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A note on division rings satisfying generalized
rational identities with anti-automorphisms

Vo Hoang Minh Thu, Vu Mai Trang

Abstract. Let D be a division ring with infinite center F', ¢ be an anti-automorphism
of D and m be a positive integer such that ¢ # Id. In this paper, we show that if
D satisfies a ¢”*-GRI, then D is centrally finite.

Contents

1 Introduction and the main result

Let D be a division ring with center F'. We say that D is centrally finite if D is regarded
as a finite-dimensional vector space over F'. This topic relates to conditions under which
a division ring is centrally finite. We focus on division rings satisfying certain identities.

A classical result states that if D satisfies a polynomial identity, then D is centrally
finite (see [11]). To present this result and the extended results we aim to prove, we recall
some concepts. Let X = {z1,x9,...,2,} be aset of n non-commutative indeterminates and
K be a field. We denote K(X) as the polynomial ring in indeterminates X over K, and R
as a ring whose center contains K. A polynomial f(X) € K(X)\{0} is called a polynomial
identity of R if for every n-tuple (ay,as,...,a,) € R", we have f(ay,as,...,a,) = 0. In
this case, we say R satisfies the polynomial identity f, abbreviated as PI. If R satisfies
some polynomial identity, then we say R satisfies a polynomial identity. Since we only
work with division rings, we directly assume R = D is a division ring and K coincides
with the center F' of D.
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The most classical result concerning division rings satisfying polynomial identities re-
lates to its finite-dimensionality. Specifically, it is proven in [11] that if D is a division ring
with center F' and satisfies some polynomial identity over F', then D is centrally finite. This
result has been subsequently extended in many different directions (e.g., see [1-5,7,12-15]).

We now recall the basic notation used throughout. We denote D(X) = D *p F(X)
as the free product of D with F(X) over F'. Each element in D(X)\{0} is called a
generalized polynomial over D. Furthermore, since the ring of generalized polynomials
D(X) is fir, the maximal right ring of quotients of D(X) is a division ring (e.g., see
[8]). This division ring is denoted as D(X). Each nonzero element in D(X) is called a
generalized rational polynomial over D. Suppose f(X) is a generalized rational polynomial
(respectively, a generalized polynomial) over D. If for every n-tuple (aq,as,...,a,) € D"
such that when f(aq,as,...,a,) is defined, one has f(ai,as,...,a,) = 0, then we say D
satisfies the generalized rational identity, abbreviated as GRI (respectively, the generalized
polynomial identity, abbreviated GPI) f, or f is a generalized rational identity (respectively,
a generalized polynomial identity) of D.

In 1966, Amitsur proved that if the center F' is infinite and the division ring D satisfies a
generalized rational identity, then D is centrally finite (see [2]). There are several extensions
of this result. For example, in 1996, Chiba proved that if the center I’ is infinite and
the multiplicative group D* = D\{0} contains a non-central proper subnormal subgroup
satisfying a generalized rational identity, then D is centrally finite (see [6]). Another
direction is to consider identities corresponding to an anti-automorphism. Recall that a
bijection o : D — D, x + x7, is called an anti-automorphism of D if (a+b)° = a” +b7 and
(ab)? = b%a” for all a,b € D. In the case where the order of ¢ is 2, ¢ is called an involution
of D. Let m be a positive integer such that o' #Idforall1 <i<m. Foreach 1 <i<m,
denote X7 = {x7,2,...} as the set of indeterminates indexed corresponding to each
ot and X, = U, X°. We denote D(X,,) as the division ring as mentioned above. Let
f(X,,) be a nonzero element in D(X,,). If for every n-tuple (r1,79,...,7r,) € D" such that
when

G TR T S - - GO LR R - SRR Wi

is defined, we have

flri,ro, oo rp, e rg, oo oy g e ) =0,

r'n

then we say f(X,,) is a generalized rational identity of D with respect to ¢™. In this case,
we simply say that D satisfies a ¢™-GRI f or f is a ¢™-GRI of D. The “best” result is
related to when o is an involution. In this case, m = 1 and ¢ will be denoted as . In
more detail, it is proved that if the center F' is infinite and D satisfies a »-GRI, then D
is centrally finite (see [9]). The case of generalized polynomial identities with respect to
o receives even more attention (e.g., see the book [3] for a survey and the paper [18] for
some additional interesting results on this topic). The objective of this paper is to prove
the following result.

Theorem 1.1. Let D be a division ring with infinite center F. If D satisfies a o™-GRI
then D 1is centrally finite.
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This theorem can be viewed as an anti-automorphism counterpart of Amitsur’s Theo-
rem and a natural extension of [9].

2 Preliminaries

In short and simple terms, we prove the main result of this paper by induction on n,
the number of indeterminates in the identity. In this section, we prove the case for n = 1.
To do it, we need to review some basic concepts and establish notation. Many results in
this section may have proofs similar to those found in some reference documents, but none
of the results are directly quoted from them. Therefore, for the convenience of the readers,
we will provide proofs for the results if necessary. The main result we obtained in this
section is Lemma 2.4, which states that if a division ring satisfies a blended linear identity
in one variable, then this division ring is centrally finite.

We emphasize some notations that will be used throughout the paper as follows. Let
D be a division ring with center F', and o : D — D,z — z°, be an anti-automorphism
over F, that is, (a + )7 = a° + b7, (ab)? = b°a° and o’ = «, for every a,b € D and
a € F. Consider X = {xy,x9,...} as a countable set of non-commutative indeterminates.
Suppose m is an integer such that o' # Id for all 1 < i < m. For each 1 < i < m, let
X7 = {27 ,25',...} and X,,, = U[", X°'. The notation F(X,,) denotes the free algebra
generated by X, over F', and D(X,,) = D xp F(X,,) is the free product of D and F(X,,)
over F. Each element of D(X,,) has the form

_ o o o o™ o™ o™y
f=flry, 2o, . xn, 2,25, . x0, .o 2] ,xf .. a0 ) = E P,
=1
where P; = §;a;,1 2711%155(@722@@'2 -+ "a;, are monomials, &; is in F, {aiy, @iy, .., a5} is a

subset of D, and {93Zl : ;’:2, Ce :)squq} is a subset X,,.
For each monomial P € D(X,,), we define the o™-degree of P wz’th respect to the
indeterminate xj, denoted o™-deg, (P), as the number of occurrences of z¢ "in P for some

0 < i < m. Then, the degree of P, *denoted by deg(P), is defined as

We also define the o™ -height of P with respect to the indeterminate x;, denoted o™-ht,(P),
as the maximum value between (¢™-deg, (P) — 1) and 0. Similarly, the height of P,
denoted by ht(P), is defined as

=Y oMbt (P

Z‘jEX

In other words, the height of P is equal to the degree of P minus the number of distinct
indeterminates appearing in P. Let A be a F-basis of D containing 1. Then A, combined
with the standard F-basis of F(X,,), induces a monomial basis M (A) for D(X,,). Suppose
f=31_, P € D(X,,) where P, P,,..., P, are monomials in M(A). We also define
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1. o™-deg, (f) =max{c™-deg, (F;) |1 <1 <1}
2. deg(f) = max{deg(P;) | 1 <i <I};

3. 0™-hty, (f) = max{o™-ht,,(P;) | 1 <i <}

4. ht(f) = max{ht(P) |1 <i<I}.

Assume that x1, s, ..., , are indeterminates appearing in the polynomial f. Suppose
indeterminate x; appears in all monomials of f, then we say f is blended with respect
to the indeterminate x;. If f is blended with respect to every indeterminate x; where
1 <7 < n, then we say f is blended.

Suppose

(oa g

m
f=flxy,zo,. . xp, 2], 29, 20 oo x) L xd L xl )

is a 0™-GPI of D with deg(f) = p. Let ¢ be the number of indeterminates in f that are
not blended. Suppose ¢ > 0. Without loss of generality, we assume f is not blended with
respect to indeterminates 1, xg,- - -, x4. Set

o o om o™ .
fi=f0,z9,...,2,,0,25, ... 20 ..., 0,25 ..., 27 );

fa=Ff-h

Since f is a 0™-GPI of D, one has f; and f, are also 0™-GPIs of D. Tt is clear that deg(f)
and deg(fy) are less than or equal to p, and fs is blended with respect to indeterminate
x1. Similarly, for 2 < j < g, set

m m m

o o o™
f2j—l - f2j—2(x17$27---axj—170>$j+1a"' yLp, T 5,y 7"'7$j—1a07$j+17"' y Ly )7

and fo; = foj_2 — f2j—1. Then, the polynomial f5, is blended and is also a o™-GPI of D.
From the above reasoning, we obtain the following proposition.

Proposition 2.1. Let D be a division ring and o be an anti-automorphism of D. If D
satisfies a c™-GPI, then D satisfies a ¢"™-GPI that is blended.

We continue to consider f = Zle P, € D(X,,) where Py, P,,..., P, are monomials.
Then, f is called o™-multilinear (or shortly, ¢™-linear) of degree n on indeterminates
X1, To, ..., T, if each monomial P; in f satisfies the following properties:

L. deg(F;) = n;
2. 0™-deg, (P;) =1 for all 7; € {21, 22,..., 25}

In other words, the polynomial f is ¢™-linear if f is a polynomial blended of height 0.
Suppose f is a blended ¢™-GPI of D with {x,zs,...,x,} being the set of all inde-
terminates appearing in f. Let p = deg(f) and p; = o™-deg, (f) (1 < j < k). We
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write f = f(z;) to emphasize considering f as a polynomial in the indeterminate z;. If
ht(f) =t > 0, we choose z;, € X such that x;, does not appear in f and set

Ajf = flxy +ay,) = fl;) — flz,).
Then,
1. deg(A;f) = deg(f);
2. 0™-deg, (A;f) = o0™-deg,, (A;f) =p; —1;
3. 0™-deg, (A f) <o™- dengk(f) for z;, # x;,x;,.
Therefore, A; f is also a blended ¢™-GPI of D satisfying ht(A,;f) <t — 1. Define
AYf =1,
AV = A,
AV f =AY F (veNw > 1),

Then, if o™- deng(f) = pj, we have o™ deng(AE-pj_l)f) = 1. From here, we have the
following lemma.

Lemma 2.2. Given f = ZlePi € D(X,,) is a blended polynomial in indeterminates
X1, To, ..., T, and has height t. Let P be a monomial in f such that ht(P) =t. Then, we

have that A§p1‘1> = -A,(qp"_l)f 1s a o™ -linear polynomial in Z;;l p; indeterminates, where
py = o™-deg,, (P) (1< j < n).

Proof. 1f f has height t = 0, then p; = 1 and A;f = f is o™-linear for every 1 < j < n,
thus the lemma is proved. Consider the case ¢ > 0 and P is a monomial in f such that
o™-ht(P) =t. With p; = o™-deg, (P), we have
APTY AR = ST AP AR,
Choose jo such that o™-deg, (P) = pj, > 1,deg, (P) =p; = Lland 1 < jo <i <n. Then
AP AP p o APD .A%’J‘o‘l)p

Let x,.1 € X, set

AjOP = P(‘Tjo +517n+1) - P(‘Tjo) - P(zn-i-l) = Z hy

in which A, is a polynomial such that

o"-deg,, . (hy) = v and 0™-deg, (h.)=pj, — u.

5
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Each polynomial A, is a sum of C’;‘jo monomials P,, , where each monomial P,, maps to P
under the projection x,1 — z;, and o™- dengo (Py,) = pj, — u. Hence,

J0

(pjo—1) (Pip—2) (p; p —2
ATV P = ATOTIAD f = AT Z Z b0

For u > 1, since Um-dengo(hu) = p;, — U < pj, — 1, we have A%jo_m(hu) = 0. Therefore,
APo~tp — AP0
By induction, we obtain that A;’j_lP has
CLCL o Ch = pylpy— D)2 = p

monomials, each of which maps to P under the projection z. — z;, (and here we denote
e=n+1,n+2,....,n+ (pj, —1)). Furthermore, we have

o"™-deg,, (A%j‘)_l)P) = 0" deg,, (Agij‘)_l)P) =1

foree{n+1,n+2,--- ,n+(pj, — 1)}

The remaining part of the lemma can be established by induction on n. Finally, we
obtain Agp AP P ag a linear polynomial in Z;LZI p; indeterminates. Moreover,
these monomials all map to P under the projection satisfying the property: for every
1 < j <n, the projection of z, to x; is such that

j+ Zpu§e<J+Zpu

u=j+1

Let P, # P be a monomial of f. If there exists 1 < j, < n satisfying the inequality
o-deg,, ( P,) < pj, = o-deg,, (P), then Agijk_l)PiO =0. So

A(pl 1) A(ij 1—1) A(ij A(ijJrl 1) A(pn—l P

Jk—1 Jr+1 Je+1
A (p1—-1) i, —1—1) A (Pj+1—1) -1 (pj, —1) .
=47 "'Ajkj—kl A ...Agill ) (Amé’; Pio) =0.
It AP AP 20 then p; = o™-deg, (P,) > pj, with 1 < j < n. However,
observe that > (p;—1) =1t > Z(p; — 1), which implies that p;» =p; for 1 < j <n. Using a
similar method as for P, we have that A(p AP P,, is a multilinear polynomial in

>~ p; indeterminates just like ALY A(p " 1)P Hence, APV ... A"~V £ ig a blended
o™-linear polynomial. O

From the lemma above, we immediately obtain the following corollary.

6
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Corollary 2.3. If the division ring D satisfies an c™-GPI of degree n, then there exists an
o™-GPI of D which is blended o™ -linear of degree not exceeding n.

Now, we show the main result of this section by considering the case where X = {z}. In
. g . m . k p
this case, if f is a linear o™-form in D(X,,), then f can be represented as f = i g:(z7 ),
where g;(27') = Y7 a;;27 b and 0 < k < m.

Lemma 2.4. Let D be a division ring with an infinite center and X = {x}. Suppose f # 0
is a o™-generalized polynomial in D(X,,). If D is not centrally finite, then there exists an
element v € D such that f(r) # 0.

Proof. By Corollary 2.3, we assume that f is blended ¢"™-linear. By the hypothesis, f can
be represented as

where gi(x”i) = Z?:l aijx"i b;j. We can choose the largest non-negative integer 0 < k <m
such that g;(z°") # 0. Consider the case k = 0, then

f=f(x)=go(z) = Zaoﬂbw-

Suppose Zyil agjrbp; = 0 for all » € D. With the assumption at hand, we deduce
that f(r) = 272 agjrby; € DzD is a GPI of D. According to [3, Corollary 6.1.3], then
Z;ﬁl agjxby; = 0, which contradicts the assumption. Hence, there exists an element r € D
such that

no
f(?") = Zaoj’f’b(]j % 0.
j=1
Suppose the lemma holds for all £ < m — 1. For kK = m, we have

m

F=>gx") € D(Xn)\{0}.

1=0

Suppose conversely that we have >~ gi(r“i) =0, for all » € D. Consider the polynomial
go(z) = Z;ﬁl apjxby; in two cases ng = 0 and ny > 0. First, we consider the case ng > 0.
If the set {ao1, a2, - - -, ony } of Mo elements is linearly independent over F', then the set of
2ny polynomials

ap1, o2, A3, - - -y A0ngy Amn, LA01, Cmn,, LA02, Amn,, LA03, - « 5 Amn,, LAOng

is also linearly independent over F'. Indeed, consider

aao1 + - -+ Qpong + B1Gmn, Tao1 + - - - + Bnlmn,, Taon, = 0,
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where a;, 3; € F and j € {1,2,...,n0}. Then, we have

1091 + Qoo + -+ -+ A Aon, =0
ﬁlamnnanI + ﬁ2amnnxa02 + -+ /Bnamnmanno =0.
Since {ao1, apa, - - -, Gon, } s linearly independent over F', we have the following relation:
a; =g =+ = a, = 0. Furthermore, as {a, ags, - . ., aon, } is linearly independent over
F', the set
{@mn, ®@F ao1, Gmn,, @F o2, - - ., Amn,, QF Gong }

is also linearly independent over F'. According to [3, Remark 6.1.1], the set

{@mn, xao1, Gmn,, TA02, - - ., G, TAong

is linearly independent over F', which implies g; = o = --- = 3, = 0. Thus, there exists
an element r € D such that

o1, A2, A035 - - - 5y AOng sy Amn, TA01; Amn,, TA02, Amn,, TA03, - - - s Amn,, T Aong

are linearly independent over F. Suppose these elements are linearly dependent over F' for
all » € D, meaning that there exist ~;, 72, ..., 72, not all zero such that

Y1Go1 + Y2Q02 + A VonmnTAon, = 0

for all r € D, implying that D satisfies a GPI. According to [2], D has a finite center,
which contradicts the assumption. Let

m m
9= Z 9i(0" (207" (@mn, )0 " (1) = A, T Z gi(a”).
i=0 1=0
Then,
no o
9= Z ag;x0 " (A, )o " (1) boj — Z Uy, 0 Tho;
j=1 j=1
ni ni
+ Z ale'l_m(’f’)O'l_m(CLmnm)Ioblj — Z amnmralijlj
j=1 j=1
Nm—1
m
4t Z (T, — Qg TOmi )T Oy
i=1
Since

ap1, Ap2, A03; - - - y A0ng s Amn,, A01, Amn,, TA025 Amn,, TA03, - - - » Amn,, TA0ng

are linearly independent over F,

an @p 0 " (pn,, )0 " (1)bo1, - - -y Qong @F 0" (@, )T (1) bong s

8
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Ay T001 @F bot1, - -+, A, TGORy @F bong

are also linearly independent over F. According to [3, Remark 6.1.1], there exists an
isomorphism ¢ : D ® p D — Dz D such that a ® b — axb. Since

no

no
Z CLOjLUO'_m(CLmnm)O'_m(T)bOj — Z amnmraoijoj
7=1

J=1

no no
= 6(D ao; @ 0™ (@, )0 " (1)bo; = > G, T0j @ by,
j=1

j=1

we deduce that ¢ is an isomorphism, and
no
> a0 © 0 ™ (G, )0 (P)bo; = Y A, 0y © boy # 0,
j=1 j=1
so the polynomial
no o
Z ao; 20" (Amn,, )0 (1) boj — Z A, T00;Tbo; Z 0.
j=1 j=1

Therefore, g # 0. Furthermore, for all » € D, g(r) = 0. Thus, the polynomial g is a
o0™-GPI of D. We can choose n,, = 1. Then, ¢ is a polynomial not containing z°". Thus,
D satisfies a 0™-GPI not containing 2°". According to Corollary 2.3, D satisfies a linear
mixed o™-GPI of the form

where h;(2°") = > ¢;;27 di; and k < (m — 1). This contradicts the initial assumption.
Now, consider the case ng = 0. Then,

f=Fa a2 = gia)
i=0

ni n2 m
2 m
= E aljx"blj + E CLQjSL’U bgj 4+ -+ E amjx” bmj-
j=1 j=0 7=0

Since ¢ is an anti-automorphism of D, for t € D there exists » € D such that o(r) = t.
Therefore, for every t € D,

0=f(r,...,r"")

ni no Nm
o o.mfl
— Z aljtblj + Z agjt bgjsz + -4 Z amjt bmj.
j=1 j=0 Jj=0
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Thus, D satisfies a ¢™-GPI of the form
ni no Nm .
Z alijlj + Z agjxabgjbgj + -+ Z aijL'J bmj,
j=1 §=0 §=0

which contradicts the assumption. Therefore, there exists an element r € D such that

£(r) #0. O

3 Proof of the main result

In this section, we will present the proof of Theorem 1.1. We start with a very classical
result. In fact, in the previous section, we occasionally cited these results directly, but as
mentioned, the previous section is supplementary. Therefore, for the sake of clarity, we
restate these results here.

Lemma 3.1. Let D be a division ring with center F'. If F' is infinite, then the following
assertions are equivalent.

1. D 1s centrally finite.
2. D satisfies a PI.

3. D satisfies a GPL
4. D satisfies a GRI.

Proof. For an original proof of the equivalence between (1) and (2), we refer to [11, Theorem
1]. In addition, it is clear that every PI is, in particular, a GPI, and every GPI is a GRI,
so we have the implications from (2) to (3) and from (3) to (4). A proof that (4) implies
(1) can be found in [6]. Therefore, assertions (1)—(4) are all equivalent. O

The next result is an important intermediate theorem.

Proposition 3.2. Let D be a division ring with infinite center F, and o be an anti-
automorphism of D. If D satisfies a o™-GPI, then D satisfies a GPI. Furthermore, if
D satisfies a 0™-PI, then D satisfies a PL

Proof. According to Corollary 2.3, if D satisfies a ¢™-GPI, then we can assume that D
satisfies a o™-linear polynomial identity

o o o o™ o™ o™
flry, zo, . xn,x], 28, a0 oo x] L xg a0 ) € D{(Xy) .
Then, for all r1,7rs,...,7, € D, we have
o .0 o o™ o™ o™\
flri,ro, oo rp, ey rg, oo oy s e ) =0,
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Let

(o

n n
fl(xl,x‘l’,...,x17 )= flxy,ro, .y, g, T2l ,...,7’27 ).

If fi(xy,29,...,29") # 0, then by using Lemma 2.4, dimp D < co. Therefore, according
to Lemma 3.1, the division ring D satisfies a GPI. Suppose fi(xy,29,...,2{ ) = 0. For

all 1,72, oy, Tpy 11,712, - - - s T1m € D, we have
f(rl,TQ,...,rn,rll,rg,...,rg,...,rlm,rgm,...,rgm) =0.
Next, let
fol@a, @3, ... 25" ) = Fri, To, s ooy oy P11, XS, TS o T i, X5 TS e, 0.
If fo(we,25,...,25 ) # 0, then D satisfies a GPI. Conversely, if
folwg, 25, ...,25") =0
then fOI' all 1,72, . s TnyT11, 7125 - - - s T1m, 721,722, - . ., T2 € D, we have
i, roy o T P oLy oo s T Pl Tomy - - -5 70 ) = 0.
By repeating the same method for the variables 3, x4, ..., x,, we can assume that for all
1,79 ooy Tm € D,
f(’f’l,TQ,...,7"11,7"21,...,Tnl,...,Tlm,TQm,...,Tnm) :0
Thus, D satisfies a GPI. O

To show the main result of this paper, we borrow the following well known property.

Lemma 3.3. Let F' be a field and R be a ring whose center contains F'. If
ft) = ant™ +an 1t" P+ Fart +ag

is a nonzero polynomial over R, then f(t) =0 has at most n solutions in F.
Proof. This lemma is a corollary of [16, Proposition 2.3.27]. O

Now we are ready to prove the main theorem.
The proof of Theorem 1.1. Let

f=flxy,...,zp,2], .. a0, 20 . a0

be a ¢"-GRI of D and f is defined at

o m m
(T T o O AT & TR vl N
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Assume that t is a commuting indeterminate over D and t” = t. Then,
(r; + xjt)”i = r;-’i + SL’;ZT,
According to [7, Lemma 7], f is also defined at

m m m m
(r+xit,. o rp Fapt,r] + a5t s +att, o] Fal b o t)

which is in D(X,,)((t))". Here D(X,,)((t))™ is the ring of Laurent series over D(X,,).

Furthermore, we can write f as

o o o o o™ o™ o™ o™
flri+axt,...orp+axpt,ry + a5t r8 a0t o] gt 0+l )
o
_ o o o™ o™\ 41
= fo+ g filey, oy, xf, o 20 o x] L ad
i=1
m m .
where fo = f(ri,...,1mn, 77, ..., .,r] ,...,r? ) and f; (i > 1) are homogeneous poly-

nomials of degree i in D(X,,). Moreover, there exists iy such that f;, # 0. We have

flriddit,... v+ dot, S +d%t,....r0 +dt,....r¢ +dJ t,....r7 +d° t)

n

m

- Zfi(dl,...,dn,d‘l’,...,dg,...,d‘l’ Lo de)
=1

Since f(ry +dit, ..., 1y +dpt,r{ +dSt, ... ,rS +d0t, ..., r{" +d]"t,...,rl" +d2"t) is an
element in the quotient ring D(t) of the polynomial ring D[t], it can be represented as

flri4+dit,. . a4+ dot,rS +d3t, ... 7S +d0t, .0 +d] .10 4 d ) = L

n

where ¢(t),h(t) € D[t] and h(t) # 0. Since the field F' is infinite, there exist infinitely
many p € I such that f is defined at (r; + dip,...,r, + d,p). Furthermore, since f is a

o™-GRI of D, we have
flri+dip,....,rn+dyp, 77 +dSp, ..., 70+ dp, ..., +di"p,...,r7" +d°"p) = g_l’g =0,

n

implying ¢g(p) = 0. Thus, the polynomial g(¢) has infinitely many roots in F', so g(t) =0
by Lemma 3.3. In this case,

flro+dut, ... ry +dpt, 70 +d0t, ... 70+ d0t, .. S+ d] .S +d7 ) =0,

n

hence
S fildy,dydf, o dg L dT L dDE =0,
i=1

Therefore,
fildy,do, ... dyp,dS,dg, ..., d2,....d] ,dg ,...,d7 ) =0

) n’
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for all . Consequently, for all dy,ds,...,d, € D, we have

fi(dy,do, ... dy,dS dg, ... d0,. ... d]"  d5 ,...,d°" ) =0.

’'n)

Thus,

o .0 o o™ o™ o™
fiolxy, xoy oy, 2y, 29, a0 ) L ad L xd )

is a ¢™-GPI of D. According to Proposition 3.2, the ring D satisfies a GPI. Therefore, D

is centrally finite by Lemma 3.1. 0
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