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Classification of coadjoint orbits for the maximal unipotent
subgroup in the simple group of type F)

Matvey Surkov

Abstract. Let N be the maximal unipotent subgroup of the simple algebraic group
of type ®. It naturally acts on the space n* dual to the Lie algebra n of NV, and this
action is called the coadjoint action. Such orbits play a key role in A.A. Kirillov’s
orbit method. In this work, we classify the orbits of this action in the case of ® = Fy
in terms of supports of canonical forms. This means that we will present a set S of
linear forms from n* such that for any coadjoint orbit there exists a unique form from
S belonging to that orbit. The set of canonical forms will be explicitly described in
terms of supports. The support of a form A € n* is the set of positive roots oo € &+
such that A(ey) # 0.
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1 Introduction and the main result

Let g be a simple finite-dimensional Lie algebra over a finite field [F, of sufficiently
large characteristic p, b be a Borel subalgebra of g, ® be the root system of g, ®* be

MSC 2020: 17B08 (primary), 17B10, 17B22, 17B25, 17B30 (secondary).
Keywords: Coadjoint orbit, the orbit method, root system.
Contact information:
Affiliation: Samara National Research University and Saint Petersburg University, Russia.
Email: surkovmatveya@yandex.ru.
Editorial information:
Received: July 8, 2025
Accepted: October 30, 2025
Communicated by: Ivan Kaygorodov
Acknowledgments: This work was supported by the Ministry of Science and Higher Education of the
Russian Federation (agreement no. 075-15-2022-287). I thank M. V. Ignatev and A. N. Panov for
helpful comments and support during the writing of this paper.



Matvey Surkov

the set of positive roots corresponding to b, n be the nilradical of b, N = exp(n) be
the corresponding unipotent algebraic group, and n* be the dual space of n. The group
N is also a maximal unipotent subgroup of the simple algebraic group G of type ®, or
equivalently a Sylow p-subgroup of G. The group N acts on n by the adjoint action; the
dual action of N on the space n* is called the coadjoint action; we will denote the result
of this action by g - \ for ¢ € N, A € n*. According to the orbit method introduced by
A.A. Kirillov in 1962, coadjoint orbits play the key role in the representation theory of the
group N. Almost all coadjoint orbits that have been studied well so far are so-called orbits
associated with rook placements. They are discussed in detail in the works [1,2,4-9,11-13].
Explicitly, the coadjoint action is given by:

(exp(x) - A)(y) = Aexp(—ad.)(y)) = AMy) — A([z,y]) + %A([L [z, yl]) —-- -,
T,y €En, AeEn’.

Let {eq, @ € T} be a basis of n consisting of root vectors, and let {e,a € ®T} be the
dual basis in n*. The support of a linear form A € n* is defined as the subset of positive
roots given by

supp(A) = {a € ®T: A(e,) # 0}.

Our goal is to describe the coadjoint orbits for the case of & = Fj. The description
will be given in terms of supports of canonical forms. A list of supports will be provided
with the following properties.

e For any two linear forms \; # Ay whose supports belong to the given list (even if
the supports coincide), the orbits N - A; and N - Ay are different.

e For any linear form A\ € n*, there exists a form N with a support from the given list
such that N- A= N-\.

In other words, each coadjoint orbit contains a unique linear form whose support belongs
to the given list.
The set of simple roots of F} can be identified with the following subset of R*:

1
A:{a1:€2_637 Qg = €3 — &4, (03 = &4, 04425(51—52—53—54)}-

Here {;}}_, is the standard basis of R* (endowed with the standard scalar product).
Recall that there exists a natural partial order on ®* defined as follows: o > f if
«a — [ is a sum of positive roots. Let us fix a linear lexicographic order > on the positive
roots of Fy. We say that a = ajaq + asas + agas + agay = S = biag + boag + bsag + byauy if
a; > bl or a; = bl,ag > b2 or a; = bl,ag = bg,ag > bg or a; = bl,ag = bg,ag = bg,a4 > b4.
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Thus, the roots will be ordered as follows:

ot = {ay, az, as+ ay, as, as+ asz, as + as + ag, s+ 2a3, as + 2a3 + ay,
Qg + 203 + 20y, a1, a1 + g, a1 + s + a3, a1+ as + ag + oy, a3 + as + 203,
a1+ Qo 4 203 + ay, a1 + s + 203 + 20, a1 + 200 4+ 203, aq + 200 + 203 + ay,
oy + 200 + 20 + 20, aq + 200 + 3as + ay, a1 4+ 200 + 3as + 20y,
ag + 209 + daz + 2ay, oq + 3ag + dag + 20y, 20 + 3as + dag + 204}

Clearly, a > [ implies o > (. Further, if we talk about order on positive roots, we will
always mean the lexicographic order as above, unless otherwise stated.
Let A € n*, v € ®T. Consider the following matrices.

A)\JY = ()\([eom eﬁ]))a€¢+,at“/7ﬁ€¢+ '

BA,'Y = ()\([eom eﬁ]))a6¢+,a>’%66¢+ )

The columns of the matrices are numbered by all positive roots, and the rows are numbered
by certain positive roots. The matrix A, , is the matrix B, , with one more row. Further,
let S be the set of A € n* for which the following condition holds: for any v € supp(\),

IkA)\W = IkB)\ﬁ. (1)
Finally, we can formulate the main result of this work.

Theorem 1.1. For any coadjoint orbit, there exists a unique linear form \ € S lying on
this orbit.

This theorem generalizes the result of the work [6]. This article discusses the so-called
orbits associated with rook placements. By definition, a subset D of ®* is called a non-
singular rook placement if o — 3 ¢ ®* for all distinct a, § € D. It follows that (a, ) <0
for all distinct «, 8 € D. Given a rook placement D and a map £: D — C*, we put

fpoe= Z (el e n'.

aeD

We say that the coadjoint orbit {2p ¢ of the linear form fp ¢ is associated with the rook
placement D and the map £. Thus, fp. is a linear form with support D.

In [6] it is proved that if ® = Fy, D is an orthogonal non-singular rook placement
and &, & are distinct maps from D to C* then Qpg¢, # Qpg,. Moreover, if D is a non-
singular rook placement, then A = fp ¢ belongs to S. Indeed, if v € D, then v+ 3 ¢ D
for all 5 € ®* and A([e,,es]) = 0 for all 3 € ®*. Hence, in the matrix Ay, the row
corresponding to v is zero, and condition (1) is true for v € D. Therefore, distinct linear
forms with the same support D lie in different coadjoint orbits.

A result similar to Theorem 1.1 holds for the root system ® = (G5 and field C. In the
same work [6], the equations defining the basic subvarieties Op ¢ are given. By definition,
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the basic subvariety Op ¢ corresponding to a rook placement D and a map {: D — C* is

Ope = Z Qay as

aeD

where &, is the restriction of £ to {a}. That work also proves André’s stratification for
GQI
I'l* = |_| @) D¢
D¢

where the union is taken over all non-singular rook placements D and all maps £: D — C*.
In this case @+ = {«, 8, a+ B, 2a+ 3, 3a+ 3,3+ 2(}. Let us introduce the notation
of structural constants as in the work [6]:

Cas€p] =C1* Carpy  [€arCatp] = C2° Coatp;  [€arC2a48] = €3 3018,
[€30+8:€5] = Ca - 30428 and  [€ays, €2048] = C5 - €30428-
For almost every rook placement D, we have Op ¢ = Qp¢. The only exception is the
case D = {a+(3,3a+ f}. In this case Op is the union of orbits Qp ¢ and Qg a4830+5).¢
where ¢': B, + 3,3+ [ — C* is such that its restriction to D coincides with £. Let

us write down the equations defining the orbits for D = a + 3,3a 4+ 8. A linear form
A= Z,qu)+ A€l lies in Qp ¢ if and only if it satisfies the following system:

65304508 — 6C1C3 204 8A3018Aars + 5C1C2AS 05 = 0,
2030018 A3048 — 2\ 501 p = 2c3E(a + B)E(Ba+ f),
Asatp = E(3a + ),
Asas2s = 0.

For a linear form A € 248 4+ 334+4},¢/ We have the following system of equations.

66?’))‘3(14—6)‘6 — 6c103M204 N304 8 A0t s T 50162)\§a+ﬁ = 6c3(€'(3a + B))%¢(B),
20300153018 — C2\ i = 2638 (a + B)E (Ba + ),
Asarp = &' (Ba+ B),
Asasras = 0.

In the case ® = G4 the set S consists of linear forms with supports from this list:

®a {a}> {B}a {aaﬁ}a {O‘_I' 5}) {204 + 6}? {2CY + 6)5}’ {304 + 5})
{3a+ 5,0+ 8}, {3a+ B, a+ 8,8}, {3a+ 6,5}, {3a+ 26}, {3a + 28, a}.

The orbits of these forms correspond precisely to all the orbits whose equations are
provided in [6] and in the present work.
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2 Description of the set of canonical forms

In this section, we will obtain an explicit description of the set S to prove Theorem
1.1 and to demonstrate its use. At first glance, it might seem that this set does not admit
a nice description. In fact, this is not the case. The set S can be described very neatly in
terms of supports. A list of 830 supports is presented in the Appendix.

Proposition 2.1. The set S consists of all linear forms with supports from the list and
forms with one of the three supports

{Oél “+ g + 20(3, a1 + g, (g + 2043 + g, Q9 —+ Qa3 + Qy, Oég},
{on + aa 4+ 203, oy + g, g + 203+, g + ag + oy, g, agl,

{041 + (0%)] + 20(3, aq + g, (g + 20(3 + g, Qg + Q3 + Qy, 044},

and of the forms with one of the three supports listed below, provided their coordinates
satisfy the equation

2 _ 2
)\C‘fl +a2 )\a2+2a3+a4 - )\al +az+2a3 )‘a2+a3+a4 .

Here X =" .o+ Aa€lh, and N, are the coordinates with respect to the dual basis.

This section is devoted to the proof of this proposition.

In what follows, we will use the following table. It is a 24 x 24 table whose rows
and columns are indexed by the positive roots. In the cell at the intersection of row «
and column 3, we write § — a if § — a can be expressed as a sum of positive roots;
otherwise, the cell is left blank. The main diagonal contains zeros. It is easy to see that
all cells below the diagonal are empty. Below we show the upper-left corner of this table,
corresponding to those positive roots whose simple root expansion does not contain «;.
A cell at position (a, 3) is highlighted in orange if the difference 8 — « is itself a positive
root. Almost all examples will involve specifically this part of the table. Four columns
are highlighted in blue, as they will appear most frequently in the examples.

Table 1
e\e” ag | a3 [ aztag | ag [ agtaz [ agtaztag | ag+2a3 [ ag+2az3+ag | as +2a3 +2aq
oy 0 o3 as + ag as + 2ag ag + 2a3 + oy
as 0 oy (D) as + ay ag + as ag + a3z + oy as + a3z + 20y
as + ag 0 as as + ag ag + a3 + ag
ag 0 as agz + ag 2a3 2a3 + ag 2a3 + 204
ag 4+ a3z 0 ay a3 a3z + ag a3 + 204
ag + a3 4+ ay 0 asg a3z + ag
ag + 2as3 0 ay 20
ag 4+ 2a3 + ag 0 ay
as + 2a3 + 2ay 0

To describe the set .S, we wrote a program, which is included in the Appendix. The
program outputs supports that satisfy a sufficient condition for being included in the list,
and supports that satisfy a necessary condition; these conditions will be described below.

First, let us reformulate condition (1). The algebra n acts on n* as follows: for x,y € n
and A € n*, define (z - A\)(y) := —A([z,y]). This action is called tangent.

bt
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Let us expand x € n in the chosen basis:

Let A € n*, B € &*. Consider the coordinates of x - A in the dual basis:

(- A)( Z Tola,es]) Z A([ea, €5])

acdt acdt

We can view these coordinates as linear combinations of variables x,,a € ®*, with con-
stant coefficients —\([eq, €s]). By definition, —A, , is the matrix of linear combinations
{(z-N)(eq)}ar~y, and —B, , is the matrix of linear combinations {(z - A)(eq)}asy. Clearly,
tk Ay, = 1k B, 5 if and only if the row numbered v of the matrix A, , is a linear combi-
nation of all its other rows (i.e., the rows of the matrix B) ). In other words, (z - A)(e,)
can be expressed as a linear combination of {(z - \)(€s) }asy-

Example 2.2. Let D = supp(\) = {au, ag + ay, ag, as + 2a3}. We will show that such a
A lies in S. To visualize what the orbit of the tangent action looks like, let us refer to the
table. The highlighted blue columns correspond to the roots in D. The linear combination
(x-A)(ep) contains only those xz,, for which A([e,, €g]) # 0, which is equivalent to a+ € D.
It can be seen from the construction of the table that (x - A)(eg) contains only z, such
that the orange root « is in the row corresponding to 5 in the highlighted column. For
example, the combination (x - \)(en,) contains only z,, and Za, ;-

Now let us check condition (1) for all roots from D. As you can see from the table,
(@ - N)(€ag+2a5) = 0. Naturally, this will always be the case for the maximal root in the
support. Note that (z - A)(€aytas) contains only z,,. Further, (z - A)(en,) = 0, because
there are no orange cells in the blue columns in the row as; (- \)(€as+a,) = 0 for similar
reasons. Finally, (- \)(e,,) contains only z,,, which means that it is a scalar multiple
of (- A)(€artas)-

It is clear that we did not need to know the coefficients for x,, in either (- A)(€aytas)
or (x - A)(eq,). This is simply because x,, as a variable can be expressed in terms of
(- A)(€agtas), and everywhere above (i.e., in (- A)(€ay), (@ - AN)(€astas)s (T A)(€as),
(- A)(€a,)) Tas can be expressed as (- A)(€ay+as) multiplied by some coefficient. The
Sufficient condition below is based on this idea.

Consider the tangent action n ~ n*. Let v € &7, A € n*, D = supp(\). Starting from
the support D and the root v, we will construct a set (p, of positive roots. We will add
roots to (p one by one. We add a root ¢ to (p, if there exists a root 3 > ~ such that
M[es, es]) # 0 and if A([eq, eg]) # O for some other v € *, then a € (p,. Using this
procedure, we will add to (p, the maximum possible number of roots. Note that (p
does not depend on the specific values of the coordinates of A in the dual basis, but only
on its support D. The set (p. also does not depend on the order in which we add the
roots. Indeed, define sets R, for n € N. A root 0 lies in R, if there exists a root 5 >
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such that A([es, es]) # 0 and if A([eq, es]) # 0 for some other v € ®*, then a € R; for
some 7 < n. Clearly, we must add all roots from |, R» to (p,, and we cannot add any
other roots.

neN

Proposition 2.3. (Sufficient condition) Let A € n*, D = supp(\). Suppose that for every
root v € D, the following condition holds: if X([eq,e,]) # 0, then o € (p,. Then A € S

Proof. Fix aroot v € D. Consider the orbit of the infinitesimal action n-\. Let p € n- A,
p=x- X\ where x =Y _;+ Ta€q. Here pis given, while the values z, are unknown.

We will show by induction on |(p,| that if 6 € (p., then x5 can be expressed as
a linear combination of {y(es)}g-. Consider the step of adding ¢ to (p,. Suppose
we have already proved this for all roots that are already in (p,. There exists a root
[ > ~ such that § is the unique root not in (p ., satisfying A([es,es]) # 0. Consider
ples) = = aeor M[ea, €s])2a. This can be rewritten as:

Mles, es))zs = —ples) = > M[ar €5))Ta-

aF#d

We claim that the right-hand side is a linear combination of {y(es)}p~. Indeed, if the
coefficient of za on the right-hand side is non-zero (i.e., A([eq, e5]) # 0), then a € (p,.
By the inductive hypothesis, z, can be expressed as a linear combination of {p(eg)}gr-
Since A([es, ep]) # 0, it follows that x5 can also be expressed as a linear combination of
{uleg)}p-

Now consider ju(ey) = — > co+ A[€a;e4])Ta. By the hypothesis of the proposition,
if A([ea,e4]) # 0, then z, can be expressed as a linear combination of {u(es)}g -
Consequently, the same holds for (e, ), which is equivalent to condition (1) for the root
v. The result follows. H

Note that if we take another form N\ with support D, then the conditions of Propo-
sition 2.3 will also be satisfied for it. Therefore, for a given support D, either all forms
with this support satisfy the conditions of Proposition 2.3, or none do. Hence, it suffices
to check the conditions for a single form with a given support, for example, for the form
with all coordinates equal to 1 at the basis vectors e, with o € D.

Proposition 2.4. (Necessary condition) Let A € n*, D = supp(A), v € D. Suppose that
there exist positive roots 81,0, ...0k,€1,€2, . ..Ex (not necessarily distinct) satisfying the
conditions:

1. 6, = and &; =~y for all i = 2, k;

2. Mles; es)) #0 and B¢ (py < B=¢€i_1 0orf=c¢; foralli =1k —1;
3. Mlea,e,]) 0 and a =y <= a=6; or a =6y foralli=1k;
4. N[es,, €e,)) # 0 and i, ¢ Cp -
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Then \ ¢ S.

Proof. 1t is enough to show that (z - X)(e,) cannot be expressed as a linear combination
of {(z-X)(eg)}p~r. In other words, consider the orbit of the tangent action n- A, and let
w € n- A It is enough to check that if all values p(eg) are known for 8 > 7, then the
value of p(e,) can be arbitrary. We will construct 1/ € n- X\ such that p'(eg) = u(ep)
for all § > v and p'(ey) = A, where A is an arbitrary given value. Let p/ = x - A,
T = Zaec1>+ Zalq. It follows from the proof of Proposition 2.3 that if § € (p,, then x5 is
uniquely defined by the values {p(eg)}s. We define all other values z,, except z.,, to
be the same as for p. We will determine the values z., by induction on ¢ =1,k — 1.

Base case. Let i =1, A =) 4+ M[es,€a])za. Clearly, if A([es,,eq]) # 0, then
either « = €1 or a € (p,. Hence, in the right-hand side, all values z, with nonzero
A([es,, €a]) except possibly z.,, are already defined. Since A([es,,ec,]) # 0, the value of
xe, is uniquely determined as well. After this, the only expression p'(eg), 5 = v that may
still depend on z., is y/(es,). If & = 1, then nothing else depends on z,.

Inductive step. Suppose z.,_, was found. Consider j(es,) = > co+ (€5, €al)Za-
On the right-hand side, only z., |, z., and z,, for which a € (p,, can appear with non-
zero coefficients. The value z., , was determined in the previous step. Thus, on the
right-hand side, only x., may be undefined, and it definitely appears. From this equation,
the value z., is uniquely determined. The only p/(eg), 5 = v that may still depend on z.,
18 /"L,(66i+1)'

Case i = k. Consider p(es,) = > co+ M[€s, €a])Ta- The right-hand side definitely
contains z., and possibly z., ,. The value x., , was determined in the previous step (or
does not appear if £ = 1). All other z, are also defined. Therefore, the value ., is
uniquely determined. Moreover, no other i/(es), 8 = v depends on x.,, and its value no
longer affects anything else.

Thus, we have computed all coefficients x, and constructed the required p'. O

Also note that the conditions of Proposition 2.4 do not depend on the specific coor-
dinates of A, but only on its support. Therefore, it is sufficient to check these conditions
for just one form with a given support; for example, we may assume that all its nonzero
coordinates are equal to 1.

The conditions of Propositions 2.3 and 2.4 are formulated so that they can be checked
algorithmically. Below we present algorithms for checking the necessary and sufficient
conditions for a support to belong to the set S.

Algorithm

An incomplete enumeration of supports is performed. For each support, the necessary
(respectively, sufficient) condition is checked, and the next support to be checked is then
generated based on the result. The enumeration relies on the following observation. Let
D be a support, and let a be a positive root not in D that is smaller than all roots in
D. If D does not satisfy the necessary (respectively, sufficient) condition, then D U« also
fails to satisfy the necessary (respectively, sufficient) condition. Indeed, the necessary
(respectively, sufficient) condition for a support fails when there exists a root 7 in the
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support satisfying certain conditions. These conditions depend only on those 8 € D such
that 8 > v. Neither the set (p - nor the values A([eq, eg]) (where o or 5 > «) depend on
the roots in the support that are smaller than ~.

The enumeration proceeds according to the following rules. First, the support of the
element 2aq + 3as + 4az + 2y is checked against the necessary (respectively, sufficient)
condition. Next, suppose we have checked a support D against the necessary (respectively,
sufficient) condition. Let ¢ be the minimal root in D. First, let us consider the case if
0 # ay. If D passes the check, we add to D the positive root immediately preceding § (with
respect to the order ). If D fails the check, we remove ¢ from D and add the positive
root immediately preceding §. Then we check the new support against the necessary
(respectively, sufficient) condition. Second, if § = ay, then we remove §, remove the new
minimal root 8 in the support (if it exists) and add the root closest to § from below. If
D = {ay}, then the enumeration ends here. Finally, we include the empty set in the list of
supports, since it trivially satisfies the necessary (respectively, sufficient) condition. In this
way, we enumerate all supports that could potentially satisfy the necessary (respectively,
sufficient) condition, while avoiding checks for supports that certainly do not satisfy these
conditions.

Note that if D is the support of a form A, then the condition A([e,, €g]) # 0 is equivalent
to a4+ g € D. Checking this condition is easy to implement. As mentioned earlier, the
necessary (respectively, sufficient) condition must be checked for all roots in the support
D. 1t is clear that it suffices to check it only for the root v that was most recently added
to the support, because for all other roots the condition has already been verified. The
first step is to construct the set (p . This can be done as follows. We run a loop over rows
indexed by roots o > . If in a row « there is exactly one non-zero element A([eq, €s])
such that § ¢ (p, then we add 6 to (p . After completing a full pass through the rows, if
the size of (p has increased, we repeat the loop. The process stops when the cardinality
of (p stabilizes. This yields the set (p .

Checking the sufficient condition for the support D is straightforward. We iterate over
the row indexed by 7 and verify the condition from Proposition 2.3.

The necessary condition is checked as follows. We describe the i-th step of the verifi-
cation. We examine the row indexed by ¢; (recall that 6; = ). If we encounter a non-zero
element A([es,, e.]) such that ¢ ¢ (p., and € # ¢;,_; (where ¢ is undefined), we inspect
the column indexed by ¢, starting from row v upwards. If there are no other non-zero
elements in this segment of the column, the necessary condition is not satisfied. If this is
not the case, but exactly one such element A([es,, e:]) with € ¢ (p, is found in the row
(ignoring a possible A([es,, e, ,])), and if, in the corresponding segment of the column,
there is exactly one other non-zero element of the form A([es, e.]), then we set ; = ¢ and
d;+1 = 0. We then proceed to check the condition for the next column, indexed by ;4.

In practice, our program checks the necessary condition only up to the second step.
If the condition has not been violated by that point, the program considers the check
passed. This simplification does not significantly affect the final result.

The results of the check are as follows: 878 supports satisfy the sufficient condition,
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while 911 satisfy the necessary condition. Therefore, 33 supports remain to be checked
manually. They are listed below:

1.
2.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

o1+ 20(2 + 40(3 + 20(4,
o1 + 20(2 + 40(3 + 20(4,
a1+ 20(2 + 40(3 + 20(4,

o1 + 20(2 + 40(3 + 20(4,

o1 + 20(2 + 20&3 + 20&4,
o1 + 20(2 + 20&3 + 20&4,
oy + 20(2 -+ 20&3 -+ 20(4,

o1 + 20(2 + 20&3 + 20&4,

o1 + 20&2 + 20(3,
o1+ 20&2 + 20(3,
a1+ 20&2 + 20(3,

o1 + 20&2 + 20(3,

(05} +Oég
aq + g, (1
a1, Q9

Qo

041+2042+2043+2044, 041+2042+2043, a1+a2+2a3+a4, a1+a2+2a3, 0424—20(3, 3+0y

a1+ 20(2 + 20(3 + 20(4, a1 + ag + 20(3 + g, (1 + oo + 20&3, a9 + 20(3, Q9 + Q3

041+2042+2043, Oél+042+2043+044, 0424—043—'—0(4, Oé3+Oé4

aq + 209 + 20,
oy + 2049 + 20,
aq + 209 + 20,
aq + 209 + 20,
oy + 2049 + 20,
aq + 209 + 20,
aq + 209 + 20,

o1+ 20(2 + 20(3,

041+042+2043+Oé4, 0424—043—'—0(4,

a1+a2+2a3+a4, a2+a3+a4,

041+042+043+Oé4,
Oél+042+043+044,
a1 + Qo + a3 + Qy,
Oél+042+043+044,
Oél+042+043+044,

Oé1+0é2+0é3+0é4,

Qo + 203 + Qy,
Qo + 203 + Qy,
Qg + 203 + ay,
Qo + 203 + Qy,
Qo + 203 + Qy,

as + 203 + g,

s + g, Oy
Qy

a3+ 0y
a3 + g, O3
a3 + Oy,
s + g, Oy
Qg, Q4

Oy

a1 + oo + 203 + 204, a1 +ag, g+ oz + g, ag +ag, az

aq + ao + 203,
g + g + 2as,
aq + as + 203,
aq + ao + 2ag,
ap + g + 2as,
aq + as + 203,
aq + as + 203,

oy + g + 2as,

a1+ g + a3 + Qy,
a1 + Qg + a3 + Qy,
a1+ g + a3 + Qy,
a1+ g + a3 + Qy,
Q1 + Qg + a3 + Qy,
a1+ g + a3 + Qy,
a1+ g + a3 + Qy,

Oé1+042+043+0é4,

Qo + 203 + ay,
Qo + 203 + g,
Qo + 203 + ay,
Qo + 203 + ay,
Qo + 203 + g,
Qo + 203 + ay,
Qo + 203 + ay,

Qo + 203 + g,
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Qo + (i3 + Qg
Qg + 3 + Oy,
a2+a3+a4,
a2+a3+a4,
Qg + 3 + Qy,
a2+a3+a4,
a2+a3+a4,

(6) +a3+a4,

ag, Oy

Qg + O3

Qo + (g, Qo
Qo + (i3, Qro, Oy
(6] +CM3, Oy

Qg

Qa, Oy

Oy
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25. a1+ ag 4+ 203, a1+ ag + ag + ay, as + 203 + ay, Qs + ag, Qo

26. a1 + as + 203, a1 + a9 + agz + ay, as + 203 + ay, o 4+ a3, o, Qq
27. a1 + as 4+ 2a3, a1 + s + ag + ay, as + 203 + ay, as + ag, oy

28. a1+ ag 4+ 203, a1+ ag + ag + ay, g+ 203 + qy, Qo, Q4

29. a1+ a4+ 2a3, ag + s+ ag + ay, as + 203+ ay, oy

30. a1 + as + 203, a1 4+ ag, ag + 203 + Qy, Qo + Qg+ ay, Qo

31. a1+ as + 2a3, a1 + ag, g + 203 + g, o + g+ g, o, Q4

32. a1+ as + 203, a1 + ao, Qo+ 203 + Qy, Qo + a3+ Qy, Qy

33. a1 + g, ag + 203, g+ g+ oy, az+ oy, oy

Linear forms with support 5 do not satisfy the necessary condition, but checking this
requires three steps, whereas our algorithm checks only the first two steps (see above). It
is clear that linear forms with supports numbered 2, 6, 12, 14, 16, 18, 19, 20 and 21 do
not satisfy condition (1); that is, such forms do not belong to S. This follows immediately
from Table 1, similar to Example 2.2. In the remaining cases, it is necessary to write out
the coordinates of the infinitesimal action explicitly. It turns out that the linear forms
with supports numbered 25 and 33 lie in S without any restrictions on their coordinates.
Linear forms with supports numbered 30, 31, and 32 lie in S if and only if

2 - 2
)\a1 +ao )‘a2+2a3+a4 - )\O‘1+O‘2+2O‘3 )\O‘2+O‘3+a4 '

Thus, we obtain 883 supports whose corresponding forms belong to S, three of which
require an additional condition on the coordinates. This completes the proof of Proposi-
tion 2.1.

Example 2.5. Consider a form A with support 33. We will show that A € S. Let y € n- A,

=T A T =D ot Taas A= D ocor Ml = D pcor Halh- Let us write down
explicitly the coordinates of interest. We denote the structure constants in the relation

11
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Centp = |€a,es] by Cap. Their values can be found in [10]. Then

Part+as = Has+20s = Mastas+as = 0;

fay = —A([2, €a,]) = =A([Taz€ass €ar]) = —Cosar Tas M€ar+az) = —TazAas+as;
Hastas = —A[T, €astas]) = —A([Tas€as + Tay€as; Castas)) =
—ClasantasTasMEastagtas) = CagastasTasM€ast205) =

—Tay )‘a2+a3+a4 + 2‘7;043 >‘a2 +2a3

Haz+as = —)\([ZL', 603-!—014]) = _)‘([Iazeam 6013-!-&4]) = _Ca2,03+a4xa2)‘(eaz+a3+a4)
A
= Iaz)‘a2+a3+a4 = _w o1
a1tz
Has = —)\([ZL’, 603]) = _)‘([37046064 t TastasCaz+ass eoc3])

= —Coy.05TasMCastas) — Castas.asLastasMNCast2as) =
— Tay Nastas — 2Tag+asAas+2as]

ta, = —A[7, €a,]) = —A[Tas€as + TastasCastass €aul)

= —Caz01TasM€astas) = CastasasTastas N Casrtastas) =

>‘a3+a4 )‘a2+a3+a4
a5\ | Postas T 5y

= Tag >‘as+a4 + Tas+as >‘az+a3+a4 - as:

2)‘0424-2043 2)‘(124—20&3

Let us also consider support number 25. For all roots except as, condition (1) obviously
holds. The coordinate pi,, equals —To Aay+as- Therefore, if x,, can be expressed as a
linear combination of {j15} g a,, then oy satisfies condition (1). This is indeed the case:

Mot tantas = —TagAas+astastas T 2Tasz Aa; +as+2as)
Haz+2as = —TayAas+2as+as T Tag Aay +as+2as;

Hagtastas = TazAas+2as+as T Tag Ao +astagtas;

T — Has+az+ag >‘al+a2+2a3 - /J/a2+2a3)\a1+a2+a3+a4 + /J/a1+a2+a3)\a2+2a3+a4
a3 T .

3)‘(12 +2a3+ay )‘al—l—ag +2a3

Finally, consider forms with supports 30, 31, and 32. Suppose the support contains
the roots ay + ag + 2a3, a3 + ag, as + 2a3 + ay, as + az + ay. Let us check whether
condition (1) holds for the root ay. Note that

Haz2as = —TayAag+2as+as T Tag Aar+az+2as;
Hastas = —TasAastast+as T TagtasNast2a3+as)

Pay = —Taztasdastas+as T Tag Aay+as-
We see that if 5 > a9 and the variable x,,1,, appears in pg, then § = as + as. Similarly,
if B > a9 and z,, appears in ug, then 8 = s + 2. Hence, the coordinate p,, must be a
linear combination of fin,124, a0d fla,4as- It is easy to verify that this holds if and only if

2
)‘Oq +az )‘

_ 2
ag+2a3+ag T )\0614‘062"'2063 )\a2+a3+a4 .

12
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Now, let us check condition (1) for the root ay. Note that

Pay = —TayAastas — Tagt2as Ao +az+2as;
Hastas = TasAastas+as — TastasNast+2as+ass

Pos = TastasAas+as+as T Tas+2as Aas+2as-+as-

By an argument analogous to the one above, we find that the coordinate j,, must be a
linear combination of ji,, and fia,+a,. It turns out that this condition is also equivalent
to

2 _ 2
>\0‘1 taz >‘O¢2+2a3+a4 - )‘a1+a2+2a3 )\a2+a3+a4'

3 Classification of orbits

In this section, we will prove Theorem 1.1, thereby completing the classification of
coadjoint orbits for type Fj. For the next stage, we will need the concept of a singular
root.

Definition 3.1. Let a,y € ®*. The root « is called singular to v if v — a € ®*. The set
of all roots singular to v is denoted by S,.

It is obvious that the singular roots in S, are divided into pairs of the form ao+ 3 = 7.
From now on, unless stated otherwise, everything will take place over the algebraic
closure F. We introduce two F[z,,a € ®T]-modules:

Here F[z,,a € ®*] denotes the ring of polynomials over F in the independent variables
To, a0 € DT We define a pairing M* x M — Flz,,a € T] by

(fRAg@T) = Az)fy.

In what follows, we will write \(x) instead of (A, z) for A\ € M* & € M. Note that
n is a F-subspace of M, and n* is a F-subspace of M*. Therefore, two other pairings,
n* x M — Flz,,a € &) and M* x n — Flz,, o € ®*], are automatically induced. We
introduce a Lie algebra structure on M in the obvious way: for f, g € Flz,,a € ®*] and
T,y €n, set

[f@z,g@y]=fg® [,y

Since n can be identified with upper-triangular matrices with entries in F, we can
identify M with upper-triangular matrices whose entries lie in Flz,,a € ®*]. Conse-
quently, we can define exp(x) for x € M. Since the characteristic of I is sufficiently large,
exp(z) is well-defined for all x € M. Let Nj; be the group consisting of the matrices

13
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{exp(z),z € M}. The actions Nyy ~ M and Ny, ~ M* are defined naturally. An
explicit description of the action Ny, ~ M* is as follows: for x € M and A € M*,

exp(x) - A= Z A Z (_,1)2 [z, [x,...,[a:,ea]...]l ® er.

; i! ~
acdt =0 ¢ commutators

Denote by x the element x =) 5+ 2o ®e, € M. For a form A € n*, we will consider
the element exp(y) - A € M*. Let us also set T = F®pn, N = F ® N. Note that if
T=3cor Tata €T with Z, € F, then exp(Z) - A = (exp(x) - A)(Ta, @ € ).

Now we formulate one of the most important theorems of this work. Let yz, 5 € &
be independent variables.

Theorem 3.2. Let A € S, D = supp()), and let v € ®F satisfy condition (1). Then there
exists a rational function Fp ., € F(ys, B > ) such that

fi(ey) = Aley) + Fpy(ules), B = 7), (2)
where p = exp(x) - A € M*.
Example 3.3. Consider the same support as in Example 2.2. Let
D = supp(A) = {au, az + oy, as, as + 2a3}.

We will show that for this A and for all roots « satisfying condition (1), formula (2) holds.
Let 1 =exp(x) - A, A =2 cot Aalhs 1= D ncot Ma ® €. Let us write down explicitly
the coordinates of interest. As in Example 2.5, we denote the structural constants in the
relation Ceqqs = [eq, €] by Cop. Their values can be found in [10]. We have

Pan+2as = MEant2a3) = Mag+2as;
Has+as+as = 0;
Has+as = —)\([SL’, €a2+a3]) = _A([xaseasv ea2+as]> = _Ca:’),az—l—asxas)‘(eaz-l—?as) =

= 2:1:043 >\a2 +2a3 ;

1 1
Hay = )‘(eocz) + 5)\([1’, [:L’, 602“) = )‘062 + 5)‘([Ia3€a3’ [Iaaeaw eocz]]) =

1
o 2 _ 2 _
- >‘az + 50043,&24-04300437042%053>‘(€012+2013) - >‘az - xocg >‘a2+2a3 -

— Ay — Hay 203 ;
41U0c2+2oc3
Hagtas = M€astas) = Aagtasi
fas = Meas) = A[2, €aztan]) = Aas = A[Tas€as, Cagras]) =

Has+asMaz+ay
= >‘a4 - Cag,a4$a3)\(€a3+a4> = )‘a4 + xa3>‘a3+a4 = )‘a4 + .

2fbay 4203

14
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In fact, the validity of formula (2) in this example could have been understood without
writing out the coordinates explicitly. It is enough to examine Table 1. Since p(eny+as)
involves only x,, and A(€a,1205), and since A(€ay+2as) = f(€ayt203), the variable z,, can
be expressed as a rational function of pi(€ny+as) and fi(€a,12q5). Moreover, since pi(eq,) —
A(€eq,) depends only on z,, and A(€n,12q5), it can be expressed as a rational function
of ,u(eaz-i-tm) and :u(ea2+20c3)' Furthermore, M(ea3+a4) = )‘(ea3+a4)' As u(ea4) - )‘(etm)
involves only x,, and A(€asta,), it can be expressed as a rational function of p(eny+as)

and :u(ea3 +tag ) :

Now let us proceed to the proof of Theorem 3.2. First, we prove it in the special case
of forms whose support consists of a single root. Any such form obviously belongs to S.

Lemma 3.4. Theorem 3.2 holds for any A\ € n* with | supp(\)| = 1.

Proof. Denote D = supp(A) = {d}. Note that in this case, condition (1) depends only
on D, not on the specific A\, and it holds for those v that are not singular to §. Let
i =-exp(x) - A. We need to prove that for any v ¢ Ss, the coordinate (e, ) is a function
of the coordinates p(eg), 3 > v. Observe that if v > 0, then p(e,) = 0, and if v = 6,
then p(es) = A(es). For these two cases, the condition is obviously satisfied. It remains
to prove it for v < 4.

For any 8 € S;, the following equality holds:

ples) == Al e5]) + A (s [ esl) = oMo, [ sl + -

= — Mzs-pes-p, €s]) + F(x) = —A([es-p, €5])w5-5 + F () = CAes)ws5-5 + F(),
where C' # 0 and F(z) is a polynomial in variables x, with o < 6 — 3. Consequently,

_ leg) — F(z)
Ts-p = ?D\—(eé) (3)

Let 1, (o, ..., Bar be the singular roots to 9, listed in decreasing order with respect to
lexicographical order. They come in pairs such that 3;+fe_;+1 = J. Now take v ¢ Ss with
d > ~ and consider p(e,). Suppose, for contradiction, that there is no rational function
H over F in the independent variables tg, 3 = v such that u(e,) = H(u(es), 8 = 7).

The coordinate y(e,) is a polynomial in the x5 with coefficients from F. It does not
contain the variable g, , , if v = B;. Let Ba_j11 be the largest root in S5 such that
Tp,, .., appears in p(e,). Using formula (3), we express xg,, ., in terms of u(eg;) and
T, @ < Pog_ji1. Thus, p(ey) becomes a polynomial that no longer involves Ty i1 We
perform a similar elimination successively for Ba;_ 12, Bar—j+3, and so on, until By,. Note
that at each step, a variable x3, that was initially absent or already removed cannot
reappear, because we proceed in decreasing order of the singular roots. As a result, p(e.)

is represented as a polynomial that does not contain zg, 8 € S, i.e.,
pley) = Gules,),i=1,...,J; Ta,a ¢ Ss)
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for some polynomial G € F[tg,,i = 1,...,5; Ta,a & S5]. Observe that 3; = v for all
1=1,...,7.

By our assumption, j(e,) cannot be expressed solely in terms of the subsequent coor-
dinates. This implies that G is not identically constant and actually depends on at least
one variable z,. Then there exists a non-empty Zariski open subset U C F’ such that for
any ¢ = (c1,¢a,...,¢j) € U, the specialized polynomial G(c;,i = 1,...,7; o, ¢ S5) is
non-constant. Fix such a tuple ¢, co,...,¢; € F. Choose an index € ¢ S5 and constants
ca €F,a ¢ Ss,a # ¢, so that the one-variable polynomial

9(375) :G(Ciai: 17)]7 ZIZ'E,CO”OZ¢ 557a7é€)

is non-constant. The field is algebraically closed, for any chosen ¢y € F there exists a
c. € F such that g(c.) = ¢p. Fix ¢o and the corresponding c.. Now, choose arbitrary

values ¢ji1,...,co € F. Substituting the values c., c,,a ¢ Ss into formula (3), we can
determine values for zs, ,xg,, ,,...,%s sequentially, in such a way that u(eg ) = c1,
w(eg,) = ca, ... and u(ep,, ) = cop. For this assignment, we obtain

:U’(e’*/) = G(Ciui = 177.]7 Cey Ca, QU ¢ 55) = Co-

Therefore, there exists a non-empty Zariski open subset V' C 7" such that for any
(co,c1,-,cop) €V, we can find an element 77 € N - A such that 7i(e,) = c1, i(ep,) = ca,
..., fi(ep,, )Cok. The orbit N -\ is an algebraic variety. Our construction yields a surjection

from N -\ to F%H, which implies dim N - A > 2k + 1. However,
dim N -\ =dimn- A = dimn -\ = | S| = 2k.
This contradiction completes the proof. O

We introduce further notation. Let a, 8 € ®F. Denote T, 5(x) := (exp(x).€j)(€a) in
Flx,,v € ®F]. It is clear that if A € n*,a € ®*, then

(exp(x) - Mea) = {@p(0)- | 30 Mea)es | | (ea)
BEsupp(N)
= > Aes)lexp(x)5)(ea)
BEsupp(N)

= > Mep)Tap(a).

Besupp(N)

Now consider the following construction (cf. the construction of the set (p, used in
the proof of the sufficient condition in Proposition 2.3). Let A € S, D = supp(}), and
let the root v € ®7T satisfy condition (1). Starting from D and 7, we construct a set
(p, C T x ®*: by definition, it consists of those pairs («, 8) for which the polynomial
T, 5(z) can be expressed as a rational function of {(exp(x) - A)(es) }5mr-
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Example 3.5. Table 1 helps visualize the structure of the polynomials 7, 3(z). One simply
examines the cell in row a and column . For each pair 7,0 € ®* such that v+ § € &7,
denote the corresponding non-zero structure constant by C, s, so that [e,, e5] = C, se,45.
Each monomial in 7, s(x) has the form

1
n+1
(—1) EC’YLC‘!C’Y%Q"‘“H O oyt A1 Ty Ty« - Ty

where y1,...,7%, € T, a+y+...+7v; € & for all i from 1 ton, and a+vy;+...+7, = .
Hence, it suffices to consider all possible decompositions of 8 — « into a sum of positive
roots. For example,

2

Tas,az+2a3+a4 (I) = —Zay+az+as T ixazxa:’,-l—m; + ixa4xa2+a3 - gxazxasxa4'

Note that if a £ S, then T, g(x) = 0, while T, ,(z) = 1. In all other cases, T, s(x)
has positive degree. We call a pair («, 5) nontrivial if o < § (i.e., T, 5(z) # const).
Obviously, each trivial pair belongs to all (p, .

Let us refer to Example 3.3. There D = supp(\) = {au, az + ay, ag, g + 2a3}. The
8€tS (D ayr2as ANA Cp gy tasia, CONtain no nontrivial pairs. Indeed, there are no 8 in D
such that 8 > as + 2a3 or 8 > as + ag + ay. Since

(eXp(X) ’ )‘)(eaz-‘raa) = 21'053)\(60524-2053) = 2%, (eXp(X) ) )‘)(ea2+2a3)

and T, ay4205(T) = —:B§3, the pair (ag,az + 2a3) belongs to (p ,,. This pair also lies
in (p asra, and Cp,,- Moreover, (p, ,, contains one additional nontrivial pair, namely,
(g, a3 + ), because Ty, astay(T) = Tay. The remaining pairs of the form (v, a) with
a € D and 7 satisfies condition (1) are trivial and therefore belong to all ¢}, .. The lemma

below explains why we focus precisely on these pairs.

Lemma 3.6. Let A € S, D = supp(A), and let v € @ satisfy condition (1). Suppose that
for every a € D, the pair (v, «) belongs to (p, ., and formula (2) holds for all o' = v that
satisfy condition (1). Then formula (2) also holds for A, D and 7.

Proof. Consider
(exp(x) - M(ey) = Y- Aea)Thal(®) = Aey) + D Aea)Thal2):

Let o € D with a = . Since (v,a) € (p ., the polynomial T, ,(z) can be expressed as
a rational function of {(exp(x) - A)(eg)}s-,. By the definition of S, the root a satisfies
condition (1). Therefore, by the inductive hypothesis, A(ea) can also be expressed as a
rational function of {(exp(x) - A)(eg)}gs~, because

Aea) = (exp(x) - A)(€a) = Fpa((exp(x) - A)(es), 5 = ).

Hence, the difference (exp(x)-A)(e,) —A(ey) is a rational function of {(exp(x)-A)(eg)} s+,
which means condition (2) is satisfied. O
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We are now ready to prove Theorem 3.2.

PrROOF OF THEOREM 3.2. If D = {a}, then Theorem 3.2 holds by Lemma 3.4.
Indeed, in this case (exp(x) - A)(ey) = A(eq) - T5ya(z). Moreover, T, o(z) = 0 for v > «,
while T, ,(x) = 1 for v = a. Finally, for v < « satisfying condition (1), the polynomial
T, o(z) can be expressed as a rational function of {(exp(x) - A)(es) }s-

Now we will prove formula (2) step by step for all A € S by considering the supports
from the list one after another. (Note that most supports can be treated similarly to
Example 3.3; see below.) Recall that

A= ZBG<D+ Ages €W, = Zﬁ@ﬁ ps @ ey =exp(x) A € M*.

e Suppose the largest root (with respect to the lexicographic order) in the support is
smaller than as + a3 + ay. For all such supports and for every v € ®* satisfying
condition (1), Lemma 3.6 applies, so the proof is complete. (Indeed, for all relevant
7, the polynomials T, ,(z) are, up to a non-zero scalar factor, equal to Za,, Tas, Tau,
0, or 1.)

e Suppose the largest root in the support equals as + a3 + a4. There are only two
such supports in the list: {a2 + a3 + a4} and {as + as + a4, as}. Since Lemma 3.4
covers the case of one-element supports, the pair (as, @ + a3 + a4) belongs to (p .
regardless of whether ag lies in D (the presence of simple roots in the support does
not affect ¢ b,,y). The conditions of Lemma 3.6 are also satisfied, so nothing remains
to prove in this case.

e Next, suppose the largest root in the support equals as + 2a;3. Here the first non-
trivial case appears, i.e., Theorem 3.2 cannot be proved for all supports of this type
by a straightforward application of Lemma 3.6. Such a support may also contain
a9 + a3 + a4 and ay4. The complication arises because the table entries at positions
(a3, g 4 2ar3) and (ay, g + az + o) both involve the same root ay + a3. However,
Ty an+205 (%) # Loy antas+aq (€). Consequently, a situation may occur where ay sat-
isfies condition (1) but Lemma 3.6 cannot be applied directly. Therefore, in this
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case we must compute the coordinates of p explicitly:

Has+2a3 = )‘(ea2+2a3) = Aaz+2ass

Has+az+as = )‘(ea2+a3+a4) = )‘a2+a3+a4a

Haz+as = — )\([SL’, €a2+a3]) =
= — M[Zaslas + TasCas: Cartas]) = —CasastasTas M €antastas) —
— Coy.antosTas M Cast2as) = TayAastastas — 2TasAas-+2as
Hastas = — A[Z; €as+as]) = = A([Taz€ass Casrasl) = —CosastasTas M€asr+as+as)
=7 Tay )‘a2+a3+a4a

Haz = — )\([SL’, €a3]) + %)\([l’, [l’, €a3]]) = _A([xaz—i-aseaﬂ-asv 6(13])—0—

1
+ 5)\([1’(126&2, [Iaan@ + TasCays ea3]) + 5)\([1’(146&4, [Iazeaw 6013])
1
= Caz+a3xaz+a3>‘(ea2+2a3> + 5Caz,asca37a2+asxazxas)‘(ea2+2a3)+
1

+ 5(0a470c3 Casostas T Canas Ca4,az+a3)xa2 xa4)‘(ea2+a3+a4)

= 2xa2+a3)‘a2+2a3 + Taolag )‘a2+2a3 - Iazxa4)‘a2+aa+a4a

Hay = )\(6(14) - A([xv ea4]) + %A([xv [xv 6(14]]) = >‘a4 - A([xaz—i-aseaﬂ-asv 6(14])—0—

1
+ iA([$036a3’ [$azea2> 604“) = )‘064 - Caz+a37a4zaz+a3)‘(ea2+a3+a4)+

1
+ §Ca37a4caz,as+a4xazxa3)‘(ea2+a3+a4) = )‘a4 + xa2+a3)‘a2+a3+a4+

Hagtazlaz+as — Has+az+asllas
+ _Iazxas)‘a2+a3+a4 = )‘a4 + :
2 2/h0r+204

This shows that formula (2) holds for the root ay.

e Now suppose the largest root in the support equals as + 2a3 + g or aip + 2ai3 + 2ay.
In these cases, the statement also follows almost trivially from Lemma 3.4 and
Lemma 3.6. The only nontrivial situation occurs for the support

D= {042 + 20(3 + 20(4, Qo + 20&3, Oég}.

At first glance, it might seem that T, 4,+244(%) cannot be expressed as a rational
function in {(exp(x) - A)(€s) }s-a,. However, this is not the case. From Lemma 3.4
we know that T, tas.a0+2as+204 (T) can be expressed as a rational function of

{(exp(x) : )‘) (65) }5>a2+a3+a4'

Hence, x,, can be recovered from (exp(x)-A)(€as+as) A0d Toytas a0+2a5+2q4 (). Since
Ty an+205 () depends only on z,,.
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e If the largest root in the support equals a; or a; + «s, then the nontrivial case is
when D contains aq + aw, ag + 203, aig + aig + oy This case follows immediately from
the formulas in Example 2.5 together with the case D = {ay + 2a3, as + ag + a4 }.

e If the largest root in the support equals oy 4+ as + a3, then all nontrivial cases reduce
to D = {an+as+as, ag+2a3+ay, as}. Let us write down the relevant coordinates:

Moy +as+az = >\a1 +as+asz»

Haj4as = _xa3)‘a1+a2+a37
Moy = _xa2+a3)‘061+012+063 + §xa2$a3 )‘a1+a2+a3>
Has+2az+as = >‘a2+2a3+a47
Has+2a3 = _xa4)‘a2+2a3+a47
_ )\ _ Ma1+a2,l’ta2+2a3+a4
Has+as+as = LagAas+2az+as = — )
Moy +as+tas

Hastas = Tay Aar+astas T Tagtasast2as+tas — §xa337a4 A +203+as

_ 2
Hay = >‘az - xalxas)‘a1+a2+a3 - xas+a4xas>‘az+2a3+a4 + §xa3xa4)‘a2+2a3+a4

2
o )\ + /’La1+a2ﬂa2+a3 —I— /’Laz+2&3Ma1+a2
— log 2 )
/"Lal+a2+053 :ual—l—ag—i-ag
Moy Hag+2a3+aqy
Pastas = —Tastaszas+2as+as T 517@23703)‘&24—2&34-&4 = .
Koy +as+as

We conclude that for the roots ay and az + a4, formula (2) holds.

e Next, if the largest root in the support equals a; + as + a3 + a4, then the most
interesting supports are those containing the roots

oy + g + a3+ Qy, 042+2043+2044 and 042+2043—|—Oé4.

One can easily show that

2
by Mooy +og Pz +2as+204 Moy +asMPastas+ay 2 A
az T - xa;g

+

Hay = 2
/J’a1+a2+a3+a4 /"La1+a2+0¢3+a4

az+2a3 -
First, consider the case A\,,12q4; = 0. Then clearly the root ay satisfies formula (2).

Since ay + 2a3 ¢ D, the support D may contain either a3 or as + a3. But
i 2Ma1+az+a3,ua1 Haz+2a3+2a4
2 )
/’l’al+0¢2+as+0¢4 /J’a1+a2+a3+o¢4
—Hag+203+astrar+az T Hay+ag+osMas+as+as .

Hay+as+astas+as T Hay Hos+20s+04

Has = Aag +

Hast+as = )‘a2+a3 +
Hoq+as+as+as

_9 Haz+2az+2a4 Hag+as+aslai+asz

2
:um +aztaz+as
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One can see that formula (2) is satisfied in both situations. Second, if Ay,+94s # 0,
then formula (2) for ay follows from the fact that An,124, can be obtained from
Has+2a4, While z,, can be obtained from i, +as-

e Suppose the largest root in the support equals a; + as + 2a3. Here the analysis
essentially reduces to the two supports {a; + ag + 2a3, a1 + a9 + a3z + a4} and
{a1 + as + 203, a9 + 2ai3 + a4} (All other cases can be reduced to these two by
arguments similar to those above.) For the first support, we have the following
equations for the coordinates of p:

_ Marjtastazas+2as |
Hag+as = )
Hoq+az+2as
_ MajtasMas+2as |
,uocg - )
Haq+az+2as
[, = “HazMoi+astastas — Hog+asHas+ay
(e 7 .

2,Ual+a2 +2a3

For the second support, the equations for the coordinates of y are:

2
_ MagtastazMastas oy +as+azHas+2as
Hay = — 9 + 442 ’
Haq+az+2as oy +as+203
T Pay +antastastos — 2Har Pas+2as+as
(07 .

2lay +ant2as

e Suppose the largest root in the support equals aq +as+2a3+ay4. Although there are
many such supports, they are all amenable to a simple analysis. Each such support
does not contain the roots a3 + as + 2a3, a3 + as + as + a4, and a3 + as + as.
Consequently, To,, Tas, and Za,4+q, can always be expressed as rational function of
Hai+oo+2ass :U’a1+a2_+a3+a47 Hoay+az+as and Moy +az+2a3+ay (11’1 faCta as polynomials with
coefficients from Flu; ", o i00s4a,]). Moreover, o, can be expressed as a rational
function of fta,+205+as A0 flay +as+2as+a,- 1t fOllows that if Ay, 4ay+245+a, aPPeArs in
a monomial in a coordinate ., then that monomial can be expressed as a rational
function of the coordinates pg with 8 > «. Furthermore, almost all other monomials
can also be expressed as polynomials in z,,, ZTas, Taszt+a, and z,,. Finally, those
monomials that cannot be expressed in this way satisfy formula (2) by the analysis
above. A similar analysis applies to the cases where the largest root of the support
18 201 + 3ag + das + 2.

The remaining steps can be analyzed similarly: either Lemma 3.6 applies, or the
equations for the coordinates can be written out explicitly in a straightforward manner.
Thus, Theorem 3.2 is proved. 0

Finally, we formulate and prove the last theorem, which leads to the main result.

Theorem 3.7. Let A\, N € S with A # X. Then N-X# N - \.
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Proof. Assume the contrary. Let A # X but N - A= N - X. Let v be the largest positive
root such that A(e,) # X(e,). Then ~ belongs to the support of at least one of the
linear forms A\ or A'. Since both forms lie in S, the root v satisfies condition (1). Set
p=-exp(x) A, p =exp(x)- . By Theorem 3.2, there exist rational functions Fp ., and
Fpr - such that

pley) = Aey) + Fp,(uleg), B> )
and
1 (ey) = N(ey) + Fpq(p'(ep), B 7).

Note that if A(eg) = N(eg) for all § > ~, then u(ey) — Aey) = p'(ey) — N(ey) and
p(eg) = ' (eg) for all B > v . Therefore, we may choose our functions Fp, ., for different D
and v in such a way that Fpp ., = Fp/, whenever { € D | f =~} ={f € D' | > ~}. Let
[ = exp(Z)- A be an arbitrary element of their common orbit, where = ) o1 Taeo € 1.
Then

fley) = Aey) + Fp,(pi(es), B> )
and
fi(ey) = N(ey) + Fp,(files), B = 7).

Note that Fp,(fi(eg), 3 > ) does not become infinite because fi(e,), A(e,), and N(e,)
are well-defined numbers. Hence, A(e,) = X(e,). This is a contradiction. O

Thus, distinct forms in S have distinct orbits. Note that N - A C N - ), so if A, N € S
and A # X, then N- X # N - \.

It remains to prove that all coadjoint orbits are obtained in this way. Consider the
orbits over the finite field IF,. One can easily compute |S|. Let D be a support from the
list, with |D| = k. There are (¢ — 1)¥ linear forms with this support. If they all lie in
S, then this support contributes (¢ — 1) forms to S. If there is one restriction on the
scalars, then the support yields (¢ — 1)k~! forms in S, because the restriction expresses
one coordinate in terms of the others. For example,

2
_ )\041 +ag+2a3 )\ag +a3+ay

)‘011 ‘a2 — )\2
az+2az+ay

for the supports 30, 31, 32, see page 10. Thus, a straightforward calculation gives

1] =14 24(q — 1) + 140(q — 1)* + 288(¢ — 1) + 256(g — 1)"*
+124(g— 1)° +40(g— 1) +9(qg — 1)7 + (¢ — 1)

The sum of the coefficients is exactly 883, which is the number of supports in the list plus
three supports with restrictions.

Since each form in S determines its own orbit, the set S accounts for |S| orbits.
However, in the work [3], the number of coadjoint orbits for Fy over a finite field F, is
computed by group-theoretic methods, and it coincides exactly with |S|. Hence, over F,
there are no other orbits. This completes the proof of the main result.
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The same approach can be applied to other root systems ®. Fix a total lexicographic
order = on the positive roots ®*. For A € n* and v € &, define the matrices
A)‘v’y = ()\([ea’ 65]))a€¢+7atm{7ﬂ€¢+ :

By = (Mleas €8])) aear ary pea -

Let S be the set of A € n* satisfying the following condition: every v € supp(A) fulfills
condition (1). We can now state a conjecture.

Conjecture 3.8. For cvery coadjoint orbit, there exists a unique linear form \ € S lying
on that orbit.

Appendix
1. 0 22. as + 2as3, az, az+ a4, ag 43. a1, as +2as + 2a4, as
2. oy 23. a2 + 2a3, a2, a4 44. a1, a2 +2a3 + aa
3. o3 24. a2 +2a3, az+aq 45. a1, as +2a3 + a4, as
4. az, oy 25. a2 +2a3, az + o4, a4 46. a1, as +2as3
5. a3+ ay 26. az+2a3, au 47. a1, a2 +2a3, az + a3 + aa
6. as 27 ag + 203 + o 48. a1, az+2as, ast+az+aq, ag
7. o, a3+ oy 28. a2 + 203 +aq, a2 49. a1, as +2as, as
8. asz, as 29. as +2a3 + 2a4 50. a1, ag +2as3, as, az + o
9. ag, a3z, aq 30. az +2a3 + 204, a2 +2as 51. a1, az2+2a3, a2, az+ a4, o

10. a2, ag 3L ez +2a3 + 204, 02 + 203, az 52. a1, az +2a3, az, oy

32. a2 +2a3 + 2014, az + a3

11. as + a3 53. a1, a2 +2a3, a3z + aa
. 2 2
12. as 4+ a3, az + aa 33. a2+ 2a3 4 2a4, a2 54. a1, az +2a3, a3z + o, a4
34. 2 2
13. as+ a3, az + a4, a4 o2+ 203 + 204, a2, a3 55. a1, az + 2a3, a4
35. a2 + 2a3 + 204,
14. as + a3z, as 2 3 4 3 56. a1, as + a3 + aa
36. a1
15. a2+ a3+ oy 57. a1, ag + a3 +oa, a3
37. a1, a2 + 2a3 + 2a4
16. az 4+ a3z + a4, a3 58. a1, as + a3
38. a1, az + 2a3 + 2a4, a2 + 2a3
17. ag 4+ 2a3 59. a1, a2 + a3, a3+ aua
39. a1, a2 + 2a3 + 204, @z +
18. ag + 2as3, as + a3 +ay 203, o 60. a1, az +ag, az +aq, ag
19. a2 +2as, as + a3z + a4, ag 40. a1, as + 2a3 + 204, az + a3 61. a1, az +as, ag
20. a2+ 2a3, a2 41. a1, a2 + 2a3 + 2a4, asg 62. a1, a2
21. a2 +2a3, a2, a3+ aq 42. a1, a2 + 2a3 4+ 204, az, a3 63. a1, a2, az + oy
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64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

al, a2, a3

ai, a2, a3, a4

ai, a2, a4

al, az + oq

a1, a3

a1, a3, 4

a1, Q4

a1 + a2

a1 + a2, az + 203 + 204

ay + a2, az +2a3 +2aq, az +
203

ay+az, az+2a3+2aq, aztas

ay + a2, az +2a3 +2aq, az +
as, as

a1 + a2, az + 2a3 + 2a4, as
a1l + a2, oz +2a3 + g

a1 + a2, az + 2a3

a1 +agz, az+2a3, agtazt+ay

al +az, az +2a3, az +az +
ag, a3+ aq

ai +az, az +2a3, az +az +
Qg, a3+ o4, aq

ay +az, az +2a3, az + a3 +
a4, 04

ay + a2, az +2a3, az +ay
ay +az, a2 +2a3, ag+aq, aq
ay +az, a2 +2a3, oy

al + a2, ag + a3 +aq

al +az, ag+az+og, az+og

ai + a2, a2 + a3 + a4, az +
ag, a3

al + a2, ag +az + a4, a3
al + a2, a2 +as
ai + o2, ag + a3, a3 +aq

ai + a2, a2 + a3z, a3

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.
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a) + a2, a2 + a3, a3, a4
al + o2, a2 + a3, g
al + o2, a3+ ag
a1 + a2, a3

a1 + a2, a3, aq
a) + a2, aq

a1 + a2 + a3

a1 + a2 + a3, az +2a3 +2a4

al + a2 + a3, a2 + 2a3 +
204, a2 + 203
a1 + a2 + a3, a2 + 2a3 +

2a4, a2 + 203, a2
ajtaz+as, az+2a3+2a4, a2
a1 +az +ag, az +2a3 +ag

a; + a2 + a3, a2 + 2a3 +

Qg, a2 a3+ ag

altaz+as, ag+2az+ag, az

al + a2 + a3, a2 + 2a3 +
g, a2, a3 + o4
a; + a2 + a3, a2 + 2a3 +

a4, a3 + oy
a1 + a2 + a3, a2 + 2a3

al + a2 + a3, az +2a3, az +
a3 + oy

a1 +az +az, az +2a3, az +
a3 + g, a4

a1 +az +ag, az +2a3, az

aj+az+as, ag+2a3, az, az+
oy

ajtaztas, az+2as, a2, az+
Qyq, 04

a1 taz+asz, az+2a3, az, aq
a1 +ags+as, az+2a3, az+as

a1 +az +as, az +2a3, ag +
a4, 04

ai + a2 + a3, az +2a3, oq

al o2 +a3, a2+ a3+ ag
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120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

al a2+ a3, a2 +a3+oaq, oy
al + a2 + a3, a2

al + a2 + a3, a2, a3 +oq

al +az+a3, a2, a3 +aq, og
al +ag + a3, a2, aq

a1 +az+ a3z, a3 +oq

ai a2 + a3, a3 + a4, ag

al +az2 + a3, g

al] +ag + a3+ aq
al+aztaztas, az+2az3+204

ay +az + a3+ oy, az +2asz +
204, a2 +2a3 + s

ay +az + a3 + oy, az +2asz +
2014, 02 + 203 + g, a2+ 203

ay +az + a3 + oy, az +2asz +
204, a2 + 203 + o4, az +

2a3, a2

al +oaz+ a3+ a4, az+2a3 +
2a4, ag + 203 + a4, az +as

al +oaz+ a3+ a4, az+2a3 +
204, a2 4+ 203 + a4, a2

al +oa2+ a3+ a4, az+2a3 +
204, a2 +2a3 + aq, a2, a3

al +oaz+ a3+ a4, az+2a3 +
204, a2 +2a3 + o4, ag

al +oaz+ a3+ a4, az+2a3 +
204, a2 +2as

ay +az + a3 + oy, az +2asz +
204, a2 +2a3, a2

ay +az + a3 + a4, az +2asz +
204, a2 + a3

al +az + a3 + oy, az +2asz +
204, Qg

ay +az + a3 + oy, az +2a3 +
20, a2, ag

ay +az + a3+ oy, az +2a3 +
204, o3

a1 taz+az+taq, az+2a3+ay

al +oa2+ a3+ a4, az+2a3 +
ay, az + 2a3
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145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

a1 + a2+ a3+ aq, a4+ 2a3 +
o4, 02 + 203, a2

al +az+ a3+ oy, az+2a3 +
Qyg, a2+ a3

al +az+ a3+ oy, az+2a3 +
ag, a2

aj + o2 +ag +aq, a2 +2a3 +
a4, a2, ag

a1 + a2+ a3+ aq, a4+ 2a3 +
Qgq, a3

a1 + a2 + a3z +ay, az + 203
aj+az+az+ag, az+2as, az
al +oa2 a3 + a4, az+ag
a)] + a2 a3 + o, az

al + a2 + a3 +oa, az, a3

o] + a2 +a3 +aq, ag

ay + az + 2asg

a1 t+az+2as, a1taztaztay

ai +a2 +2a3, a1 +az+a3+
g, a4+ 2a3 + 204

al + a2 +2a3, a1 +as + a3 +
ay, as+2a3+204, azt+az+ay

a1 + a2 +2a3, a1 +as + a3 +
ay, a2 +2a3+2a4, a2+ a3+
ag, a2 + a3

a1 + a2+ 2a3, a1 + a2+ a3z +
ag, a2+ 2a3 + 204, a2+ a3 +
a4, o2 + a3, o2

al +a2 +2a3, a1 +az+a3+
ay, a2 +2as3+2aq4, a2 +az+
ag, a2

a1 + a2 +2a3, a1 +as +a3 +
ay, a2 +2a3 + 204, az +ag

a1 + a2 +2a3, a1 + a2+ a3z +
a4, a+2a34204, aztas, a

al +a2 +2a3, a1 +az+a3+
ay, a2 +2a3 + 204, a2

a1 + a2 +2a3, a1 +az +a3 +
ag, a2 +2a3 +aq

a1 + a2 +2a3, a1 +as + a3+
g, az + 203 +aa, az +ag

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

ai + a2 +2a3, a1 +az+a3+
a4, az+2a3+oq, az+asz, az

a1 + a2 +2a3, a1 +az + a3 +
o4, a2 + 203 + o4, o2

a1 + a2 +2a3, a1 +az + a3 +
ag, a2 + a3+ og

a1 + a2 +2a3, a1 +az + a3 +
a4, 02 + a3+ ay, a2

a1 + a2 +2a3, a1 +az + a3 +
a4, a2 + a3

a1 + a2 +2a3, a1 +az + a3z +
Qgq, Q2

a1 + a2 +2a3, a1 +az + a3 +
Qq, a2, 4

a1 + a2 +2a3, a1 +az + a3z +
Qq, Oq

ay + a2 + 2a3, a1 +az

al + a2 + 2a3, a1 + a2, az +
203 + 24

a1 + az + 2a3, a1 +az, az +
2a3 + 2a14, ag + a3

a1 + az + 2a3, a1 +az, az +
2a3 + 2014, ag + a3, a2

a1 + az + 2a3, a1 +az, az +
203 + 204, a2

a1 + az + 2a3, a1 +az, az +
2a3 + ay

a1 + az + 2a3, a1 + a2, az +
2a3 + a4, a2 + a3z + g

ay + a2 + 2a3, a1 +az, a2 +
a3 + oy

aj+agz+2a3, a1 +az, az+as

al + a2 + 2a3, a1 + a2, a2 +
a3z, a2

ai + a2 + 2a3, a1 + a2, az +
agz, a2, a3 +aq

a1 + a2 + 2a3, a1 +az, az +
asz, a2, a3+ aq, 0g

a1 + az + 2a3, a1 + a2, az +
a3, 02, 04

a1 + az + 2a3, a1 +az, az +
az, a3 + og
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190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

a1 + a2 + 2a3, a1 +az2, a2 +
Qag, a3 + o4, g

a1 + a2 + 2a3, a1 +az, az +
agz, 04

a1 +az + 2ag, a1 +az, az

aitaz+2a3, artaz, az, az+
oy

aitaz+2a3, artaz, az, az+
Qyq, 04

al +az+2a3, a1 +az, az, ag
al+a2+2a3, a1 taz, agtas

a1 + a2 + 2a3, a1 +az, ag +
Qyg, 04

a1 +az +2a3, a1 + a2, ag

a1 + a2 + 2a3, as + 2a3 + 204

a] + az + 2a3, az + 2a3 +
204, a2 + a3

a] + az + 2a3, az + 2a3 +
204, a2 + @3, a2

a1 + a2 + 2a3, a2 + 2a3 +

204, Qg
a1 + ag + 2a3, az + 2a3 + ay

a] + az + 2a3, az + 2a3 +

o4, a2 + a3+ oy
a1+oaz+2a3, az+2az3+ag, az

a1 + a2 + 2a3, a2 + 2a3 +

a4, 2, 04

a1+as+2a3, az+2a3+ag, as
al + a2 +2a3, az +az + ag
al + ag + 2a3, az + az

ai + a2 +2a3, az +as, a

a1 +az+2as3, astas, az, as+
ay

ai+az+2as3, astas, az, as+
Qyg, 04

a1 taz+2a3, aztas, az, ag
a] +ags+2a3, as+a3, az+aqa

a1 + a2 + 2a3, az +asz, az +
Qyq, 04

ai + a2 +2a3, az + a3, oq



217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

a1 + az + 2a3, az

ai + a2 +2as, az, ag +oq
al +az+2a3, az, az+ag, g
ay + az + 2a3, a2, oy

ay + a2 + 2a3, az +aq

ay + a2 +2a3, az +aq, aq
ai +az +2as, aq

a1 + oz +2a3 + oy

ay +az + 2a3 + aq, a1 +az

ay + a2 + 2a3 + aq, a1 +
a2, a4+ 2a3 + 204

ay + a2 + 2a3 + ag, a1 +
a2, a2 + 203 + 204, a2 + 203

a] +
az +

a1 + az + 203 + o4,
a2, o2 + 203 + 204,
2a3, a2 + a3 + aq

ay + a2 + 2a3 + aq, a1 +
a2, a2 + 203 + 204, a2 +
203, a2 + a3 + aa, az + a3

ay + a2 + 2a3 + ag, a1 +
az, a2 + 2a3 + 204, az +
2a3, agt+az+aq, az+az, az

ay + a2 + 2a3 + ag, a1 +
az, a2 + 2a3 + 2a4, a2 +
2a3, a2 +asz + aq, az

ay + a2 + 2a3 + aq, a1 +
az, a2 + 2a3 + 204, a2 +
2a3, a2 + a3

ay + a2 + 2a3 + ag, a1 +
a2, a2 + 203 + 204, a2 +
2a3, a2 + a3, a2

ay + a2 + 2a3 + aq, a1 +
a2, a2 + 2a3 + 204, a2 +
2a3, a2

ay + a2 + 2a3 + ag, a1 +
a2, ag+2a3+204, azt+az+ay

ay + a2 + 2a3 + ag, a1 +
a2, a2+ 2a3 + 204, a2+ a3+
ag, a2 + a3

ay + a2 + 2a3 + aq, a1 +
az, az+2a3+2aq4, a2 +az+
Qg, a2 + a3z, az

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

Matvey Surkov

ay + a2 + 2a3 + a4, a1 +
a2, a2+ 2a3 + 204, a2+ a3+
aq, o2

ay + az + 2a3 + ag, a1 +
a2, az + 2a3 + 2a4, a2 + a3

ay + a2 + 2a3 + a4, a1 +
az, ag+2a3+2a4, az+asz, az

ay + a2 + 2a3 + ag, a1 +
a2, az + 2a3 + 2a4, a2

ay + a2 + 2a3 + ag, a1 +
a2, az + 2as

ay + a2 + 2a3 + a4, a1 +

az, az +2a3, ag +az+oq

ay + a2 + 2a3 + a4, a1 +
az, ag+2a3, aztaztaq, az+
a3

ay + az + 2a3 + ag, a1 +
az, ag+2a3, aztaztaq, az+
asz, ag

ay + a2 + 2a3 + a4, a1 +
az, az+2ag, ag+oaz+ag, a2

ay + a2 + 2a3 + a4, a1 +
Qg, ag +2a3, az +as

a1 + a2 + 2a3 + a4, a1 +
a2, az +2a3, az + a3, a2

a1 + a2 + 2a3 + a4, a1 +
a2, az + 2a3, a2

ay + a2 + 2a3 + a4, a1 +
agz, a2 + a3+ aq

ay + a2 + 2a3 + ag, a1 +
agz, a2 a3 +ag, a2 + a3

ay + a2 + 2a3 + ag, a1 +
ag, a2 +a3+oq, az+az, a2

ay + a2 + 2a3 + ag, a1 +
agz, a2 + a3+ ag, o2

ay + a2 + 2a3 + ag, a1 +
az, a2 + a3

ay + a2 + 2a3 + ag, a1 +

ag, a2 + a3, a2
ai+az2+2a3+ag, a1 t+az, az

a1 +az+ 203+ 04, a2 +2a3+
200

a1 +a2+ 203+ 04, a2 +2a3+
204, a2 + 203

26

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

a1 +az+2a3+aq, az+2a3+
204, a2 + 203, az + a3z + oy

a1 + a2 + 2a3 + ag, a2 +
23+ 204, ag+2a3, a2 +az+
ag, a2 + a3

a1 + az + 2a3 + ag, a2 +
23+ 204, ag+2a3, a2 +asz+
ag, a2 + a3z, az

o1 +a2+ 203+ o4, a2 +2a3+
204, a2+2a3, aztaztag, az

o1 +a2+ 203+ 04, a2 +2a3+
204, a2 +2a3, az + a3

a1 +az+2a3+aq, az+2a3+
20u, a2 +2a3, a2 + a3, az

a1 +a2+ 203+ 04, a2 +2a3+
2a4, a2 +2a3, az

a1 +az+2a3+ay, az+2a3+
204, a2 + a3+ ag

o1 +az+2a3+aq, az+2a3+
204, a2 + a3 +aq, a2+ o3

a1 +a2+ 203+ o4, a2 +2a3+
204, a2 t+azt+ay, a2 tas, az

a1 +az+2a3+ay, az+2a3+
204, a2 + a3 + ag, a2

a1 +az+2a3+ a4, az+2a3+
204, a2 + a3

o1 +a2+ 203+ o4, a2 +2a3+
204, a2 + a3, ag

a1 +az+2a3+ a4, az+2a3+
204, Qg

a1 + a2 + 203 + a4, oz + 2as3

al + a2 + 2a3 + a4, az +
203, ag + a3+ aa
a1 + az + 2a3 + ag, a2 +

2a3, a2 + a3 + a4, a2 + a3

al + a2 + 2a3 + a4, az +
23, ag+az+aq, az+as, as

a1 + a2 + 2a3 + a4, a2 +
2a3, a2 +az +aq, az

a1 + a2 + 2a3 + ag, a2 +
2a3, az + a3

al + a2 + 2a3 + a4, az +

2a3, a2 + a3, a2
a1taz+2a3+aq, as+2a3, az

a1 +az+2a3+o4, az+az+ag
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282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

a1 + a2 + 203 + o4, az+az+
Qyg, a2+ a3

a1 + a2 + 203 + o4, az+az+
agq, a2 + a3z, a

ay +az +2a3 + a4, az +asz+
a4, Q2

ay +az + 2a3 + aq, a2 +as
a1 taz+2a3+ou, aztas, az
o1 + a2 + 203 + ag, az

a1 + az + 2as + 204

a1+ a4+ 2a3 + 204, a1 +a2 +
203

a1+ a2 +2a3 4204, a1 +oz+
2a3, a1 + a2

a1 +ag+2a3 + 204, a1 +a2 +
2a3, a1 + a2, a2 +2a3 + a4

ay + az + 2a3 + 204, a1 +
a2 +2a3, a1 + a2, a2+ 2a3 +
ag, a2 +2a3

ay + a2 + 203 + 204, a1 +
ag +2a3, a1 + a2, a2 +2a3 +
a4, az +2a3, az +az +aq

a1 + as + 2as + 204, a1 +
az +2a3, a1 + a2, oz +2a3 +
oy, ag+2as, astaztaq, as+
a3

ay + a2 + 203 + 204, a1 +
az +2a3, a1 + a2, a2 +2a3 +
oy, ag+2as, astaztaq, as+
asz, az

ay + az + 2a3 + 204, a1 +
az +2a3, a1 + a2, a2+ 2a3 +
a4, az+2a3, agtaz+ag, a2

ay + a2 + 203 + 204, a1 +
az +2a3, a1 + a2, a2 +2a3 +
a4, az +2a3, az +as

ay + a2 + 203 + 204, a1 +
a2 +2a3, a1 + a2, a2+ 2a3 +
a4, ag + 2a3, a2 + a3, a2

ay + a2 + 203 + 204, a1 +
az +2a3, a1 + a2, a2 +2a3 +
ag, az + 2a3, az

ay + az + 2a3 + 204, a1 +
az +2a3, a1 +az, a2 +2a3 +
Qg, a2 + a3+ ag

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

ay + az + 2a3 + 204, a1 +
a2 +2a3, a1 + a2, a2+ 2a3 +
a4, ag a3+ aq, az +as

ay + a2 + 203 + 204, a1 +
az +2a3, a1 +az, a2 +2a3+
Qq, g +az+aq, ag+az, a

ay + az + 2a3 + 204, a1 +
ag +2a3, a1 + a2, a2+ 2a3 +
Qg, a2 + a3+ ag, o2

ay + az + 2a3 + 204, a1 +
a2 +2a3, a1 + a2, a2+ 2a3 +
agq, ag + a3

ay + a2 + 203 + 204, a1 +
az +2a3, a1 +az, a2 +2a3+
agq, a2 + a3z, az

a1 +az+2a3 4204, a1 +oaz+
2a3, a1+az, az+2az+aq, az

a1 +ag+2a3 + 204, a1 +a2+
203, o1 + a2, a2 + 203

a1 +ag+2a3 +2a4, a1 +a2+
2a3, a1 + a2, az +2a3, a2 +
a3 + oy

a1 +az+2a3 4204, a1 +oaz+
2a3, a1 + a2, a2 + 2a3, az +
az +oq, a2 + a3

a1 +az+2a3 4204, a1 +oaz+
2a3, a1 + a2, a2 + 2a3, az +
az + a4, a2 +az, a2

a1 +ag+2a3 +2a4, a +az+
2a3, a1 + a2, az +2a3, a2 +
a3 + o, a2

a1 +az+2a3 4204, a1 +oaz+
2a3, a1+az, az+2a3, az+as

a1 +ag+2a3 +2a4, ay +az+
2a3, a1 + az, az +2a3, az +
agzg, a2

a1 +az+2a3 4204, a1 +oaz+
2a3, a1 + a2, az + 2a3, a2

a1 +ag+2a3 + 204, ay +az+
203, a1 + @z, a2 + a3z +oa

a1 +ag+2a3 +2a4, ay +a2+
2a3, a1tag, agtaztaq, az+
as

a1 +az+2a3 4204, a1 +oaz+

203, ar1+az, azt+az+oq, az+
a3, 2
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318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

a1 +az+2a3 4204, a1 +oaz+
2a3, a1 +a2, agt+az+tog, az

a) +ag+2a3 +2a4, a1 +az+
203, a1 +ag, az + a3

a) +ag+2a3 +2a4, a1 +a2+
2a3, a1 + a2, az + a3, a2

a1 +az+2a3 4204, a1 o+
2a3, a1 + a2, a2

a1 +az+2a3 4204, a1 +oaz+
2a3, a2 +2a3 + og

a1 +az+2a3 4204, a1 +oaz+
2a3, a2 +2a3 + a4, az +2as3

a1 + oz + 203 + 204, a1 +
az +2a3, az+2a3+oq, az+
203, ag + a3+ aa

al + az + 203 + 204, a1 +
ag + 2a3, az +2a3 + aa, as +
203, az +az + a4, a2 + a3

a1 + az + 2a3 + 204, a1 +
ag + 2a3, az +2a3 + aa, as +
2a3, azt+az+aq, aztasz, az

a1 + oz + 203 + 204, a1 +
ag +2a3, az+2a3+ o4, az+
2a3, a2 + a3 + aa, a2

a1 + oz + 203 + 204, a1 +
az +2a3, az+2a3+ o4, az+
2a3, a2 + a3

a1 + az + 203 + 204, a1 +
ag +2a3, az+2a3+oq, az+
2a3, oz +az, a

al + az + 2a3 + 204, a1 +
ag +2a3, az +2a3 + g, as +
2a3, a2

a) +ag+2a3 +2a4, a1 +a2+
203, ag+203+0y, azt+aztoy

a1 + a2 +2a3 4204, a1 o+
203, o2 + 203 +ag, a2+ a3+
ag, o2 + a3

a) +ag+2a3 + 204, a1 +a2+
203, o2 + 203 +ay, o2+ a3+
ag, a2 + a3, a2

a) +ag+2a3 + 204, a1 +a2+
2a3, a2 +2a3 + g, a2+ a3+
a4, Qg

a1 +az+2a3 4204, a1 +oaz+
2a3, ag +2a3 + a4, az +as

a) +ag+2a3 + 204, a1 +az+
2a3, ag+2aztaq, aztas, az



337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

a1+ a2 +2a3 4204, a1 +oaz+
2a3, a2 + 2a3 + aq, a2

a1 +az+2a3 4204, a1 +oaz+
2a3, a2 +2a3

a1+ a4+ 2a3 + 204, a1 +a2 +
2a3, az +2a3, az + a3 +oq

ay + az + 2a3 + 204, a1 +
az +2a3, az +2a3, az + a3+
Qyg, a2+ a3

ay + a2 + 203 + 204, a1 +
az +2a3, az +2a3, az+a3z+
agq, a2 + a3z, a

a1+ ag+2a3 + 204, a1 +a2 +
2a3, ag+2a3, aztaz+tag, az

a1 +az+2a3 4204, a1 +oz+
2a3, a2 +2a3, az +as

a1 +az+2a3 4204, a1 +oaz+
2a3, az +2as3, az +asz, az

a1+ a4+ 2a3 + 204, a1 +a2 +
2a3, a2 + 2a3, a2

a1 +ag +2a3 + 204, a1 + a2+
203, a2 + a3 + aa

a1+ a4+ 2a3 + 204, a1 +a2 +
203, a2 + a3z +ou, az +oa3

a1 +ag+2a3 + 204, a1 +a2 +
2a3, agt+az+aq, az+az, az

a1 + a2 +2a3 4204, a1 +oaz+
2a3, a2 +asz + aq, az

a1 +ag+2a3 + 204, a1 +a2 +
203, ag + a3

a1+ a2 +2a3 4204, a1 +oaz+
2a3, ag +asz, az

a1 +az+2a3 4204, a1 +oaz+
2a3, az

al+az+2a3+2a4, artas+as

a1+ ag+2a3 + 204, a1 +a2 +
a3, az + 2a3 + a4

a1 +a +2a3 + 204, a1 + a2+
az, a2 +2a3 + g, oz + 203

ay + az + 2a3 + 204, a1 +
az + a3, az +2a3 +aq, az +
203, ag + a3 +ag

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

Matvey Surkov

ay + az + 2a3 + 204, a1 +
az +az, az +2a3 + a4, a2 +
203, a2 + a3+ aa, as + as

ay + az + 2a3 + 204, a1 +
az + a3, a2 +2a3 + a4, a2 +
203, az+asz+aq, az+az, az

ay + az + 2a3 + 204, a1 +
az +ag, a2 +2a3 + a4, a2 +
2a3, a2 +az + aq, a2

ay + az + 2a3 + 204, a1 +
az +az, a2 +2a3 +aq, a2 +
203, az + a3

ay + az + 2a3 + 204, a1 +
az +ag, a2 +2a3 + a4, a2 +
2a3, a2 + a3, a2

a1 +az+2a3 4204, a1 +oaz+
asz, ag+2az+aq, az+2as, az

a1 +ag+2a3 + 204, ay +a2+
az, az+2aztou, aztazt+oa

a1 +a+2a3 +2a4, a1+ +
a3, az +2a3 + aa, a2 + a3z +
a4, a2 + a3

a1 +az+2a3 4204, a1 +oaz+
a3, az +2a3 + o, a2 + a3z +
aq, a2 + a3z, a2

a1 +az+2a3 4204, a1 +oz+
a3, az +2a3 + aa, a2 + a3z +
Qgq, Q2

a1 +az+2a3 4204, a1 +oaz+
a3, a4+ 2a3 + aa, a2 + a3

a1 +ag+2a3 + 204, ag +a2+
ag, az+2a3+aq, az+asz, az

a1 +az+2a3 4204, a1 o+
asz, ag + 2a3 + a4, az

a1 +ag+2a3 +2a4, ag +az+
ag, a2 + 2as

a1 +ag+2a3 +2a4, a1 +a2+
a3, az +2a3, az + a3+ oy

a1 +ag+2a3 +2a4, ay +a2+
asz, ag+2as, aztaztag, az+
a3

a1 +ag+2a3 + 204, a +a2+
a3, a2+2a3, aztaztas, az+
a3z, a2

a1+ ag+2a3 + 204, ay +a2+

as, az+2a3, aztaz+ag, az
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375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

a1 +az+2a3 4204, a1 +oaz+
as, az +2a3, az +as

a1 +az+2a3 4204, a1 o+
asz, az +2as3, az +az, a2

a1 + a2 +2a3 4204, a1 o+
asz, ag + 2a3, a2

a1 + a2 +2a3 4204, a1 +oaz+
ag, ag + a3 +ag

a1 + a2 +2a3 4204, a1 o+
ag, ag + a3+ oq, az + a3

a1 + a2 +2a3 4204, a1 +oaz+
ag, a2 + a3+ o4, a2 + a3z, a2

a1 +az+2a3 4204, a1 +oz+
az, a2 + a3 + a4, a2

a) +ag+2a3 +2a4, a1 +a2+
a3, a2 + o3

a) +ag+2a3 + 204, a1 +a2+
ag, a2 + a3, a2

a) +ag+2a3 +2a4, a1 +az+
asz, a2

al + ag + 2a3 + 24, a1 + ag

al + az + 2a3 + 204, a1 +
a2, a2 +2a3 +aq
a1 + az + 2a3 + 204, a1 +

a2, o2 +2a3 + o4, az + 203

a1 + az + 2a3 + 204, a1 +
az, a2 + 2a3 + a4, a2 +
2a3, az + a3

a1 + oz + 203 + 204, a1 +
az, a2 + 2a3 + a4, a2 +
2a3, a2 + a3, a2

a1 + az + 2a3 + 204, a1 +

ag, ag+2a3+aa, az+2as3, as

a1 + ag + 2a3 + 204, a1 +
az, a2 +2a3 +aq, a2 + a3

a1 + ag + 2a3 + 204, a1 +
a2, az+2az+ay, az+as, a2

a1 + ag + 2a3 + 204, a1 +
az, az +2a3 + a4, a2

a1 + oz + 203 + 204, a1 +
az, az +2a3

a1 + oz + 203 + 204, a1 +

az, az +2a3, ag + a3 +oq
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396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

ay + az + 2a3 + 204, a1 +
az, az+2a3, agtaz+ag, a2

ay + a2 + 203 + 204, a1 +
az, az + 2a3, az

ay + a2 + 203 + 204, a1 +
agz, a2 + a3+ ag

ay + az + 2a3 + 204, a1 +
ag, a2 + a3+ aq, a2+ as

ay + az + 2a3 + 204, a1 +
a2, a2 + a3+ aa, a2

ay + az + 2a3 + 204, a1 +
agz, a2 + a3 +aq, a2, a3

ay + a2 + 203 + 204, a1 +
agz, a2 + a3+ ag, a3

ay + a2 + 203 + 204, a1 +
az, a2 + a3

ay+az+2a3+2a4, ar+az, az

a1 + az + 203 + 24,
az, a2, ag

a; +

ay+az+2a3+2a4, ar+az, as

a1 taz+2a3+204, as+2a3+
aq

a1 +az+2a3+2a4, az+2a3+
ay, a2 + 2a3

a1 +as+2a3+2a4, az+2a3+
aq, a2+ 2a3, az + a3

a1 +as+2a3+2a4, az+2a3+
a4, ag + 23, a2 + a3, a2

a1 +az+2a3+204, as+2a3+
a4, ag + 2a3, az

a1t az+2a3+204, as+2a3+
a4, o2 + o3

a1 +az+2a3+2a4, az+2a3+
a4, 02 + a3, o2

a1 +az+2a3+2a4, az+2a3+
Qq, Q2

a1 + a2 +2a3 + 204, a2 +2a3

ay + az + 2a3 + 204, a2 +
2a3, a2 + a3 + aq
ay + a2 + 203 + 204, az +

2a3, ag + a3 +aq, a2

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

435.

436.

437.

438.

439.

440.

441.

al + a2 + 2a3 + 2a4,
2a3, a2

az +

a1tag+2a3+2a4, azt+az+ay

ay +az+2a3 +204, s +az+
a4, a2 + a3

ay +az+2a3 +204, s +az+
a4, Q2

ay +az+2a3 +204, az+az+
a4, 02, 3

ay +az+2a3 +204, az+az+
a4, 3

ay + az + 2a3 + 2aq, a2 + a3
ay + a2 + 2a3 + 2a4, a2

ay + az + 2a3 + 204, a2, a3
ay + a2 + 2a3 + 204, a3

ay + 2a2 + 2a3

a1 42024+ 2a3, a1 +az+2a3+
2004

a1 42024 2a3, a1 +az+2a3+
2a4, a2 + 203 + o4

a1 42024 2a3, a1 +az+2a3+
204, 2 + a3+ 04

a1 42024+ 2a3, a1 +az+2a3+
204, az + a3z + o4, a3

a1 42024+ 2a3, a1 +az+2a3+
204, a3

a1 42024 2a3, a1 +az+2a3+
a4

a1 42024+ 2a3, a1 +az+2a3+
a4, ag + 2a3 + 204

a1 +2a2+4+2a3, a1 +az+2a3+
ay, a2 +2a3 + 204, ag

a1 42024+ 2a3, a1 +az+2a3+
ag, a2 + a3+ aq

a1 +2a2+4+2a3, a1 +az+2a3+
Qq, a3 + 0yq

a1 +2a2+42a3, a1 +az+2a3+
a4, 03 + o4, 0y

a1 42024+ 2a3, a1 +az+2a3+
g, 04

a1 +2az2+2a3, aitaztaz+ag
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442.

443.

444.

445.

446.

447.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

460.

461.

462.

463.

464.

465.

ay +2a2 +2a3, a1 +az +a3z+
ay, az +2a3 + 204

a1 +2az+2a3, a1 tazt+az+
a4, a2 +2a3 + 2a4, az +ag

a1 +2az+2a3, a1 tazt+az+
a4, ag+2a3+2a4, aztag, a3

a1 +2a2 +2a3, a1 +az+az+
ayg, az + 2a3 + 2a4, a3

ay +2a2 +2a3, a1 +az +a3z+
ay, a2 + 203 + oy

ay +2a2 +2a3, a1 +az +a3z+
a4, a2 +2a3 +aq, az

ay +2a2 +2a3, a1 +az +a3z+
a4, a3z +aq

a1 +2a2+2a3, a1 tazt+az+
Qyg, O3

a1 +2a2 4203, a1 a2 +az+
Qag, a3, 04

a1 +2az+2a3, a1 tazt+az+
Qyg, 04

a1 + 2a2 + 2a3, o1

a1 +2a2 +2a3, a1, az+2a3+
204

a1 +2az2+2a3, a1, az+2a3+
204, a3

a1 +2az2+2a3, a1, az+2a3+
ay

a1 +2a2 +2a3, a1, az+2a3+
a4, a3z +aq

a1 +2a2 +2a3, a1, az+2a3+
Qq, a3 + o4, aq

a1 +2a2 +2a3, a1, az+2a3+
Qyq, 04

a1 +2a2+2a3, a1, aztaztas

a1 +2a2 +2a3, a1, ag+a3z+
a4, a3z +aq

a1 +2a2 +2a3, a1, ag+a3z+
a4, a3

a1 +2a2 +2a3, a1, ag+a3z+
o4, a3, a4

a1 +2a2 + 2a3, a1, az +az+
Qyg, 04

a1 +2a2 +2a3, a1, az + a4

ai + 2a2 + 2a3, ai, a3



466.

467.

468.

469.

470.

471.

472.

473.

474.

475.

476.

477.

478.

479.

480.

481.

482.

483.

484.

485.

486.

487.

488.

489.

ai + 2a2 + 2a3, a1, a3, a4
ay + 2a2 + 2a3, a1, ag
a1 +2a2 +2a3, az+2a3+ 20y

a1 + 2az + 2a3, az + 2a3 +
204, a3

a1 + 2a9 + 23, as +2a3 + oy

a1 + 2az + 2a3, az + 2a3 +
Qq, a3+ 0y

ai + 2az + 2a3, a2 + 2a3 +
Qg, a3+ o4, a4

a1 + 2az + 2a3, az + 2a3 +
g, Q4

a1 + 2as + 2a3, a2 + a3 + aa

a1 + 2a2 + 2as,
Qg, a3+ oy

az + az +

a1 +2a2+2a3, as+az+aq, a3

ay + 2a2 + 2as,
o4, 03, 4

az + a3 +

al+2a2+2a3, agtaztaq, ag
a1 + 2az + 2a3, az + oy

a1 + 2az + 2as3, ag

a1 + 2a9 + 2a3, a3, ag

a1 + 2az + 2as3, a4

a1 + 2az + 2a3 + oy

a1 +2a2 + 203+, a1 o+
2a3 + 204

a1 +2a2 4203+ a4, a1 a2+
2a3 + 2014, a1 + az + 2a3

a1 +2a2 + 203+, a1 o+
203 + 204, a1 +az2+2as3, az+
203

a1 +2a2 +203 + o4, a1 +oaz+
203 + 204, a1 +az2+2as, az+
ay

a1 +2a2 + 203+ a4, a1 +a2+
23424, a1 +az+2a3, az+
Qyq, O3

a1 +2a2 + 203+ a4, a1 a2+
2a3 + 2au4, a1 + az + 2a3, as

490.

491.

492.

493.

494.

495.

496.

497.

498.

499.

500.

501.

502.

503.

504.

505.

506.

507.

508.

509.

510.

Matvey Surkov

a1 +2a2 +203 + o4, a1 o+
2a3 + 2au4, ag + 2a3

a1 +2a2 + 203+ o4, a1 o+
2a3 + 2au4, a3 + aa

a1 +2a2 + 203+ o4, a1 o+
2a3 + 204, a3 + o4, a3

a1 +2a2 +203 + o4, a1 o+
203 + 24, a3

a1 +2a2 + 203+ o4, a1 o+
2a3

a1 +2a2 + 203+, a1 +oaz+
203, o2 + 203 + 204

a1 +2a2 +203+ o4, a1 o+
2a3, a3 + aa

a1 +2a2 + 203+, a1 +oaz+
2a3, a3 + aa, a3

a1 +2a2 +203 + o4, a1 +oaz+
2a3, a3

a1 + 2az + 2a3 + a4, a1

ay +2a2 +2a3 +ag, a1, az+
203 + 204

ay +2a2 +2a3 +ag, a1, az+
2a3 4+ 2014, ag + 2a3

ay +2a2 +2a3 +ag, a1, az+
203 + 24, a2 +2a3, a3 +oq

ay +2a2 +2a3 +ag, a1, az+
203 + 204, a2 + 203, az +

a4, O3

a1 + 202 +2a3 + s, a1, as+
2a3 + 2au4, ag + 2a3, as

a1 + 202 +2a3 + s, a1, as+
2a3 + 2014, a3z + aq

a1 4+ 202 +2a3 + s, a1, o+
2a3 + 2014, a3z + a4, a3

a1 + 202 +2a3 + s, a1, as+
2a3 + 2014, a3

a1 + 202 +2a3 + s, a1, as+
203

a1 4+ 202 +2a3 + s, a1, as+
2a3, a3 + oy

ai +2a2 +2a3 + a4, a1, az+
23, az + a4, a3
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511.

512.

513.

514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

525.

526.

527.

528.

529.

530.

531.

532.

533.

534.

a1 4+ 2a2 + 203 + a4, a1, as +
2a3, a3

a1 +202+2a3+04, a1, aztoy

al + 202 +2a3 + a4, a1, az+
Qq, 3

a1 +2a2 + 2a3 +aq, a1, as

a1 +2a2+2a3+ oy, az+2a3+
204

a1 +2a2+2a3+ oy, az+2a3+
204, a2 +2a3

a1 +2a2+2a3+ o4, as+2a3+
204, a2 +2a3, az + aa

a1 +2a2+2a3+ oy, az+2a3+
204, a2 +2a3, a3z + aa, a3

a1 +2a2+2a3+ o4, as+2a3+
2ay4, a2 +2a3, as

a1 +2a2+2a3+ oy, az+2a3+
204, a3 + a4

a1 +2a2+2a3+ o4, az+2a3+
204, a3 + a4, a3

a1 +2a2+2a3+ oy, az+2a3+
204, o3

a1 +2a2 + 203 + a4, a2 +2as3

a1 + 2a2 + 2a3 + a4, az +
2a3, a3 + ay

a1 + 202 + 203 + o4, a2 +
2a3, a3z + a4, a3

a1 + 2a2 + 2a3 + a4, az +

2a3, as

a1 + 202 + 203 + a4, a3 +au
a1 +202+2a3+a4, aztag, a3
ai + 2a2 + 2as + a4, a3

a1 + 2a2 + 203 + 2a

a1+2a242a3420, a1 +2a2+
2a3

a1 +202+2a3+204, a1 +202+
2a3, a1 + a2 +2a3 +ay

a1+2a242a3420, a1 +2a2+
203, a1 a2 +2a3 +ag, a; +
a2 + 2ag

a1+2a242a3420, a1 +2a2+
203, a1 +az+2a3+oq, a1+
a2 + 2a3, a2 + 2a3
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535.

536.

537.

538.

539.

540.

541.

542.

543.

544.

545.

546.

547.

548.

549.

550.

551.

552.

a1 +2a2+2a3+204, a1 +2a2+
2a3, a1 +az2 +2a3 +aq, a1 +
az + 2a3, a3z + aq

a1 +2a2+2a3+204, a1 +2a2+
2a3, a1 + a2 +2a3 +aq, a1 +
az 4+ 2a3, a3 + a4, ag

a1 +2a2+2a3+20, a1 +2a2+
2a3, a1 + a2 +2a3 + a4, a1 +
az + 2a3, asg

a1 42024203420, a1 +2a2+
2a3, a1 + a2 +2a3 + a4, az +
2a3

a1 +2a2+2a3+20, a1 +2a2+
2a3, altaz+2aztag, agt+ay

a1+2a2+203+204, a1 +2a2+
2a3, a1 + a2 +2a3 + a4, az +
Qq, Q3

a1+2a2+203+204, a1+2a2+
203, a1 + a2 +2a3 + a4, a3

a1 +2a2+2a3+20, a1 +2a2+
203, a1 + a2 + 2a3

a1+2a2+203+204, a1 +2a2+
2a3, a1 +ags+2a3, a2+ 2a3+
[e %]

a1+2a2+203+204, a1 +2a2+
2a3, a1 +az +2a3, az +oq

a1 +2a2+2a3+20, a1 +2a2+
2a3, a1 +az+2a3, az+aq, as

a1+2a2+203+204, a1+2a2+
2a3, a1 + a2 + 2a3, a3

a1 +2a2+2a3+204, a1 +2a2+
2a3, o1

a1+2a2+203+204, a1+2a2+
2a3, a1, az + 2a3 + a4

a1 +2a2+2a3+20, a1 +2a2+
2a3, a1, a2 + 2a3 + aq, az +
203

a1 +2a2+2a3+20, a1 +2a2+
2a3, a1, a2 + 2a3 + aq, a2 +
2a3, a3 + oy

a1 +2a2+2a3+20, a1 +2a2+
2a3, a1, a2 + 2a3 + aq, a2 +
2a3, a3 + a4, a3

a1 +2a2+2a3+20, a1 +2a2+
2a3, a1, a2 + 2a3 + aq, a2 +
2a3, a3

553.

554.

555.

556.

557.

558.

559.

560.

561.

562.

563.

564.

565.

566.

567.

568.

569.

570.

571.

572.

a1+2a24+2a3420, a1 +2a2+
2a3, a1, az+2a3+taq, azt+aq

a1+2a242a3420, a1 +2a2+
2a3, a1, a2 + 2a3 + aa, a3z +
Qq, 3

a1 +2a2+2a3+204, a1+202+
2a3, a1, a2 +2a3 + a4, as

a1+2a242a3420, a1 +2a2+
2a3, a1, az +2as3

a1+2a242a3420, a1 +2a2+
2ai3, a1, a2 + 2a3, a3z + aq

a1+2a2+2a3+204, a1+202+
2a3, a1, az+2a3, az+oa, az

a1 +202+2a3+204, a1+202+
2a3, a1, a2 +2a3, ag

a1 +202+2a3+204, a1+202+
2a3, a1, a3 +oq

a1+2a242a3420, a1 +2a2+
203, o1, a3 + a4, a3

a1+2a242a3420, a1 +2a2+
2a3, o, a3

a1 +2a2+2a3+204, a1+202+
2a3, a2 + 2a3 +aq

a1 +2a2+2a3+204, a1+202+
2a3, a2 + 2a3 + aq, az +2as3

ay + 22 + 2a3 + 204, a1 +
2c9 + 23, a2 +2a3+ a4, az+
2ai3, a3 + aa

ay + 22 + 2a3 + 204, a1 +
209 +2a3, a2 +2a3+aq, az+
203, a3 + o4, as

a1 + 2a2 + 203 + 204, o1 +
2ai0 +2ai3, ag + 23+, as+

2a3, a3

a1 +2a2+2a3+204, a1+202+
2a3, a2 +2a3 + a4, a3z + ag

a1+2a242a3420, a1 +2a2+
2a3, a2+2a3+ay, az+oy, asz

a1+2a24+2a3420, a1 +2a2+
2a3, a2 + 2a3 +aq, ag

a1 +202+2a3+204, a1+202+
2a3, a2 + 2a3

a1+2a2+2a3+204, a1+202+
2a3, az + 2a3, a3z + a4
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573.

574.

575.

576.

577.

578.

579.

580.

581.

582.

583.

584.

585.

586.

587.

588.

589.

590.

591.

592.

593.

594.

a14+2a242a3420, a1 +2a2+
2a3, a2 +2a3, a3 + a4, a3

a1+2a242a3420, a1 +2a2+
203, o2 + 203, as

a1 +2a2+2a3+204, a1 +202+
2a3, a3 + a4

a1+2a242a3420, a1 +2a2+
2a3, a3 + a4, a3

a1 +2a2+2a3+204, a1 +202+
2a3, a3

a1 +2a2+2a3+ 204, a1 +az+
2a3 + ayq

a1 +2a2+2a3+204, a1 +az+
2a3 + a4, a1 + a2 + 2a3

a1 +2a2+2a3+204, a1 +az+
2a3 + a4, a1 + a2 +2a3, as +
2a3

a1 +2a2+2a3+204, a1 +az+
234y, alt+az+2a3, as+as

a1 +2a2+2a3+ 204, a1 +az+
203 +ayq, a1 +az2 +2a3, az+
az, a3

a1 +2a2+2a3+ 204, a1 +az+
2a3 + aq, a1 + a2 + 2a3, a3

a1 +2a2+2a3+204, a1 +az+
203 + a4, a2 +2ag3

a1 +2a2+2a3+ 204, a1 +az+
2a3 + aq, a2 +as

a1 +2a2+2a3+ 204, a1 +az+
203 + aq, az +az, ag

a1 +2a2+2a3+204, a1 +az+
2a3 + a4, a3

a1 +2a2+2a3+204, a1 +az+
2a3

a1 +2a2+2a3+204, a1 +az+
2a3, a2 +2a3 + ay

a1 +2a2+2a3+ 204, a1 +az+
2a3, a2 + a3

a1 +2a2+2a3+204, a1 +azs+
2a3, a2 + a3, az + o4

a1 +2a2+2a3+204, a1 +az+
2a3, a3 + a4

a1 +2a2+2a3+ 204, a1 +az+
as

a1 +2a2+2a3+204, a1 +az+
as, az +2a3 + aq



595.

596.

597.

598.

599.

600.

601.

602.

603.

604.

605.

606.

607.

608.

609.

610.

611.

612.

613.

614.

615.

a1 +2a2+2a3+204, a1 +az+
az, az +2a3 + g, oz + 203

ay + 2az + 2a3 + 204, a1 +
az + a3, az +2a3 + agq, a2 +
2a3, a3z + aa

ay + 2a2 + 2a3 + 204, a1 +
az +ag, az +2a3 + ag, a2 +

203, ag + a4, ag

a1 +2az+2a3+204, ay+oaz+
ag, ag+2a3+aq, az+2as3, as

a1 +2a2+2a3+204, a1 +az+
asz, a2 +2a3 +aq, ag +oyq

a1 +2a2+2a3+204, a1 +az+
a3, az+2a3+ a4, az+aq, a3

a1 +2a2+2a3+204, a1 +az+
ag, a2 +2a3 +aq, a3

a1 +2a2+2a3+204, a1 +az+
asz, a2 + 2as

a1 +2a2 4203+ 204, a1 +az+
a3, ag + 2a3, a3z + aa

a1 +2a2+2a3+204, a1 +oaz+
a3, ag + 2a3, a3z + a4, a3

a1 +2a2+2a3+204, a1 +oaz+
as, az +2a3, as

a1 +2a2+2a3+204, a1 +oaz+
az, a3+ o4

a1 +2a2+2a3+204, a1 +oaz+
asz, a3z + a4, a3

a1 +2a2+2a3+204, a1 +oaz+
as, as

ay + 2a2 + 2a3 + 204, a1

a1 + 20242034204, a1, az+
2a3 + ay

a1 4202+ 2a3 + 204, a1, as+
2a3 + a4, az +2asg

a1 4202 423 + 204, a1, as+
2a3 + a4, a2 + 2a3, a3

a1 4202+ 2a3 + 204, a1, as+
203 + a4, a3

a1 +2a2 4+ 2a3 + 204, a1, as+
203

a1 4202+ 2a3 4204, a1, az+
203, a3 + s

616.

617.

618.

619.

620.

621.

622.

623.

624.

625.

626.

627.

628.

629.

630.

631.

632.

633.

634.

635.

636.

637.

638.
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a1+ 202 +203 4204, a1, az+
a3

a1+ 202 +2a3 4204, a1, az+
az, a3 + o4

a1+ 202+ 2034204, a1, az+
az, a3z + aa, a3

a1+ 2a2 + 203+ 204, a1, as+
as, a3

a1+ 202+ 2034204, a1, az+
Qg

a1+ 202 +203 4204, a1, az+
a4, a3

a1 + 2a + 2a3 + 204, a1, a3

a1 +2a2+2a3+204, az+2a3+
ay

a1+2a24+2a3420, az+2a3+
ag, a2 +2a3

a1+2a242a3420, az+2a3+
a4, ag + 2a3, az

a1+202+2a3+204, az+2a3+
ag, a3

a1 +2a2 +2a3 4+ 204, a4+ 2a3

ay + 22 + 2a3 + 204, a2 +
2ai3, a3 + aa

ay +2a2 + 2a3 +2a4, a2 +asg

ay + 2a2 + 2a3 + 204, a2 +
az, az + aq

ay + 22 + 2a3 + 204, a2 +
agz, a3 + a4, a3

ay + 2a2 + 2a3 + 204, a2 +
as, a3

ay +2a2 + 2a3 +2a4, az +ag

ay + 22 + 2a3 + 204, a3z +
a4, a3

a1 + 2a + 2a3 + 204, a3
a1 + 2az + 3asz + oy

a1 +2a2+3az+ oy, a1 +2a2+
2a3 + 204

a1 +2az+3az+oy, a1 +2a2+
203 + 204, i
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639.

640.

641.

642.

643.

644.

645.

646.

647.

648.

649.

650.

651.

652.

653.

654.

655.

656.

657.

658.

659.

660.

661.

662.

663.

a1 +2a2+3a3+ay, a1 +2a2+
2a3 + 20, a1, a4

a1 +2a2+3az3+ oy, a1 +2a2+
2003 + 20, a4

a1 +2a2+ 303+ a4, o1 +a2+
2a3 + 204

a1 +2a2 4303+ o4, o1 a2+
2a3 + 204, a1 + a2

a1 +2a2+ 303+ a4, a1 +a2+
2a3 + 204, a1 + a2, a2

a1 +2a2 +3a3+ o4, a1 o+
203 + 201, a1 + a2, a2, a4

a1 + 202+ 303+ a4, o1 a2+
2a3 + 204, a1 + o2, aq

a1 +2a2+ 303 +a4, o1 +a2+
2a3 + 204, a2

a1 +2a2 +3a3+ o4, a1 o+
203 + 204, a2, a4

a1 +2a2+ 303+ a4, o1 +a2+
2a3 + 204, o4

a1 + 2a2 + 3a3 + aa, a1 + as

a1 + 2a2 + 3a3 + aq, a1 +
az, az +2a3 + 204
a1 + 2az2 + 3az + a4, a1 +

a2, a2 +2a3 + 204, ag
a1 +2az+3az+ay, ar+az, ag
a1 4+ 2a2 4+ 3a3 + o4, o1

a1 + 202 +3a3 + s, a1, as+
2a3 + 204

a1 + 202 +3a3 + s, a1, as+
2a3 + 204, a2

a1 + 202 +3a3 + o, o1, o+
203 + 204, a2, a4

a1 + 202 +3a3 + s, a1, as+
2a3 + 204, oy

a1 + 2a2 + 3az + aq, a1, az
a1 +2az+3az+ag, ar, az, oy
a1 + 2a2 + 3a3 + a4, a1, a4

a1 +2a2+3a3+ a4, az+2a3+
20

a1 +2a2+3a3+ oy, az+2a3+
204, Qg

a1 +2a2+3a3+o4, as+2a3+
204, a2, a4
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664.

665.

666.

667.

668.

669.

670.

671.

672.

673.

674.

675.

676.

677.

678.

679.

680.

681.

682.

683.

684.

685.

686.

687.

688.

a1 +2a2+3az+ oy, az+2a3+
204, o4

a1 + 2a2 + 3a3 + ag, a2

a1 4+ 2az + 3a3 + a4, az, as
a1 + 2a2 + 3a3 + a4, g

a1 + 2as + 3as + 2ay

a1 +2a2+3a3+204, a;+2a2+
2a3

a1 +2a2+3a3+204, a1 +2a2+
2a3, o1

a1 +2a2+3a3+204, a1 +az+
203

a1 +2a2+3a3+204, a1 +az+
203, a1 + a2

a1 +2a2+3az3+204, a1 +oaz+
2a3, a1 + a2, az

a1 +2a2+3az3+204, a1 +az+
2a3, a2

a1 +2az + 3a3 + 204, a1 + a2

ay + 2az + 3az + 2a4, a1 +
az, a2 + 2as

ay + 2a2 + 3as + 24, a1

a1 4202 +3a3 + 204, a1, as+
203

a1 +2a2+3a3 4204, a1, az+
2a3, ag

a1 + 2az + 3a3 + 2au4, a1, as
a1 +2a2 +3a3+ 204, az+2a3

ay + 2a2 + 3az + 204, a2 +
2a3, ag

ay + 2a2 + 3as + 204, a2
a1 + 2az + 4az + 204

a1+2a2+4a3+204, a1+2a2+
203 + 204

a1+2a2+4a3+204, a1+2a2+
2a3 + 2au4, a1 + 22 + 2a3

a1+2a2+4a3+204, a1+2a2+
2a3 + 204, a1 4 2a2 +2a3, ag

a1+2a2+4a3+204, a1+2a2+
2a3 + 2014, a1 + az + a3

689.

690.

691.

692.

693.

694.

695.

696.

697.

698.

699.

700.

701.

702.

703.

704.

705.

706.

707.

708.

a1 +2a2+4a3+20, a1 +2a2+
23424, a1+az+az, ar+asz

a1+2a2+4a3+20, a1 +2a2+
203 +2a4, o1 + a2 +asz, o1+
a2, a2

a1+2a2+4a3+204, a1+202+
203 + 204, a1 + a2 + a3, a2

a1+2a2+4a3+20, a1 +2a2+
2a3 + 204, a1 + a2, a2 + a3

a1+2a2+4a3+20, a1 +2a2+
203 + 2014, a1 + a2

a1+2a2+4a3+204, a1+202+
203 + 24, o1

a1+2a2+4a3+204, a1+202+
2a3 + 2014, a1, a2 + a3

a1+2a2+4a3+204, a1+202+
203 + 204, a1, az + a3, az

a1+2a2+4a3+20, a1 +2a2+
2a3 + 204, a1, Q2

a1+2a2+4a3+20, a1 +2a2+
2a3 + 204, az +ag

a1+2a2+4a3+204, a1 4202+
2a3 + 2014, ag + a3z, a2

a1 +2a2+4a3+204, a1+202+
203 + 204, a2

a1+2a2+4a3+20, a1 +2a2+
2a3 + ay

a1 +2a2+4a3+20, a1 +2a2+
2003 + a4, a1

a1 +2a2+4a3+20, a1 +2a2+
2a3

a1+2a2+4a3+204, a1+202+
203, a1 + a2 + a3 +aq

a1 +2a2+4a3+204, a1+202+
2a3, a1 taztazt+ag, ar+az

a1+2a2+4a3+20, a1 +2a2+
2a3, a1 + o2 + a3 +aq, a1 +
a2, a2

a1+2a2+4a3+204, a1+202+
2a3, a1 + a2 + a3 +aq, a1 +
a2, a2, 04

a1+2a2+4a3+20, a1 +2a2+

203, o1 + a2 + a3 +ag, a1 +
g, aq
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709.

710.

711.

712.

713.

714.

715.

716.

717,

718.

719.

720.

721.

722.

723.

724.

725.

726.

727.

728.

729.

730.

a1+2a2+4a3+20, a1 +2a2+
203, a1 + a2 +az +aq, az

a1+2a2+4a3+20, a1 +2a2+
203, a1 t+az+aztag, az, oy

a1+2a2+4a3+20, a1 +2a2+
203, a1 + a2 + a3+ o4, g

a1 +2a2+4a3+204, a1 +202+
2a3, a1 + oz

a1 +2a2+4a3+204, a1 +202+
2a3, a1 + a2, ag + a3 +oq

a1 +2a2+4a3+204, a1 +202+
2a3, a1 +a2, ag+aztoq, o

a1+2a2+4a3+20, a1 +2a2+
2a3, a1 + a2, aa

a1+2a2+4a3+20, a1 +2a2+
2a3, a1

a1+2a2+4a3+204, a1 +2a2+
2a3, a1, ag + a3+ o4

a1 +2a2+4a3+204, a1 +202+
2a3, a1, a2 a3 +ag, a2

a1 +2a2+4a3+204, a1 +202+
2a3, a1, ag+a3+aq, az, ag

a1+2a2+4a3+20, a1 +2a2+
2a3, a1, a2 + a3 + o, a4

a14+2a2+4a3+20, a1 +2a2+
2a3, o1, az

a1+2a2+4a3+20, a1 +2a2+
203, a1, a2, g

a1 +2a2+4a3+204, a1 +202+
203, a1, ag

a1 +2a2+4a3+204, a1 +202+
2a3, a2 + a3 + oy

a1 +2a2+4a3+204, a1 +202+
2a3, az + a3 +aq, a2

a1+2a2+4a3+20, a1 +2a2+
2a3, a2 + a3z + aa, a2, aa

a14+2a2+4a3+20, a1 +2a2+
2a3, a2 +az +aq, oy

a1+2a2+4a3+20, a1 +2a2+
2a3, az

a1 +2a2+4a3+204, a1 +202+
203, a2, a4

a1 +2a2+4a3+204, a1 +202+
2a3, o4



731.

732.

733.

734.

735.

736.

737.

738.

739.

740.

741.

742.

743.

744.

745.

746.

747.

748.

749.

750.

751.

752.

a1 +2az+4az+204, a1 +az+
a3 + oy

a1 +2a2+4az+204, a1 +az+
asz + aa, a1 + a2

a1 +2a2+4az+204, a1 +az+
az +aq, a1 + a2, a2 +az

a1 +2a2+4az+204, a1 +az+
a3z +oayq, a1 a2, a2 a3, a2

a1 +2a2+4az+204, a1 +az+
ag + a4, a1 + a2, a2

a1 +2az+4az+204, a1 +az+
asz + aa, a2+ az

a1 +2a2+4az+204, a1 +az+
az + a4, az +az, a2

a1 +2a2+4az+204, a1 +az+
a3 + o, a2

a1+2az+4az+204, a1 +oaz+
as

a1 +2az+4az+204, a1 +oaz+
az, a1+ oz

a1 +2az+4az+204, a1 +oaz+
az, a1 + a2, a2 + a3 +aq

a1 +2az+4az+204, a1 +oaz+
az, a1 + az, az

a1 +2az+4az3+204, a1 +oaz+
az, a1+ a2, a2, oq

a1 +2az+4az+204, a1 +oaz+
az, a1 + a2, aq

a1 +2az+4az+204, a1 +oaz+
asz, a2 + a3+ ag

a1 +2az+4az+204, a1 +oaz+
g, az + a3 + a4,

a1 +2az+4az+204, a1 +oaz+
agz, a2 + a3 +ag, 02, o4

a1 +2a2+4az+204, a1 +az+
gz, ag + a3 + a4, oy

a1 +2a2+4az+204, a1 +az+
a3z, a2

a1 +2a2+4az+204, a1 +az+
a3, 2, 04

a1 +2a2+4az+204, a1 +az+
a3z, o4

a1 +2a9 +4as + 204, a1 + a2

753.

754.

755.

756.

757.

758.

759.

760.

761.

762.

763.

764.

765.

766.

767.

768.

769.

770.

771

772.

773.

774.

775.

776.

Matvey Surkov

ay + 2a2 + 4az + 204, a1 +
agz, a2 a3+ ag

ay + 2c2 + 4az + 204, a1 +
ag, a2 + a3

ay + 2a2 + 4az + 204, a1 +
ag, a2 + a3, aq

ay + 2a2 + 4az + 204, a1 +

a2, 04
ay + 2a2 +4asz + 204, a1

a1+ 202 +4a3 4204, a1, az+
a3+ ayg

a1+ 22 +4a3+ 204, a1, as+
asz + o, a2

a1+ 22 +4a3+ 204, a1, as+
as

a1+ 202 +4a3 4204, a1, az+
a3z, a2

a1+ 22 +4a3+ 204, a1, az+
a3, o2, 04

a1 +2a2 +4az 4204, a1, az+
asz, a4

ay + 2ag +4ag + 204, a1, a2

a1 + 2a2 + 4das + 2au4, a1, az,
Qs

ay + 2ag +4ag + 204, a1, ag

a1 +2az+4az+204, aztaz+
ay

a1 +2a2+4a3z+204, az+az+
Qyq, Q2

a1 + 2a9 +4as +2a4, az + a3

ay + 2a2 + 4az + 204, a2 +
a3z, a2

ay + 2a2 + 4az + 204, a2 +
as, a2, a4

ay + 2a2 + 4az + 204, a2 +
asz, o4

ay + 2ag +4ag + 204, a2
a1 + 2ag +4a3 + 204, a2, ag
ay + 2a2 +4as + 204, ag

a1 + 3az + 4as + 204
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7.

778.

779.

780.

781.

782.

783.

784.

785.

786.

787.

788.

789.

790.

791.

792.

793.

794.

795.

796.

797.

a1+ 3az2+4a3+2a4, a1 +az+
2a3 + 204

a1+ 3az2+4a3+2a, a1 +az+
2a3 + 204, a1 + a2 + 203

a1 +3az2+4a3+2a, a1 +az+
203+ 204, a1 +oa2+2a3, o1+
a2

a1 +3az+4a3+204, a1 +az+
23 4+ 204, a1 + a2+ 2a3, a1 +
a2, a1

a1 +3az2+4a3+2a4, a1 +az+
2a3 + 204, o1 + a2 + 203, a1

a1+ 3az2+4as3+2a, a1 +az+
203 + 204, a1 +az + a3

a1 +3az2+4a3+2a, a1 +as+
2a3 + 204, a1 + a2 + a3, o1

a1 +3az+4a3+204, a1 +az+
2a3 + 204, a1 + a9

a1 +3az+4a3+204, a1 +az+
203 + 204, a1 + a2, a1

a1 +3az+4a3+204, a1 +as+
2a3 + 20, a1 + a2, a1, a3

a1 +3az+4a3+204, a1 +az+
203 + 204, a1 + a2, ag

a1 +3az+4a3+204, a1 +as+
2a3 + 204, o1

a1 +3a2+4a3+2a4, a1 +az+
2a3 + 204, a1, a3

a1+ 3az2+4a3+ 204, a1 +az+
203 + 20, a3

a1 +3az2+4a3+2a4, a1 +az+
2a3 + ayq

a1 +3a2+4a3+2a4, a1 +az+
203 + o, o1 + a2

a1 +3az2+4a3+2a, a1 +az+
2a3 + a4, a1 +az, o

a1 +3az+4a3+204, a1 +az+
203 + o, o1

a1 +3az+4a3+204, a1 +as+
2a3

a1 +3az+4a3+204, a1 +as+
2a3, a1 +a2 +az + s

a1 +3az+4a3+204, a1 +az+
2a3, a1 + a2 + a3z + ag, a1
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798.

799.

800.

801.

802.

803.

804.

805.

806.

807.

808.

809.

810.

811.

812.

813.

814.

815.

816.

817.

818.

a1 +3a2+4a3+2a4, ar +az+
2a3, a1 +azt+az+aq, a1, og

a1 +3a2+4a3+2a4, ar +az+
2a3, a1 + a2 +az + a4,

a1 +3a2+4a3+2a4, ar +az+
2a3, a1 + a2

a1 +3a2+4a3+2a4, ar +az+
2a3, a1 + a2, ai

a1+ 3a2+4a3+2a4, ar +az+
2a3, a1 + a2, a1, a3z + aq

a1 +3a2+4a3+ 204, ar +az+
2a3, a1 + a2, a1, az+ a4, aq

a1 +3a2+4a3+2a4, ar +az+
2a3, a1 + a2, a1, aa

a1+ 3a2+4a3+2a4, ar +az+
2a3, a1 + o2, az + oy

a1 +3a2+4a3+2a4, ar +az+
2a3, a1 + a2, a3 + a4, aq

a1 +3a2+4a3+2a4, ar +az+
2a3, a1 + a2, aa

a1 +3a2+4a3+2a4, ar +az+
2a3, o1

a1 +3a2+4a3+2a4, ar +az+
2ai3, a1, a3+ aa

a1 +3az+4az+204, a1 +oaz+
2a3, a1, a3 + a4, aa

a1 +3az+4az+204, a1 +oaz+
2a3, a1, a4

a1 +3az+4az+204, a1 +oaz+
203, a3 + a4

a1 +3az+4az+204, a1 +oaz+
23, ag + a4, oq

a1 +3az+4az+204, a1 +oaz+
2a3, a4

a1 +3az+4az+204, a1 +oaz+
a3 + ag

a1 +3az+4az+204, a1 +oaz+
az + g, a1

a1 +3az+4az+204, a1 +oaz+
az + o4, a1, as

a1 +3az+4az+204, a1 +oaz+
az + o4, a3

819.

820.

821.

822.

823.

824.

825.

826.

827.

828.

829.

830.

831.

832.

833.

834.

835.

836.

837.

838.

839.

840.

841.

a1 +3a2+4a3+2a, a1 +az+
asg

a1+ 3az2+4a3+ 20, ar+az+
asz, a1

a1 +3a2+4a3+2a4, ar+as+
s, a1, a3 +aq

a1 +3a2+4a3+2a4, ar+az+
Qasz, a1, a3+ oy, 4

a1 +3a2+4a3+2a4, ar+as+
ag, o1, 04

a1 +3a2+4a3+2a4, ar+az+
Qaz, a3+ oyq

a1 +3a2+4a3+2a, ar+az+
a3, a3 + o4, a4

a1 +3a2+4a3+2a, ar+az+
asz, o4

a1 + 3ag +4as +2a4, a1 + a2

ay + 3oz + 4az + 204, a1 +
az, ai

ay + 3oz + 4az + 204, a1 +
ag, a1, a3 +aq

ay + 3oz + 4az + 204, a1 +
az, a1, ag

ay + 3oz + 4az + 204, a1 +
az, a1, az, a4

ay + 3oz + 4az + 204, a1 +
az, a1, a4

ay + 3oz + 4az + 204, a1 +
ag, a3 + o4

ay + 3oz + 4az + 204, a1 +
az, a3

ay + 3oz + 4az + 204, a1 +
Qz, a3z, a4

a1 + 3a2 + 4as + 204, a1 +

a2, 04
ay + 3az +4asz + 24, a1

a1 +3as +4a3+ 204, a1, az+
Qq

a1 + 3az +4as + 2a4, a1, a3

a1 + 3ag + 4a3 + 2a4, a1, ag,
Qg

a1 + 3az +4as + 2a4, a1, o4
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842.

843.

844.

845.

846.

847.

848.

849.

850.

851.

852.

853.

854.

855.

856.

857.

858.

859.

860.

861.

862.

863.

864.

865.

a1 +3az +4a3 + 2a4, az+ag
a1 +3az +4as + 2a4, as

a1 +3az +4as + 2a4, as, og
a1 + 3az + 4asz + 204, ag

201 + 3o + 4az + 204

2c1 + 3a2 + 4as + 204, a2 +
2a3 + 204

2a1 + 32 + 4as + 204, a2 +
2a3 + 204, a2 +2as3

2a1 + 3o + 4as + 204, a2 +
2a3 + 204, a2 + 2a3, a2

21 + 3a2 + 4as + 2a4, a2 +
2a3 + 204, a2 + a3

21 + 3o + 4as + 204, a2 +
203 + 20, a2

2a1 + 3o + 4as + 204, a2 +
2a3 + 204, a2, az

2a1 + 32 + 4as + 204, a2 +
2a3 + 204, @3

21 + 3oz + 4as + 2a4, a2 +
2a3 + ayq

21 + 3a2 + 4as + 2c4, a2 +
2003 + au, a2

201 +3as+4asz+2a4, az+2as3

2a1 + 3o + 4as + 204, a2 +
2a3, ag a3 +aq

2a1 + 3o + 4as + 204, a2 +
23, a2 + a3 + s, og

21 + 3oz + 4as + 2a4, a2 +
2a3, az

2c1 + 3a2 + 4as + 204, a2 +
203, a2, a3+ oy

2a1 + 3o + 4as + 204, a2 +
2a3, a2, oz + a4, oq

2a1 + 32 + 4as + 204, a2 +
203, a2, a4

2a1 + 3o + 4as + 204, a2 +
23, a3z + aa

2a1 + 32 + 4as + 204, a2 +
2ai3, az + a4, aa

2a1 + 32 + 4as + 204, a2 +
2a3, a4



866.

867.

868.

869.

import
import
public
public

2a1 4 3ag + 4as + 2a4, a2 +
a3+ aq

2a1 + 3o + 4as + 204, a2 +
az + o4, a3

201 +3ag +4a3 +2a4, as+as

2a1 + 3o + 4asz + 204, a2 +
az, a3+ o4

java.util.ArrayList;
java.util.Scanner;

class Carriers {

static void main(String[] a

class Carr{
Carr(O{

a = new int[25][25];
m = new int[25][25];
a[23][10]1=24;
a[22] [4]1=23;
a[21][2]=22;
a[20][1]=21;
al[19] [2]=21;
a[18] [1]=19;
al[17]1[1]1=18;
al[16] [4]1=19;
al[15] [1]1=16;
a[14] [1]=15;
a[13][2]=15;
al[12][1]1=13;
al[11] [2]=12;
al[10] [4]1=11;
a[8]1[1]1=9;
al[7][1]=8;
a[6][2]1=8;
a[5] [1]=6;
a[4][2]=5;
a[2][1]=3;

a[22] [11]=24;
a[21] [6]1=23;
a[20] [3]1=22;
al[19] [7]1=23;
a[18] [2]=20;
al[17]1[3]1=20;
al[16] [6]1=21;
a[15] [4]1=18;
al[14] [4]1=17;
a[13] [3]1=16;
al[12] [2]=14;
al[11][3]1=13;
a[10] [5]1=12;

a[6] [3]1=9;
a[5]1[2]=7; al5]
a[4][3]=6;

m[23] [10]=-1;
m[22] [4]=-1;
m[21] [2]=-2;
m[20] [1]=-1;
m[19] [2]=-1;
m[18] [1]=-2;
m[17]1 [1]1=1; m[17]1[3]=1; m[
m[16] [4]=-1; m[16][6]=1; m

m[22] [11]=-1;

m[19] [7]=1; m

m[15] [1]=-2; m[15][4]=-1; m[15][5]=1;

m[14][1]=1; m[14][4]=-1; m
m[13] [2]=-1; m[13][3]=2; m
m[12] [1]=1; m[12][2]=-2; m
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870. 2aq + 3as + 4daz + 2a4, az +
a3, a3z + aa, a4

871. 2aq + 3ag + 4das + 2au4, a2 +
a3z, Ogq

872. 2aq + 3a2 + 4as + 2a4, asg

873. 2a1+3az+4az+2a4, ag, az+
Qq

874. 2aq 4 32 +4a3 + 204, a2, a3

rgs) {new Carr();}}

a[21] [12]=24;
a[20] [6]1=23; a[20][13]=24;
a[19] [14]=24;

a[18]1[3]1=21; a[18]1[8]=23; al[18][15]=24;

al[171[9]1=23; al[17]1[16]1=24;
a[16] [7]=22;
a[15] [6]1=20;
a[14] [6]=20;
a[13][5]1=18;
a[12][3]=15;
al[11] [7]1=17;
a[10] [6]1=13;

a[15][6]=21;
a[14] [9]=22;
a[13][6]1=19;
al12][6]1=17;
a[11] [8]=18;
al10] [7]1=14;

[3]1=8;

m[21] [6]1=-2; m[21] [12]=-2;
m[20] [3]=-2; m[20][6]=-2; m[20] [13]=-2;

[191[14]1=1;

171[91=1; m[17]1[16]=1;
[16][7]1=1;

[141[6]=-1;
[13]1[5]=-1;
[12] [3]=-1;

m[14] [9]=1;

a[15] [8]=22;

a[13] [71=20;
a[12] [6]1=18;
al11] [9]=19;
a[10] [8]=15;

m[18] [2]=-1; m[18][3]=-1; m[18][8]=2; m[18] [15]=2;

m[15] [6]=1; m[15] [8]=2;

m[11][2]=1; m[11][3]=1; m[11][7]=-1; m[11] [8]=-1; m[11][9]=-1;

m[10] [4]=1; m[10][5]=1; m[10][6]1=1; m[10]1[7]1=1; m[10]1[8]=1; m[10] [9]=1;

m([8] [1]=-2;

m[7][1]1=1;

m[6] [2]=-1; m[6][3]=2;
m[5] [1]1=1; m[5][2]=-2; m[5
m[4] [2]=1; m[4][3]=1;

m[2] [1]=1;

b = new String[25];

1[31=-1;
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875.

876.

877.

878.

879.

880.

2c1 +3a2+4a3 420, o, a3, oy
2a1 + 3a + 43z + 24, a2, aq
2a1 + 3o +4a3 + 204, az+ay
2a1 + 3a2 + 4as + 2a4, a3

2a1 + 3a2 + 4z + 24, a3, g

2c1 + 3a2 + 4a3 + 24, g

a[13][8]=21;
a[12] [8]1=20; al[12][9]=21;

a[10][9]=16;

m[13] [6]=2; m[13][7]=-1; m[13][8]=1;
m[12] [5]1=-2; m[12][6]=-1; m[12] [8]=1; m([12] [9]=1;
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bl[1]="a_4"; b[2]="a_3"; b[3]="a_3+a_4"; b[4]="a_2"; b[5]="a_2+a_3";
b[6]="a_2+a_3+a_4"; b[7]="a_2+2a_3"; b[8]="a_2+2a_3+a_4"; b[9]="a_2+2a_3+2a_4";
b[10]="a_1"; b[11]="a_1+a_2"; b[12]="a_1+a_2+a_3"; b[13]="a_1+a_2+a_3+a_4";
b[14]="a_1+a_2+2a_3"; b[15]="a_1+a_2+2a_3+a_4"; b[16]="a_1+a_2+2a_3+2a_4";
b[17]="a_1+2a_2+2a_3"; b[18]="a_1+2a_2+2a_3+a_4"; b[19]="a_1+2a_2+2a_3+2a_4";
b[20]="a_1+2a_2+3a_3+a_4"; b[21]="a_1+2a_2+3a_3+2a_4"; b[22]="a_1+2a_2+4a_3+2a_4";
b[23]="a_1+3a_2+4a_3+2a_4"; b[24]="2a_1+3a_2+4a_3+2a_4";

c = new double[25] [25];

lambda = new double[25];

for(int i=1; i<=24; i++) { lambdali] = 1;}
roots = new ArrayList<>();

roots.add(24) ;

n = 0;

depend = new ArrayList<>();

Scanner in = new Scanner(System.in);
System.out.println("0 - sufficient condition\n" + "else - necessary condition");
x = in.nextInt();

in.close();

while(true) {
last = roots.get(roots.size()-1);
for(int i=24; i>=last; i--) {
for(int j=1; j<=24; j++) {
if (roots.contains(al[i] [j]) | |roots.contains(al[j][i]))

{ clil[j1=(m[il1 [j1-m[j]1 [i])*1lambdala[i] [j1+alj]1[i]];}
else { cl[il[j1=0; }}}
depend.clear();

q = true;
while(q) {
q = false;

for(int i=24; i>last; i--) {
p = true; dep = 0;
for(int j=1; j<=24; j++) {
if(c[i][j]1!'=0 && 'depend.contains(j)) {
if (dep==0) { dep = j; }
else { p = false; break; }}}
if (dep!=0 && p) {
depend.add(dep); q = true; }}}
rank = true;
if (x==0) {
for(int j=1; j<=24; j++) {
if(c[last] [j]!=0 && !depend.contains(j)) { rank = false; break; }}}

else {
rowold = last;
colold = 0;
while(true) {

count = 0;
for(int j=1; j<=24; j++) {
if (c[rowold] [j]1!=0 && !depend.contains(j) && j'!=colold) {
rank = false; colnew = j;
for(int i=24; i>last; i--) {
if(c[i] [j]1!'=0 && i'=rowold) {
rank = true; count++; rownew = i; }}

if (!'rank) { break; }}}
if ('rank || count!=1) { break; }
else { rowold = rownew; colold = colnew; }}}
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if (rank) {
n++;
for(int h: roots) { System.out.print(b[h]+" "); }
System.out.println();
if(last!=1) { roots.add(last-1); }}
else {
if(last!=1) {
roots.remove ((Integer) last);
roots.add(last-1); }}
if (last==1) {
if (roots.size()!=1) {
roots.remove((Integer) 1);
last = roots.get(roots.size()-1);
roots.remove((Integer) last);
roots.add(last-1);}
else { break; }}}
System.out.println("empty") ;
n++;
System.out.print(n); }
int x; int[]J[Ja; int[][Im; String[lb; double[][]lc; double[]lambda;

ArrayList<Integer> roots; ArrayList<Integer> depend;
boolean q; boolean p; int dep; int last; boolean rank; int n; int count; int rowold; int colold;

int rownew; int colnew;

}
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