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Classification of coadjoint orbits for the maximal unipotent

subgroup in the simple group of type F4

Matvey Surkov

Abstract. Let N be the maximal unipotent subgroup of the simple algebraic group
of type Φ. It naturally acts on the space n∗ dual to the Lie algebra n of N , and this
action is called the coadjoint action. Such orbits play a key role in A.A. Kirillov’s
orbit method. In this work, we classify the orbits of this action in the case of Φ = F4

in terms of supports of canonical forms. This means that we will present a set S of
linear forms from n∗ such that for any coadjoint orbit there exists a unique form from
S belonging to that orbit. The set of canonical forms will be explicitly described in
terms of supports. The support of a form λ ∈ n∗ is the set of positive roots α ∈ Φ+

such that λ(eα) 6= 0.
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1 Introduction and the main result

Let g be a simple finite-dimensional Lie algebra over a finite field Fq of sufficiently
large characteristic p, b be a Borel subalgebra of g, Φ be the root system of g, Φ+ be
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the set of positive roots corresponding to b, n be the nilradical of b, N = exp(n) be
the corresponding unipotent algebraic group, and n∗ be the dual space of n. The group
N is also a maximal unipotent subgroup of the simple algebraic group G of type Φ, or
equivalently a Sylow p-subgroup of G. The group N acts on n by the adjoint action; the
dual action of N on the space n∗ is called the coadjoint action; we will denote the result
of this action by g · λ for g ∈ N , λ ∈ n∗. According to the orbit method introduced by
A.A. Kirillov in 1962, coadjoint orbits play the key role in the representation theory of the
group N . Almost all coadjoint orbits that have been studied well so far are so-called orbits
associated with rook placements. They are discussed in detail in the works [1,2,4–9,11–13].

Explicitly, the coadjoint action is given by:

(exp(x) · λ)(y) = λ(exp(−adx)(y)) = λ(y)− λ([x, y]) +
1

2!
λ([x, [x, y]])− . . . ,

x, y ∈ n, λ ∈ n∗.

Let {eα, α ∈ Φ+} be a basis of n consisting of root vectors, and let {e∗α, α ∈ Φ+} be the
dual basis in n∗. The support of a linear form λ ∈ n∗ is defined as the subset of positive
roots given by

supp(λ) = {α ∈ Φ+ : λ(eα) 6= 0}.

Our goal is to describe the coadjoint orbits for the case of Φ = F4. The description
will be given in terms of supports of canonical forms. A list of supports will be provided
with the following properties.

• For any two linear forms λ1 6= λ2 whose supports belong to the given list (even if
the supports coincide), the orbits N · λ1 and N · λ2 are different.

• For any linear form λ ∈ n∗, there exists a form λ′ with a support from the given list
such that N · λ = N · λ′.

In other words, each coadjoint orbit contains a unique linear form whose support belongs
to the given list.

The set of simple roots of F4 can be identified with the following subset of R4:

∆ = {α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 =
1

2
(ε1 − ε2 − ε3 − ε4)}.

Here {εi}
4
i=1 is the standard basis of R4 (endowed with the standard scalar product).

Recall that there exists a natural partial order on Φ+ defined as follows: α > β if
α− β is a sum of positive roots. Let us fix a linear lexicographic order ≻ on the positive
roots of F4. We say that α = a1α1+a2α2+a3α3+a4α4 ≻ β = b1α1+ b2α2+ b3α3+ b4α4 if
a1 > b1 or a1 = b1, a2 > b2 or a1 = b1, a2 = b2, a3 > b3 or a1 = b1, a2 = b2, a3 = b3, a4 > b4.
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Thus, the roots will be ordered as follows:

Φ+ = {α4, α3, α3 + α4, α2, α2 + α3, α2 + α3 + α4, α2 + 2α3, α2 + 2α3 + α4,

α2 + 2α3 + 2α4, α1, α1 + α2, α1 + α2 + α3, α1 + α2 + α3 + α4, α1 + α2 + 2α3,

α1 + α2 + 2α3 + α4, α1 + α2 + 2α3 + 2α4, α1 + 2α2 + 2α3, α1 + 2α2 + 2α3 + α4,

α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 3α3 + α4, α1 + 2α2 + 3α3 + 2α4,

α1 + 2α2 + 4α3 + 2α4, α1 + 3α2 + 4α3 + 2α4, 2α1 + 3α2 + 4α3 + 2α4}.

Clearly, α > β implies α ≻ β. Further, if we talk about order on positive roots, we will
always mean the lexicographic order as above, unless otherwise stated.

Let λ ∈ n∗, γ ∈ Φ+. Consider the following matrices.

Aλ,γ := (λ([eα, eβ]))α∈Φ+,α�γ,β∈Φ+ ·

Bλ,γ := (λ([eα, eβ]))α∈Φ+,α≻γ,β∈Φ+ .

The columns of the matrices are numbered by all positive roots, and the rows are numbered
by certain positive roots. The matrix Aλ,γ is the matrix Bλ,γ with one more row. Further,
let S be the set of λ ∈ n∗ for which the following condition holds: for any γ ∈ supp(λ),

rkAλ,γ = rkBλ,γ. (1)

Finally, we can formulate the main result of this work.

Theorem 1.1. For any coadjoint orbit, there exists a unique linear form λ ∈ S lying on

this orbit.

This theorem generalizes the result of the work [6]. This article discusses the so-called
orbits associated with rook placements. By definition, a subset D of Φ+ is called a non-
singular rook placement if α− β /∈ Φ+ for all distinct α, β ∈ D. It follows that (α, β) ≤ 0
for all distinct α, β ∈ D. Given a rook placement D and a map ξ : D → C×, we put

fD,ξ =
∑

α∈D

ξ(α)e∗α ∈ n∗.

We say that the coadjoint orbit ΩD,ξ of the linear form fD,ξ is associated with the rook
placement D and the map ξ. Thus, fD,ξ is a linear form with support D.

In [6] it is proved that if Φ = F4, D is an orthogonal non-singular rook placement
and ξ1, ξ2 are distinct maps from D to C× then ΩD,ξ1 6= ΩD,ξ2 . Moreover, if D is a non-
singular rook placement, then λ = fD,ξ belongs to S. Indeed, if γ ∈ D, then γ + β /∈ D
for all β ∈ Φ+ and λ([eγ , eβ]) = 0 for all β ∈ Φ+. Hence, in the matrix Aλ,γ the row
corresponding to γ is zero, and condition (1) is true for γ ∈ D. Therefore, distinct linear
forms with the same support D lie in different coadjoint orbits.

A result similar to Theorem 1.1 holds for the root system Φ = G2 and field C. In the
same work [6], the equations defining the basic subvarieties OD,ξ are given. By definition,
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the basic subvariety OD,ξ corresponding to a rook placement D and a map ξ : D → C× is

OD,ξ =
∑

α∈D

Ω{α},ξα ,

where ξα is the restriction of ξ to {α}. That work also proves André’s stratification for
G2:

n∗ =
⊔

D,ξ

OD,ξ,

where the union is taken over all non-singular rook placements D and all maps ξ : D → C×.
In this case Φ+ = {α, β, α+β, 2α+β, 3α+β, 3α+2β}. Let us introduce the notation

of structural constants as in the work [6]:

eα, eβ] = c1 · eα+β, [eα, eα+β ] = c2 · e2α+β , [eα, e2α+β ] = c3 · e3α+β,

[e3α+β , eβ] = c4 · e3α+2β and [eα+β , e2α+β ] = c5 · e3α+2β .

For almost every rook placement D, we have OD,ξ = ΩD,ξ. The only exception is the
case D = {α+β, 3α+β}. In this case OD,ξ is the union of orbits ΩD,ξ and Ω{β,α+β,3α+β},ξ′

where ξ′ : β, α+ β, 3α+ β → C× is such that its restriction to D coincides with ξ. Let
us write down the equations defining the orbits for D = α + β, 3α+ β. A linear form
λ =

∑
γ∈Φ+ λγe

∗
γ lies in ΩD,ξ if and only if it satisfies the following system:

6c23λ
2
3α+βλβ − 6c1c3λ2α+βλ3α+βλα+β + 5c1c2λ

3
2α+β = 0,

2c3λα+βλ3α+β − c2λ
2
2α+β = 2c3ξ(α+ β)ξ(3α+ β),

λ3α+β = ξ(3α+ β),

λ3α+2β = 0.

For a linear form λ ∈ Ω{β,α+β,3α+β},ξ′ we have the following system of equations.

6c23λ
2
3α+βλβ − 6c1c3λ2α+βλ3α+βλα+β + 5c1c2λ

3
2α+β = 6c23(ξ

′(3α + β))2ξ′(β),

2c3λα+βλ3α+β − c2λ
2
2α+β = 2c3ξ

′(α + β)ξ′(3α + β),

λ3α+β = ξ′(3α + β),

λ3α+2β = 0.

In the case Φ = G2 the set S consists of linear forms with supports from this list:

∅, {α}, {β}, {α, β}, {α+ β}, {2α+ β}, {2α+ β, β}, {3α+ β},

{3α + β, α+ β}, {3α+ β, α+ β, β}, {3α+ β, β}, {3α+ 2β}, {3α+ 2β, α}.

The orbits of these forms correspond precisely to all the orbits whose equations are
provided in [6] and in the present work.
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2 Description of the set of canonical forms

In this section, we will obtain an explicit description of the set S to prove Theorem
1.1 and to demonstrate its use. At first glance, it might seem that this set does not admit
a nice description. In fact, this is not the case. The set S can be described very neatly in
terms of supports. A list of 880 supports is presented in the Appendix.

Proposition 2.1. The set S consists of all linear forms with supports from the list and

forms with one of the three supports

{α1 + α2 + 2α3, α1 + α2, α2 + 2α3 + α4, α2 + α3 + α4, α2},

{α1 + α2 + 2α3, α1 + α2, α2 + 2α3 + α4, α2 + α3 + α4, α2, α4},

{α1 + α2 + 2α3, α1 + α2, α2 + 2α3 + α4, α2 + α3 + α4, α4},

and of the forms with one of the three supports listed below, provided their coordinates

satisfy the equation

λα1+α2
λ2
α2+2α3+α4

= λα1+α2+2α3
λ2
α2+α3+α4

.

Here λ =
∑

α∈Φ+ λαe
∗
α, and λα are the coordinates with respect to the dual basis.

This section is devoted to the proof of this proposition.
In what follows, we will use the following table. It is a 24 × 24 table whose rows

and columns are indexed by the positive roots. In the cell at the intersection of row α
and column β, we write β − α if β − α can be expressed as a sum of positive roots;
otherwise, the cell is left blank. The main diagonal contains zeros. It is easy to see that
all cells below the diagonal are empty. Below we show the upper-left corner of this table,
corresponding to those positive roots whose simple root expansion does not contain α1.
A cell at position (α, β) is highlighted in orange if the difference β − α is itself a positive
root. Almost all examples will involve specifically this part of the table. Four columns
are highlighted in blue, as they will appear most frequently in the examples.

Table 1

e\e∗ α4 α3 α3 + α4 α2 α2 + α3 α2 + α3 + α4 α2 + 2α3 α2 + 2α3 + α4 α2 + 2α3 + 2α4

α4 0 α3 α2 + α3 α2 + 2α3 α2 + 2α3 + α4

α3 0 α4 α2 α2 + α4 α2 + α3 α2 + α3 + α4 α2 + α3 + 2α4

α3 + α4 0 α2 α2 + α3 α2 + α3 + α4

α2 0 α3 α3 + α4 2α3 2α3 + α4 2α3 + 2α4

α2 + α3 0 α4 α3 α3 + α4 α3 + 2α4

α2 + α3 + α4 0 α3 α3 + α4

α2 + 2α3 0 α4 2α4

α2 + 2α3 + α4 0 α4

α2 + 2α3 + 2α4 0

To describe the set S, we wrote a program, which is included in the Appendix. The
program outputs supports that satisfy a sufficient condition for being included in the list,
and supports that satisfy a necessary condition; these conditions will be described below.

First, let us reformulate condition (1). The algebra n acts on n∗ as follows: for x, y ∈ n

and λ ∈ n∗, define (x · λ)(y) := −λ([x, y]). This action is called tangent.
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Let us expand x ∈ n in the chosen basis:

x =
∑

α∈Φ+

xαeα.

Let λ ∈ n∗, β ∈ Φ+. Consider the coordinates of x · λ in the dual basis:

(x · λ)(eβ) = −λ([
∑

α∈Φ+

xαeα, eβ]) = −
∑

α∈Φ+

λ([eα, eβ])xα.

We can view these coordinates as linear combinations of variables xα, α ∈ Φ+, with con-
stant coefficients −λ([eα, eβ]). By definition, −Aλ,γ is the matrix of linear combinations
{(x ·λ)(eα)}α�γ, and −Bλ,γ is the matrix of linear combinations {(x ·λ)(eα)}α≻γ . Clearly,
rkAλ,γ = rkBλ,γ if and only if the row numbered γ of the matrix Aλ,γ is a linear combi-
nation of all its other rows (i.e., the rows of the matrix Bλ,γ). In other words, (x · λ)(eγ)
can be expressed as a linear combination of {(x · λ)(eα)}α≻γ .

Example 2.2. Let D = supp(λ) = {α4, α3 + α4, α2, α2 + 2α3}. We will show that such a
λ lies in S. To visualize what the orbit of the tangent action looks like, let us refer to the
table. The highlighted blue columns correspond to the roots in D. The linear combination
(x·λ)(eβ) contains only those xα for which λ([eα, eβ]) 6= 0, which is equivalent to α+β ∈ D.
It can be seen from the construction of the table that (x · λ)(eβ) contains only xα such
that the orange root α is in the row corresponding to β in the highlighted column. For
example, the combination (x · λ)(eα3

) contains only xα4
and xα2+α3

.
Now let us check condition (1) for all roots from D. As you can see from the table,

(x · λ)(eα2+2α3
) = 0. Naturally, this will always be the case for the maximal root in the

support. Note that (x · λ)(eα2+α3
) contains only xα3

. Further, (x · λ)(eα2
) = 0, because

there are no orange cells in the blue columns in the row α2; (x · λ)(eα3+α4
) = 0 for similar

reasons. Finally, (x · λ)(eα4
) contains only xα3

, which means that it is a scalar multiple
of (x · λ)(eα2+α3

).
It is clear that we did not need to know the coefficients for xα3

in either (x ·λ)(eα2+α3
)

or (x · λ)(eα4
). This is simply because xα3

as a variable can be expressed in terms of
(x · λ)(eα2+α3

), and everywhere above (i.e., in (x · λ)(eα2
), (x · λ)(eα3+α4

), (x · λ)(eα3
),

(x · λ)(eα4
)) xα3

can be expressed as (x · λ)(eα2+α3
) multiplied by some coefficient. The

Sufficient condition below is based on this idea.

Consider the tangent action n y n∗. Let γ ∈ Φ+, λ ∈ n∗, D = supp(λ). Starting from
the support D and the root γ, we will construct a set ζD,γ of positive roots. We will add
roots to ζD,γ one by one. We add a root δ to ζD,γ if there exists a root β ≻ γ such that
λ([eδ, eβ]) 6= 0 and if λ([eα, eβ]) 6= 0 for some other α ∈ Φ+, then α ∈ ζD,γ. Using this
procedure, we will add to ζD,γ the maximum possible number of roots. Note that ζD,γ

does not depend on the specific values of the coordinates of λ in the dual basis, but only
on its support D. The set ζD,γ also does not depend on the order in which we add the
roots. Indeed, define sets Rn for n ∈ N. A root δ lies in Rn if there exists a root β ≻ γ
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such that λ([eδ, eβ]) 6= 0 and if λ([eα, eβ]) 6= 0 for some other α ∈ Φ+, then α ∈ Ri for
some i < n. Clearly, we must add all roots from

⋃
n∈N Rn to ζD,γ, and we cannot add any

other roots.

Proposition 2.3. (Sufficient condition) Let λ ∈ n∗, D = supp(λ). Suppose that for every

root γ ∈ D, the following condition holds: if λ([eα, eγ]) 6= 0, then α ∈ ζD,γ. Then λ ∈ S

Proof. Fix a root γ ∈ D. Consider the orbit of the infinitesimal action n ·λ. Let µ ∈ n ·λ,
µ = x · λ, where x =

∑
α∈Φ+ xαeα. Here µ is given, while the values xα are unknown.

We will show by induction on |ζD,γ| that if δ ∈ ζD,γ, then xδ can be expressed as
a linear combination of {µ(eβ)}β≻γ. Consider the step of adding δ to ζD,γ. Suppose
we have already proved this for all roots that are already in ζD,γ. There exists a root
β ≻ γ such that δ is the unique root not in ζD,γ satisfying λ([eδ, eβ ]) 6= 0. Consider
µ(eβ) = −

∑
α∈Φ+ λ([eα, eβ])xα. This can be rewritten as:

λ([eδ, eβ ])xδ = −µ(eβ)−
∑

α6=δ

λ([eα, eβ ])xα.

We claim that the right-hand side is a linear combination of {µ(eβ′)}β′≻γ . Indeed, if the
coefficient of xα on the right-hand side is non-zero (i.e., λ([eα, eβ]) 6= 0), then α ∈ ζD,γ.
By the inductive hypothesis, xα can be expressed as a linear combination of {µ(eβ′)}β′≻γ.
Since λ([eδ, eβ]) 6= 0, it follows that xδ can also be expressed as a linear combination of
{µ(eβ′)}β′≻γ .

Now consider µ(eγ) = −
∑

α∈Φ+ λ([eα, eγ ])xα. By the hypothesis of the proposition,
if λ([eα, eγ]) 6= 0, then xα can be expressed as a linear combination of {µ(eβ′)}β′≻γ.
Consequently, the same holds for µ(eγ), which is equivalent to condition (1) for the root
γ. The result follows.

Note that if we take another form λ′ with support D, then the conditions of Propo-
sition 2.3 will also be satisfied for it. Therefore, for a given support D, either all forms
with this support satisfy the conditions of Proposition 2.3, or none do. Hence, it suffices
to check the conditions for a single form with a given support, for example, for the form
with all coordinates equal to 1 at the basis vectors e∗α with α ∈ D.

Proposition 2.4. (Necessary condition) Let λ ∈ n∗, D = supp(λ), γ ∈ D. Suppose that

there exist positive roots δ1, δ2, . . . δk, ε1, ε2, . . . εk (not necessarily distinct) satisfying the

conditions :

1. δ1 = γ and δi ≻ γ for all i = 2, k;

2. λ([eδi , eβ]) 6= 0 and β /∈ ζD,γ ⇐⇒ β = εi−1 or β = εi for all i = 1, k − 1;

3. λ([eα, eεi]) 6= 0 and α � γ ⇐⇒ α = δi or α = δi+1 for all i = 1, k;

4. λ([eδk , eεk ]) 6= 0 and εk /∈ ζD,γ.
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Then λ /∈ S.

Proof. It is enough to show that (x · λ)(eγ) cannot be expressed as a linear combination
of {(x · λ)(eβ)}β≻γ. In other words, consider the orbit of the tangent action n · λ, and let
µ ∈ n · λ. It is enough to check that if all values µ(eβ) are known for β ≻ γ, then the
value of µ(eγ) can be arbitrary. We will construct µ′ ∈ n · λ such that µ′(eβ) = µ(eβ)
for all β ≻ γ and µ′(eγ) = A, where A is an arbitrary given value. Let µ′ = x · λ,
x =

∑
α∈Φ+ xαeα. It follows from the proof of Proposition 2.3 that if δ ∈ ζD,γ, then xδ is

uniquely defined by the values {µ(eβ)}β≻γ. We define all other values xα, except xεi , to
be the same as for µ. We will determine the values xεi by induction on i = 1, k − 1.

Base case. Let i = 1, A =
∑

α∈Φ+ λ([eδ1 , eα])xα. Clearly, if λ([eδ1 , eα]) 6= 0, then
either α = ε1 or α ∈ ζD,γ. Hence, in the right-hand side, all values xα with nonzero
λ([eδ1 , eα]) except possibly xε1, are already defined. Since λ([eδ1 , eε1]) 6= 0, the value of
xε1 is uniquely determined as well. After this, the only expression µ′(eβ), β � γ that may
still depend on xε1 is µ′(eδ2). If k = 1, then nothing else depends on xε1 .

Inductive step. Suppose xεi−1
was found. Consider µ(eδi) =

∑
α∈Φ+ λ([eδi , eα])xα.

On the right-hand side, only xεi−1
, xεi and xα, for which α ∈ ζD,γ, can appear with non-

zero coefficients. The value xεi−1
was determined in the previous step. Thus, on the

right-hand side, only xεi may be undefined, and it definitely appears. From this equation,
the value xε1 is uniquely determined. The only µ′(eβ), β ≻ γ that may still depend on xεi

is µ′(eδi+1
).

Case i = k. Consider µ(eδk) =
∑

α∈Φ+ λ([eδk , eα])xα. The right-hand side definitely
contains xεk and possibly xεk−1

. The value xεk−1
was determined in the previous step (or

does not appear if k = 1). All other xα are also defined. Therefore, the value xεk is
uniquely determined. Moreover, no other µ′(eβ), β � γ depends on xεk , and its value no
longer affects anything else.

Thus, we have computed all coefficients xα and constructed the required µ′.

Also note that the conditions of Proposition 2.4 do not depend on the specific coor-
dinates of λ, but only on its support. Therefore, it is sufficient to check these conditions
for just one form with a given support; for example, we may assume that all its nonzero
coordinates are equal to 1.

The conditions of Propositions 2.3 and 2.4 are formulated so that they can be checked
algorithmically. Below we present algorithms for checking the necessary and sufficient
conditions for a support to belong to the set S.

Algorithm

An incomplete enumeration of supports is performed. For each support, the necessary
(respectively, sufficient) condition is checked, and the next support to be checked is then
generated based on the result. The enumeration relies on the following observation. Let
D be a support, and let α be a positive root not in D that is smaller than all roots in
D. If D does not satisfy the necessary (respectively, sufficient) condition, then D∪α also
fails to satisfy the necessary (respectively, sufficient) condition. Indeed, the necessary
(respectively, sufficient) condition for a support fails when there exists a root γ in the
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support satisfying certain conditions. These conditions depend only on those β ∈ D such
that β � γ. Neither the set ζD,γ nor the values λ([eα, eβ]) (where α or β � γ) depend on
the roots in the support that are smaller than γ.

The enumeration proceeds according to the following rules. First, the support of the
element 2α1 + 3α2 + 4α3 + 2α4 is checked against the necessary (respectively, sufficient)
condition. Next, suppose we have checked a support D against the necessary (respectively,
sufficient) condition. Let δ be the minimal root in D. First, let us consider the case if
δ 6= α4. IfD passes the check, we add toD the positive root immediately preceding δ (with
respect to the order ≻). If D fails the check, we remove δ from D and add the positive
root immediately preceding δ. Then we check the new support against the necessary
(respectively, sufficient) condition. Second, if δ = α4, then we remove δ, remove the new
minimal root β in the support (if it exists) and add the root closest to β from below. If
D = {α4}, then the enumeration ends here. Finally, we include the empty set in the list of
supports, since it trivially satisfies the necessary (respectively, sufficient) condition. In this
way, we enumerate all supports that could potentially satisfy the necessary (respectively,
sufficient) condition, while avoiding checks for supports that certainly do not satisfy these
conditions.

Note that ifD is the support of a form λ, then the condition λ([eα, eβ]) 6= 0 is equivalent
to α + β ∈ D. Checking this condition is easy to implement. As mentioned earlier, the
necessary (respectively, sufficient) condition must be checked for all roots in the support
D. It is clear that it suffices to check it only for the root γ that was most recently added
to the support, because for all other roots the condition has already been verified. The
first step is to construct the set ζD,γ. This can be done as follows. We run a loop over rows
indexed by roots α ≻ γ. If in a row α there is exactly one non-zero element λ([eα, eδ])
such that δ /∈ ζD,γ, then we add δ to ζD,γ. After completing a full pass through the rows, if
the size of ζD,γ has increased, we repeat the loop. The process stops when the cardinality
of ζD,γ stabilizes. This yields the set ζD,γ.

Checking the sufficient condition for the support D is straightforward. We iterate over
the row indexed by γ and verify the condition from Proposition 2.3.

The necessary condition is checked as follows. We describe the i-th step of the verifi-
cation. We examine the row indexed by δi (recall that δ1 = γ). If we encounter a non-zero
element λ([eδi, eε]) such that ε /∈ ζD,γ and ε 6= εi−1 (where ε0 is undefined), we inspect
the column indexed by ε, starting from row γ upwards. If there are no other non-zero
elements in this segment of the column, the necessary condition is not satisfied. If this is
not the case, but exactly one such element λ([eδi , eε]) with ε /∈ ζD,γ is found in the row
(ignoring a possible λ([eδi , eεi−1

])), and if, in the corresponding segment of the column,
there is exactly one other non-zero element of the form λ([eδ, eε]), then we set εi = ε and
δi+1 = δ. We then proceed to check the condition for the next column, indexed by δi+1.

In practice, our program checks the necessary condition only up to the second step.
If the condition has not been violated by that point, the program considers the check
passed. This simplification does not significantly affect the final result.

The results of the check are as follows: 878 supports satisfy the sufficient condition,

9
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while 911 satisfy the necessary condition. Therefore, 33 supports remain to be checked
manually. They are listed below:

1. α1 + 2α2 + 4α3 + 2α4, α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 2α3, α1 + α2

2. α1 + 2α2 + 4α3 + 2α4, α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 2α3, α1 + α2, α1

3. α1 + 2α2 + 4α3 + 2α4, α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 2α3, α1, α2

4. α1 + 2α2 + 4α3 + 2α4, α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 2α3, α2

5. α1+2α2+2α3+2α4, α1+2α2+2α3, α1+α2+2α3+α4, α1+α2+2α3, α2+2α3, α3+α4

6. α1 + 2α2 + 2α3 + 2α4, α1 + α2 + 2α3 + α4, α1 + α2 + 2α3, α2 + 2α3, α2 + α3

7. α1 + 2α2 + 2α3, α1 + α2 + 2α3 + α4, α2 + α3 + α4, α3 + α4

8. α1 + 2α2 + 2α3, α1 + α2 + 2α3 + α4, α2 + α3 + α4, α3 + α4, α4

9. α1 + 2α2 + 2α3, α1 + α2 + 2α3 + α4, α2 + α3 + α4, α4

10. α1 + 2α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α3 + α4

11. α1 + 2α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α3 + α4, α3

12. α1 + 2α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α3 + α4, α3, α4

13. α1 + 2α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α3 + α4, α4

14. α1 + 2α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α3, α4

15. α1 + 2α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α4

16. α1 + α2 + 2α3 + 2α4, α1 + α2, α2 + α3 + α4, α2 + α3, α3

17. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4

18. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4, α2 + α3

19. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4, α2 + α3, α2

20. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4, α2 + α3, α2, α4

21. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4, α2 + α3, α4

22. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4, α2

23. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4, α2, α4

24. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3 + α4, α4
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25. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3, α2

26. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3, α2, α4

27. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2 + α3, α4

28. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α2, α4

29. α1 + α2 + 2α3, α1 + α2 + α3 + α4, α2 + 2α3 + α4, α4

30. α1 + α2 + 2α3, α1 + α2, α2 + 2α3 + α4, α2 + α3 + α4, α2

31. α1 + α2 + 2α3, α1 + α2, α2 + 2α3 + α4, α2 + α3 + α4, α2, α4

32. α1 + α2 + 2α3, α1 + α2, α2 + 2α3 + α4, α2 + α3 + α4, α4

33. α1 + α2, α2 + 2α3, α2 + α3 + α4, α3 + α4, α4

Linear forms with support 5 do not satisfy the necessary condition, but checking this
requires three steps, whereas our algorithm checks only the first two steps (see above). It
is clear that linear forms with supports numbered 2, 6, 12, 14, 16, 18, 19, 20 and 21 do
not satisfy condition (1); that is, such forms do not belong to S. This follows immediately
from Table 1, similar to Example 2.2. In the remaining cases, it is necessary to write out
the coordinates of the infinitesimal action explicitly. It turns out that the linear forms
with supports numbered 25 and 33 lie in S without any restrictions on their coordinates.
Linear forms with supports numbered 30, 31, and 32 lie in S if and only if

λα1+α2
λ2
α2+2α3+α4

= λα1+α2+2α3
λ2
α2+α3+α4

.

Thus, we obtain 883 supports whose corresponding forms belong to S, three of which
require an additional condition on the coordinates. This completes the proof of Proposi-
tion 2.1.

Example 2.5. Consider a form λ with support 33. We will show that λ ∈ S. Let µ ∈ n ·λ,
µ = x · λ, x =

∑
α∈Φ+ xαeα, λ =

∑
α∈Φ+ λαe

∗
α, µ =

∑
α∈Φ+ µαe

∗
α. Let us write down

explicitly the coordinates of interest. We denote the structure constants in the relation

11
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Ceα+β = [eα, eβ] by Cα,β. Their values can be found in [10]. Then

µα1+α2
= µα2+2α3

= µα2+α3+α4
= 0;

µα1
= −λ([x, eα1

]) = −λ([xα2
eα2

, eα1
]) = −Cα2,α1

xα2
λ(eα1+α2

) = −xα2
λα1+α2

;

µα2+α3
= −λ([x, eα2+α3

]) = −λ([xα4
eα4

+ xα3
eα3

, eα2+α3
]) =

= −Cα4,α2+α3
xα4

λ(eα2+α3+α4
)− Cα3,α2+α3

xα3
λ(eα2+2α3

) =

= −xα4
λα2+α3+α4

+ 2xα3
λα2+2α3

;

µα3+α4
= −λ([x, eα3+α4

]) = −λ([xα2
eα2

, eα3+α4
]) = −Cα2,α3+α4

xα2
λ(eα2+α3+α4

)

= xα2
λα2+α3+α4

= −
λα2+α3+α4

λα1+α2

µα1
;

µα3
= −λ([x, eα3

]) = −λ([xα4
eα4

+ xα2+α3
eα2+α3

, eα3
])

= −Cα4,α3
xα4

λ(eα3+α4
)− Cα2+α3,α3

xα2+α3
λ(eα2+2α3

) =

− xα4
λα3+α4

− 2xα2+α3
λα2+2α3

;

µα4
= −λ([x, eα4

]) = −λ([xα3
eα3

+ xα2+α3
eα2+α3

, eα4
])

= −Cα3,α4
xα3

λ(eα3+α4
)− Cα2+α3,α4

xα2+α3
λ(eα2+α3+α4

) =

= xα3
λα3+α4

+ xα2+α3
λα2+α3+α4

=
λα3+α4

2λα2+2α3

µα2+α3
−

λα2+α3+α4

2λα2+2α3

µα3
.

Let us also consider support number 25. For all roots except α2, condition (1) obviously
holds. The coordinate µα2

equals −xα3
λα2+α3

. Therefore, if xα3
can be expressed as a

linear combination of {µβ}β≻α2
, then α2 satisfies condition (1). This is indeed the case:

µα1+α2+α3
= −xα4

λα1+α2+α3+α4
+ 2xα3

λα1+α2+2α3
;

µα2+2α3
= −xα4

λα2+2α3+α4
+ xα1

λα1+α2+2α3
;

µα2+α3+α4
= xα3

λα2+2α3+α4
+ xα1

λα1+α2+α3+α4
;

xα3
=

µα2+α3+α4
λα1+α2+2α3

− µα2+2α3
λα1+α2+α3+α4

+ µα1+α2+α3
λα2+2α3+α4

3λα2+2α3+α4
λα1+α2+2α3

.

Finally, consider forms with supports 30, 31, and 32. Suppose the support contains
the roots α1 + α2 + 2α3, α1 + α2, α2 + 2α3 + α4, α2 + α3 + α4. Let us check whether
condition (1) holds for the root α2. Note that

µα2+2α3
= −xα4

λα2+2α3+α4
+ xα1

λα1+α2+2α3
;

µα2+α3
= −xα4

λα2+α3+α4
+ xα3+α4

λα2+2α3+α4
;

µα2
= −xα3+α4

λα2+α3+α4
+ xα1

λα1+α2
.

We see that if β ≻ α2 and the variable xα3+α4
appears in µβ, then β = α2+α3. Similarly,

if β ≻ α2 and xα1
appears in µβ, then β = α2+2α3. Hence, the coordinate µα2

must be a
linear combination of µα2+2α3

and µα2+α3
. It is easy to verify that this holds if and only if

λα1+α2
λ2
α2+2α3+α4

= λα1+α2+2α3
λ2
α2+α3+α4

.

12
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Now, let us check condition (1) for the root α4. Note that

µα1
= −xα2

λα1+α2
− xα2+2α3

λα1+α2+2α3
;

µα3+α4
= xα2

λα2+α3+α4
− xα2+α3

λα2+2α3+α4
;

µα4
= xα2+α3

λα2+α3+α4
+ xα2+2α3

λα2+2α3+α4
.

By an argument analogous to the one above, we find that the coordinate µα4
must be a

linear combination of µα1
and µα3+α4

. It turns out that this condition is also equivalent
to

λα1+α2
λ2
α2+2α3+α4

= λα1+α2+2α3
λ2
α2+α3+α4

.

3 Classification of orbits

In this section, we will prove Theorem 1.1, thereby completing the classification of
coadjoint orbits for type F4. For the next stage, we will need the concept of a singular
root.

Definition 3.1. Let α, γ ∈ Φ+. The root α is called singular to γ if γ − α ∈ Φ+. The set
of all roots singular to γ is denoted by Sγ.

It is obvious that the singular roots in Sγ are divided into pairs of the form α+β = γ.
From now on, unless stated otherwise, everything will take place over the algebraic

closure F. We introduce two F[xα, α ∈ Φ+]-modules:

M = F[xα, α ∈ Φ+]⊗F n,

M∗ = F[xα, α ∈ Φ+]⊗F n
∗.

Here F[xα, α ∈ Φ+] denotes the ring of polynomials over F in the independent variables
xα, α ∈ Φ+. We define a pairing M∗ ×M → F[xα, α ∈ Φ+] by

〈f ⊗ λ, g ⊗ x〉 7→ λ(x)fg.

In what follows, we will write λ(x) instead of 〈λ, x〉 for λ ∈ M∗, x ∈ M . Note that
n is a F-subspace of M , and n∗ is a F-subspace of M∗. Therefore, two other pairings,
n∗ ×M → F[xα, α ∈ Φ+] and M∗ × n → F[xα, α ∈ Φ+], are automatically induced. We
introduce a Lie algebra structure on M in the obvious way: for f, g ∈ F[xα, α ∈ Φ+] and
x, y ∈ n, set

[f ⊗ x, g ⊗ y] = fg ⊗ [x, y].

Since n can be identified with upper-triangular matrices with entries in F, we can
identify M with upper-triangular matrices whose entries lie in F[xα, α ∈ Φ+]. Conse-
quently, we can define exp(x) for x ∈ M . Since the characteristic of F is sufficiently large,
exp(x) is well-defined for all x ∈ M . Let NM be the group consisting of the matrices

13
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{exp(x), x ∈ M}. The actions NM y M and NM y M∗ are defined naturally. An
explicit description of the action NM y M∗ is as follows: for x ∈ M and λ ∈ M∗,

exp(x) · λ =
∑

α∈Φ+

λ




∞∑

i=0

(−1)i

i!
[x, [x, . . . , [x, eα] . . . ]]︸ ︷︷ ︸

i commutators



⊗ e∗α.

Denote by χ the element χ =
∑

α∈Φ+ xα⊗eα ∈ M . For a form λ ∈ n∗, we will consider

the element exp(χ) · λ ∈ M∗. Let us also set n = F ⊗F n, N = F ⊗F N . Note that if
x̃ =

∑
α∈Φ+ x̃αeα ∈ n with x̃α ∈ F, then exp(x̃) · λ = (exp(χ) · λ)(x̃α, α ∈ Φ+).

Now we formulate one of the most important theorems of this work. Let yβ, β ∈ Φ+

be independent variables.

Theorem 3.2. Let λ ∈ S, D = supp(λ), and let γ ∈ Φ+ satisfy condition (1). Then there

exists a rational function FD,γ ∈ F(yβ, β ≻ γ) such that

µ(eγ) = λ(eγ) + FD,γ(µ(eβ), β ≻ γ), (2)

where µ = exp(χ) · λ ∈ M∗.

Example 3.3. Consider the same support as in Example 2.2. Let

D = supp(λ) = {α4, α3 + α4, α2, α2 + 2α3}.

We will show that for this λ and for all roots γ satisfying condition (1), formula (2) holds.
Let µ = exp(χ) · λ, λ =

∑
α∈Φ+ λαe

∗
α, µ =

∑
α∈Φ+ µα ⊗ e∗α. Let us write down explicitly

the coordinates of interest. As in Example 2.5, we denote the structural constants in the
relation Ceα+β = [eα, eβ] by Cα,β. Their values can be found in [10]. We have

µα2+2α3
= λ(eα2+2α3

) = λα2+2α3
;

µα2+α3+α4
= 0;

µα2+α3
= −λ([x, eα2+α3

]) = −λ([xα3
eα3

, eα2+α3
]) = −Cα3,α2+α3

xα3
λ(eα2+2α3

) =

= 2xα3
λα2+2α3

;

µα2
= λ(eα2

) +
1

2
λ([x, [x, eα2

]]) = λα2
+

1

2
λ([xα3

eα3
, [xα3

eα3
, eα2

]]) =

= λα2
+

1

2
Cα3,α2+α3

Cα3,α2
x2
α3
λ(eα2+2α3

) = λα2
− x2

α3
λα2+2α3

=

= λα2
−

µ2
α2+2α3

4µα2+2α3

;

µα3+α4
= λ(eα3+α4

) = λα3+α4
;

µα4
= λ(eα4

)− λ([x, eα3+α4
]) = λα4

− λ([xα3
eα3

, eα3+α4
]) =

= λα4
− Cα3,α4

xα3
λ(eα3+α4

) = λα4
+ xα3

λα3+α4
= λα4

+
µα2+α3

µα3+α4

2µα2+2α3

.
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In fact, the validity of formula (2) in this example could have been understood without
writing out the coordinates explicitly. It is enough to examine Table 1. Since µ(eα2+α3

)
involves only xα3

and λ(eα2+2α3
), and since λ(eα2+2α3

) = µ(eα2+2α3
), the variable xα3

can
be expressed as a rational function of µ(eα2+α3

) and µ(eα2+2α3
). Moreover, since µ(eα2

)−
λ(eα2

) depends only on xα3
and λ(eα2+2α3

), it can be expressed as a rational function
of µ(eα2+α3

) and µ(eα2+2α3
). Furthermore, µ(eα3+α4

) = λ(eα3+α4
). As µ(eα4

) − λ(eα4
)

involves only xα3
and λ(eα3+α4

), it can be expressed as a rational function of µ(eα2+α3
)

and µ(eα3+α4
).

Now let us proceed to the proof of Theorem 3.2. First, we prove it in the special case
of forms whose support consists of a single root. Any such form obviously belongs to S.

Lemma 3.4. Theorem 3.2 holds for any λ ∈ n∗ with | supp(λ)| = 1.

Proof. Denote D = supp(λ) = {δ}. Note that in this case, condition (1) depends only
on D, not on the specific λ, and it holds for those γ that are not singular to δ. Let
µ = exp(χ) · λ. We need to prove that for any γ /∈ Sδ, the coordinate µ(eγ) is a function
of the coordinates µ(eβ), β ≻ γ. Observe that if γ ≻ δ, then µ(eγ) = 0, and if γ = δ,
then µ(eδ) = λ(eδ). For these two cases, the condition is obviously satisfied. It remains
to prove it for γ ≺ δ.

For any β ∈ Sδ, the following equality holds:

µ(eβ) =− λ([x, eβ ]) +
1

2!
λ([x, [x, eβ]])−

1

3!
λ([x, [x, [x, eβ ]]]) + . . .

=− λ([xδ−βeδ−β , eβ]) + F (x) = −λ([eδ−β , eβ])xδ−β + F (x) = Cλ(eδ)xδ−β + F (x),

where C 6= 0 and F (x) is a polynomial in variables xα with α < δ − β. Consequently,

xδ−β =
µ(eβ)− F (x)

Cλ(eδ)
(3)

Let β1, β2, . . . , β2k be the singular roots to δ, listed in decreasing order with respect to
lexicographical order. They come in pairs such that βi+β2k−i+1 = δ. Now take γ /∈ Sδ with
δ ≻ γ and consider µ(eγ). Suppose, for contradiction, that there is no rational function
H over F in the independent variables tβ, β ≻ γ such that µ(eγ) = H(µ(eβ), β ≻ γ).

The coordinate µ(eγ) is a polynomial in the xβ with coefficients from F. It does not
contain the variable xβ2k−i+1

if γ ≻ βi. Let β2k−j+1 be the largest root in Sδ such that
xβ2k−j+1

appears in µ(eγ). Using formula (3), we express xβ2k−j+1
in terms of µ(eβj

) and
xα, α < β2k−j+1. Thus, µ(eγ) becomes a polynomial that no longer involves xβ2k−j+1

. We
perform a similar elimination successively for β2k−j+2, β2k−j+3, and so on, until β2k. Note
that at each step, a variable xβi

that was initially absent or already removed cannot
reappear, because we proceed in decreasing order of the singular roots. As a result, µ(eγ)
is represented as a polynomial that does not contain xβ , β ∈ Sδ, i.e.,

µ(eγ) = G(µ(eβi
), i = 1, . . . , j; xα, α /∈ Sδ)
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for some polynomial G ∈ F[tβi
, i = 1, . . . , j; xα, α /∈ Sδ]. Observe that βi ≻ γ for all

i = 1, . . . , j.
By our assumption, µ(eγ) cannot be expressed solely in terms of the subsequent coor-

dinates. This implies that G is not identically constant and actually depends on at least

one variable xα. Then there exists a non-empty Zariski open subset U ⊆ F
j
such that for

any c = (c1, c2, . . . , cj) ∈ U , the specialized polynomial G(ci, i = 1, . . . , j; xα, α /∈ Sδ) is
non-constant. Fix such a tuple c1, c2, . . . , cj ∈ F. Choose an index ε /∈ Sδ and constants
cα ∈ F, α /∈ Sδ, α 6= ε, so that the one-variable polynomial

g(xε) = G(ci, i = 1, . . . , j; xε, cα, α /∈ Sδ, α 6= ε)

is non-constant. The field is algebraically closed, for any chosen c0 ∈ F there exists a
cε ∈ F such that g(cε) = c0. Fix c0 and the corresponding cε. Now, choose arbitrary
values cj+1, . . . , c2k ∈ F. Substituting the values cε, cα, α /∈ Sδ into formula (3), we can
determine values for xβ2k

, xβ2k−1
, . . . , xβ1

sequentially, in such a way that µ(eβ1
) = c1,

µ(eβ2
) = c2, . . . and µ(eβ2k

) = c2k. For this assignment, we obtain

µ(eγ) = G(ci, i = 1, . . . , j; cε, cα, α /∈ Sδ) = c0.

Therefore, there exists a non-empty Zariski open subset V ⊆ F
2k+1

such that for any
(c0, c1, . . . , c2k) ∈ V , we can find an element µ ∈ N · λ such that µ(eγ) = c1, µ(eβ1

) = c2,
. . ., µ(eβ2k

)c2k. The orbit N ·λ is an algebraic variety. Our construction yields a surjection

from N · λ to F
2k+1

, which implies dimN · λ ≥ 2k + 1. However,

dimN · λ = dim n · λ = dim n · λ = |Sδ| = 2k.

This contradiction completes the proof.

We introduce further notation. Let α, β ∈ Φ+. Denote Tα,β(x) := (exp(χ).e∗β)(eα) in

F[xγ , γ ∈ Φ+]. It is clear that if λ ∈ n∗, α ∈ Φ+, then

(exp(χ) · λ)(eα) =



exp(χ) ·




∑

β∈supp(λ)

λ(eβ)e
∗
β







 (eα)

=
∑

β∈supp(λ)

λ(eβ)(exp(χ).e
∗
β)(eα)

=
∑

β∈supp(λ)

λ(eβ)Tα,β(x).

Now consider the following construction (cf. the construction of the set ζD,γ used in
the proof of the sufficient condition in Proposition 2.3). Let λ ∈ S, D = supp(λ), and
let the root γ ∈ Φ+ satisfy condition (1). Starting from D and γ, we construct a set
ζ ′D,γ ⊂ Φ+ × Φ+: by definition, it consists of those pairs (α, β) for which the polynomial
Tα,β(x) can be expressed as a rational function of {(exp(χ) · λ)(eδ)}δ≻γ .
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Example 3.5. Table 1 helps visualize the structure of the polynomials Tα,β(x). One simply
examines the cell in row α and column β. For each pair γ, δ ∈ Φ+ such that γ + δ ∈ Φ+,
denote the corresponding non-zero structure constant by Cγ,δ, so that [eγ , eδ] = Cγ,δeγ+δ.
Each monomial in Tα,β(x) has the form

(−1)n+1 1

n!
Cγ1,αCγ2,α+γ1 . . . Cγn,α+γ1+...+γn−1

xγ1xγ2 . . . xγn ,

where γ1, . . . , γn ∈ Φ+, α+γ1+. . .+γi ∈ Φ+ for all i from 1 to n, and α+γ1+. . .+γn = β.
Hence, it suffices to consider all possible decompositions of β − α into a sum of positive
roots. For example,

Tα3,α2+2α3+α4
(x) = −xα2+α3+α4

+
1

2
xα2

xα3+α4
+

3

2
xα4

xα2+α3
−

2

3
xα2

xα3
xα4

.

Note that if α � β, then Tα,β(x) = 0, while Tα,α(x) = 1. In all other cases, Tα,β(x)
has positive degree. We call a pair (α, β) nontrivial if α < β (i.e., Tα,β(x) 6= const).
Obviously, each trivial pair belongs to all ζ ′D,γ.

Let us refer to Example 3.3. There D = supp(λ) = {α4, α3 + α4, α2, α2 + 2α3}. The
sets ζ ′D,α2+2α3

and ζ ′D,α2+α3+α4
contain no nontrivial pairs. Indeed, there are no β in D

such that β > α2 + 2α3 or β > α2 + α3 + α4. Since

(exp(χ) · λ)(eα2+α3
) = 2xα3

λ(eα2+2α3
) = 2xα3

(exp(χ) · λ)(eα2+2α3
)

and Tα2,α2+2α3
(x) = −x2

α3
, the pair (α2, α2 + 2α3) belongs to ζ ′D,α2

. This pair also lies
in ζ ′D,α3+α4

and ζ ′D,α4
. Moreover, ζ ′D,α4

contains one additional nontrivial pair, namely,
(α4, α3 + α4), because Tα4,α3+α4

(x) = xα3
. The remaining pairs of the form (γ, α) with

α ∈ D and γ satisfies condition (1) are trivial and therefore belong to all ζ ′D,γ. The lemma
below explains why we focus precisely on these pairs.

Lemma 3.6. Let λ ∈ S,D = supp(λ), and let γ ∈ Φ+ satisfy condition (1). Suppose that

for every α ∈ D, the pair (γ, α) belongs to ζ ′D,γ, and formula (2) holds for all γ′ ≻ γ that

satisfy condition (1). Then formula (2) also holds for λ, D and γ.

Proof. Consider

(exp(χ) · λ)(eγ) =
∑

α∈D

λ(eα)Tγ,α(x) = λ(eγ) +
∑

α∈D,α≻γ

λ(eα)Tγ,α(x).

Let α ∈ D with α ≻ γ. Since (γ, α) ∈ ζ ′D,γ, the polynomial Tγ,α(x) can be expressed as
a rational function of {(exp(χ) · λ)(eβ)}β≻γ. By the definition of S, the root α satisfies
condition (1). Therefore, by the inductive hypothesis, λ(eα) can also be expressed as a
rational function of {(exp(χ) · λ)(eβ)}β≻γ, because

λ(eα) = (exp(χ) · λ)(eα)− FD,α((exp(χ) · λ)(eβ), β ≻ α).

Hence, the difference (exp(χ) ·λ)(eγ)−λ(eγ) is a rational function of {(exp(χ) ·λ)(eβ)}β≻γ,
which means condition (2) is satisfied.
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We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. If D = {α}, then Theorem 3.2 holds by Lemma 3.4.

Indeed, in this case (exp(χ) · λ)(eγ) = λ(eα) · Tγ,α(x). Moreover, Tγ,α(x) = 0 for γ ≻ α,
while Tγ,α(x) = 1 for γ = α. Finally, for γ ≺ α satisfying condition (1), the polynomial
Tγ,α(x) can be expressed as a rational function of {(exp(χ) · λ)(eδ)}δ≻γ .

Now we will prove formula (2) step by step for all λ ∈ S by considering the supports
from the list one after another. (Note that most supports can be treated similarly to
Example 3.3; see below.) Recall that

λ =
∑

β∈Φ+ λβe
∗
β ∈ n∗, µ =

∑
β∈Φ+ µβ ⊗ e∗β = exp(χ) · λ ∈ M∗.

• Suppose the largest root (with respect to the lexicographic order) in the support is
smaller than α2 + α3 + α4. For all such supports and for every γ ∈ Φ+ satisfying
condition (1), Lemma 3.6 applies, so the proof is complete. (Indeed, for all relevant
γ, the polynomials Tγ,α(x) are, up to a non-zero scalar factor, equal to xα2

, xα3
, xα4

,
0, or 1.)

• Suppose the largest root in the support equals α2 + α3 + α4. There are only two
such supports in the list: {α2 + α3 + α4} and {α2 + α3 + α4, α3}. Since Lemma 3.4
covers the case of one-element supports, the pair (α3, α2+α3+α4) belongs to ζ ′D,α3

regardless of whether α3 lies in D (the presence of simple roots in the support does
not affect ζ ′D,γ). The conditions of Lemma 3.6 are also satisfied, so nothing remains
to prove in this case.

• Next, suppose the largest root in the support equals α2 + 2α3. Here the first non-
trivial case appears, i.e., Theorem 3.2 cannot be proved for all supports of this type
by a straightforward application of Lemma 3.6. Such a support may also contain
α2 + α3 + α4 and α4. The complication arises because the table entries at positions
(α3, α2 +2α3) and (α4, α2 + α3 + α4) both involve the same root α2 + α3. However,
Tα3,α2+2α3

(x) 6= Tα4,α2+α3+α4
(x). Consequently, a situation may occur where α4 sat-

isfies condition (1) but Lemma 3.6 cannot be applied directly. Therefore, in this
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case we must compute the coordinates of µ explicitly:

µα2+2α3
= λ(eα2+2α3

) = λα2+2α3
,

µα2+α3+α4
= λ(eα2+α3+α4

) = λα2+α3+α4
,

µα2+α3
=− λ([x, eα2+α3

]) =

=− λ([xα4
eα4

+ xα3
eα3

, eα2+α3
]) = −Cα4,α2+α3

xα4
λ(eα2+α3+α4

)−

− Cα3,α2+α3
xα3

λ(eα2+2α3
) = xα4

λα2+α3+α4
− 2xα3

λα2+2α3
,

µα3+α4
=− λ([x, eα3+α4

]) = −λ([xα2
eα2

, eα3+α4
]) = −Cα2,α3+α4

xα2
λ(eα2+α3+α4

)

=− xα2
λα2+α3+α4

,

µα3
=− λ([x, eα3

]) +
1

2
λ([x, [x, eα3

]]) = −λ([xα2+α3
eα2+α3

, eα3
])+

+
1

2
λ([xα2

eα2
, [xα3

eα3
+ xα4

eα4
, eα3

]) +
1

2
λ([xα4

eα4
, [xα2

eα2
, eα3

])

=− Cα2+α3
xα2+α3

λ(eα2+2α3
) +

1

2
Cα2,α3

Cα3,α2+α3
xα2

xα3
λ(eα2+2α3

)+

+
1

2
(Cα4,α3

Cα2,α3+α4
+ Cα2,α3

Cα4,α2+α3
)xα2

xα4
λ(eα2+α3+α4

)

= 2xα2+α3
λα2+2α3

+ xα2
xα3

λα2+2α3
− xα2

xα4
λα2+α3+α4

,

µα4
= λ(eα4

)− λ([x, eα4
]) +

1

2
λ([x, [x, eα4

]]) = λα4
− λ([xα2+α3

eα2+α3
, eα4

])+

+
1

2
λ([xα3

eα3
, [xα2

eα2
, eα4

]]) = λα4
− Cα2+α3,α4

xα2+α3
λ(eα2+α3+α4

)+

+
1

2
Cα3,α4

Cα2,α3+α4
xα2

xα3
λ(eα2+α3+α4

) = λα4
+ xα2+α3

λα2+α3+α4
+

+
1

2
xα2

xα3
λα2+α3+α4

= λα4
+

µα2+α3
µα3+α4

− µα2+α3+α4
µα3

2µα2+2α3

.

This shows that formula (2) holds for the root α4.

• Now suppose the largest root in the support equals α2+2α3+α4 or α2+2α3+2α4.
In these cases, the statement also follows almost trivially from Lemma 3.4 and
Lemma 3.6. The only nontrivial situation occurs for the support

D = {α2 + 2α3 + 2α4, α2 + 2α3, α2}.

At first glance, it might seem that Tα2,α2+2α3
(x) cannot be expressed as a rational

function in {(exp(χ) · λ)(eβ)}β≻α2
. However, this is not the case. From Lemma 3.4

we know that Tα2+α3,α2+2α3+2α4
(x) can be expressed as a rational function of

{(exp(χ) · λ)(eβ)}β≻α2+α3+α4
.

Hence, xα3
can be recovered from (exp(χ)·λ)(eα2+α3

) and Tα2+α3,α2+2α3+2α4
(x). Since

Tα2,α2+2α3
(x) depends only on xα3

.
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• If the largest root in the support equals α1 or α1 + α2, then the nontrivial case is
when D contains α1+α2, α2+2α3, α2+α3+α4. This case follows immediately from
the formulas in Example 2.5 together with the case D = {α2 + 2α3, α2 + α3 + α4}.

• If the largest root in the support equals α1+α2+α3, then all nontrivial cases reduce
to D = {α1+α2+α3, α2+2α3+α4, α2}. Let us write down the relevant coordinates:

µα1+α2+α3
= λα1+α2+α3

,

µα1+α2
= −xα3

λα1+α2+α3
,

µα1
= −xα2+α3

λα1+α2+α3
+

1

2
xα2

xα3
λα1+α2+α3

,

µα2+2α3+α4
= λα2+2α3+α4

,

µα2+2α3
= −xα4

λα2+2α3+α4
,

µα2+α3+α4
= xα3

λα2+2α3+α4
= −

µα1+α2
µα2+2α3+α4

µα1+α2+α3

,

µα2+α3
= xα1

λα1+α2+α3
+ xα3+α4

λα2+2α3+α4
−

3

2
xα3

xα4
λα2+2α3+α4

,

µα2
= λα2

− xα1
xα3

λα1+α2+α3
− xα3+α4

xα3
λα2+2α3+α4

+
1

2
x2
α3
xα4

λα2+2α3+α4

= λα2
+

µα1+α2
µα2+α3

µα1+α2+α3

+
µα2+2α3

µ2
α1+α2

µ2
α1+α2+α3

,

µα3+α4
= −xα2+α3

λα2+2α3+α4
+

1

2
xα2

xα3
λα2+2α3+α4

=
µα1

µα2+2α3+α4

µα1+α2+α3

.

We conclude that for the roots α2 and α3 + α4, formula (2) holds.

• Next, if the largest root in the support equals α1 + α2 + α3 + α4, then the most
interesting supports are those containing the roots

α1 + α2 + α3 + α4, α2 + 2α3 + 2α4 and α2 + 2α3 + α4.

One can easily show that

µα2
= λα2

−
µ2
α1+α2

µα2+2α3+2α4

µ2
α1+α2+α3+α4

+
µα1+α2

µα2+α3+α4

µα1+α2+α3+α4

− x2
α3
λα2+2α3

.

First, consider the case λα2+2α3
= 0. Then clearly the root α2 satisfies formula (2).

Since α2 + 2α3 /∈ D, the support D may contain either α3 or α2 + α3. But

µα3
= λα3

+
µα1+α2+α3

µα3+α4
+ µα1

µα2+2α3+α4

µα1+α2+α3+α4

+ 2
µα1+α2+α3

µα1
µα2+2α3+2α4

µ2
α1+α2+α3+α4

,

µα2+α3
= λα2+α3

+
−µα2+2α3+α4

µα1+α2
+ µα1+α2+α3

µα2+α3+α4

µα1+α2+α3+α4

−

− 2
µα2+2α3+2α4

µα1+α2+α3
µα1+α2

µ2
α1+α2+α3+α4

.
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One can see that formula (2) is satisfied in both situations. Second, if λα2+2α3
6= 0,

then formula (2) for α2 follows from the fact that λα2+2α3
can be obtained from

µα2+2α3
, while xα3

can be obtained from µα2+α3
.

• Suppose the largest root in the support equals α1 + α2 + 2α3. Here the analysis
essentially reduces to the two supports {α1 + α2 + 2α3, α1 + α2 + α3 + α4} and
{α1 + α2 + 2α3, α2 + 2α3 + α4}. (All other cases can be reduced to these two by
arguments similar to those above.) For the first support, we have the following
equations for the coordinates of µ:

µα2+α3
=

µα1+α2+α3
µα2+2α3

µα1+α2+2α3

;

µα2
=

µα1+α2
µα2+2α3

µα1+α2+2α3

;

µα4
=

−µα3
µα1+α2+α3+α4

− µα1+α2
µα3+α4

2µα1+α2+2α3

.

For the second support, the equations for the coordinates of µ are:

µα2
= −

µα1+α2+α3
µα2+α3

2µα1+α2+2α3

+
µ2
α1+α2+α3

µα2+2α3

4µ2
α1+α2+2α3

;

µα4
=

µα1+α2+α3
µα3+α4

− 2µα1
µα2+2α3+α4

2µα1+α2+2α3

.

• Suppose the largest root in the support equals α1+α2+2α3+α4. Although there are
many such supports, they are all amenable to a simple analysis. Each such support
does not contain the roots α1 + α2 + 2α3, α1 + α2 + α3 + α4, and α1 + α2 + α3.
Consequently, xα4

, xα3
, and xα3+α4

can always be expressed as rational function of
µα1+α2+2α3

, µα1+α2+α3+α4
, µα1+α2+α3

and µα1+α2+2α3+α4
(in fact, as polynomials with

coefficients from F[µ−1
α1+α2+2α3+α4

]). Moreover, xα1
can be expressed as a rational

function of µα2+2α3+α4
and µα1+α2+2α3+α4

. It follows that if λα1+α2+2α3+α4
appears in

a monomial in a coordinate µα, then that monomial can be expressed as a rational
function of the coordinates µβ with β ≻ α. Furthermore, almost all other monomials
can also be expressed as polynomials in xα4

, xα3
, xα3+α4

and xα1
. Finally, those

monomials that cannot be expressed in this way satisfy formula (2) by the analysis
above. A similar analysis applies to the cases where the largest root of the support
is 2α1 + 3α2 + 4α3 + 2α4.

The remaining steps can be analyzed similarly: either Lemma 3.6 applies, or the
equations for the coordinates can be written out explicitly in a straightforward manner.
Thus, Theorem 3.2 is proved. �

Finally, we formulate and prove the last theorem, which leads to the main result.

Theorem 3.7. Let λ, λ′ ∈ S with λ 6= λ′. Then N · λ 6= N · λ′.
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Proof. Assume the contrary. Let λ 6= λ′ but N · λ = N · λ′. Let γ be the largest positive
root such that λ(eγ) 6= λ′(eγ). Then γ belongs to the support of at least one of the
linear forms λ or λ′. Since both forms lie in S, the root γ satisfies condition (1). Set
µ = exp(χ) · λ, µ′ = exp(χ) · λ′. By Theorem 3.2, there exist rational functions FD,γ and
FD′,γ such that

µ(eγ) = λ(eγ) + FD,γ(µ(eβ), β ≻ γ)

and
µ′(eγ) = λ′(eγ) + FD′,γ(µ

′(eβ), β ≻ γ).

Note that if λ(eβ) = λ′(eβ) for all β ≻ γ, then µ(eγ) − λ(eγ) = µ′(eγ) − λ′(eγ) and
µ(eβ) = µ′(eβ) for all β ≻ γ . Therefore, we may choose our functions FD,γ for different D
and γ in such a way that FD,γ = FD′,γ whenever {β ∈ D | β ≻ γ} = {β ∈ D′ | β ≻ γ}. Let
µ̃ = exp(x̃) ·λ be an arbitrary element of their common orbit, where x̃ =

∑
α∈Φ+ x̃αeα ∈ n.

Then
µ̃(eγ) = λ(eγ) + FD,γ(µ̃(eβ), β ≻ γ)

and
µ̃(eγ) = λ′(eγ) + FD,γ(µ̃(eβ), β ≻ γ).

Note that FD,γ(µ̃(eβ), β ≻ γ) does not become infinite because µ̃(eγ), λ(eγ), and λ′(eγ)
are well-defined numbers. Hence, λ(eγ) = λ′(eγ). This is a contradiction.

Thus, distinct forms in S have distinct orbits. Note that N · λ ⊆ N · λ, so if λ, λ′ ∈ S
and λ 6= λ′, then N · λ 6= N · λ′.

It remains to prove that all coadjoint orbits are obtained in this way. Consider the
orbits over the finite field Fq. One can easily compute |S|. Let D be a support from the
list, with |D| = k. There are (q − 1)k linear forms with this support. If they all lie in
S, then this support contributes (q − 1)k forms to S. If there is one restriction on the
scalars, then the support yields (q − 1)k−1 forms in S, because the restriction expresses
one coordinate in terms of the others. For example,

λα1+α2
=

λα1+α2+2α3
λ2
α2+α3+α4

λ2
α2+2α3+α4

for the supports 30, 31, 32, see page 10. Thus, a straightforward calculation gives

|S| = 1 + 24(q − 1) + 140(q − 1)2 + 288(q − 1)3 + 256(q − 1)4

+ 124(q − 1)5 + 40(q − 1)6 + 9(q − 1)7 + (q − 1)8.

The sum of the coefficients is exactly 883, which is the number of supports in the list plus
three supports with restrictions.

Since each form in S determines its own orbit, the set S accounts for |S| orbits.
However, in the work [3], the number of coadjoint orbits for F4 over a finite field Fq is
computed by group-theoretic methods, and it coincides exactly with |S|. Hence, over Fq

there are no other orbits. This completes the proof of the main result.
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The same approach can be applied to other root systems Φ. Fix a total lexicographic
order ≻ on the positive roots Φ+. For λ ∈ n∗ and γ ∈ Φ+, define the matrices

Aλ,γ := (λ([eα, eβ]))α∈Φ+,α�γ,β∈Φ+ ·

Bλ,γ := (λ([eα, eβ]))α∈Φ+,α≻γ,β∈Φ+ .

Let S be the set of λ ∈ n∗ satisfying the following condition: every γ ∈ supp(λ) fulfills
condition (1). We can now state a conjecture.

Conjecture 3.8. For every coadjoint orbit, there exists a unique linear form λ ∈ S lying

on that orbit.

Appendix

1. ∅

2. α4

3. α3

4. α3, α4

5. α3 + α4

6. α2

7. α2, α3 + α4

8. α2, α3

9. α2, α3, α4

10. α2, α4

11. α2 + α3

12. α2 + α3, α3 + α4

13. α2 + α3, α3 + α4, α4

14. α2 + α3, α4

15. α2 + α3 + α4

16. α2 + α3 + α4, α3

17. α2 + 2α3

18. α2 + 2α3, α2 + α3 + α4

19. α2 + 2α3, α2 + α3 + α4, α4

20. α2 + 2α3, α2

21. α2 + 2α3, α2, α3 + α4

22. α2 + 2α3, α2, α3 + α4, α4

23. α2 + 2α3, α2, α4

24. α2 + 2α3, α3 + α4

25. α2 + 2α3, α3 + α4, α4

26. α2 + 2α3, α4

27. α2 + 2α3 + α4

28. α2 + 2α3 + α4, α2

29. α2 + 2α3 + 2α4

30. α2 + 2α3 + 2α4, α2 + 2α3

31. α2 + 2α3 + 2α4, α2 + 2α3, α2

32. α2 + 2α3 + 2α4, α2 + α3

33. α2 + 2α3 + 2α4, α2

34. α2 + 2α3 + 2α4, α2, α3

35. α2 + 2α3 + 2α4, α3

36. α1

37. α1, α2 + 2α3 + 2α4

38. α1, α2 + 2α3 + 2α4, α2 + 2α3

39. α1, α2 + 2α3 + 2α4, α2 +
2α3, α2

40. α1, α2 + 2α3 + 2α4, α2 + α3

41. α1, α2 + 2α3 + 2α4, α2

42. α1, α2 + 2α3 + 2α4, α2, α3

43. α1, α2 + 2α3 + 2α4, α3

44. α1, α2 + 2α3 + α4

45. α1, α2 + 2α3 + α4, α2

46. α1, α2 + 2α3

47. α1, α2 + 2α3, α2 + α3 + α4

48. α1, α2+2α3, α2+α3+α4, α4

49. α1, α2 + 2α3, α2

50. α1, α2 + 2α3, α2, α3 + α4

51. α1, α2 +2α3, α2, α3 +α4, α4

52. α1, α2 + 2α3, α2, α4

53. α1, α2 + 2α3, α3 + α4

54. α1, α2 + 2α3, α3 + α4, α4

55. α1, α2 + 2α3, α4

56. α1, α2 + α3 + α4

57. α1, α2 + α3 + α4, α3

58. α1, α2 + α3

59. α1, α2 + α3, α3 + α4

60. α1, α2 + α3, α3 + α4, α4

61. α1, α2 + α3, α4

62. α1, α2

63. α1, α2, α3 + α4
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64. α1, α2, α3

65. α1, α2, α3, α4

66. α1, α2, α4

67. α1, α3 + α4

68. α1, α3

69. α1, α3, α4

70. α1, α4

71. α1 + α2

72. α1 + α2, α2 + 2α3 + 2α4

73. α1 +α2, α2 +2α3 +2α4, α2 +
2α3

74. α1+α2, α2+2α3+2α4, α2+α3

75. α1 +α2, α2 +2α3 +2α4, α2 +
α3, α3

76. α1 + α2, α2 + 2α3 + 2α4, α3

77. α1 + α2, α2 + 2α3 + α4

78. α1 + α2, α2 + 2α3

79. α1+α2, α2+2α3, α2+α3+α4

80. α1 + α2, α2 + 2α3, α2 + α3 +
α4, α3 + α4

81. α1 + α2, α2 + 2α3, α2 + α3 +
α4, α3 + α4, α4

82. α1 + α2, α2 + 2α3, α2 + α3 +
α4, α4

83. α1 + α2, α2 + 2α3, α3 + α4

84. α1+α2, α2+2α3, α3+α4, α4

85. α1 + α2, α2 + 2α3, α4

86. α1 + α2, α2 + α3 + α4

87. α1 +α2, α2 +α3+α4, α3 +α4

88. α1 + α2, α2 + α3 + α4, α3 +
α4, α3

89. α1 + α2, α2 + α3 + α4, α3

90. α1 + α2, α2 + α3

91. α1 + α2, α2 + α3, α3 + α4

92. α1 + α2, α2 + α3, α3

93. α1 + α2, α2 + α3, α3, α4

94. α1 + α2, α2 + α3, α4

95. α1 + α2, α3 + α4

96. α1 + α2, α3

97. α1 + α2, α3, α4

98. α1 + α2, α4

99. α1 + α2 + α3

100. α1 + α2 + α3, α2 + 2α3 + 2α4

101. α1 + α2 + α3, α2 + 2α3 +
2α4, α2 + 2α3

102. α1 + α2 + α3, α2 + 2α3 +
2α4, α2 + 2α3, α2

103. α1+α2+α3, α2+2α3+2α4, α2

104. α1 + α2 + α3, α2 + 2α3 + α4

105. α1 + α2 + α3, α2 + 2α3 +
α4, α2 + α3 + α4

106. α1+α2+α3, α2+2α3+α4, α2

107. α1 + α2 + α3, α2 + 2α3 +
α4, α2, α3 + α4

108. α1 + α2 + α3, α2 + 2α3 +
α4, α3 + α4

109. α1 + α2 + α3, α2 + 2α3

110. α1 + α2 + α3, α2 + 2α3, α2 +
α3 + α4

111. α1 + α2 + α3, α2 + 2α3, α2 +
α3 + α4, α4

112. α1 + α2 + α3, α2 + 2α3, α2

113. α1+α2+α3, α2+2α3, α2, α3+
α4

114. α1+α2+α3, α2+2α3, α2, α3+
α4, α4

115. α1+α2+α3, α2+2α3, α2, α4

116. α1+α2+α3, α2+2α3, α3+α4

117. α1 + α2 + α3, α2 + 2α3, α3 +
α4, α4

118. α1 + α2 + α3, α2 + 2α3, α4

119. α1 + α2 + α3, α2 + α3 + α4

120. α1 +α2+α3, α2+α3 +α4, α4

121. α1 + α2 + α3, α2

122. α1 + α2 + α3, α2, α3 + α4

123. α1 +α2 +α3, α2, α3 +α4, α4

124. α1 + α2 + α3, α2, α4

125. α1 + α2 + α3, α3 + α4

126. α1 + α2 + α3, α3 + α4, α4

127. α1 + α2 + α3, α4

128. α1 + α2 + α3 + α4

129. α1+α2+α3+α4, α2+2α3+2α4

130. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3 + α4

131. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3 + α4, α2 + 2α3

132. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3 + α4, α2 +
2α3, α2

133. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3 + α4, α2 + α3

134. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3 + α4, α2

135. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3 + α4, α2, α3

136. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3 + α4, α3

137. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3

138. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + 2α3, α2

139. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2 + α3

140. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2

141. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α2, α3

142. α1 +α2 +α3 +α4, α2 +2α3 +
2α4, α3

143. α1+α2+α3+α4, α2+2α3+α4

144. α1 +α2 +α3 +α4, α2 +2α3 +
α4, α2 + 2α3
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145. α1 +α2 +α3 +α4, α2 +2α3 +
α4, α2 + 2α3, α2

146. α1 +α2 +α3 +α4, α2 +2α3 +
α4, α2 + α3

147. α1 +α2 +α3 +α4, α2 +2α3 +
α4, α2

148. α1 +α2 +α3 +α4, α2 +2α3 +
α4, α2, α3

149. α1 +α2 +α3 +α4, α2 +2α3 +
α4, α3

150. α1 + α2 + α3 + α4, α2 + 2α3

151. α1+α2+α3+α4, α2+2α3, α2

152. α1 + α2 + α3 + α4, α2 + α3

153. α1 + α2 + α3 + α4, α2

154. α1 + α2 + α3 + α4, α2, α3

155. α1 + α2 + α3 + α4, α3

156. α1 + α2 + 2α3

157. α1+α2+2α3, α1+α2+α3+α4

158. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + 2α3 + 2α4

159. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2+2α3+2α4, α2+α3+α4

160. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 +2α3 +2α4, α2 +α3 +
α4, α2 + α3

161. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 +2α3 +2α4, α2 +α3 +
α4, α2 + α3, α2

162. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 +2α3 +2α4, α2 +α3 +
α4, α2

163. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + 2α3 + 2α4, α2 + α3

164. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2+2α3+2α4, α2+α3, α2

165. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + 2α3 + 2α4, α2

166. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + 2α3 + α4

167. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + 2α3 + α4, α2 + α3

168. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2+2α3+α4, α2+α3, α2

169. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + 2α3 + α4, α2

170. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + α3 + α4

171. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + α3 + α4, α2

172. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2 + α3

173. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2

174. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α2, α4

175. α1 +α2 +2α3, α1 +α2 +α3 +
α4, α4

176. α1 + α2 + 2α3, α1 + α2

177. α1 + α2 + 2α3, α1 + α2, α2 +
2α3 + 2α4

178. α1 + α2 + 2α3, α1 + α2, α2 +
2α3 + 2α4, α2 + α3

179. α1 + α2 + 2α3, α1 + α2, α2 +
2α3 + 2α4, α2 + α3, α2

180. α1 + α2 + 2α3, α1 + α2, α2 +
2α3 + 2α4, α2

181. α1 + α2 + 2α3, α1 + α2, α2 +
2α3 + α4

182. α1 + α2 + 2α3, α1 + α2, α2 +
2α3 + α4, α2 + α3 + α4

183. α1 + α2 + 2α3, α1 + α2, α2 +
α3 + α4

184. α1+α2+2α3, α1+α2, α2+α3

185. α1 + α2 + 2α3, α1 + α2, α2 +
α3, α2

186. α1 + α2 + 2α3, α1 + α2, α2 +
α3, α2, α3 + α4

187. α1 + α2 + 2α3, α1 + α2, α2 +
α3, α2, α3 + α4, α4

188. α1 + α2 + 2α3, α1 + α2, α2 +
α3, α2, α4

189. α1 + α2 + 2α3, α1 + α2, α2 +
α3, α3 + α4

190. α1 + α2 + 2α3, α1 + α2, α2 +
α3, α3 + α4, α4

191. α1 + α2 + 2α3, α1 + α2, α2 +
α3, α4

192. α1 + α2 + 2α3, α1 + α2, α2

193. α1+α2+2α3, α1+α2, α2, α3+
α4

194. α1+α2+2α3, α1+α2, α2, α3+
α4, α4

195. α1+α2+2α3, α1+α2, α2, α4

196. α1+α2+2α3, α1+α2, α3+α4

197. α1 + α2 + 2α3, α1 + α2, α3 +
α4, α4

198. α1 + α2 + 2α3, α1 + α2, α4

199. α1 +α2 +2α3, α2 +2α3 +2α4

200. α1 + α2 + 2α3, α2 + 2α3 +
2α4, α2 + α3

201. α1 + α2 + 2α3, α2 + 2α3 +
2α4, α2 + α3, α2

202. α1 + α2 + 2α3, α2 + 2α3 +
2α4, α2

203. α1 + α2 + 2α3, α2 + 2α3 + α4

204. α1 + α2 + 2α3, α2 + 2α3 +
α4, α2 + α3 + α4

205. α1+α2+2α3, α2+2α3+α4, α2

206. α1 + α2 + 2α3, α2 + 2α3 +
α4, α2, α4

207. α1+α2+2α3, α2+2α3+α4, α4

208. α1 + α2 + 2α3, α2 + α3 + α4

209. α1 + α2 + 2α3, α2 + α3

210. α1 + α2 + 2α3, α2 + α3, α2

211. α1+α2+2α3, α2+α3, α2, α3+
α4

212. α1+α2+2α3, α2+α3, α2, α3+
α4, α4

213. α1+α2+2α3, α2+α3, α2, α4

214. α1+α2+2α3, α2+α3, α3+α4

215. α1 + α2 + 2α3, α2 + α3, α3 +
α4, α4

216. α1 + α2 + 2α3, α2 + α3, α4
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217. α1 + α2 + 2α3, α2

218. α1 + α2 + 2α3, α2, α3 + α4

219. α1+α2+2α3, α2, α3+α4, α4

220. α1 + α2 + 2α3, α2, α4

221. α1 + α2 + 2α3, α3 + α4

222. α1 + α2 + 2α3, α3 + α4, α4

223. α1 + α2 + 2α3, α4

224. α1 + α2 + 2α3 + α4

225. α1 + α2 + 2α3 + α4, α1 + α2

226. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4

227. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 + 2α3

228. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 +
2α3, α2 + α3 + α4

229. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 +
2α3, α2 + α3 + α4, α2 + α3

230. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 +
2α3, α2+α3+α4, α2+α3, α2

231. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 +
2α3, α2 + α3 + α4, α2

232. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 +
2α3, α2 + α3

233. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 +
2α3, α2 + α3, α2

234. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 +
2α3, α2

235. α1 + α2 + 2α3 + α4, α1 +
α2, α2+2α3+2α4, α2+α3+α4

236. α1 + α2 + 2α3 + α4, α1 +
α2, α2 +2α3 +2α4, α2 +α3 +
α4, α2 + α3

237. α1 + α2 + 2α3 + α4, α1 +
α2, α2 +2α3 +2α4, α2 +α3 +
α4, α2 + α3, α2

238. α1 + α2 + 2α3 + α4, α1 +
α2, α2 +2α3 +2α4, α2 +α3 +
α4, α2

239. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2 + α3

240. α1 + α2 + 2α3 + α4, α1 +
α2, α2+2α3+2α4, α2+α3, α2

241. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α2

242. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3

243. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3, α2 + α3 + α4

244. α1 + α2 + 2α3 + α4, α1 +
α2, α2+2α3, α2+α3+α4, α2+
α3

245. α1 + α2 + 2α3 + α4, α1 +
α2, α2+2α3, α2+α3+α4, α2+
α3, α2

246. α1 + α2 + 2α3 + α4, α1 +
α2, α2+2α3, α2+α3+α4, α2

247. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3, α2 + α3

248. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3, α2 + α3, α2

249. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + 2α3, α2

250. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + α3 + α4

251. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + α3 + α4, α2 + α3

252. α1 + α2 + 2α3 + α4, α1 +
α2, α2 +α3 +α4, α2 +α3, α2

253. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + α3 + α4, α2

254. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + α3

255. α1 + α2 + 2α3 + α4, α1 +
α2, α2 + α3, α2

256. α1+α2+2α3+α4, α1+α2, α2

257. α1+α2+2α3 +α4, α2 +2α3+
2α4

258. α1+α2+2α3 +α4, α2 +2α3+
2α4, α2 + 2α3

259. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + 2α3, α2 + α3 + α4

260. α1 + α2 + 2α3 + α4, α2 +
2α3+2α4, α2+2α3, α2+α3+
α4, α2 + α3

261. α1 + α2 + 2α3 + α4, α2 +
2α3+2α4, α2+2α3, α2+α3+
α4, α2 + α3, α2

262. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2+2α3, α2+α3+α4, α2

263. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + 2α3, α2 + α3

264. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + 2α3, α2 + α3, α2

265. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + 2α3, α2

266. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + α3 + α4

267. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + α3 + α4, α2 + α3

268. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2+α3+α4, α2+α3, α2

269. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + α3 + α4, α2

270. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + α3

271. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2 + α3, α2

272. α1 +α2+2α3 +α4, α2+2α3 +
2α4, α2

273. α1 + α2 + 2α3 + α4, α2 + 2α3

274. α1 + α2 + 2α3 + α4, α2 +
2α3, α2 + α3 + α4

275. α1 + α2 + 2α3 + α4, α2 +
2α3, α2 + α3 + α4, α2 + α3

276. α1 + α2 + 2α3 + α4, α2 +
2α3, α2+α3+α4, α2+α3, α2

277. α1 + α2 + 2α3 + α4, α2 +
2α3, α2 + α3 + α4, α2

278. α1 + α2 + 2α3 + α4, α2 +
2α3, α2 + α3

279. α1 + α2 + 2α3 + α4, α2 +
2α3, α2 + α3, α2

280. α1+α2+2α3+α4, α2+2α3, α2

281. α1+α2+2α3+α4, α2+α3+α4
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282. α1 +α2 +2α3 +α4, α2 +α3 +
α4, α2 + α3

283. α1 +α2 +2α3 +α4, α2 +α3 +
α4, α2 + α3, α2

284. α1 +α2 +2α3 +α4, α2 +α3 +
α4, α2

285. α1 + α2 + 2α3 + α4, α2 + α3

286. α1+α2+2α3+α4, α2+α3, α2

287. α1 + α2 + 2α3 + α4, α2

288. α1 + α2 + 2α3 + 2α4

289. α1+α2 +2α3 +2α4, α1+α2 +
2α3

290. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α1 + α2

291. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α1 + α2, α2 + 2α3 + α4

292. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + 2α3

293. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + 2α3, α2 + α3 + α4

294. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2+2α3, α2+α3+α4, α2+
α3

295. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2+2α3, α2+α3+α4, α2+
α3, α2

296. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2+2α3, α2+α3+α4, α2

297. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + 2α3, α2 + α3

298. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + 2α3, α2 + α3, α2

299. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + 2α3, α2

300. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + α3 + α4

301. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + α3 + α4, α2 + α3

302. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 +α3 +α4, α2 +α3, α2

303. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + α3 + α4, α2

304. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + α3

305. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α1 +α2, α2 +2α3 +
α4, α2 + α3, α2

306. α1+α2+2α3 +2α4, α1+α2+
2α3, α1+α2, α2+2α3+α4, α2

307. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + 2α3

308. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + 2α3, α2 +
α3 + α4

309. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + 2α3, α2 +
α3 + α4, α2 + α3

310. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + 2α3, α2 +
α3 + α4, α2 + α3, α2

311. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + 2α3, α2 +
α3 + α4, α2

312. α1+α2+2α3 +2α4, α1+α2+
2α3, α1+α2, α2+2α3, α2+α3

313. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + 2α3, α2 +
α3, α2

314. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + 2α3, α2

315. α1+α2+2α3 +2α4, α1+α2+
2α3, α1 + α2, α2 + α3 + α4

316. α1+α2+2α3 +2α4, α1+α2+
2α3, α1+α2, α2+α3+α4, α2+
α3

317. α1+α2+2α3 +2α4, α1+α2+
2α3, α1+α2, α2+α3+α4, α2+
α3, α2

318. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α1+α2, α2+α3+α4, α2

319. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α1 + α2, α2 + α3

320. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α1 + α2, α2 + α3, α2

321. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α1 + α2, α2

322. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2 + 2α3 + α4

323. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2 + 2α3 + α4, α2 + 2α3

324. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3 +α4, α2 +
2α3, α2 + α3 + α4

325. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3 +α4, α2 +
2α3, α2 + α3 + α4, α2 + α3

326. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3 +α4, α2 +
2α3, α2+α3+α4, α2+α3, α2

327. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3 +α4, α2 +
2α3, α2 + α3 + α4, α2

328. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3 +α4, α2 +
2α3, α2 + α3

329. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3 +α4, α2 +
2α3, α2 + α3, α2

330. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3 +α4, α2 +
2α3, α2

331. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2+2α3+α4, α2+α3+α4

332. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2 +2α3 +α4, α2 +α3 +
α4, α2 + α3

333. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2 +2α3 +α4, α2 +α3 +
α4, α2 + α3, α2

334. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2 +2α3 +α4, α2 +α3 +
α4, α2

335. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2 + 2α3 + α4, α2 + α3

336. α1 +α2+2α3 +2α4, α1 +α2+
2α3, α2+2α3+α4, α2+α3, α2
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337. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + 2α3 + α4, α2

338. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + 2α3

339. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + 2α3, α2 + α3 + α4

340. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3, α2 +α3 +
α4, α2 + α3

341. α1 + α2 + 2α3 + 2α4, α1 +
α2 +2α3, α2 +2α3, α2 +α3 +
α4, α2 + α3, α2

342. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2+2α3, α2+α3+α4, α2

343. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + 2α3, α2 + α3

344. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + 2α3, α2 + α3, α2

345. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + 2α3, α2

346. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + α3 + α4

347. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + α3 + α4, α2 + α3

348. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2+α3+α4, α2+α3, α2

349. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + α3 + α4, α2

350. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + α3

351. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2 + α3, α2

352. α1+α2 +2α3 +2α4, α1+α2 +
2α3, α2

353. α1+α2+2α3+2α4, α1+α2+α3

354. α1+α2 +2α3 +2α4, α1+α2 +
α3, α2 + 2α3 + α4

355. α1+α2 +2α3 +2α4, α1+α2 +
α3, α2 + 2α3 + α4, α2 + 2α3

356. α1 + α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α2 + α3 + α4

357. α1 + α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α2 + α3 + α4, α2 + α3

358. α1 + α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α2+α3+α4, α2+α3, α2

359. α1 + α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α2 + α3 + α4, α2

360. α1 + α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α2 + α3

361. α1 + α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α2 + α3, α2

362. α1+α2+2α3 +2α4, α1+α2+
α3, α2+2α3+α4, α2+2α3, α2

363. α1+α2+2α3 +2α4, α1+α2+
α3, α2+2α3+α4, α2+α3+α4

364. α1+α2+2α3 +2α4, α1+α2+
α3, α2 + 2α3 + α4, α2 + α3 +
α4, α2 + α3

365. α1+α2+2α3 +2α4, α1+α2+
α3, α2 + 2α3 + α4, α2 + α3 +
α4, α2 + α3, α2

366. α1+α2+2α3 +2α4, α1+α2+
α3, α2 + 2α3 + α4, α2 + α3 +
α4, α2

367. α1+α2+2α3 +2α4, α1+α2+
α3, α2 + 2α3 + α4, α2 + α3

368. α1+α2+2α3 +2α4, α1+α2+
α3, α2+2α3+α4, α2+α3, α2

369. α1+α2+2α3 +2α4, α1+α2+
α3, α2 + 2α3 + α4, α2

370. α1+α2+2α3 +2α4, α1+α2+
α3, α2 + 2α3

371. α1+α2+2α3 +2α4, α1+α2+
α3, α2 + 2α3, α2 + α3 + α4

372. α1+α2+2α3 +2α4, α1+α2+
α3, α2+2α3, α2+α3+α4, α2+
α3

373. α1+α2+2α3 +2α4, α1+α2+
α3, α2+2α3, α2+α3+α4, α2+
α3, α2

374. α1+α2+2α3 +2α4, α1+α2+
α3, α2+2α3, α2+α3+α4, α2

375. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + 2α3, α2 + α3

376. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + 2α3, α2 + α3, α2

377. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + 2α3, α2

378. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + α3 + α4

379. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + α3 + α4, α2 + α3

380. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 +α3 +α4, α2 +α3, α2

381. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + α3 + α4, α2

382. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + α3

383. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2 + α3, α2

384. α1 +α2+2α3 +2α4, α1 +α2+
α3, α2

385. α1 + α2 + 2α3 + 2α4, α1 + α2

386. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3 + α4

387. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3 + α4, α2 + 2α3

388. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3 + α4, α2 +
2α3, α2 + α3

389. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3 + α4, α2 +
2α3, α2 + α3, α2

390. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2+2α3+α4, α2+2α3, α2

391. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3 + α4, α2 + α3

392. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2+2α3+α4, α2+α3, α2

393. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3 + α4, α2

394. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3

395. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3, α2 + α3 + α4
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396. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2+2α3, α2+α3+α4, α2

397. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + 2α3, α2

398. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + α3 + α4

399. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + α3 + α4, α2 + α3

400. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + α3 + α4, α2

401. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + α3 + α4, α2, α3

402. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + α3 + α4, α3

403. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2 + α3

404. α1+α2+2α3+2α4, α1+α2, α2

405. α1 + α2 + 2α3 + 2α4, α1 +
α2, α2, α3

406. α1+α2+2α3+2α4, α1+α2, α3

407. α1+α2+2α3+2α4, α2+2α3+
α4

408. α1+α2+2α3+2α4, α2+2α3+
α4, α2 + 2α3

409. α1+α2+2α3+2α4, α2+2α3+
α4, α2 + 2α3, α2 + α3

410. α1+α2+2α3+2α4, α2+2α3+
α4, α2 + 2α3, α2 + α3, α2

411. α1+α2+2α3+2α4, α2+2α3+
α4, α2 + 2α3, α2

412. α1+α2+2α3+2α4, α2+2α3+
α4, α2 + α3

413. α1+α2+2α3+2α4, α2+2α3+
α4, α2 + α3, α2

414. α1+α2+2α3+2α4, α2+2α3+
α4, α2

415. α1 +α2 +2α3 +2α4, α2 +2α3

416. α1 + α2 + 2α3 + 2α4, α2 +
2α3, α2 + α3 + α4

417. α1 + α2 + 2α3 + 2α4, α2 +
2α3, α2 + α3 + α4, α2

418. α1 + α2 + 2α3 + 2α4, α2 +
2α3, α2

419. α1+α2+2α3+2α4, α2+α3+α4

420. α1+α2+2α3 +2α4, α2+α3+
α4, α2 + α3

421. α1+α2+2α3 +2α4, α2+α3+
α4, α2

422. α1+α2+2α3 +2α4, α2+α3+
α4, α2, α3

423. α1+α2+2α3 +2α4, α2+α3+
α4, α3

424. α1 + α2 + 2α3 + 2α4, α2 + α3

425. α1 + α2 + 2α3 + 2α4, α2

426. α1 + α2 + 2α3 + 2α4, α2, α3

427. α1 + α2 + 2α3 + 2α4, α3

428. α1 + 2α2 + 2α3

429. α1+2α2+2α3, α1+α2+2α3+
2α4

430. α1+2α2+2α3, α1+α2+2α3+
2α4, α2 + 2α3 + α4

431. α1+2α2+2α3, α1+α2+2α3+
2α4, α2 + α3 + α4

432. α1+2α2+2α3, α1+α2+2α3+
2α4, α2 + α3 + α4, α3

433. α1+2α2+2α3, α1+α2+2α3+
2α4, α3

434. α1+2α2+2α3, α1+α2+2α3+
α4

435. α1+2α2+2α3, α1+α2+2α3+
α4, α2 + 2α3 + 2α4

436. α1+2α2+2α3, α1+α2+2α3+
α4, α2 + 2α3 + 2α4, α4

437. α1+2α2+2α3, α1+α2+2α3+
α4, α2 + α3 + α4

438. α1+2α2+2α3, α1+α2+2α3+
α4, α3 + α4

439. α1+2α2+2α3, α1+α2+2α3+
α4, α3 + α4, α4

440. α1+2α2+2α3, α1+α2+2α3+
α4, α4

441. α1+2α2+2α3, α1+α2+α3+α4

442. α1 +2α2+2α3, α1+α2 +α3+
α4, α2 + 2α3 + 2α4

443. α1 +2α2+2α3, α1+α2 +α3+
α4, α2 + 2α3 + 2α4, α3 + α4

444. α1 +2α2+2α3, α1+α2 +α3+
α4, α2+2α3+2α4, α3+α4, α3

445. α1 +2α2+2α3, α1+α2 +α3+
α4, α2 + 2α3 + 2α4, α3

446. α1 +2α2+2α3, α1+α2 +α3+
α4, α2 + 2α3 + α4

447. α1 +2α2+2α3, α1+α2 +α3+
α4, α2 + 2α3 + α4, α3

448. α1 +2α2+2α3, α1+α2 +α3+
α4, α3 + α4

449. α1 +2α2+2α3, α1+α2 +α3+
α4, α3

450. α1 +2α2+2α3, α1+α2 +α3+
α4, α3, α4

451. α1 +2α2+2α3, α1+α2 +α3+
α4, α4

452. α1 + 2α2 + 2α3, α1

453. α1+2α2+2α3, α1, α2+2α3+
2α4

454. α1+2α2+2α3, α1, α2+2α3+
2α4, α3

455. α1+2α2+2α3, α1, α2+2α3+
α4

456. α1+2α2+2α3, α1, α2+2α3+
α4, α3 + α4

457. α1+2α2+2α3, α1, α2+2α3+
α4, α3 + α4, α4

458. α1+2α2+2α3, α1, α2+2α3+
α4, α4

459. α1+2α2+2α3, α1, α2+α3+α4

460. α1 +2α2 +2α3, α1, α2 +α3 +
α4, α3 + α4

461. α1 +2α2 +2α3, α1, α2 +α3 +
α4, α3

462. α1 +2α2 +2α3, α1, α2 +α3 +
α4, α3, α4

463. α1 +2α2 +2α3, α1, α2 +α3 +
α4, α4

464. α1 + 2α2 + 2α3, α1, α3 + α4

465. α1 + 2α2 + 2α3, α1, α3
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466. α1 + 2α2 + 2α3, α1, α3, α4

467. α1 + 2α2 + 2α3, α1, α4

468. α1+2α2+2α3, α2+2α3+2α4

469. α1 + 2α2 + 2α3, α2 + 2α3 +
2α4, α3

470. α1 +2α2 +2α3, α2 +2α3 +α4

471. α1 + 2α2 + 2α3, α2 + 2α3 +
α4, α3 + α4

472. α1 + 2α2 + 2α3, α2 + 2α3 +
α4, α3 + α4, α4

473. α1 + 2α2 + 2α3, α2 + 2α3 +
α4, α4

474. α1 + 2α2 + 2α3, α2 + α3 + α4

475. α1 + 2α2 + 2α3, α2 + α3 +
α4, α3 + α4

476. α1+2α2+2α3, α2+α3+α4, α3

477. α1 + 2α2 + 2α3, α2 + α3 +
α4, α3, α4

478. α1+2α2+2α3, α2+α3+α4, α4

479. α1 + 2α2 + 2α3, α3 + α4

480. α1 + 2α2 + 2α3, α3

481. α1 + 2α2 + 2α3, α3, α4

482. α1 + 2α2 + 2α3, α4

483. α1 + 2α2 + 2α3 + α4

484. α1+2α2 +2α3 +α4, α1+α2 +
2α3 + 2α4

485. α1+2α2 +2α3 +α4, α1+α2 +
2α3 + 2α4, α1 + α2 + 2α3

486. α1+2α2 +2α3 +α4, α1+α2 +
2α3+2α4, α1+α2+2α3, α2+
2α3

487. α1+2α2 +2α3 +α4, α1+α2 +
2α3+2α4, α1+α2+2α3, α3+
α4

488. α1+2α2 +2α3 +α4, α1+α2 +
2α3+2α4, α1+α2+2α3, α3+
α4, α3

489. α1+2α2 +2α3 +α4, α1+α2 +
2α3 + 2α4, α1 + α2 + 2α3, α3

490. α1+2α2 +2α3 +α4, α1+α2+
2α3 + 2α4, α2 + 2α3

491. α1+2α2 +2α3 +α4, α1+α2+
2α3 + 2α4, α3 + α4

492. α1+2α2 +2α3 +α4, α1+α2+
2α3 + 2α4, α3 + α4, α3

493. α1+2α2 +2α3 +α4, α1+α2+
2α3 + 2α4, α3

494. α1+2α2 +2α3 +α4, α1+α2+
2α3

495. α1+2α2 +2α3 +α4, α1+α2+
2α3, α2 + 2α3 + 2α4

496. α1+2α2 +2α3 +α4, α1+α2+
2α3, α3 + α4

497. α1+2α2 +2α3 +α4, α1+α2+
2α3, α3 + α4, α3

498. α1+2α2 +2α3 +α4, α1+α2+
2α3, α3

499. α1 + 2α2 + 2α3 + α4, α1

500. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4

501. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4, α2 + 2α3

502. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4, α2 + 2α3, α3 + α4

503. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4, α2 + 2α3, α3 +
α4, α3

504. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4, α2 + 2α3, α3

505. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4, α3 + α4

506. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4, α3 + α4, α3

507. α1 +2α2 +2α3 +α4, α1, α2 +
2α3 + 2α4, α3

508. α1 +2α2 +2α3 +α4, α1, α2 +
2α3

509. α1 +2α2 +2α3 +α4, α1, α2 +
2α3, α3 + α4

510. α1 +2α2 +2α3 +α4, α1, α2 +
2α3, α3 + α4, α3

511. α1 +2α2 +2α3 +α4, α1, α2 +
2α3, α3

512. α1+2α2+2α3+α4, α1, α3+α4

513. α1 +2α2 +2α3 +α4, α1, α3 +
α4, α3

514. α1 + 2α2 + 2α3 + α4, α1, α3

515. α1+2α2+2α3+α4, α2+2α3+
2α4

516. α1+2α2+2α3+α4, α2+2α3+
2α4, α2 + 2α3

517. α1+2α2+2α3+α4, α2+2α3+
2α4, α2 + 2α3, α3 + α4

518. α1+2α2+2α3+α4, α2+2α3+
2α4, α2 + 2α3, α3 + α4, α3

519. α1+2α2+2α3+α4, α2+2α3+
2α4, α2 + 2α3, α3

520. α1+2α2+2α3+α4, α2+2α3+
2α4, α3 + α4

521. α1+2α2+2α3+α4, α2+2α3+
2α4, α3 + α4, α3

522. α1+2α2+2α3+α4, α2+2α3+
2α4, α3

523. α1 +2α2 +2α3 +α4, α2 +2α3

524. α1 + 2α2 + 2α3 + α4, α2 +
2α3, α3 + α4

525. α1 + 2α2 + 2α3 + α4, α2 +
2α3, α3 + α4, α3

526. α1 + 2α2 + 2α3 + α4, α2 +
2α3, α3

527. α1 + 2α2 + 2α3 + α4, α3 + α4

528. α1+2α2+2α3+α4, α3+α4, α3

529. α1 + 2α2 + 2α3 + α4, α3

530. α1 + 2α2 + 2α3 + 2α4

531. α1+2α2+2α3+2α4, α1+2α2+
2α3

532. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 + α2 + 2α3 + α4

533. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 +α2 +2α3 +α4, α1 +
α2 + 2α3

534. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 +α2 +2α3 +α4, α1 +
α2 + 2α3, α2 + 2α3
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535. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 +α2 +2α3 +α4, α1 +
α2 + 2α3, α3 + α4

536. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 +α2 +2α3 +α4, α1 +
α2 + 2α3, α3 + α4, α3

537. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 +α2 +2α3 +α4, α1 +
α2 + 2α3, α3

538. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 +α2 +2α3 +α4, α2 +
2α3

539. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1+α2+2α3+α4, α3+α4

540. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 +α2 +2α3 +α4, α3 +
α4, α3

541. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 + α2 + 2α3 + α4, α3

542. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 + α2 + 2α3

543. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1+α2+2α3, α2+2α3+
α4

544. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 + α2 + 2α3, α3 + α4

545. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1+α2+2α3, α3+α4, α3

546. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1 + α2 + 2α3, α3

547. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1

548. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3 + α4

549. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3 + α4, α2 +
2α3

550. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3 + α4, α2 +
2α3, α3 + α4

551. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3 + α4, α2 +
2α3, α3 + α4, α3

552. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3 + α4, α2 +
2α3, α3

553. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2+2α3+α4, α3+α4

554. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3 + α4, α3 +
α4, α3

555. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3 + α4, α3

556. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3

557. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3, α3 + α4

558. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2+2α3, α3+α4, α3

559. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α2 + 2α3, α3

560. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α3 + α4

561. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α3 + α4, α3

562. α1+2α2+2α3+2α4, α1+2α2+
2α3, α1, α3

563. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3 + α4

564. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3 + α4, α2 + 2α3

565. α1 + 2α2 + 2α3 + 2α4, α1 +
2α2+2α3, α2+2α3+α4, α2+
2α3, α3 + α4

566. α1 + 2α2 + 2α3 + 2α4, α1 +
2α2+2α3, α2+2α3+α4, α2+
2α3, α3 + α4, α3

567. α1 + 2α2 + 2α3 + 2α4, α1 +
2α2+2α3, α2+2α3+α4, α2+
2α3, α3

568. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3 + α4, α3 + α4

569. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2+2α3+α4, α3+α4, α3

570. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3 + α4, α3

571. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3

572. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3, α3 + α4

573. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3, α3 + α4, α3

574. α1+2α2+2α3+2α4, α1+2α2+
2α3, α2 + 2α3, α3

575. α1+2α2+2α3+2α4, α1+2α2+
2α3, α3 + α4

576. α1+2α2+2α3+2α4, α1+2α2+
2α3, α3 + α4, α3

577. α1+2α2+2α3+2α4, α1+2α2+
2α3, α3

578. α1+2α2+2α3+2α4, α1+α2+
2α3 + α4

579. α1+2α2+2α3+2α4, α1+α2+
2α3 + α4, α1 + α2 + 2α3

580. α1+2α2+2α3+2α4, α1+α2+
2α3 +α4, α1 +α2 +2α3, α2 +
2α3

581. α1+2α2+2α3+2α4, α1+α2+
2α3+α4, α1+α2+2α3, α2+α3

582. α1+2α2+2α3+2α4, α1+α2+
2α3 +α4, α1 +α2 +2α3, α2 +
α3, α3

583. α1+2α2+2α3+2α4, α1+α2+
2α3 + α4, α1 + α2 + 2α3, α3

584. α1+2α2+2α3+2α4, α1+α2+
2α3 + α4, α2 + 2α3

585. α1+2α2+2α3+2α4, α1+α2+
2α3 + α4, α2 + α3

586. α1+2α2+2α3+2α4, α1+α2+
2α3 + α4, α2 + α3, α3

587. α1+2α2+2α3+2α4, α1+α2+
2α3 + α4, α3

588. α1+2α2+2α3+2α4, α1+α2+
2α3

589. α1+2α2+2α3+2α4, α1+α2+
2α3, α2 + 2α3 + α4

590. α1+2α2+2α3+2α4, α1+α2+
2α3, α2 + α3

591. α1+2α2+2α3+2α4, α1+α2+
2α3, α2 + α3, α3 + α4

592. α1+2α2+2α3+2α4, α1+α2+
2α3, α3 + α4

593. α1+2α2+2α3+2α4, α1+α2+
α3

594. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3 + α4
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595. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3 + α4, α2 + 2α3

596. α1 + 2α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α3 + α4

597. α1 + 2α2 + 2α3 + 2α4, α1 +
α2 + α3, α2 + 2α3 + α4, α2 +
2α3, α3 + α4, α3

598. α1+2α2+2α3+2α4, α1+α2+
α3, α2+2α3+α4, α2+2α3, α3

599. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3 + α4, α3 + α4

600. α1+2α2+2α3+2α4, α1+α2+
α3, α2+2α3+α4, α3+α4, α3

601. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3 + α4, α3

602. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3

603. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3, α3 + α4

604. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3, α3 + α4, α3

605. α1+2α2+2α3+2α4, α1+α2+
α3, α2 + 2α3, α3

606. α1+2α2+2α3+2α4, α1+α2+
α3, α3 + α4

607. α1+2α2+2α3+2α4, α1+α2+
α3, α3 + α4, α3

608. α1+2α2+2α3+2α4, α1+α2+
α3, α3

609. α1 + 2α2 + 2α3 + 2α4, α1

610. α1+2α2+2α3+2α4, α1, α2+
2α3 + α4

611. α1+2α2+2α3+2α4, α1, α2+
2α3 + α4, α2 + 2α3

612. α1+2α2+2α3+2α4, α1, α2+
2α3 + α4, α2 + 2α3, α3

613. α1+2α2+2α3+2α4, α1, α2+
2α3 + α4, α3

614. α1+2α2+2α3+2α4, α1, α2+
2α3

615. α1+2α2+2α3+2α4, α1, α2+
2α3, α3 + α4

616. α1+2α2+2α3+2α4, α1, α2+
α3

617. α1+2α2+2α3+2α4, α1, α2+
α3, α3 + α4

618. α1+2α2+2α3+2α4, α1, α2+
α3, α3 + α4, α3

619. α1+2α2+2α3+2α4, α1, α2+
α3, α3

620. α1+2α2+2α3+2α4, α1, α3+
α4

621. α1+2α2+2α3+2α4, α1, α3+
α4, α3

622. α1 + 2α2 + 2α3 + 2α4, α1, α3

623. α1+2α2+2α3+2α4, α2+2α3+
α4

624. α1+2α2+2α3+2α4, α2+2α3+
α4, α2 + 2α3

625. α1+2α2+2α3+2α4, α2+2α3+
α4, α2 + 2α3, α3

626. α1+2α2+2α3+2α4, α2+2α3+
α4, α3

627. α1+2α2+2α3+2α4, α2+2α3

628. α1 + 2α2 + 2α3 + 2α4, α2 +
2α3, α3 + α4

629. α1 +2α2 +2α3 +2α4, α2 +α3

630. α1 + 2α2 + 2α3 + 2α4, α2 +
α3, α3 + α4

631. α1 + 2α2 + 2α3 + 2α4, α2 +
α3, α3 + α4, α3

632. α1 + 2α2 + 2α3 + 2α4, α2 +
α3, α3

633. α1 +2α2 +2α3 +2α4, α3 +α4

634. α1 + 2α2 + 2α3 + 2α4, α3 +
α4, α3

635. α1 + 2α2 + 2α3 + 2α4, α3

636. α1 + 2α2 + 3α3 + α4

637. α1+2α2+3α3+α4, α1+2α2+
2α3 + 2α4

638. α1+2α2+3α3+α4, α1+2α2+
2α3 + 2α4, α1

639. α1+2α2+3α3+α4, α1+2α2+
2α3 + 2α4, α1, α4

640. α1+2α2+3α3+α4, α1+2α2+
2α3 + 2α4, α4

641. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4

642. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4, α1 + α2

643. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4, α1 + α2, α2

644. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4, α1 + α2, α2, α4

645. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4, α1 + α2, α4

646. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4, α2

647. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4, α2, α4

648. α1 +2α2+3α3 +α4, α1 +α2+
2α3 + 2α4, α4

649. α1 + 2α2 + 3α3 + α4, α1 + α2

650. α1 + 2α2 + 3α3 + α4, α1 +
α2, α2 + 2α3 + 2α4

651. α1 + 2α2 + 3α3 + α4, α1 +
α2, α2 + 2α3 + 2α4, α4

652. α1+2α2+3α3+α4, α1+α2, α4

653. α1 + 2α2 + 3α3 + α4, α1

654. α1 +2α2 +3α3 +α4, α1, α2 +
2α3 + 2α4

655. α1 +2α2 +3α3 +α4, α1, α2 +
2α3 + 2α4, α2

656. α1 +2α2 +3α3 +α4, α1, α2 +
2α3 + 2α4, α2, α4

657. α1 +2α2 +3α3 +α4, α1, α2 +
2α3 + 2α4, α4

658. α1 + 2α2 + 3α3 + α4, α1, α2

659. α1+2α2+3α3+α4, α1, α2, α4

660. α1 + 2α2 + 3α3 + α4, α1, α4

661. α1+2α2+3α3+α4, α2+2α3+
2α4

662. α1+2α2+3α3+α4, α2+2α3+
2α4, α2

663. α1+2α2+3α3+α4, α2+2α3+
2α4, α2, α4
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664. α1+2α2+3α3+α4, α2+2α3+
2α4, α4

665. α1 + 2α2 + 3α3 + α4, α2

666. α1 + 2α2 + 3α3 + α4, α2, α4

667. α1 + 2α2 + 3α3 + α4, α4

668. α1 + 2α2 + 3α3 + 2α4

669. α1+2α2+3α3+2α4, α1+2α2+
2α3

670. α1+2α2+3α3+2α4, α1+2α2+
2α3, α1

671. α1+2α2+3α3+2α4, α1+α2+
2α3

672. α1+2α2+3α3+2α4, α1+α2+
2α3, α1 + α2

673. α1+2α2+3α3+2α4, α1+α2+
2α3, α1 + α2, α2

674. α1+2α2+3α3+2α4, α1+α2+
2α3, α2

675. α1 +2α2 +3α3 +2α4, α1 +α2

676. α1 + 2α2 + 3α3 + 2α4, α1 +
α2, α2 + 2α3

677. α1 + 2α2 + 3α3 + 2α4, α1

678. α1+2α2+3α3+2α4, α1, α2+
2α3

679. α1+2α2+3α3+2α4, α1, α2+
2α3, α2

680. α1 + 2α2 + 3α3 + 2α4, α1, α2

681. α1+2α2+3α3+2α4, α2+2α3

682. α1 + 2α2 + 3α3 + 2α4, α2 +
2α3, α2

683. α1 + 2α2 + 3α3 + 2α4, α2

684. α1 + 2α2 + 4α3 + 2α4

685. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4

686. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1 + 2α2 + 2α3

687. α1+2α2+4α3+2α4, α1+2α2+
2α3 +2α4, α1 +2α2 +2α3, α1

688. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1 + α2 + α3

689. α1+2α2+4α3+2α4, α1+2α2+
2α3+2α4, α1+α2+α3, α1+α2

690. α1+2α2+4α3+2α4, α1+2α2+
2α3 +2α4, α1 +α2 +α3, α1 +
α2, α2

691. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1 + α2 + α3, α2

692. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1 + α2, α2 + α3

693. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1 + α2

694. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1

695. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1, α2 + α3

696. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1, α2 + α3, α2

697. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α1, α2

698. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α2 + α3

699. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α2 + α3, α2

700. α1+2α2+4α3+2α4, α1+2α2+
2α3 + 2α4, α2

701. α1+2α2+4α3+2α4, α1+2α2+
2α3 + α4

702. α1+2α2+4α3+2α4, α1+2α2+
2α3 + α4, α1

703. α1+2α2+4α3+2α4, α1+2α2+
2α3

704. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2 + α3 + α4

705. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1+α2+α3+α4, α1+α2

706. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2 + α3 + α4, α1 +
α2, α2

707. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2 + α3 + α4, α1 +
α2, α2, α4

708. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2 + α3 + α4, α1 +
α2, α4

709. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2 + α3 + α4, α2

710. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1+α2+α3+α4, α2, α4

711. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2 + α3 + α4, α4

712. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2

713. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2, α2 + α3 + α4

714. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1+α2, α2+α3+α4, α4

715. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1 + α2, α4

716. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1

717. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1, α2 + α3 + α4

718. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1, α2 + α3 + α4, α2

719. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1, α2 +α3 +α4, α2, α4

720. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1, α2 + α3 + α4, α4

721. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1, α2

722. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1, α2, α4

723. α1+2α2+4α3+2α4, α1+2α2+
2α3, α1, α4

724. α1+2α2+4α3+2α4, α1+2α2+
2α3, α2 + α3 + α4

725. α1+2α2+4α3+2α4, α1+2α2+
2α3, α2 + α3 + α4, α2

726. α1+2α2+4α3+2α4, α1+2α2+
2α3, α2 + α3 + α4, α2, α4

727. α1+2α2+4α3+2α4, α1+2α2+
2α3, α2 + α3 + α4, α4

728. α1+2α2+4α3+2α4, α1+2α2+
2α3, α2

729. α1+2α2+4α3+2α4, α1+2α2+
2α3, α2, α4

730. α1+2α2+4α3+2α4, α1+2α2+
2α3, α4
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731. α1+2α2+4α3+2α4, α1+α2+
α3 + α4

732. α1+2α2+4α3+2α4, α1+α2+
α3 + α4, α1 + α2

733. α1+2α2+4α3+2α4, α1+α2+
α3 + α4, α1 + α2, α2 + α3

734. α1+2α2+4α3+2α4, α1+α2+
α3 +α4, α1 +α2, α2 +α3, α2

735. α1+2α2+4α3+2α4, α1+α2+
α3 + α4, α1 + α2, α2

736. α1+2α2+4α3+2α4, α1+α2+
α3 + α4, α2 + α3

737. α1+2α2+4α3+2α4, α1+α2+
α3 + α4, α2 + α3, α2

738. α1+2α2+4α3+2α4, α1+α2+
α3 + α4, α2

739. α1+2α2+4α3+2α4, α1+α2+
α3

740. α1+2α2+4α3+2α4, α1+α2+
α3, α1 + α2

741. α1+2α2+4α3+2α4, α1+α2+
α3, α1 + α2, α2 + α3 + α4

742. α1+2α2+4α3+2α4, α1+α2+
α3, α1 + α2, α2

743. α1+2α2+4α3+2α4, α1+α2+
α3, α1 + α2, α2, α4

744. α1+2α2+4α3+2α4, α1+α2+
α3, α1 + α2, α4

745. α1+2α2+4α3+2α4, α1+α2+
α3, α2 + α3 + α4

746. α1+2α2+4α3+2α4, α1+α2+
α3, α2 + α3 + α4, α2

747. α1+2α2+4α3+2α4, α1+α2+
α3, α2 + α3 + α4, α2, α4

748. α1+2α2+4α3+2α4, α1+α2+
α3, α2 + α3 + α4, α4

749. α1+2α2+4α3+2α4, α1+α2+
α3, α2

750. α1+2α2+4α3+2α4, α1+α2+
α3, α2, α4

751. α1+2α2+4α3+2α4, α1+α2+
α3, α4

752. α1 +2α2 +4α3 +2α4, α1 +α2

753. α1 + 2α2 + 4α3 + 2α4, α1 +
α2, α2 + α3 + α4

754. α1 + 2α2 + 4α3 + 2α4, α1 +
α2, α2 + α3

755. α1 + 2α2 + 4α3 + 2α4, α1 +
α2, α2 + α3, α4

756. α1 + 2α2 + 4α3 + 2α4, α1 +
α2, α4

757. α1 + 2α2 + 4α3 + 2α4, α1

758. α1+2α2+4α3+2α4, α1, α2+
α3 + α4

759. α1+2α2+4α3+2α4, α1, α2+
α3 + α4, α2

760. α1+2α2+4α3+2α4, α1, α2+
α3

761. α1+2α2+4α3+2α4, α1, α2+
α3, α2

762. α1+2α2+4α3+2α4, α1, α2+
α3, α2, α4

763. α1+2α2+4α3+2α4, α1, α2+
α3, α4

764. α1 + 2α2 + 4α3 + 2α4, α1, α2

765. α1 + 2α2 + 4α3 + 2α4, α1, α2,
α4

766. α1 + 2α2 + 4α3 + 2α4, α1, α4

767. α1+2α2+4α3+2α4, α2+α3+
α4

768. α1+2α2+4α3+2α4, α2+α3+
α4, α2

769. α1 +2α2 +4α3 +2α4, α2 +α3

770. α1 + 2α2 + 4α3 + 2α4, α2 +
α3, α2

771. α1 + 2α2 + 4α3 + 2α4, α2 +
α3, α2, α4

772. α1 + 2α2 + 4α3 + 2α4, α2 +
α3, α4

773. α1 + 2α2 + 4α3 + 2α4, α2

774. α1 + 2α2 + 4α3 + 2α4, α2, α4

775. α1 + 2α2 + 4α3 + 2α4, α4

776. α1 + 3α2 + 4α3 + 2α4

777. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4

778. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2 + 2α3

779. α1+3α2+4α3+2α4, α1+α2+
2α3+2α4, α1+α2+2α3, α1+
α2

780. α1+3α2+4α3+2α4, α1+α2+
2α3+2α4, α1+α2+2α3, α1+
α2, α1

781. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2 + 2α3, α1

782. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2 + α3

783. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2 + α3, α1

784. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2

785. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2, α1

786. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2, α1, α3

787. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1 + α2, α3

788. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1

789. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α1, α3

790. α1+3α2+4α3+2α4, α1+α2+
2α3 + 2α4, α3

791. α1+3α2+4α3+2α4, α1+α2+
2α3 + α4

792. α1+3α2+4α3+2α4, α1+α2+
2α3 + α4, α1 + α2

793. α1+3α2+4α3+2α4, α1+α2+
2α3 + α4, α1 + α2, α1

794. α1+3α2+4α3+2α4, α1+α2+
2α3 + α4, α1

795. α1+3α2+4α3+2α4, α1+α2+
2α3

796. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2 + α3 + α4

797. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2 + α3 + α4, α1
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798. α1+3α2+4α3+2α4, α1+α2+
2α3, α1+α2+α3+α4, α1, α4

799. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2 + α3 + α4, α4

800. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2

801. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2, α1

802. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2, α1, α3 + α4

803. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 +α2, α1, α3 +α4, α4

804. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2, α1, α4

805. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2, α3 + α4

806. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2, α3 + α4, α4

807. α1+3α2+4α3+2α4, α1+α2+
2α3, α1 + α2, α4

808. α1+3α2+4α3+2α4, α1+α2+
2α3, α1

809. α1+3α2+4α3+2α4, α1+α2+
2α3, α1, α3 + α4

810. α1+3α2+4α3+2α4, α1+α2+
2α3, α1, α3 + α4, α4

811. α1+3α2+4α3+2α4, α1+α2+
2α3, α1, α4

812. α1+3α2+4α3+2α4, α1+α2+
2α3, α3 + α4

813. α1+3α2+4α3+2α4, α1+α2+
2α3, α3 + α4, α4

814. α1+3α2+4α3+2α4, α1+α2+
2α3, α4

815. α1+3α2+4α3+2α4, α1+α2+
α3 + α4

816. α1+3α2+4α3+2α4, α1+α2+
α3 + α4, α1

817. α1+3α2+4α3+2α4, α1+α2+
α3 + α4, α1, α3

818. α1+3α2+4α3+2α4, α1+α2+
α3 + α4, α3

819. α1+3α2+4α3+2α4, α1+α2+
α3

820. α1+3α2+4α3+2α4, α1+α2+
α3, α1

821. α1+3α2+4α3+2α4, α1+α2+
α3, α1, α3 + α4

822. α1+3α2+4α3+2α4, α1+α2+
α3, α1, α3 + α4, α4

823. α1+3α2+4α3+2α4, α1+α2+
α3, α1, α4

824. α1+3α2+4α3+2α4, α1+α2+
α3, α3 + α4

825. α1+3α2+4α3+2α4, α1+α2+
α3, α3 + α4, α4

826. α1+3α2+4α3+2α4, α1+α2+
α3, α4

827. α1 +3α2 +4α3 +2α4, α1 +α2

828. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α1

829. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α1, α3 + α4

830. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α1, α3

831. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α1, α3, α4

832. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α1, α4

833. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α3 + α4

834. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α3

835. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α3, α4

836. α1 + 3α2 + 4α3 + 2α4, α1 +
α2, α4

837. α1 + 3α2 + 4α3 + 2α4, α1

838. α1+3α2+4α3+2α4, α1, α3+
α4

839. α1 + 3α2 + 4α3 + 2α4, α1, α3

840. α1 + 3α2 + 4α3 + 2α4, α1, α3,
α4

841. α1 + 3α2 + 4α3 + 2α4, α1, α4

842. α1 +3α2 +4α3 +2α4, α3 +α4

843. α1 + 3α2 + 4α3 + 2α4, α3

844. α1 + 3α2 + 4α3 + 2α4, α3, α4

845. α1 + 3α2 + 4α3 + 2α4, α4

846. 2α1 + 3α2 + 4α3 + 2α4

847. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + 2α4

848. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + 2α4, α2 + 2α3

849. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + 2α4, α2 + 2α3, α2

850. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + 2α4, α2 + α3

851. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + 2α4, α2

852. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + 2α4, α2, α3

853. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + 2α4, α3

854. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + α4

855. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3 + α4, α2

856. 2α1+3α2+4α3+2α4, α2+2α3

857. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α2 + α3 + α4

858. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α2 + α3 + α4, α4

859. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α2

860. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α2, α3 + α4

861. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α2, α3 + α4, α4

862. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α2, α4

863. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α3 + α4

864. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α3 + α4, α4

865. 2α1 + 3α2 + 4α3 + 2α4, α2 +
2α3, α4
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866. 2α1 + 3α2 + 4α3 + 2α4, α2 +
α3 + α4

867. 2α1 + 3α2 + 4α3 + 2α4, α2 +
α3 + α4, α3

868. 2α1+3α2+4α3+2α4, α2+α3

869. 2α1 + 3α2 + 4α3 + 2α4, α2 +
α3, α3 + α4

870. 2α1 + 3α2 + 4α3 + 2α4, α2 +
α3, α3 + α4, α4

871. 2α1 + 3α2 + 4α3 + 2α4, α2 +
α3, α4

872. 2α1 + 3α2 + 4α3 + 2α4, α2

873. 2α1+3α2+4α3+2α4, α2, α3+
α4

874. 2α1 +3α2 +4α3 +2α4, α2, α3

875. 2α1+3α2+4α3+2α4, α2, α3, α4

876. 2α1 +3α2 +4α3 +2α4, α2, α4

877. 2α1+3α2+4α3+2α4, α3+α4

878. 2α1 + 3α2 + 4α3 + 2α4, α3

879. 2α1 +3α2 +4α3 +2α4, α3, α4

880. 2α1 + 3α2 + 4α3 + 2α4, α4

import java.util.ArrayList;

import java.util.Scanner;

public class Carriers {

public static void main(String[] args) {new Carr();}}

class Carr{

Carr(){

a = new int[25][25];

m = new int[25][25];

a[23][10]=24;

a[22][4]=23; a[22][11]=24;

a[21][2]=22; a[21][5]=23; a[21][12]=24;

a[20][1]=21; a[20][3]=22; a[20][6]=23; a[20][13]=24;

a[19][2]=21; a[19][7]=23; a[19][14]=24;

a[18][1]=19; a[18][2]=20; a[18][3]=21; a[18][8]=23; a[18][15]=24;

a[17][1]=18; a[17][3]=20; a[17][9]=23; a[17][16]=24;

a[16][4]=19; a[16][5]=21; a[16][7]=22;

a[15][1]=16; a[15][4]=18; a[15][5]=20; a[15][6]=21; a[15][8]=22;

a[14][1]=15; a[14][4]=17; a[14][6]=20; a[14][9]=22;

a[13][2]=15; a[13][3]=16; a[13][5]=18; a[13][6]=19; a[13][7]=20; a[13][8]=21;

a[12][1]=13; a[12][2]=14; a[12][3]=15; a[12][5]=17; a[12][6]=18; a[12][8]=20; a[12][9]=21;

a[11][2]=12; a[11][3]=13; a[11][7]=17; a[11][8]=18; a[11][9]=19;

a[10][4]=11; a[10][5]=12; a[10][6]=13; a[10][7]=14; a[10][8]=15; a[10][9]=16;

a[8][1]=9;

a[7][1]=8;

a[6][2]=8; a[6][3]=9;

a[5][1]=6; a[5][2]=7; a[5][3]=8;

a[4][2]=5; a[4][3]=6;

a[2][1]=3;

m[23][10]=-1;

m[22][4]=-1; m[22][11]=-1;

m[21][2]=-2; m[21][5]=-2; m[21][12]=-2;

m[20][1]=-1; m[20][3]=-2; m[20][6]=-2; m[20][13]=-2;

m[19][2]=-1; m[19][7]=1; m[19][14]=1;

m[18][1]=-2; m[18][2]=-1; m[18][3]=-1; m[18][8]=2; m[18][15]=2;

m[17][1]=1; m[17][3]=1; m[17][9]=1; m[17][16]=1;

m[16][4]=-1; m[16][5]=1; m[16][7]=1;

m[15][1]=-2; m[15][4]=-1; m[15][5]=1; m[15][6]=1; m[15][8]=2;

m[14][1]=1; m[14][4]=-1; m[14][6]=-1; m[14][9]=1;

m[13][2]=-1; m[13][3]=2; m[13][5]=-1; m[13][6]=2; m[13][7]=-1; m[13][8]=1;

m[12][1]=1; m[12][2]=-2; m[12][3]=-1; m[12][5]=-2; m[12][6]=-1; m[12][8]=1; m[12][9]=1;

m[11][2]=1; m[11][3]=1; m[11][7]=-1; m[11][8]=-1; m[11][9]=-1;

m[10][4]=1; m[10][5]=1; m[10][6]=1; m[10][7]=1; m[10][8]=1; m[10][9]=1;

m[8][1]=-2;

m[7][1]=1;

m[6][2]=-1; m[6][3]=2;

m[5][1]=1; m[5][2]=-2; m[5][3]=-1;

m[4][2]=1; m[4][3]=1;

m[2][1]=1;

b = new String[25];
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b[1]="a_4"; b[2]="a_3"; b[3]="a_3+a_4"; b[4]="a_2"; b[5]="a_2+a_3";

b[6]="a_2+a_3+a_4"; b[7]="a_2+2a_3"; b[8]="a_2+2a_3+a_4"; b[9]="a_2+2a_3+2a_4";

b[10]="a_1"; b[11]="a_1+a_2"; b[12]="a_1+a_2+a_3"; b[13]="a_1+a_2+a_3+a_4";

b[14]="a_1+a_2+2a_3"; b[15]="a_1+a_2+2a_3+a_4"; b[16]="a_1+a_2+2a_3+2a_4";

b[17]="a_1+2a_2+2a_3"; b[18]="a_1+2a_2+2a_3+a_4"; b[19]="a_1+2a_2+2a_3+2a_4";

b[20]="a_1+2a_2+3a_3+a_4"; b[21]="a_1+2a_2+3a_3+2a_4"; b[22]="a_1+2a_2+4a_3+2a_4";

b[23]="a_1+3a_2+4a_3+2a_4"; b[24]="2a_1+3a_2+4a_3+2a_4";

c = new double[25][25];

lambda = new double[25];

for(int i=1; i<=24; i++) { lambda[i] = 1;}

roots = new ArrayList<>();

roots.add(24);

n = 0;

depend = new ArrayList<>();

Scanner in = new Scanner(System.in);

System.out.println("0 - sufficient condition\n" + "else - necessary condition");

x = in.nextInt();

in.close();

while(true) {

last = roots.get(roots.size()-1);

for(int i=24; i>=last; i--) {

for(int j=1; j<=24; j++) {

if(roots.contains(a[i][j])||roots.contains(a[j][i]))

{ c[i][j]=(m[i][j]-m[j][i])*lambda[a[i][j]+a[j][i]];}

else { c[i][j]=0; }}}

depend.clear();

q = true;

while(q) {

q = false;

for(int i=24; i>last; i--) {

p = true; dep = 0;

for(int j=1; j<=24; j++) {

if(c[i][j]!=0 && !depend.contains(j)) {

if(dep==0) { dep = j; }

else { p = false; break; }}}

if(dep!=0 && p) {

depend.add(dep); q = true; }}}

rank = true;

if(x==0) {

for(int j=1; j<=24; j++) {

if(c[last][j]!=0 && !depend.contains(j)) { rank = false; break; }}}

else {

rowold = last;

colold = 0;

while(true) {

count = 0;

for(int j=1; j<=24; j++) {

if(c[rowold][j]!=0 && !depend.contains(j) && j!=colold) {

rank = false; colnew = j;

for(int i=24; i>last; i--) {

if(c[i][j]!=0 && i!=rowold) {

rank = true; count++; rownew = i; }}

if (!rank) { break; }}}

if (!rank || count!=1) { break; }

else { rowold = rownew; colold = colnew; }}}
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if(rank) {

n++;

for(int h: roots) { System.out.print(b[h]+" "); }

System.out.println();

if(last!=1) { roots.add(last-1); }}

else {

if(last!=1) {

roots.remove((Integer) last);

roots.add(last-1); }}

if(last==1) {

if(roots.size()!=1) {

roots.remove((Integer) 1);

last = roots.get(roots.size()-1);

roots.remove((Integer) last);

roots.add(last-1);}

else { break; }}}

System.out.println("empty");

n++;

System.out.print(n); }

int x; int[][]a; int[][]m; String[]b; double[][]c; double[]lambda;

ArrayList<Integer> roots; ArrayList<Integer> depend;

boolean q; boolean p; int dep; int last; boolean rank; int n; int count; int rowold; int colold;

int rownew; int colnew;

}
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[3] S. Goodwin, P. Mosch, and G. Röhrle. On the coadjoint orbits of maximal unipotent
subgroups of reductive groups. Transformation Groups, 21:399–426, 2016.

[4] M. Ignat’ev. Orthogonal subsets of classical root systems and coadjoint orbits of unipotent
groups. Mathematical Notes, 86(1):65–80, 2009.

[5] M. Ignat’ev. Orthogonal subsets of root systems and the orbit method. St Petersburg

Mathematical Journal, 22(5):777–794, 2011.

[6] M. Ignatev and M. Surkov. Rook placements in G2 and F4 and associated coadjoint orbits.
Communications in Mathematics, 30(2):129–149, 2023.

[7] M. Ignatyev. Combinatorics of B-orbits and Bruhat–Chevalley order on involutions. Trans-
formation Groups, 17(3):747–780, 2012.

[8] M. Ignatyev and A. Panov. Coadjoint orbits of the group UT(7, k). Journal of Mathematical

Sciences, 156(2):292–312, 2009.

[9] M. Ignatyev and A. Shevchenko. Centrally generated primitive ideals of U(n) for exceptional
types. Journal of Algebra, 565:627–650, 2021.

38



Classification of coadjoint orbits for the maximal unipotent subgroup in the simple group of type F4

[10] S. Kolesnikov and A. Polovinkina. The table of the structure constants for the complex
simple Lie algebra of type F4 and its application to the calculation of commutators in the
Chevalley group of type F4 over fields and rings. arXiv preprint, arXiv:2312.03439, 2023.

[11] B. Kostant. The cascade of orthogonal roots and the coadjoint structure of the nilradical of
a Borel subgroup of a semisimple Lie group. Moscow Mathematical Journal, 12(3):605–620,
2012.

[12] B. Kostant. Center of U(n), cascade of orthogonal roots and a construction of Lipsman–
Wolf. in: Lie groups: structure, actions and representations. Progress in Mathematics,
306:163–174, 2013.

[13] A. Panov. Involutions in Sn and associated coadjoint orbits. Journal of Mathematical

Sciences, 151:3018–3031, 2008.

39


	Introduction and the main result
	Description of the set of canonical forms
	Classification of orbits

