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Description of DG-algebra structures via characters on a
groupoid

Andronick Arutyunov and Oleg Muravev

Abstract. We construct a description of graded derivations in group algebras. Us-
ing this result for arbitrary grading of the group algebra, we describe all possible
DG-algebra structures. Examples are given. The description is given in terms of
characters on a groupoid analogous to the groupoid of conjugate action.
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1 Introduction

In several previous papers by A.S. Mishchenko and others [1,3,4], a method for studying
the derivations of group algebras using the character space on the groupoid of conjugacy
action was presented. In the present paper, a similar groupoid and characters on it are con-
structed in order to describe graded derivations on graded group algebras and all possible
DG-algebra structures on group algebras.

DG-algebras and graded derivations occur frequently. See e.g. [10], where they are
studied in the context of algebraic geometry. Graded derivations in isolation are an even
better-known subject, see e.g. [9]. The classification of possible DG-structures has also
been a focus of study [7,8].

The main object of our study will be the graded group algebra C[G] = € A; and its
graded derivations, that is, linear maps d : C[G] — C|G] satisfying the graded Leibniz rule

d(uv) = d(u)v + (=D)"ud(v), Yu,v € UA;.

In Section 2, we present the structure of a groupoid which is connected to the graded al-
gebra structure. We will give a description of graded derivations as locally finite characters
on this groupoid (see Theorem 2.9). In Section 3, we describe the inner, quasi-inner, and
central derivations in the graded case. Using this construction in the case of DG-algebras,
in Section 4, we obtain a description of DG-algebra structures in terms of characters and
an isomorphism criterion for DG-algebras. In addition, at the end of Section 4, we give
several examples of gradings on group algebras and derivations that define a DG-algebra
structure on them. The definitions and properties from combinatorial group theory that
are necessary to understand the present paper can be found in [6].

2 The groupoid, its characters, and graded derivations

Let’s start with the definitions and fix the notation for future reference. We will study
derivations of group algebras with a DG-structure. The standard definition of a group
algebra is

Definition 2.1. Let G be a group and let K be a field. The group algebra K[G] is the
associative algebra over K the elements of which are all possible formal finite sums of the
form de(; keg, g € G, k, € K, and the operations are defined by:

Zagg + Z byg = Z(ag + by)g,

geG geqG geqG

) bug) = > (3 (asby)h).

geG geG heG xzy=heG

The elements of the group G form a basis of K[G]. Multiplication of the basis elements in
the group algebra is induced by the group multiplication.
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Furthermore, we need the notion of a groupoid. Usually, it is defined as a category
in which every morphism is invertible. We will work with the following construction
associated with a finitely generated group G, so this category is small (the classes of
objects and morphisms are sets).

Definition 2.2. A groupoid I" has a set of objects Obj(I") and a set of morphisms Hom(I").
Each morphism has a source s(¢) and a target t(¢), i.e. each morphism is in the set
Hom(s(¢),t(¢)). Composable morphisms have an associative operation (composition).
The following conditions hold:

1. For each object a € Obj(I"), there is a neutral endomorphism 1, € Hom(a, a) such
that V¢ € Hom(b,a): 1, 0 ¢ = ¢ and V¢ € Hom(a,b) ¢ o 1, = ¢.

2. Each morphism has an inverse: for every ¢ € Hom(a,b) there exists ¢» € Hom(b, a)
such that p oy =1, and Yoo =1,.
2.1 Groupoid of conjugacy action

The following construction generalizes the one from [4]. Suppose we have a C-graded
group algebra C[G] = @ A;. The group G is assumed to be finitely generated. We will
define the groupoid of conjugacy action I' for the group G (in the sense of Definition 2.2)
as follows:

. {om(r) ={+y]9 <G},
Hom(T) = {(u,v) € £G x £G | s((u,v)) = (=D~ u, t((u,v)) = vo='}.

Consider two morphisms ¢ = (uy,v) and 1) = (ug, v5) such that t(¢) = s(¢), that is, the
composition 1 o ¢ should be defined. Define it as follows:

(ug,v9) o (ug,vy) := ((—1)‘”2|v2u1,vgvl).

This formula is conveniently depicted as a diagram.

(—1)|vl|vf1u1 = uw;l

(MM WU?.)

-1 val,,—1
ULV s (—=1)"2los "
11 (uz,v2)0(u1,01) » (=1)"vy uy

Proposition 2.3. I' is a groupoid.

Proof. First of all, we note that 3g — h < 3t : h = (—1)/tgt1.

Consider ¢ = (u1,v1) and ¢ = (ug,vs) such that ¢(¢) = s(¢). Define s(¢) = a,
t(¢) = s(v) = b and t(¢) = c.

We need to check that

s(Yop)=aand t(od) =c.
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By definition,
s(ho ¢) = (—D)lezlor oy (—1)eloguy = (1)t g = a.
Calculate that
t(y o @) = (—1)"2lvguyvy 11)21 = U, ' = ¢, because N = (—1)|v2|v2_1uQ.

Here we shall prove that the composition is associative. Let ¢1, ¢o, ¢35 be morphisms such
that s(¢1) = t(¢2) and s(¢p2) = t(¢3). We need to show that

¢10 (¢2 © ¢3) = (¢1 o ¢2) o @3.

We have proved above that these compositions are well-defined. The left side is

P2 0 ¢3 = ((—1)1"2lvgugz, vov3))

¢10 (¢a 0 d3) = (ur,v1) o ((—1)*2lvgug, vavs)) = ((—1)P 2l vyug, vivevs).
While the right one is equal to it,
(61 0 @) 0 Pz = ((—=1) " lvyug, v1v7) 0 (uz, v3) = ((—1)P11H2ly voug, vivews),

proving associativity.
Let us show that there is an element 1, such that

s(ly) =t(ly) =g,
¢ : 15((]5) = ¢ = 1t(q§) . (b, VQb S HOI’Il(F)

Take 1, = (g, e), where e is the identity of the group G :

(g9,€)

o

(1) elg=g=ge

Indeed, choosing an arbitrary morphism (u,v), we have:
(wv=t, e)(u,v) = (u,v);
(u, v) (=)o, e) = ((=1)Plo(=1)Plou, e) = (u,v).
We have now shown that I is a category. It remains to check the invertibility of the arrows.

We claim the inverse of a morphism of the form (u,v) is ((=1)"l=tuv™, v™1).
Indeed,

(u, V) (=) ™t o7t = (o e) = (H(9), ),
(=D~ o™ (u,v) = (D)o~ u, e) = (s(6), ).
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This proves Proposition 2.3. U

The following properties of the groupoid are easily verified by direct calculation.

Proposition 2.4. 1. The endomorphisms Hom(a,a), a € =G, admit the following de-
scription:

Hom(a,a) = {x € Hom(T) | s(x) = (—=1)t"a, t(x) = at™', t € Z(a) and t € Ay}.

2. Forla] == {b € £G | 3t € £G : b = (=1)"t"'at}, denote by Ty the subgroupoid
such that Obj(I'yy) = [a]. The following properties hold:

(a) Hom(I') = {¢ € Hom(T') | 5(¢) € [a],1(9) € [a]}-
(b) I' = Hr[a}'
3. The left action Hom(a,a) x Hom(a,b) — Hom(a,b): (¢,v) — 1 o ¢ is free and

transitive.

Let us show that, with the help of characters of I', it is possible to describe derivations
satisfying the graded Leibniz rule.

Definition 2.5. The linear operator d: C[G] — C[G] satisfies the graded Leibniz rule if
d(uv) = d(u)v + (=1)"lud(v), ¥ u,v € UA,.
Definition 2.6. The map y : Hom(I') — C is a character if it satisfies the identity

X(W o ¢) = x(¥) + x(¢) : x(9) x(¥)

X(op)=x(¥)+x()

Definition 2.7. A character x is locally finite if for all v € £G we have y(u,v) = 0 for all
except a finite number of w.

We will denote by x(I') the space of locally finite characters. In Section 2.2 we will
show that x(I") has a natural Lie algebra structure.

The graded Leibniz rule in a group algebra can be expressed in terms of characters on
the groupoid I' as follows.
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Proposition 2.8. For any graded derivation d, there exists a locally finite character x such

that
W) =3 (3 Mo g)\)g, Vu € A (1)

geG  hexG

Proof. 1t is enough to check the statement on the elements g € G, since they generate
C[G] as a vector space.

For any element g of group G we have d(g) = > d}g‘h.
hea

Let us define x(¢(h,g)) := dl, x(¢(—h,g)) := —d} and show that y it is a character.
We have

d(g2g1) = d(g2)g1 + (—1)921god(g1),

or after a basis expansion

Z dgzmh = dZZhgl + (=1)le2lgy S° dglh
heG

heG

It is clear that summing over all h and all gh is equivalent, so we can convert the
right-hand side to the following form:

Z dg2g1 — Zd;lgl h+ Z dg1 iozlgy thy d3291 _ d;‘ﬁl I d 1)lo2lg3h 2)
hed hea hed
Let’s make a substitution:
hi=hgr!, hy = (=1)%lg"h.
Then the last equality (2) takes the form:
ylo2l
ding! 7" = djy + diz & X(0((—1)Pg2h2, 9291)) = X(B(n, 92)) + X(B(h2. 91).
It remains only to note that ((—1)192lgyhy, gag1) = (h1, g2)(ha, g1). O

A corollary of the above statement is the following theorem, proved similarly to the
non-graded case, see Theorem 1 of [2].

Theorem 2.9. For any graded derivation d there exists a unique locally finite character xq4
satisfying

d(a) = (~1)"a( X x((~1)"lat, a)t).

ted
There is therefore an isomorphism Der(C[G]) = x(I").

Proof. To prove this, we need to apply formula (1) to a € £G, write an arbitrary element
g € G as g = at, and then drop the terms with a zero coefficient from the sum. See the
proof of Theorem 1 in [2] for more details. O
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2.2 Characters

Locally finite characters are isomorphic to derivations, which means that the commuta-
tor of derivations yields a binary operation on characters. Formula (1) allows us to define
a commutator in character space. Let di,ds be the derivations defined by the characters
Xdi> Xds- Denote the character that corresponding to the commutator [dy,ds] by X{a, d.)-
This defines an operation on the space of characters.

{Xars Xao = Xar,da)- (3)
For this operation, we have the following equality:

Proposition 2.10. The operation on characters above can be expressed as

D Xa }@,9) = D (v (@) (s 9) = a0, B)xa, (e 9) ). (4)

heG

Proof. Let g € G. Then we have

dl(g) = Z Xd1 (h'v g)h,

heG
d2(g) = Z Xd2(h> g)h,
heG
{Xd1> Xd2}(g) = Z{Xdu Xdz}(a'> g)a"
heG

Write down the equation for the commutator
[dh d2] = d1d2 — d2d17
dida(9) = 5 Xar(h9)( 3 xa(a,h)a).

heG acxG
doii(9) = 3 xa (h:9)( 3 xas(a. h)a).
heG acxG

Thanks to local finiteness, we can swap the sums in the last equation and get

i, da)(h) = 3 (32 xaa (s 9)xas (0, 1) = X, (s 9)xas (0, 1) )

aeG NheG

The value of {x4,, X4, }(a, g) is the coefficient of a, so
D X}, 9) = 2, (@ h)xas (s 9) = Xaa (@ )X (1, 9).
S
U

It follows that (xr,{:,-}) is a Lie algebra, isomorphic to the algebra of all graded
derivations by Proposition 2.8.
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3 Examples of graded derivations and their description in terms of
characters

We will illustrate the correspondence between characters on a groupoid and graded
derivations using examples of inner derivations, central derivations, and quasi-inner deriva-
tions. They will serve as easy examples of such operators.

3.1 Inner derivations

Consider an element a € +G. Define the mapping x* : Hom(I') — C as follows
(assuming a # b):
1, ¢ € Hom(b,a)
X“(¢) == q -1, ¢ € Hom(a,b) ()
0, otherwise.

Clearly x® is trivial on endomorphisms.
Proposition 3.1. The map x® defines an inner derivations for a € £G by the formula
do : T+ [a, @) grea = ax — (—1)1*lza. (6)

Proof. Let’s check that d, is a graded derivation (that is, satisfies the graded Leibniz rule):

da(2)y + (=1)"2da(y) = (az — (=1)"lza)y + (=1)z(ay — (-1)¥ya) =
axy — (—=1)1"aya = d,(xy).

Let’s check that it really satisfies the formula (6). Due to linearity, it is enough to check
the statement for the element g € +G. According to the previous corollary, we have an
equality:

da(g) = h;G x(h, g)h.

We have that x(h,g) # 0< t((h,g9)) = a or s((h,g)) = a. Let’s consider these two cases:
1. s((h,9) =a< (-1)¥gth=a s h=(-1)9ga.
2. t((h,g))=as hg' =a s h=ag.

Therefore, we have: d,(g) = ag — (—1)!9ga. O

3.2 Central derivations

We will now give an example of a derivation that is not inner. We will show that it
admits a simple explicit form and is not trivial on endomorphisms. That entails that it
cannot be expressed as a (perhaps formal) sum of inner derivations.

Definition 3.2. That the map 7 : G — C is a graded group character if it satisfies the
following property:
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7(ab) = 7(a) + (=1)l%7(b), Va,b € G.

Let’s fix a graded group character 7, and let z € Z(G) be a central element of the
group.
Definition 3.3. Define the map df : C[G] — C|G] on the generators g € £G as

dz g —7(9)g2
and extend it by linearity to the whole algebra C[G]. We will call it a central graded

derivation.

Proposition 3.4. The map d7 is a graded derivation.

Proof. 1t is enough to check the graded Leibniz rule on arbitrary generators u,v € G-
d7(uwv) = T(w)uvz = 7(w)uzv + (=) ur(v)vz = d7(u)v + (—=1)"udl (v).

On arbitrary elements of a group algebra, the graded Leibniz rule is satisfied due to the

linearity of d7. O

Proposition 3.5. Nontrivial central derivations are not inner.

Proof. Let x, . be a character that corresponds to the derivation d7. By Theorem 2.9 we
have the equality

az(9) = 7(9)g= = 9 X x((~1)lgt, g)(~1)).

teG

Therefore, this character is not equal to 0 only in the case t = z:
X((=1)¥gz, g) = (=1)ll7(g).
Define the morphism ¢ = ((—1)9!gz, g) and calculate its beginning and
s(0) =2, t(¢) = (1)l

Then in the case when g € Ay, we have: s(¢) = t(¢) = xr.. is non-trivial on a loop ¢,
thus d7 it is not an inner derivation. O

A direct check shows that inner and central derivations constitute subalgebras. For
more details, see [2].
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3.3 Quasi-inner derivations

As seen from the formula (5), inner derivations are trivial on endomorphisms; however,
the converse is not true. We will call such derivations quasi-inner.

Definition 3.6. Define QInnDer(C[G]) as follows:
QInnDer(C[G]) = {d € Der | Va € Obj(I"), V¢ € Hom(a, a) : xa(¢) = 0}. (7)

Quasi-inner derivations are clearly a subspace, but the more significant statement is
that they constitute an ideal in the algebra of all derivations.

Proposition 3.7. QInnDer(C[G]) < Der(C[G]) is an ideal.

(
Proof. Let us prove that QInnDer(C[G]) is a subalgebra, i.e.
di, dy € QInnDer(C[G]) = [d1, d2] € QInnDer(C[G]).
The character x4, can be represented as
= > A% N eC,
acG
where yg4, defined by formula (5), since x® is trivial on endomorphisms. Similarly for the
character yg,:
= S A\ A e C
bed
Because of the bilinearity of the commutator,
{Xas xa} = 25 2 X {x* X"}
a€G beG

The commutator of the d* and d” can be represented as follows:
[da7 db] — dab o dba.
Then define the character {x¢, x’} by the following formula

X =X = x"

Claim:

{Xdedz} - Z Z )‘a b ab Z Z )‘a:ub ba

aceG beG a€G beG

thus {xa4, Xan } € QInnDer(C[G]). To prove that, consider the value of the character
on the loop (uz, 2),z € Zg(u):

{Xdys Xao }(uz,2) = > 1>\“ b bz ¢ b—bz PULESDY 1)\“,ub:O.
ab=zuz~ ab=u a=1u ba=zuz~
We will now turn to the proof of the theorem. Let’s represent y,, as

— Z )\axa

aceG
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It is sufficient to prove the theorem for x® and extend the result to the x4, using
bilinearity of the commutator. Consider the character {4, x*}. We need to prove that
it is trivial on endomorphisms, i.e., that for all b € G and for z € Z5(b) it satisfies
{xa, x“}(bz, z) = 0. By Proposition 2.3:

{xa, X*}Hbz,2) = h%é Xa(bz, h)x*(h, z) — x*(bz, h)xa(h, 2).

Here x%(h, z) # 0 only in two cases: when h = za and when h = az; and x*(bz, h) # 0
only in two cases: when h = bza™! and when h = a~'bz. This means that

{xa, X}z, 2) = xa(bz, za) — xq(bz, az) + xa(a™1bz, 2) — xa(bza™t, 2).
But also
(a™'bz, 2) o (bz, za) = (bz,az) o (bza™t, 2).
Hence

xa(bz, za) + xa(a=tbz, 2) = xa(bz,az) + xq(bza™?, 2),
{xa, x“}(bz, 2) = 0.
]

It is easy to see that central derivations are not quasi-inner by repeating the reasoning
from Proposition 3.5.

4 Description of the structure of a DG-algebra in terms of characters
on a groupoid

Our next goal is to describe the possible DG-algebra structures up to isomorphism. We
follow the definitions of [5].

Definition 4.1. Let A = @ A; be a Z-graded algebra equipped with a derivation
d:A— A

of degree 1 (the case of a cochain complex) or —1 (the case of a chain complex) and
satisfying the following conditions:

1. dod =0,
2. d(uv) = d(u)v + (=1)ud(v).
We say that (A, d) is a differential graded algebra or DG-algebra.

We will give the necessary and sufficient conditions from the point of view of groupoid
characters for a derivation to define a DG-algebra structure on a graded group algebra.
We will describe the cochain complex case, since the reasoning in the chain complex is
similar.

11
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Theorem 4.2. A character x on the groupoid I' defines a DG-algebra structure if and only
if the following conditions are satisfied:

1. The convolution is trivial:

Z x(h,g)x(z,h) =0, Vg,z€QG. (8)

he@
2. For all (h,g) € Hom(I'4,), i # 1, we have x(h,g) = 0.

The main idea is to prove that the first condition is equivalent to d*(g) = 0 and the
second one is equivalent to d(A*) C AL,

Proof. Using Proposition 2.8, we rewrite the defining properties of a DG-algebra in terms
of characters.

1. By direct calculation we can see that

Plo)=d( 3 din) =S di(3 dir) =

heG heG zeG
S g) (3@ mz) =3 (Dt g)x(e, 1))z
heG zeG zeG  heG

2. Let g € A%, then d(g) = > x(h,g)h € A" & x(h,g) =0 when h ¢ A"
heG
Note that if u € A" v € A? then for ¢ = (u,v) we have: s(¢) = (—1)Plv~tu € AL,
t(¢) = uv~t € A, which means that in the case of a DG-algebra, the characters may
not be equal to 0 only on morphisms between elements from A!.

O

Now, let us recall the definition of an isomorphism of DG-algebras.

Definition 4.3. An isomorphism f: A; — A; between two DG-algebras (A, d;) and
(As,ds) is an algebra isomorphism such that following properties hold:

1. frespects the grading, f(A}) C Aj;
2. forall a € Ay, f(di(a)) = dao(f(a)).

Now we describe the structures of DG-algebras up to isomorphism per Definition 4.3.
Let X;,i = 1,2 be two matrices (infinity ones, if G is an infinite group) in following
sense:

Xz' GxG— C,
(x,h) = xi(z, h).

12
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Theorem 4.4. Two DG-algebras (C[G],dy) and (C[G],dy) are isomorphic iff there is a
matriz C' such that

1. matrices X1 and Xy are conjugate, C Xy = X,C,
2. the mapping f is in Aut(C[G]).

In other words, that means that sets of constants cj, gives f(g) = >_ ¢jh € Aut(C[G])
heG

> dxa(@, h) = xi(h,g)ch Vg, x € G, (9)

hed heG

and

where y; and ys denotes the characters that define the derivations d; and ds.

Proof. Suppose that we have an isomorphism of DG-algebras f : (C|G],dy) — (C[G],ds),

given on generators by the formula f(g) = > ¢}h. By definition, we have
hed

f(di(g)) = da(f(9))-

Then
fldi(g)) = f(h;G x1(h, 9)h> = h%)a(hag)f(h) = thM(hag)( ;GCZI> =
(Z alhge)e

b(f(9) = do X chh) = T chda(h) = ¥ (S xalash)x) = (X chxala ).

heG heG heG zeG heG

Whence we get our equality (9). To prove the converse, just define f(g) = > cjh and for
heG
the same reasons, get the necessary equalities. O

Corollary 4.5. In the case when f € Aut(QG) the equality (9) takes the form

That is, all characters giving isomorphic structures on a group algebra differ by the
action of the automorphism f on the groupoid I'.

Example 4.6. In a group algebra C[G] = € A’ such that A' # 0, and given a € Z(G)N A,
the inner derivation generated by the element a according to the formula from Proposi-
tion 3.1 defines a DG-algebra structure on C[G]. Note that the identity element of the
group lies in A°.

Proof. We have to show that d?> = 0 for such a derivation. We know from Theorem 4.2
that this condition is equivalent to

> x(h, g)x(x, h) = 0; Vg, € G.
heG

13
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Consider the product x(h, g)x(z,h). By the definition of an inner derivation, this product
is not equal to 0 if and only if (h, g) and (x,h) € Hom(a, —a) or Hom(—a,a).

Let s(h,g) = s(z,h) = a and t(h,g) = t(x,h) = —a, then (—1)l¥lg=1h = (—=1)"p~1x
and hg~! = xh~!; but this is impossible because a € A! = |h| # |g|.

Let s(h,g) = t(z,h) = a and t(h,g) = s(x,h) = —a, then (—=1)l¥lg='h = zh~! and
hg~' = (=1)"A=1z; but this is similarly impossible because |h| # |g|.

The remaining two cases are similar. O

Proposition 4.7. Let d7(g) = 7(g)gz be the central derivation given by the element z € A,
It defines a DG-algebra structure if and only if 7(g)T(92) = 0Vg € G.

Proof. The fact that d7(g) : A® — A" follows from the fact that z € Al
It remains to check under which conditions d7(g)? = 0. To do this, we simply write by
definition:

(d7)*(g) = dZ(1(9)gz) = T(9)7(g92)g2* = (d])*(g9) = 0 < 7(g)7(gz) = 0.
O

The example below illustrates a non-trivial condition that is implied by the previous
Proposition.

Example 4.8. Let N <G be a normal subgroup in G and 3f : G/N — 7 an epimorphism.
Then C[G] = @, ., C[(wk) N], where z € Z (G/N> is such that f(z) = 1, and (wk) is
the set of words in which the total degree of z is k. In addition, the central derivation dZ,

where
1, k=2n+1
k _ ) )
(=) {0, k= on,
defines a DG-algebra structure on C[G].
Here 7 (G/ N) denotes the center of the group G/ N

Proof. 1t is only necessary to check that the graded Leibniz rule is satisfied. To do this,
we can make sure that the given 7 is indeed a group character and then take advantage of
Proposition 4.7. It is not difficult to do this by simply going through all the possibilities.

O

Corollary 4.9. In the graded group algebra C|Z] = @ C[z¥], where Z = (x), it is possible
to define a DG-algebra structure using the central derivation d7, where

1, k=2 1
T(fl}'k) = ’ B n+ ’
0, k=2n.

Corollary 4.10. Consider the Heisenberg integer group of 3x3 upper-triangular matrices
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Hs = (x,y,2z | 2 = wyz~ 'y~ w2 = 22, y2 = 2y).

It is well known that any element of this group can be represented as y°z°x®. Then
f(y*2°2%) = ¢ € Z is an epimorphism into a group of integers. From here we get the
grading C[H3] = @, ., C[z* (x,y)]. And the central derivation d7, constructed similarly to
Ezample 4.8, gives a DG-algebra structure on C[Hj).
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