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Abstract. Elementary divisor rings were first introduced by Kaplansky in his seminal
work. The purpose of this research is to extend Kaplansky’s study of commutative
elementary divisor rings to certain classes of associative rings under weaker conditions
than commutativity. We introduce two new classes of non-commutative rings: those
with the DK-property (Dubrovin—Komarnytsky property) and those with the D-
property (Dubrovin property), and investigate the structure of elementary divisor
rings within these settings. Our main focus is on non-commutative rings of stable
range 1. For such rings, we develop a theory of reduction matrices, which allows us to
construct and analyze new families of non-commutative elementary divisor rings. In
addition, we introduce the concept of an elementary element in a non-commutative
ring. We prove that for Bézout domains of stable range 1 with the DK-property,
a ring R is an elementary divisor ring if and only if every nonzero element of R is

elementary.
Dedicated to Professor M. A. Salim on the occasion of his 70th birthday.
Contents
1 Introduction 2
2 Main Results and relations between them 3
3 Proofs 6

*The current article finishes the joint collaboration that had started prior to Professor Bohdan
Zabavsky’s demise in August 2020. The research was supported by the UAEU UPAR grants G00002160
and G00003658.

MSC 2020: 15A24 (primary); 15A83; 16U99 (secondary).
Keywords: Bézout ring, Hermite ring, Stable range, Diagonal reduction.
Contact information:
V. Bovdi:
Affiliation: United Arab Emirates University, UAE.
Email: vbovdi@gmail.com



Victor Bovdi and Bohdan Zabavsky

1 Introduction

Let R be an associative (but not necessarily commutative) ring with 1 # 0, let U(R)
be the group of units of R, and let R™*™ be the vector space of n X m matrices over
R with n,m > 1. Let GL,(R) be the group of units of the matrix ring R™*"™. The
matrix D := diag(dy,ds,...,ds) € R™™ means a (possibly rectangular) matrix having
dyi,...,ds (in which s := min(n,m)) on the main diagonal and zeros elsewhere. By the
main diagonal we mean the one beginning at the upper left corner. According to Kaplansky
(see [18, p.465]), a ring R is called an elementary divisor ring if for any matrix A over R
there exist invertible matrices P and () of suitable sizes such that

PAQ = D := diag(dy, ..., dy,0,...,0), (1)

in which d; is a total divisor of d;y1, i.e., Rd;11R C d;RN Rd; foreach i =1,... k — 1.

The class of elementary divisor rings is contained in the class of Bézout rings (for
example, see [18,27,33]), i.e., rings with nonzero unit in which every finitely generated one-
sided ideal is a principal one-sided ideal. Note that elementary divisor rings are Hermite
rings. Hermite rings are rings in which each 1x2 and 2 x 1 matrix has a diagonal reduction,
ie., (a,b)P = (c,0) and Q(a,b)T = (d,0)T, where a,b,c,d € R and P,Q € GLy(R)
(see [18,33]). Elementary divisor rings have been studied by many authors (for example,
see [3,5,6,7,8,9,10,13, 14, 15, 16, 24, 31]) and an overview of this topic can be found
in [12,18,26,27,33].

It is well known [28] that any finitely presented module over a valuation ring is iso-
morphic to a direct sum of cyclic modules. Thus, a natural question arises: whether there
are other classes of rings that satisfy the above property. In the articles of Kaplansky [18]
and Larsen, Lewis and Shores [22], it was shown that the above problem and the problem
of reducing an arbitrary matrix to a diagonal form (1) are equivalent over commutative
rings. Thus, such a reduction combines the theory of rings and the theory of modules.

In the article [24], the notion of stable range comes to the theory of diagonalizability of
matrices from K-theory. Using this notation, one of the classes of rings was characterized
in [24], namely the class of regular rings, which is important for solving the problem of
reducing an arbitrary matrix to a diagonal form (1). During the last decade, algebraic
K-theory has been actively used for the study of elementary divisor rings. The use of
invariants as the stable range of rings is of particular importance (for some examples,
see [2,7,8,17,23,24,25,27,30,33,34]). The aim of our study is an attempt to extend the
results obtained for commutative rings to the case of non-commutative rings. Even the
case of a 2 X 2 matrix ring over non-commutative rings shows that there are significant
difficulties in realizing this project. We have succeeded in obtaining some results with
natural restrictions on non-commutative rings. In the general case, as part of his study
of elementary divisor rings and related classes of rings, Kaplansky proved that if R is an
elementary divisor ring, then every finitely presented R-module is a direct sum of cyclic
modules. The results of this article may therefore be of interest for the study of finitely
presented modules over certain classes of noncommutative rings.
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2 Main Results and relations between them

The coboundary of a one-sided ideal I of a ring R is a two-sided ideal which is equal
to the intersection of all two-sided ideals which contain /. Note that this definition is
left-right symmetric.

A nonzero element a € R is called a right (left) duo if aR (Ra) is a two-sided ideal.
Moreover, if aR = Ra, then the element a is called duo.

A ring R has the D-property (Dubrovin’s property) [33, p.33] if for each a € R there
exists a, € R such that RaR = a,R = Ra, (in other words, the coboundary of R is a
principal ideal).

In the sequel, we consider only rings R with the D-property. Examples of such rings are
simple rings [33, §4.2], quasi-duo elementary divisor rings [31, Theorem 1], and semi-local
semi-prime elementary divisor rings [15, Theorem 1]. Several examples of such rings are
given in [6].

Two matrices A and B over a ring R are called equivalent over the ring R if there exist
invertible matrices P and @) over R of suitable sizes such that A = PBQ and it will be
denoted by A ~ B.

Let A = (a;;) € R™*™. The coboundary of the right ideal generated by all elements of
the matrix A = (a;;) is denoted by A,, that is A, = ) > Ra;;R.

i=1j=1

A ring R has stable range 1 if the property aR + bR = R implies (a + bt)R = R for
some t € R. Semi-local rings and unit-regular rings [33, p.45] are examples of rings of
stable range 1. Each commutative Bézout ring of stable range 1 is an elementary divisor
ring. It is known [30, Theorem 2| that each non-commutative right Bézout ring of stable
range 1 is a right Hermitian ring.

Our first result is of a technical nature, but it is actively used in what follows.

Theorem 2.1. If R is a Bézout ring of stable range 1, then

(1) for any A € R**? there exist z,v,d € R such that A ~ [ ; g } and RzR = A,;

(i) for any A € R**? there exist a,b,c € R such that A ~ [ Z 2 } and RaR = A,.

A ring R has the K-property (Komarnytsky’s property) (see [21]) if each factor of a
duo element is a duo element.

Duo-rings and simple rings are rings with K-property. However, a principal ideal
domain H[z] over the classical quaternion divison ring H contains the element 1+ z? which
is duo but not evert factor of 1+ 2? = (1 +iz)(1 — iz) is duo.

Of course, in any ring the central elements and invertible elements are always duo.

More examples and relations between properties of such elements can be found in [11,15,
16,19, 20,31, 33].
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We now introduce the following class of noncommutative rings. A ring is said to have
the DK-property (Dubrovin—-Komarnytsky property) if it satisfies both the D-property
and the K-property.

Our second main result is the following.

Theorem 2.2. Let R be an elementary divisor ring. If R has the DK -property, then for
each matriz A over R there exists a matriz C' := diag(ey, ...,k 0,...,0) such that A ~ C,
€1,...,Ex_1 are duo elements and

R€i+1RgR€im€iR, (’L:l,,]{?—l)

We present one more class of non-commutative rings associated with the D K-property.
A ring R has the elementary DK -property or the (EDK-property) if for each matrix
A over R there exist invertible matrices P and () of suitable sizes such that

PAQ = diag(eq, ..., ,0,...,0),

in which Re; ;1R C Re; Neg;Rforalli=1,...,k—1and eq,...,e,_1 are duo elements of
R.

Evidently, elementary divisor rings with the D K-property, simple elementary divisor
rings and elementary divisor duo-rings are examples of rings with the £ D K-property.

Note that to date we do not know examples of non-commutative rings that are D K-
rings but are not DK-rings. But for PI-rings holds the following.

Theorem 2.3. A principal ideal domain R is an elementary divisor ring with the DK -
property if and only if R is a ring with the E DK -property.

Our next main result is the following.

Theorem 2.4. A Hermite ring R has the EDK -property if and only if each A € R?*? is
equivalent to diag(e,a) € R?*2, in which a € R and

either RaR CeR=Re or e=0.

The next result extends a well-known Kaplansky’s criterion [18, Theorem 5.2, p. 472]
for non-commutative Hermite rings.

Theorem 2.5. A Hermite ring R with the DK -property is an elementary divisor ring if
and only if for each a,b,c € R with the property

RaR+ RbR+ RcR=R (2)
there exist p,q € R such that paR + (pb+ qc)R = R.
Let a € R such that RaR = R. There exist n € N and uq, ..., uy, v, ..., v, € R such
that
uravy + ugavy + - - - + unav, = 1. (3)

4
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If n € N is the minimal number satisfying (3), then a € R is called n-simple. We mostly
concentrate on 2-simple elements of the ring R. Recall that an element a € R is called
2-simple if ujavy + usavy = 1 for some uy, ug, v1,v9 € R and n = 2 is minimal.

The structure of elements of an elementary divisor domain with the D K-property is
presented by the following.

Theorem 2.6. Let R be an elementary divisor domain. If R has the DK -property, then
every a € R\ {0} can be written in the form a = ab = ca, where « € U(R) and b,c € R
are 2-simple elements.

In the case of a ring of stable range 1, we have the following.

Theorem 2.7. Let R be a ring of stable range 1. If a € R is a 2-simple element, then
diag(a,a) ~ diag(1, A), (A € R).

Please note that the question still remains open whether a non-commutative ring of
stable range 1 will be an elementary divisor ring.

Now we use the following definition. A ring R has the L-property if it follows from the
condition RaR = R that a € U(R).

Theorem 2.8. Let R be a domain with the D-property. If R has an L-property, then R is
a duo domain.

Note that a ring is called a quasi-duo ring if every maximal one-sided ideal is a two-
sided ideal. Every n-simple element is invertible in a quasi-duo domain; and in a quasi-duo
elementary divisor domain the D-property is always satisfied [31, Theorem 1].

As a consequence of the previous theorem we have the following.

Corollary 2.9. (see [31, Theorems 1 and 2/) A quasi-duo Bézout domain R is an elementary
divisor domain if and only if R is a duo domain.

Let R be a Bézout domain. An element a € R\ 0 is called finite if each right and left
ideal that contains a is principal. In a Bézout domain this condition is equivalent to the
a.c.c. for principal right and left ideals which contain the element a € R.

Corollary 2.10. Let R be a Bézout domain of stable range 1 with the DK -property. If it
follows from the condition RaR = R that a € R is a finite element, then R is an elementary
divisor ring.

In a more general situation as in Theorem 2.6, we have the following.

Theorem 2.11. Let R be a domain with the D-property. If it follows from the condition
RbR = R that b € R is a finite element, then any element a € R\ 0 can be written as

a=af =ea,

in which a € R is a duo element and f,p € R are finite elements.

5
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Let R be a Bézout domain with the D K-property. An element a € R is called elemen-
tary if RaR = R and for each b, c € R there exist p,q € R such that

paR + (pb+ qc)R = R.

Note that invertible and finite elements are elementary elements by [4, Theorem 2].
Our last result is the following.

Theorem 2.12. Let R be a Bézout domain of stable range 1 with the DK -property. The
ring R is an elementary divisor ring if and only if each nonzero element of R is elementary.

As a consequence we have the following.

Corollary 2.13. Each quasi-duo elementary divisor domain of stable range 1 is a duo do-
main.

3 Proofs

Let A = (a;;) € R™*™. The coboundary of the right ideal generated by all elements of
the matrix A = (a;;) is denoted by A,, that is A, = ) > Ra;;R.

i=1j=1
We start with the following well-known result.

Lemma 3.1. If A and B are equivalent matrices over R then A, = B,.

Proof. If A = (a;j;) = PBQ, where B = (b;;), then
Qi € Z Z RbksR and bij € Z Z Rain.
E s (2]
It follows that > Ra;;R =) RbysR, so A, = B,. O
i ks

We shall freely use the following well-known results.
Lemma 3.2. The following statements hold:
(i) each Bézout ring of stable range 1 is Hermite (see [30, Theorem 2]);

(ii) if R is a right Bézout ring of stable range 1, then for any a,b € R there ezist x,d € R
such that a+bx = d and aR+bR = dR (a+xb = d and Ra+ Rb = Rd, respectively)
(see [32, Proposition 6]);

(7ii) if a € R is right duo, then every factor of a is a left factor. Moreover, if a is duo,
then every proper factor of a € R is a proper left factor (see [4, Proposition 2]).

Remark 3.3. Let R be a left Bézout ring of stable range 1. For each a,b € R there exist
x,y,d € R such that xa + yb = d, so Ra + Rb = Rd.

6
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Proof of Theorem 2.1. (i) Since R is a Hermite ring (see Lemma 3.2(i)), up to the equiv-
g 3}, so ra+ f=dand Ra+ RS = Rd
for some x,d € R by Lemma 3.2(ii) and Remark 3.3. Thus
z 1 a 0| |za+p v
10 B v | a 0
in which a = «apd for some oy € R.
Let YR+ dR = zR and vy + d = z for some y € R. Evidently,

R PR e Rl P

where d = zt and v = 27, for some t,7y € R. It means that A ~
and v = 27yy. This yields that RdR C RzR and RyR C RzR, i.e.,

RzR+ RyR + RdR = RzR.
Finally, A, = RzR+ RyR + RdR = RzR by Lemma 3.1.

alence of matrices, we can assume that A =

z 7y B
d O},whered—zt

z
J 0
RzR = A, by Theorem 2.1. If t € R such that 2R+ vR = (2 + vyt) R (see Lemma 3.2(ii)),
then

z v 1 0 | z+9t v

Gallea]=l )

Let z +~t = a and v = as for some s € R. Obviously,
24+t v | | a as
o 0O |4 0
a as 1 =s| |a O a0
0 0 0 1 | |6 —d6s| |b c]|’

Hence RzR = RaR because [ 1 (1) } € GLy(R). Also RbR C RaR, and RcR C RaR. O

(ii) For each matrix A € R**? there exists an equivalent matrix B = such that

and

Lemma 3.4. Let R be a right Hermite ring. For each a,b € R there exist ag,by,d € R
such that a = dag, b = dby and agR + bpR = R.
*

Proof. Since R is Hermite, (a,b)P = (d,0) € R*? for an invertible P = [z i } If

Pl.= [ o bf ],then

*

*

(d,0)P~" = (d,0) [ “ b } = (a,b),

so dag = a, dby = b and agu + bgv = 1. O
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Lemma 3.5. Fach Hermite ring R with the D-property is an elementary divisor ring if

and only if every matriz A = (a;;) over R with the property > > Ra;;R = R has a form
]

(1).

Proof. Since the proof of the “if” part is obvious, we start with the proof of the “only if”
part. Let Ra;R = aj;R = Ra};R for each i, j and for some duo-element o € R we have

> Y Ra;R=>> aj;R=> Y Raj=aR=Ro.
i J i J i J

That yields a;; = aay; and A = diag(a, ..., @) Ag, where Ay = (ay;). Since R is a Hermite
ring, - > Ray;R = R by Lemma 3.4. O
tog

Proof of Theorem 2.2. Since R is an elementary divisor ring, we assume that
A = diag(dy, ..., d,0,...,0)
in which Rd;;1R C Rd; Nd;R for i =1,...,k — 1. The ring R has the D-property, so
Rdiy R = di R = Rd;,,,

i.e., di , is a duo element. From dj R = Rd;_ , C d;R N Rd; and the definition of the
K-property we obtain that each d; is a duo element. O

Proof of Theorem 2.3. Since a principal ideal domain is an elementary divisor ring with
the D-property [33, p. 5], the proof of the “if” part follows from Theorem 2.2.
Let a,z € R such that a is duo and z is a divisor of a. Since a is duo, z is a left and

right divisor of a by Lemma 3.2(iii). Consequently, RaR C zRN Rz and A = { S 2 }

has a normal canonical form (1). Since R is an elementary divisor ring with the DK-

g 2 } in which RbR C xR = Rx. Moreover, R/zR = R/xR as a right
R-module (see [1, Theorem 2.8]) and x is a duo element. Consequently, z is a duo element
by [12, Exercise 4.2.16]. O

property, A ~ [

Proof of Theorem 2.4. Taking into account that the elements £4,...,x_1 are duo in the
definition of the E'D K-property, the proof is the same as the proof of [18, Theorem 51|. [

Proof of Theorem 2.5. Let (2) hold for some a,b,¢c € R. For the matrix A = { g ZC) }

X

there exist invertible matrices P := [ ]: z } and @) := [ y : } such that

PAQ = diag(z,d) and RAR C zR = Rz.
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Evidently, RzR + RdR = RzR = RaR + RbR + RcR = R. Since zR = Rz, then
RzR=z2R= Rz and zR= Rz=R,

i.e., z € U(R). On the other hand, we have that pazz=' + (pb + qc)yz=! = 1 which we
intended to prove in the first place.

The ring R is Hermite, so according to Lemma 3.5 and Theorem 2.4 for the proof of

a b

the “only if” part it is enough to prove for the matrices A = { 0 ¢ ], where a,b,c € R

which satisfies (2).
According to the condition of our theorem, there exist p,q € R such that

paR + (pb+ qc)R = R.

Let pax + (pb+ qc)y = 1. Since pR+ qR = R and Rx + Ry = R, then there exist matrices
P = {]: Z } € GLy(R) and @ := [ ";j : } € GLy(R) such that

X X

rag- |, T]~[4 8] (Aem)
U

Proof of Theorem 2.6. For every a € R\ {0}, we have RaR = aR = Ra because R is a
ring with the D K-property. This yields a = ab = ca for some b, c € R.

Since R is a domain, RbR = R and RcR = R. Using the fact that R is an elementary
divisor domain with the D K-property, we have

a 0 z 0
5 alr=efsal ®
in which P = (pij) S GLQ(R), Q= (qij) S GLQ(R) and RAR C zR = Rz.
Let us show that d # 0. Indeed, if d = 0, then ap;o = 0 and apsy = 0 by (4). Since a # 0
P11 P12

P21 P22
Hence d # 0 and z is a duo element. Moreover, z € U(R), because R = RaR = RzR.

Without loss of generality, we can assume that z = 1. From (4), we obtain that

and R is a domain, pja = paa = 0 which is impossible because P = is invertible.

api1 = qu and api2 = qo1. (5)

Taking into account that () € GLy(R), we deduce that ugy; + vqio = 1 for some u,v € R,
so uapy; + vapis = 1 by (5). Consequently, a is a 2-simple element. a

Proof of Theorem 2.7. Since the element a is 2-simple, there exist uq, us, v1,v9 € R such
that uiav; + usave = 1. Hence ujaR + usaR = R, because R is a ring of stable range 1. It
follows that

ua + ugat = wy, € U(R) (for somet € R)

9
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and Ra+ Rt = R. Obviously, za +t = wy € U(R) for some x € R. Since t = wy — xa and
u1a + ugat = wq, we have that

ura + usa(ws — ra) = ura + UsaWs — UsaTA

= (Ul — UQCLSL’)CL + UgaWo = W1.

This yields Ra + Raws = R and sa + aws = ws € U(R) for some s € R. Consequently,

IR

. Sa + awy  aws . w3 AW
N a 0| | a O

and { U;g a16)2 } ~ diag(1, A) for some A € R. O

Now we consider rings of stable range 1 with the D-property. According to Lemma 3.5,
all possible diagonal reductions to the form (1) for rings R are conditional on elements
a € R such that RaR = R.

Lemma 3.6. Let R be a domain with the D-property. Fach a € R\ {0} can be written in
the form
a = ab= ca,

where o is a duo element and b, ¢ are n-simple elements for some n € N.

Proof. Let a € R\ {0} and RaR = aR = Ra. It follows that a = ab = ca for some

bc € R, s0 > " u;abv; = o because Y ., u;av; = o for some uy, ..., uy,v1,...,0, € R.
Since « is a duo element, o> ujbv; = o, ie., Y. uiby; = 1 for some uf, ..., ul, € R.
Thus RbR = R. The proof of ReR = R is similar. O
Proof of Theorem 2.8. Follows from Lemma 3.6. O

Proof of Corollary 2.9. Each quasi-duo ring is a ring in which every maximal one-sided
ideal is a two-sided ideal. Since any m-simple element is invertible, then the D-property
is always satisfied [31, Theorem 1] in a quasi-duo domain and in a quasi-duo elementary
divisor domain. O

Proof of Corollary 2.10. The ring R is Hermite by [30, Theorem 2]|. According to Theo-

rems 2.1 and 2.4, it is sufficient to show our statement for a matrix A of the form [ Z 2 }

in which RaR = R. Since a is a finite element, it is evident that A ~ [ é 2 } in which

RAR C fRN Rf by [29, Theorem 6]. Consequently, R is an elementary divisor ring. [
Proof of Theorem 2.11. Follows from Lemma 3.6. O

10
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Proof of Theorem 2.12. Let a,b,¢c € R such that a # 0 and RaR = R. Since R is an

a

elementary divisor ring with the D K-property, for the matrix A = 0 ZC) } there exist

. . _[pq _|u o _ |z 0
invertible matrices P := [ . ¥ } and @ = [ - } such that PAQ = [ 0 d } where

d=0or RIR C zR = Rz for some z,d € R. Since a # 0 and R is a domain, the case
d = 0 is impossible.
Evidently, RdR C RzR and

RzR + RdR = RaR + RbR + RcR = R,

so RzR = R. Since z is a duo element, we have z € U(R). Clearly, z = pau + (pb + qc)v
and
pauzt + (pb+ gc)vzt =1,

i.e.,, paR + (pb+ qc)R = R.
Proof of the “only if” part. Since each Bézout domain is a Hermite ring, it is sufficient

8 in which a # 0 and
RaR = R by Lemma 3.6 and Theorem 2.4. According to assumptions, there exist p,q € R

such that

to prove our statement for the matrices of the form A =

paR + (pb+ qc)R = R,
that is, pau + (pb + gc)v = 1, where u,v € R. Since R is Hermite, there exist matrices

fh::[i z}EEGLﬂR)amiQ:: [z i}EEGLﬂR)amhtmm

mPAQz[i i}“{é gy (t € R). 0
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