ·}) is a Lie algebra, isomorphic to the algebra of all graded
derivations by Proposition 2.8.
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3 Examples of graded derivations and their description in terms of

characters

We will illustrate the correspondence between characters on a groupoid and graded
derivations using examples of inner derivations, central derivations, and quasi-inner deriva-
tions. They will serve as easy examples of such operators.

3.1 Inner derivations

Consider an element a ∈ ±G. Define the mapping χa : Hom(Γ) → C as follows
(assuming a 6= b):

χa(φ) :=











1, φ ∈ Hom(b, a)

−1, φ ∈ Hom(a, b)

0, otherwise.

(5)

Clearly χa is trivial on endomorphisms.

Proposition 3.1. The map χa defines an inner derivations for a ∈ ±G by the formula

da : x 7→ [a, x]grad = ax− (−1)|x|xa. (6)

Proof. Let’s check that da is a graded derivation (that is, satisfies the graded Leibniz rule):

da(x)y + (−1)|x|xda(y) = (ax− (−1)|x|xa)y + (−1)|x|x(ay − (−1)|y|ya) =
axy − (−1)|xy|xya = da(xy).

Let’s check that it really satisfies the formula (6). Due to linearity, it is enough to check
the statement for the element g ∈ ±G. According to the previous corollary, we have an
equality:

da(g) =
∑

h∈G

χ(h, g)h.

We have that χ(h, g) 6= 0 ⇔ t((h, g)) = a or s((h, g)) = a. Let’s consider these two cases:

1. s((h, g)) = a⇔ (−1)|g|g−1h = a⇔ h = (−1)|g|ga.

2. t((h, g)) = a⇔ hg−1 = a⇔ h = ag.

Therefore, we have: da(g) = ag − (−1)|g|ga.

3.2 Central derivations

We will now give an example of a derivation that is not inner. We will show that it
admits a simple explicit form and is not trivial on endomorphisms. That entails that it
cannot be expressed as a (perhaps formal) sum of inner derivations.

Definition 3.2. That the map τ : G → C is a graded group character if it satisfies the
following property:
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τ(ab) = τ(a) + (−1)|a|τ(b), ∀a, b ∈ G.

Let’s fix a graded group character τ , and let z ∈ Z(G) be a central element of the
group.

Definition 3.3. Define the map dτz : C[G] → C[G] on the generators g ∈ ±G as

dτz : g → τ(g)gz

and extend it by linearity to the whole algebra C[G]. We will call it a central graded
derivation.

Proposition 3.4. The map dτz is a graded derivation.

Proof. It is enough to check the graded Leibniz rule on arbitrary generators u, v ∈ G:

dτz(uv) = τ(uv)uvz = τ(u)uzv + (−1)|u|uτ(v)vz = dτz(u)v + (−1)|u|udτz(v).

On arbitrary elements of a group algebra, the graded Leibniz rule is satisfied due to the
linearity of dτz .

Proposition 3.5. Nontrivial central derivations are not inner.

Proof. Let χτ,z be a character that corresponds to the derivation dτz . By Theorem 2.9 we
have the equality

dτz(g) = τ(g)gz = g
(

∑

t∈G

χ((−1)|g|gt, g)(−1)|g|t
)

.

Therefore, this character is not equal to 0 only in the case t = z:

χ((−1)|g|gz, g) = (−1)|g|τ(g).

Define the morphism φ = ((−1)|g|gz, g) and calculate its beginning and

s(φ) = z, t(φ) = (−1)|g|z.

Then in the case when g ∈ A2n, we have: s(φ) = t(φ) ⇒ χτ,z is non–trivial on a loop φ,
thus dτz it is not an inner derivation.

A direct check shows that inner and central derivations constitute subalgebras. For
more details, see [2].
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3.3 Quasi-inner derivations

As seen from the formula (5), inner derivations are trivial on endomorphisms; however,
the converse is not true. We will call such derivations quasi-inner.

Definition 3.6. Define QInnDer(C[G]) as follows:

QInnDer(C[G]) = {d ∈ Der | ∀a ∈ Obj(Γ), ∀φ ∈ Hom(a, a) : χd(φ) = 0} . (7)

Quasi-inner derivations are clearly a subspace, but the more significant statement is
that they constitute an ideal in the algebra of all derivations.

Proposition 3.7. QInnDer(C[G]) ⊳ Der(C[G]) is an ideal.

Proof. Let us prove that QInnDer(C[G]) is a subalgebra, i.e.

d1, d2 ∈ QInnDer(C[G]) ⇒ [d1, d2] ∈ QInnDer(C[G]).

The character χd1 can be represented as

χd1 =
∑

a∈G

λaχa, λa ∈ C,

where χd1 defined by formula (5), since χa is trivial on endomorphisms. Similarly for the
character χd2 :

χd2 =
∑

b∈G

λbχb, λb ∈ C.

Because of the bilinearity of the commutator,

{χd1 , χd2} =
∑

a∈G

∑

b∈G

λaµb{χa, χb}.

The commutator of the da and db can be represented as follows:

[da, db] = dab − dba.

Then define the character {χa, χb} by the following formula

{χa, χb} = χab − χba.

Claim:

{χd1 , χd2} =
∑

a∈G

∑

b∈G

λaµbχab −
∑

a∈G

∑

b∈G

λaµbχba,

thus {χd1 , χd2} ∈ QInnDer(C[G]). To prove that, consider the value of the character
on the loop (uz, z), z ∈ ZG(u):

{χd1 , χd2}(uz, z) =
∑

ab=zuz−1

λaµb −
∑

ab=u

λaµb −
∑

ba=u

λaµb +
∑

ba=zuz−1

λaµb = 0.

We will now turn to the proof of the theorem. Let’s represent χd0 as

χd0 =
∑

a∈G

λaχa.
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It is sufficient to prove the theorem for χa and extend the result to the χd0 using
bilinearity of the commutator. Consider the character {χd, χ

a}. We need to prove that
it is trivial on endomorphisms, i.e., that for all b ∈ G and for z ∈ ZG(b) it satisfies
{χd, χ

a}(bz, z) = 0. By Proposition 2.3:

{χd, χ
a}(bz, z) =

∑

h∈G

χd(bz, h)χ
a(h, z)− χa(bz, h)χd(h, z).

Here χa(h, z) 6= 0 only in two cases: when h = za and when h = az; and χa(bz, h) 6= 0
only in two cases: when h = bza−1 and when h = a−1bz. This means that

{χd, χ
a}(bz, z) = χd(bz, za) − χd(bz, az) + χd(a

−1bz, z) − χd(bza
−1, z).

But also

(a−1bz, z) ◦ (bz, za) = (bz, az) ◦ (bza−1, z).

Hence

χd(bz, za) + χd(a
−1bz, z) = χd(bz, az) + χd(bza

−1, z),
{χd, χ

a}(bz, z) = 0.

It is easy to see that central derivations are not quasi-inner by repeating the reasoning
from Proposition 3.5.

4 Description of the structure of a DG-algebra in terms of characters

on a groupoid

Our next goal is to describe the possible DG-algebra structures up to isomorphism. We
follow the definitions of [5].

Definition 4.1. Let A ∼=
⊕

Ai be a Z–graded algebra equipped with a derivation

d : A→ A

of degree 1 (the case of a cochain complex) or −1 (the case of a chain complex) and
satisfying the following conditions:

1. d ◦ d = 0,

2. d(uv) = d(u)v + (−1)|u|ud(v).

We say that (A, d) is a differential graded algebra or DG-algebra.

We will give the necessary and sufficient conditions from the point of view of groupoid
characters for a derivation to define a DG-algebra structure on a graded group algebra.
We will describe the cochain complex case, since the reasoning in the chain complex is
similar.
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Theorem 4.2. A character χ on the groupoid Γ defines a DG-algebra structure if and only
if the following conditions are satisfied:

1. The convolution is trivial:

∑

h∈G

χ(h, g)χ(x, h) = 0, ∀g, x ∈ G. (8)

2. For all (h, g) ∈ Hom(ΓAi
), i 6= 1, we have χ(h, g) = 0.

The main idea is to prove that the first condition is equivalent to d2(g) = 0 and the
second one is equivalent to d(Ai) ⊆ Ai+1.

Proof. Using Proposition 2.8, we rewrite the defining properties of a DG-algebra in terms
of characters.

1. By direct calculation we can see that

d2(g) = d
(

∑

h∈G

dhgh
)

=
∑

h∈G

dhg

(

∑

x∈G

dxhx
)

=

∑

h∈G

(h, g)
(

∑

x∈G

(x, h)x
)

=
∑

x∈G

(

∑

h∈G

(χ(h, g)χ(x, h))
)

x.

2. Let g ∈ Ai, then d(g) =
∑

h∈G

χ(h, g)h ∈ Ai+1 ⇔ χ(h, g) = 0 when h /∈ Ai+1.

Note that if u ∈ Ai+1, v ∈ Ai, then for φ = (u, v) we have: s(φ) = (−1)|v|v−1u ∈ A1,
t(φ) = uv−1 ∈ A1, which means that in the case of a DG-algebra, the characters may
not be equal to 0 only on morphisms between elements from A1.

Now, let us recall the definition of an isomorphism of DG-algebras.

Definition 4.3. An isomorphism f : A1 → A2 between two DG-algebras (A1, d1) and
(A2, d2) is an algebra isomorphism such that following properties hold:

1. f respects the grading, f(Ai1) ⊂ Ai2;

2. for all a ∈ A1, f(d1(a)) = d2(f(a)).

Now we describe the structures of DG-algebras up to isomorphism per Definition 4.3.
Let Xi, i = 1, 2 be two matrices (infinity ones, if G is an infinite group) in following

sense:
Xi : G×G→ C,

(x, h) 7→ χi(x, h).
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Theorem 4.4. Two DG-algebras (C[G], d1) and (C[G], d2) are isomorphic iff there is a
matrix C such that

1. matrices X1 and X2 are conjugate, CX2 = X1C;

2. the mapping f is in Aut(C[G]).

In other words, that means that sets of constants cgh, gives f(g) =
∑

h∈G

cghh ∈ Aut(C[G])

and
∑

h∈G

cghχ2(x, h) =
∑

h∈G

χ1(h, g)c
h
x, ∀g, x ∈ G, (9)

where χ1 and χ2 denotes the characters that define the derivations d1 and d2.

Proof. Suppose that we have an isomorphism of DG-algebras f : (C[G], d1) → (C[G], d2),
given on generators by the formula f(g) =

∑

h∈G

cghh. By definition, we have

f(d1(g)) = d2(f(g)).

Then

f(d1(g)) = f
(

∑

h∈G

χ1(h, g)h
)

=
∑

h∈G

χ1(h, g)f(h) =
∑

h∈G

χ1(h, g)
(
∑

x∈G

chxx
)

=
(

∑

h∈G

χ1(h, g)c
h
x

)

x;

d2(f(g)) = d2

(

∑

h∈G

cghh
)

=
∑

h∈G

cghd2(h) =
∑

h∈G

cgh(
∑

x∈G

χ2(x, h)x) =
(

∑

h∈G

cghχ2(x, h)
)

x.

Whence we get our equality (9). To prove the converse, just define f(g) =
∑

h∈G

cghh and for

the same reasons, get the necessary equalities.

Corollary 4.5. In the case when f ∈ Aut(G) the equality (9) takes the form

χ1(h, g) = χ2(f(h), f(g)).

That is, all characters giving isomorphic structures on a group algebra differ by the
action of the automorphism f on the groupoid Γ.

Example 4.6. In a group algebra C[G] ∼=
⊕

Ai such that A1 6= 0, and given a ∈ Z(G)∩A1,
the inner derivation generated by the element a according to the formula from Proposi-
tion 3.1 defines a DG-algebra structure on C[G]. Note that the identity element of the
group lies in A0.

Proof. We have to show that d2 = 0 for such a derivation. We know from Theorem 4.2
that this condition is equivalent to

∑

h∈G

χ(h, g)χ(x, h) = 0; ∀g, x ∈ G.

13
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Consider the product χ(h, g)χ(x, h). By the definition of an inner derivation, this product
is not equal to 0 if and only if (h, g) and (x, h) ∈ Hom(a,−a) or Hom(−a, a).

Let s(h, g) = s(x, h) = a and t(h, g) = t(x, h) = −a, then (−1)|g|g−1h = (−1)|h|h−1x
and hg−1 = xh−1; but this is impossible because a ∈ A1 ⇒ |h| 6= |g|.

Let s(h, g) = t(x, h) = a and t(h, g) = s(x, h) = −a, then (−1)|g|g−1h = xh−1 and
hg−1 = (−1)|h|h−1x; but this is similarly impossible because |h| 6= |g|.

The remaining two cases are similar.

Proposition 4.7. Let dτz(g) = τ(g)gz be the central derivation given by the element z ∈ A1.
It defines a DG-algebra structure if and only if τ(g)τ(gz) = 0 ∀g ∈ G.

Proof. The fact that dτz(g) : A
i → Ai+1 follows from the fact that z ∈ A1.

It remains to check under which conditions dτz(g)
2 = 0. To do this, we simply write by

definition:

(dτz)
2(g) = dτz(τ(g)gz) = τ(g)τ(gz)gz2 ⇒ (dτz)

2(g) = 0 ⇔ τ(g)τ(gz) = 0.

The example below illustrates a non-trivial condition that is implied by the previous
Proposition.

Example 4.8. Let N ⊳G be a normal subgroup in G and ∃f : G�N → Z an epimorphism.

Then C[G] ∼=
⊕

k∈ZC[
〈

wkz
〉

N ], where z ∈ Z
(

G�N

)

is such that f(z) = 1, and
〈

wkg
〉

is

the set of words in which the total degree of z is k. In addition, the central derivation dτz ,
where

τ(zkg) =

{

1, k = 2n+ 1,

0, k = 2n,

defines a DG-algebra structure on C[G].

Here Z
(

G�N

)

denotes the center of the group G�N .

Proof. It is only necessary to check that the graded Leibniz rule is satisfied. To do this,
we can make sure that the given τ is indeed a group character and then take advantage of
Proposition 4.7. It is not difficult to do this by simply going through all the possibilities.

Corollary 4.9. In the graded group algebra C[Z] ∼=
⊕

C[xk], where Z = 〈x〉, it is possible
to define a DG-algebra structure using the central derivation dτx, where

τ(xk) =

{

1, k = 2n+ 1,

0, k = 2n.

Corollary 4.10. Consider the Heisenberg integer group of 3×3 upper-triangular matrices
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H3 = 〈x, y, z | z = xyx−1y−1, xz = zx, yz = zy〉.

It is well known that any element of this group can be represented as ybzcxa. Then
f(ybzcxa) = c ∈ Z is an epimorphism into a group of integers. From here we get the
grading C[H3] ∼=

⊕

k∈Z C[z
k 〈x, y〉]. And the central derivation dτz , constructed similarly to

Example 4.8, gives a DG-algebra structure on C[H3].
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