
Communications in Mathematics 34 (2026), no. 1, Paper no. 3
DOI: https://doi.org/10.46298/cm.15434
©2026 Vo Hoang Minh Thu, Vu Mai Trang
This is an open access article licensed under Creative Commons BY-SA 4.0 licence.

A note on division rings satisfying generalized

rational identities with anti-automorphisms

Vo Hoang Minh Thu, Vu Mai Trang

Abstract. Let D be a division ring with infinite center F , σ be an anti-automorphism
of D and m be a positive integer such that σm 6= Id. In this paper, we show that if
D satisfies a σ

m-GRI, then D is centrally finite.

Contents

1 Introduction and the main result

Let D be a division ring with center F . We say that D is centrally finite if D is regarded
as a finite-dimensional vector space over F . This topic relates to conditions under which
a division ring is centrally finite. We focus on division rings satisfying certain identities.

A classical result states that if D satisfies a polynomial identity, then D is centrally
finite (see [11]). To present this result and the extended results we aim to prove, we recall
some concepts. LetX = {x1, x2, . . . , xn} be a set of n non-commutative indeterminates and
K be a field. We denote K〈X〉 as the polynomial ring in indeterminates X over K, and R

as a ring whose center contains K. A polynomial f(X) ∈ K〈X〉\{0} is called a polynomial

identity of R if for every n-tuple (a1, a2, . . . , an) ∈ Rn, we have f(a1, a2, . . . , an) = 0. In
this case, we say R satisfies the polynomial identity f , abbreviated as PI. If R satisfies
some polynomial identity, then we say R satisfies a polynomial identity. Since we only
work with division rings, we directly assume R = D is a division ring and K coincides
with the center F of D.
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The most classical result concerning division rings satisfying polynomial identities re-
lates to its finite-dimensionality. Specifically, it is proven in [11] that if D is a division ring
with center F and satisfies some polynomial identity over F , thenD is centrally finite. This
result has been subsequently extended in many different directions (e.g., see [1–5,7,12–15]).

We now recall the basic notation used throughout. We denote D〈X〉 = D ∗F F 〈X〉
as the free product of D with F 〈X〉 over F . Each element in D〈X〉\{0} is called a
generalized polynomial over D. Furthermore, since the ring of generalized polynomials
D〈X〉 is fir, the maximal right ring of quotients of D〈X〉 is a division ring (e.g., see
[8]). This division ring is denoted as D(X). Each nonzero element in D(X) is called a
generalized rational polynomial over D. Suppose f(X) is a generalized rational polynomial
(respectively, a generalized polynomial) over D. If for every n-tuple (a1, a2, . . . , an) ∈ Dn

such that when f(a1, a2, . . . , an) is defined, one has f(a1, a2, . . . , an) = 0, then we say D

satisfies the generalized rational identity, abbreviated as GRI (respectively, the generalized
polynomial identity, abbreviated GPI) f , or f is a generalized rational identity (respectively,
a generalized polynomial identity) of D.

In 1966, Amitsur proved that if the center F is infinite and the division ringD satisfies a
generalized rational identity, thenD is centrally finite (see [2]). There are several extensions
of this result. For example, in 1996, Chiba proved that if the center F is infinite and
the multiplicative group D∗ = D\{0} contains a non-central proper subnormal subgroup
satisfying a generalized rational identity, then D is centrally finite (see [6]). Another
direction is to consider identities corresponding to an anti-automorphism. Recall that a
bijection σ : D → D, x 7→ xσ, is called an anti-automorphism of D if (a+b)σ = aσ+bσ and
(ab)σ = bσaσ for all a, b ∈ D. In the case where the order of σ is 2, σ is called an involution

of D. Let m be a positive integer such that σi 6= Id for all 1 ≤ i ≤ m. For each 1 ≤ i ≤ m,
denote Xσi

= {xσi

1 , xσi

2 , . . . } as the set of indeterminates indexed corresponding to each
σi and Xm = ∪m

i=0X
σi

. We denote D(Xm) as the division ring as mentioned above. Let
f(Xm) be a nonzero element in D(Xm). If for every n-tuple (r1, r2, . . . , rn) ∈ Dn such that
when

f(r1, r2, . . . , rn, r
σ
1 , r

σ
2 , . . . , r

σ
n, . . . , r

σm

1 , rσ
m

2 , . . . , rσ
m

n )

is defined, we have

f(r1, r2, . . . , rn, r
σ
1 , r

σ
2 , . . . , r

σ
n, . . . , r

σm

1 , rσ
m

2 , . . . , rσ
m

n ) = 0,

then we say f(Xm) is a generalized rational identity of D with respect to σm. In this case,
we simply say that D satisfies a σm-GRI f or f is a σm-GRI of D. The “best” result is
related to when σ is an involution. In this case, m = 1 and σ will be denoted as ⋆. In
more detail, it is proved that if the center F is infinite and D satisfies a ⋆-GRI, then D

is centrally finite (see [9]). The case of generalized polynomial identities with respect to
σ receives even more attention (e.g., see the book [3] for a survey and the paper [18] for
some additional interesting results on this topic). The objective of this paper is to prove
the following result.

Theorem 1.1. Let D be a division ring with infinite center F . If D satisfies a σm-GRI

then D is centrally finite.
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This theorem can be viewed as an anti-automorphism counterpart of Amitsur’s Theo-
rem and a natural extension of [9].

2 Preliminaries

In short and simple terms, we prove the main result of this paper by induction on n,
the number of indeterminates in the identity. In this section, we prove the case for n = 1.
To do it, we need to review some basic concepts and establish notation. Many results in
this section may have proofs similar to those found in some reference documents, but none
of the results are directly quoted from them. Therefore, for the convenience of the readers,
we will provide proofs for the results if necessary. The main result we obtained in this
section is Lemma 2.4, which states that if a division ring satisfies a blended linear identity
in one variable, then this division ring is centrally finite.

We emphasize some notations that will be used throughout the paper as follows. Let
D be a division ring with center F , and σ : D → D, x 7→ xσ, be an anti-automorphism
over F , that is, (a + b)σ = aσ + bσ, (ab)σ = bσaσ and ασ = α, for every a, b ∈ D and
α ∈ F . Consider X = {x1, x2, . . . } as a countable set of non-commutative indeterminates.
Suppose m is an integer such that σi 6= Id for all 1 ≤ i ≤ m. For each 1 ≤ i ≤ m, let
Xσi

= {xσi

1 , xσi

2 , . . . } and Xm =
⋃m

i=0X
σi

. The notation F 〈Xm〉 denotes the free algebra
generated by Xm over F , and D〈Xm〉 = D ∗F F 〈Xm〉 is the free product of D and F 〈Xm〉
over F . Each element of D〈Xm〉 has the form

f = f(x1, x2, . . . , xn, x
σ
1 , x

σ
2 , . . . , x

σ
n, . . . , x

σm

1 , xσm

2 , . . . , xσm

n ) =
l

∑

i=1

Pi,

where Pi = δiai0x
σk1

i1
ai1x

σk2

i2
ai2 · · ·x

σkq

iq
aiq are monomials, δi is in F , {ai0 , ai1 , . . . , aiq} is a

subset of D, and {xσk1

i1
, xσk2

i2
, . . . , xσkq

iq
} is a subset Xm.

For each monomial P ∈ D〈Xm〉, we define the σm-degree of P with respect to the

indeterminate xj , denoted σm-degxj
(P ), as the number of occurrences of xσi

j in P for some
0 ≤ i ≤ m. Then, the degree of P , denoted by deg(P ), is defined as

deg(P ) =
∑

xj∈X

σm- degxj
(P ).

We also define the σm-height of P with respect to the indeterminate xj , denoted σm-htxj
(P ),

as the maximum value between (σm- degxj
(P ) − 1) and 0. Similarly, the height of P ,

denoted by ht(P ), is defined as

ht(P ) =
∑

xj∈X

σm-htxj
(P ).

In other words, the height of P is equal to the degree of P minus the number of distinct
indeterminates appearing in P . Let Å be a F -basis of D containing 1. Then Å, combined
with the standard F -basis of F 〈Xm〉, induces a monomial basis M(Å) for D〈Xm〉. Suppose
f =

∑ℓ

i=1 Pi ∈ D〈Xm〉 where P1, P2, . . . , Pℓ are monomials in M(Å). We also define
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1. σm- degxj
(f) = max{σm- degxj

(Pi) | 1 ≤ i ≤ l};

2. deg(f) = max{deg(Pi) | 1 ≤ i ≤ l};

3. σm-htxj
(f) = max{σm-htxj

(Pi) | 1 ≤ i ≤ l};

4. ht(f) = max{ht(Pi) | 1 ≤ i ≤ l}.

Assume that x1, x2, . . . , xn are indeterminates appearing in the polynomial f . Suppose
indeterminate xj appears in all monomials of f , then we say f is blended with respect
to the indeterminate xj . If f is blended with respect to every indeterminate xj where
1 ≤ j ≤ n, then we say f is blended.

Suppose

f = f(x1, x2, . . . , xn, x
σ
1 , x

σ
2 , . . . , x

σ
n, . . . , x

σm

1 , xσm

2 , . . . , xσm

n )

is a σm-GPI of D with deg(f) = p. Let q be the number of indeterminates in f that are
not blended. Suppose q > 0. Without loss of generality, we assume f is not blended with
respect to indeterminates x1, x2, · · · , xq. Set

f1 = f(0, x2, . . . , xn, 0, x
σ
2 , . . . , x

σ
n, . . . , 0, x

σm

2 , . . . , xσm

n );

f2 = f − f1.

Since f is a σm-GPI of D, one has f1 and f2 are also σm-GPIs of D. It is clear that deg(f1)
and deg(f2) are less than or equal to p, and f2 is blended with respect to indeterminate
x1. Similarly, for 2 ≤ j ≤ q, set

f2j−1 = f2j−2(x1, x2, . . . , xj−1, 0, xj+1, · · · , xn, · · · , x
σm

1 , xσm

2 , . . . , xσm

j−1, 0, x
σm

j+1, · · · , x
σm

n ),

and f2j = f2j−2 − f2j−1. Then, the polynomial f2q is blended and is also a σm-GPI of D.
From the above reasoning, we obtain the following proposition.

Proposition 2.1. Let D be a division ring and σ be an anti-automorphism of D. If D

satisfies a σm-GPI, then D satisfies a σm-GPI that is blended.

We continue to consider f =
∑ℓ

i=1 Pi ∈ D〈Xm〉 where P1, P2, . . . , Pℓ are monomials.
Then, f is called σm-multilinear (or shortly, σm-linear) of degree n on indeterminates
x1, x2, . . . , xn if each monomial Pi in f satisfies the following properties:

1. deg(Pi) = n;

2. σm- degxj
(Pi) = 1 for all xj ∈ {x1, x2, . . . , xn}.

In other words, the polynomial f is σm-linear if f is a polynomial blended of height 0.
Suppose f is a blended σm-GPI of D with {x1, x2, . . . , xn} being the set of all inde-

terminates appearing in f . Let p = deg(f) and pj = σm- degxj
(f) (1 ≤ j ≤ k). We
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write f = f(xj) to emphasize considering f as a polynomial in the indeterminate xj . If
ht(f) = t > 0, we choose xjq ∈ X such that xjq does not appear in f and set

∆jf = f(xj + xjq)− f(xj)− f(xjq).

Then,

1. deg(∆jf) = deg(f);

2. σm- degxj
(∆jf) = σm- degxjq

(∆jf) = pj − 1;

3. σm- degxjk
(∆jf) ≤ σm- degxjk

(f) for xjk 6= xj , xjq .

Therefore, ∆jf is also a blended σm-GPI of D satisfying ht(∆jf) ≤ t− 1. Define

∆
(0)
j f = f,

∆
(1)
j f = ∆jf,

∆
(v)
j f = ∆j∆

(v−1)
j f (v ∈ N, v > 1).

Then, if σm- degxj
(f) = pj, we have σm- degxj

(∆
(pj−1)
j f) = 1. From here, we have the

following lemma.

Lemma 2.2. Given f =
∑ℓ

i=1 Pi ∈ D〈Xm〉 is a blended polynomial in indeterminates

x1, x2, . . . , xn and has height t. Let P be a monomial in f such that ht(P ) = t. Then, we

have that ∆
(p1−1)
1 · · ·∆

(pn−1)
n f is a σm-linear polynomial in

∑n

j=1 pj indeterminates, where

pj = σm- degxj
(P ) (1 ≤ j ≤ n).

Proof. If f has height t = 0, then pj = 1 and ∆jf = f is σm-linear for every 1 ≤ j ≤ n,
thus the lemma is proved. Consider the case t > 0 and P is a monomial in f such that
σm-ht(P ) = t. With pj = σm- degxj

(P ), we have

∆
(p1−1)
1 · · ·∆(pn−1)

n f =
∑

∆
(p1−1)
1 · · ·∆(pn−1)

n Pi.

Choose j0 such that σm- degxj0
(P ) = pj0 > 1, degxi

(P ) = pi = 1 and 1 ≤ j0 < i ≤ n. Then

∆
(p1−1)
1 · · ·∆(pn−1)

n P = ∆
(p1−1)
1 · · ·∆

(pj0−1)

j0
P.

Let xn+1 ∈ X , set

∆j0P = P (xj0 + xn+1)− P (xj0)− P (xn+1) =

pj0−1
∑

u=1

hu

in which hu is a polynomial such that

σm- degxn+1
(hu) = u and σm- degxj0

(hu) = pj0 − u.
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Each polynomial hu is a sum of Cu
pj0

monomials Puk
, where each monomial Puk

maps to P

under the projection xn+1 7→ xj0 and σm- degxj0
(Puk

) = pj0 − u. Hence,

∆
(pj0−1)

j0
P = ∆

(pj0−2)

j0
∆

(1)
j0
f = ∆

(pj0−2)

j0

pj0−1
∑

u=1

hu =

pj0−1
∑

u=1

∆
(pj0−2)

j0
hu.

For u > 1, since σm-degxj0
(hu) = pj0 − u < pj0 − 1, we have ∆

(pj0−2)

j0
(hu) = 0. Therefore,

∆
pj0−1

j0
P = ∆

(pj0−2)

j0
h1.

By induction, we obtain that ∆
pj−1
j P has

C1
pj
C1

pj−1 · · ·C
1
2 = pj(pj − 1) · · ·2 = pj!

monomials, each of which maps to P under the projection xe 7→ xj0 (and here we denote
e = n + 1, n+ 2, . . . , n+ (pj0 − 1)). Furthermore, we have

σm- degxj0
(∆

(pj0−1)

j0
P ) = σm- degxe

(∆
(pj0−1)
xe P ) = 1

for e ∈ {n+ 1, n+ 2, · · · , n+ (pj0 − 1)}.
The remaining part of the lemma can be established by induction on n. Finally, we

obtain ∆
(p1−1)
1 · · ·∆

(pn−1)
n P as a linear polynomial in

∑n

j=1 pj indeterminates. Moreover,
these monomials all map to P under the projection satisfying the property: for every
1 ≤ j ≤ n, the projection of xe to xj is such that

j +
n

∑

u=j+1

pu ≤ e ≤ j +
n

∑

u=j

pu.

Let Pi0 6= P be a monomial of f . If there exists 1 ≤ jk ≤ n satisfying the inequality

σ-degxjk
(Pi0) < pjk = σ-degxjk

(P ), then ∆
(pjk−1)

jk
Pi0 = 0. So

∆
(p1−1)
1 · · ·∆

(pjk−1−1)

jk−1 ∆
(pjk−1)

jk+1 ∆
(pjk+1−1)

jk+1 · · ·∆(pn−1)
n Pi0

= ∆
(p1−1)
1 · · ·∆

(pjk−1−1)

jk−1 ∆
(pjk+1−1)

jk+1 · · ·∆(pl−1)
xkl

(

∆
(pjk−1)
xkjk

Pi0

)

= 0.

If ∆
(p1−1)
1 · · ·∆

(pn−1)
n Pi0 6= 0 then p

′

j = σm-degxj
(Pi0) ≥ pj, with 1 ≤ j ≤ n. However,

observe that
∑

(pj−1) = t ≥
∑

(p
′

j −1), which implies that p
′

j = pj for 1 ≤ j ≤ n. Using a

similar method as for P , we have that ∆
(p1−1)
1 · · ·∆

(pn−1)
n Pi0 is a multilinear polynomial in

∑

pj indeterminates just like ∆
(p1−1)
1 · · ·∆

(pn−1)
n P . Hence, ∆

(p1−1)
1 · · ·∆

(pn−1)
n f is a blended

σm-linear polynomial.

From the lemma above, we immediately obtain the following corollary.
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Corollary 2.3. If the division ring D satisfies an σm-GPI of degree n, then there exists an

σm-GPI of D which is blended σm-linear of degree not exceeding n.

Now, we show the main result of this section by considering the case where X = {x}. In
this case, if f is a linear σm-form in D〈Xm〉, then f can be represented as f =

∑k

i=0 gi(x
σi

),

where gi(x
σi

) =
∑ni

j=1 aijx
σi

bij and 0 ≤ k ≤ m.

Lemma 2.4. Let D be a division ring with an infinite center and X = {x}. Suppose f 6= 0
is a σm-generalized polynomial in D〈Xm〉. If D is not centrally finite, then there exists an

element r ∈ D such that f(r) 6= 0.

Proof. By Corollary 2.3, we assume that f is blended σm-linear. By the hypothesis, f can
be represented as

f =
k

∑

i=0

gi(x
σi

)

where gi(x
σi

) =
∑ni

j=1 aijx
σi

bij . We can choose the largest non-negative integer 0 ≤ k ≤ m

such that gk(x
σk

) 6= 0. Consider the case k = 0, then

f = f(x) = g0(x) =

n0
∑

j=1

a0jxb0j .

Suppose
∑n0

j=1 a0jrb0j = 0 for all r ∈ D. With the assumption at hand, we deduce
that f(r) =

∑n0

j=1 a0jrb0j ∈ DxD is a GPI of D. According to [3, Corollary 6.1.3], then
∑n0

j=1 a0jxb0j = 0, which contradicts the assumption. Hence, there exists an element r ∈ D

such that

f(r) =

n0
∑

j=1

a0jrb0j 6= 0.

Suppose the lemma holds for all k ≤ m− 1. For k = m, we have

f =
m
∑

i=0

gi(x
σi

) ∈ D 〈Xm〉 \{0}.

Suppose conversely that we have
∑m

i=0 gi(r
σi

) = 0, for all r ∈ D. Consider the polynomial
g0(x) =

∑n0

j=1 a0jxb0j in two cases n0 = 0 and n0 > 0. First, we consider the case n0 > 0.
If the set {a01, a02, . . . , a0n0

} of n0 elements is linearly independent over F , then the set of
2n0 polynomials

a01, a02, a03, . . . , a0n0
, amnn

xa01, amnm
xa02, amnm

xa03, . . . , amnm
xa0n0

is also linearly independent over F . Indeed, consider

α1a01 + · · ·+ αna0n0
+ β1amnn

xa01 + · · ·+ βnamnm
xa0n0

= 0,
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where αj, βj ∈ F and j ∈ {1, 2, . . . , n0}. Then, we have

{

α1a01 + α2a02 + · · ·+ αna0n0
= 0

β1amnn
xa01 + β2amnn

xa02 + · · ·+ βnamnm
xa0n0

= 0.

Since {a01, a02, . . . , a0n0
} is linearly independent over F , we have the following relation:

α1 = α2 = · · · = αn = 0. Furthermore, as {a01, a02, . . . , a0n0
} is linearly independent over

F , the set
{amnn

⊗F a01, amnm
⊗F a02, . . . , amnm

⊗F a0n0
}

is also linearly independent over F . According to [3, Remark 6.1.1], the set

{amnn
xa01, amnm

xa02, . . . , amnm
xa0n0

}

is linearly independent over F , which implies β1 = β2 = · · · = βn = 0. Thus, there exists
an element r ∈ D such that

a01, a02, a03, . . . , a0n0
, amnn

ra01, amnm
ra02, amnm

ra03, . . . , amnm
ra0n0

are linearly independent over F . Suppose these elements are linearly dependent over F for
all r ∈ D, meaning that there exist γ1, γ2, . . . , γ2n not all zero such that

γ1a01 + γ2a02 + · · ·+ γ2namnra0n0
= 0

for all r ∈ D, implying that D satisfies a GPI. According to [2], D has a finite center,
which contradicts the assumption. Let

g =
m
∑

i=0

gi(σ
i(xσ−m(amnm

)σ−m(r))− amnm
r

m
∑

i=0

gi(x
σi

).

Then,

g =

n0
∑

j=1

a0jxσ
−m(amnm

)σ−m(r)b0j −

n0
∑

j=1

amnm
ra0jxb0j

+

n1
∑

j=1

a1jσ
1−m(r)σ1−m(amnm

)xσb1j −

n1
∑

j=1

amnm
ra1jxb1j

+ · · ·+
nm−1
∑

i=1

(amjramnm
− amnm

rami)x
σm

bmi.

Since
a01, a02, a03, . . . , a0n0

, amnm
ra01, amnm

ra02, amnm
ra03, . . . , amnm

ra0n0

are linearly independent over F ,

a01 ⊗F σ−m(amnm
)σ−m(r)b01, . . . , a0n0

⊗F σ−m(amnm
)σ−m(r)b0n0

,

8
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amnm
ra01 ⊗F b01, . . . , amnm

ra0n0
⊗F b0n0

are also linearly independent over F . According to [3, Remark 6.1.1], there exists an
isomorphism φ : D ⊗F D → DxD such that a⊗F b 7→ axb. Since

n0
∑

j=1

a0jxσ
−m(amnm

)σ−m(r)b0j −

n0
∑

j=1

amnm
ra0jxb0j

= φ
(

n0
∑

j=1

a0j ⊗ σ−m(amnm
)σ−m(r)b0j −

n0
∑

j=1

amnm
ra0j ⊗ b0j

)

,

we deduce that φ is an isomorphism, and

n0
∑

j=1

a0j ⊗ σ−m(amnm
)σ−m(r)b0j −

n0
∑

j=1

amnm
ra0j ⊗ b0j 6= 0,

so the polynomial

n0
∑

j=1

a0jxσ
−m(amnm

)σ−m(r)b0j −
n0
∑

j=1

amnm
ra0jxb0j 6≡ 0.

Therefore, g 6≡ 0. Furthermore, for all r ∈ D, g(r) = 0. Thus, the polynomial g is a
σm-GPI of D. We can choose nm = 1. Then, g is a polynomial not containing xσm

. Thus,
D satisfies a σm-GPI not containing xσm

. According to Corollary 2.3, D satisfies a linear
mixed σm-GPI of the form

h =

k
∑

i=0

hi(x
σi

),

where hi(x
σi

) =
∑nk

j=1 cijx
σi

dij and k ≤ (m − 1). This contradicts the initial assumption.
Now, consider the case n0 = 0. Then,

f = f(xσ, . . . , xσm

) =
m
∑

i=0

gi(x
σi

)

=

n1
∑

j=1

a1jx
σb1j +

n2
∑

j=0

a2jx
σ2

b2j + · · ·+
nm
∑

j=0

amjx
σm

bmj .

Since σ is an anti-automorphism of D, for t ∈ D there exists r ∈ D such that σ(r) = t.
Therefore, for every t ∈ D,

0 = f(rσ, . . . , rσ
m

)

=

n1
∑

j=1

a1jtb1j +

n2
∑

j=0

a2jt
σb2jb2j + · · ·+

nm
∑

j=0

amjt
σm−1

bmj .

9
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Thus, D satisfies a σm-GPI of the form

n1
∑

j=1

a1jxb1j +

n2
∑

j=0

a2jx
σb2jb2j + · · ·+

nm
∑

j=0

amjx
σm−1

bmj ,

which contradicts the assumption. Therefore, there exists an element r ∈ D such that
f(r) 6= 0.

3 Proof of the main result

In this section, we will present the proof of Theorem 1.1. We start with a very classical
result. In fact, in the previous section, we occasionally cited these results directly, but as
mentioned, the previous section is supplementary. Therefore, for the sake of clarity, we
restate these results here.

Lemma 3.1. Let D be a division ring with center F . If F is infinite, then the following

assertions are equivalent.

1. D is centrally finite.

2. D satisfies a PI.

3. D satisfies a GPI.

4. D satisfies a GRI.

Proof. For an original proof of the equivalence between (1) and (2), we refer to [11, Theorem
1]. In addition, it is clear that every PI is, in particular, a GPI, and every GPI is a GRI,
so we have the implications from (2) to (3) and from (3) to (4). A proof that (4) implies
(1) can be found in [6]. Therefore, assertions (1)–(4) are all equivalent.

The next result is an important intermediate theorem.

Proposition 3.2. Let D be a division ring with infinite center F , and σ be an anti-

automorphism of D. If D satisfies a σm-GPI, then D satisfies a GPI. Furthermore, if

D satisfies a σm-PI, then D satisfies a PI.

Proof. According to Corollary 2.3, if D satisfies a σm-GPI, then we can assume that D

satisfies a σm-linear polynomial identity

f(x1, x2, . . . , xn, x
σ
1 , x

σ
2 , . . . , x

σ
n, . . . , x

σm

1 , xσm

2 , . . . , xσm

n ) ∈ D 〈Xm〉 .

Then, for all r1, r2, . . . , rn ∈ D, we have

f(r1, r2, . . . , rn, r
σ
1 , r

σ
2 , . . . , r

σ
n, . . . , r

σm

1 , rσ
m

2 , . . . , rσ
m

n ) = 0.

10
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Let

f1(x1, x
σ
1 , . . . , x

σm

1 ) = f(x1, r2, . . . , rn, x
σ
1 , r

σ
2 , . . . , r

σ
n, . . . , x

σm

1 , rσ
m

2 , . . . , rσ
m

n ).

If f1(x1, x
σ
1 , . . . , x

σm

1 ) 6= 0, then by using Lemma 2.4, dimF D < ∞. Therefore, according
to Lemma 3.1, the division ring D satisfies a GPI. Suppose f1(x1, x

σ
1 , . . . , x

σm

1 ) = 0. For
all r1, r2, . . . , rn, r11, r12, . . . , r1m ∈ D, we have

f(r1, r2, . . . , rn, r11, r
σ
2 , . . . , r

σ
n, . . . , r1m, r

σm

2 , . . . , rσ
m

n ) = 0.

Next, let

f2(x2, x
σ
2 , . . . , x

σm

2 ) = f(r1, x2, r3 . . . , rn, r11, x
σ
2 , r

σ
3 , . . . , r

σ
n, . . . , r1m, x

σm

2 , rσ
m

3 , . . . , rσ
m

n ).

If f2(x2, x
σ
2 , . . . , x

σm

2 ) 6= 0, then D satisfies a GPI. Conversely, if

f2(x2, x
σ
2 , . . . , x

σm

2 ) = 0

then for all r1, r2, . . . , rn, r11, r12, . . . , r1m, r21, r22, . . . , r2m ∈ D, we have

f(r1, r2, . . . , rn, r11, r21, . . . , r
σ
n, . . . , r1m, r2m, . . . , r

σm

n ) = 0.

By repeating the same method for the variables x3, x4, . . . , xn, we can assume that for all
r1, r2, . . . , rnm ∈ D,

f(r1, r2, . . . , r11, r21, . . . , rn1, . . . , r1m, r2m, . . . , rnm) = 0.

Thus, D satisfies a GPI.

To show the main result of this paper, we borrow the following well known property.

Lemma 3.3. Let F be a field and R be a ring whose center contains F . If

f(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0

is a nonzero polynomial over R, then f(t) = 0 has at most n solutions in F .

Proof. This lemma is a corollary of [16, Proposition 2.3.27].

Now we are ready to prove the main theorem.

The proof of Theorem 1.1. Let

f = f(x1, . . . , xn, x
σ
1 , . . . , x

σ
n, . . . , x

σm

1 , . . . , xσm

n )

be a σm-GRI of D and f is defined at

(r1, . . . , rn, r
σ
1 , . . . , r

σ
n, . . . , r

σm

1 , . . . , rσ
m

n ).

11
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Assume that t is a commuting indeterminate over D and tσ = t. Then,

(rj + xjt)
σi

= rσ
i

j + xσi

j t.

According to [7, Lemma 7], f is also defined at

(r1 + x1t, . . . , rn + xnt, r
σ
1 + xσ

1 t, . . . , r
σ
n + xσ

nt, . . . , r
σm

1 + xσm

1 t, . . . , rσ
m

n + xσm

n t)

which is in D(Xm)((t))
n. Here D(Xm)((t))

n is the ring of Laurent series over D(Xm).
Furthermore, we can write f as

f(r1 + x1t, . . . , rn + xnt, r
σ
1 + xσ

1 t, . . . , r
σ
n + xσ

nt, . . . , r
σm

1 + xσm

1 t, . . . , rσ
m

n + xσm

n t)

= f0 +

∞
∑

i=1

fi(x1, . . . , xn, x
σ
1 , . . . , x

σ
n, . . . , x

σm

1 , . . . , xσm

n )ti

where f0 = f(r1, . . . , rn, r
σ
1 , . . . , r

σ
n, . . . , r

σm

1 , . . . , rσ
m

n ) and fi (i ≥ 1) are homogeneous poly-
nomials of degree i in D〈Xm〉. Moreover, there exists i0 such that fi0 6= 0. We have

f(r1 + d1t, . . . , rn + dnt, r
σ
1 + dσ1 t, . . . , r

σ
n + dσnt, . . . , r

σm

1 + dσ
m

1 t, . . . , rσ
m

n + dσ
m

n t)

=

∞
∑

i=1

fi(d1, . . . , dn, d
σ
1 , . . . , d

σ
n, . . . , d

σm

1 , . . . , dσ
m

n )ti.

Since f(r1 + d1t, . . . , rn + dnt, r
σ
1 + dσ1 t, . . . , r

σ
n + dσnt, . . . , r

σm

1 + dσ
m

1 t, . . . , rσ
m

n + dσ
m

n t) is an
element in the quotient ring D(t) of the polynomial ring D[t], it can be represented as

f(r1 + d1t, . . . , rn + dnt, r
σ
1 + dσ1 t, . . . , r

σ
n + dσnt, . . . , r

σm

1 + dσ
m

1 t, . . . , rσ
m

n + dσ
m

n t) =
g(t)

h(t)

where g(t), h(t) ∈ D[t] and h(t) 6= 0. Since the field F is infinite, there exist infinitely
many p ∈ F such that f is defined at (r1 + d1p, . . . , rn + dnp). Furthermore, since f is a
σm-GRI of D, we have

f(r1+d1p, . . . , rn+dnp, r
σ
1 +dσ1p, . . . , r

σ
n+dσnp, . . . , r

σm

1 +dσ
m

1 p, . . . , rσ
m

n +dσ
m

n p) = g(p)
h(p)

= 0,

implying g(p) = 0. Thus, the polynomial g(t) has infinitely many roots in F , so g(t) ≡ 0
by Lemma 3.3. In this case,

f(r1 + d1t, . . . , rn + dnt, r
σ
1 + dσ1 t, . . . , r

σ
n + dσnt, . . . , r

σm

1 + dσ
m

1 t, . . . , rσ
m

n + dσ
m

n t) = 0,

hence

∞
∑

i=1

fi(d1, . . . , dn, d
σ
1 , . . . , d

σ
n, . . . , d

σm

1 , . . . , dσ
m

n )ti = 0.

Therefore,
fi(d1, d2, . . . , dn, d

σ
1 , d

σ
2 , . . . , d

σ
n, . . . , d

σm

1 , dσ
m

2 , . . . , dσ
m

n ) = 0

12
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for all i. Consequently, for all d1, d2, . . . , dn ∈ D, we have

fi0(d1, d2, . . . , dn, d
σ
1 , d

σ
2 , . . . , d

σ
n, . . . , d

σm

1 , dσ
m

2 , . . . , dσ
m

n ) = 0.

Thus,
fi0(x1, x2, . . . , xn, x

σ
1 , x

σ
2 , . . . , x

σ
n, . . . , x

σm

1 , xσm

2 , . . . , xσm

n )

is a σm-GPI of D. According to Proposition 3.2, the ring D satisfies a GPI. Therefore, D
is centrally finite by Lemma 3.1.
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