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Deformed homogeneous polynomials and the deformed g-
exponential operator

Ronald Orozco Lopez

Abstract. In this paper, we introduce the deformed homogeneous polynomials
Ry, (z,y;ulg). These polynomials generalize some classical polynomials: the Rogers-
Szegd polynomials hy,(x|q), the generalized Rogers-Szegd polynomials r,(x,y), the
Stieltjes-Wigert polynomials S, (z;¢), among others. Basic properties of the poly-
nomial R,, are given, along with recurrence relations, its g-difference equation, and
representations. Generating functions for the polynomials R, (x,y;u|q) are given.
These functions include generalizations of the Mehler and Rogers formulas. In addi-
tion, generalizations of the ¢g-binomial formula and the Heine transformation formula
are obtained. These results are obtained via the u-deformed g-exponential operator
E(yDy|u), defined here. From this operator, we obtain for free the operators T(yD,)
the Chen, R(yDy) of Saad, £(yD,) of Exton, and R(yD,) of Rogers-Ramanujan
when v = 1,4,,/4, q2, respectively. We introduce the deformed basic hypergeomet-
ric series ,®,, a generalization of the classical basic hypergeometric series. New
transformation formulas for basic hypergeometric series are obtained.
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1 Introduction

We begin with some notation and terminology for basic hypergeometric series [1]. The
g-shifted factorial is defined by

1 if n =0;
a;q)y, = . ’ e C,
( Q) { k:é(l - qka')> if n 7é 0, !

o

. — i . — P
(3 0)o0 = lim (a:9)n = [ J(1 —ag®), 1l <1.

k=0

The multiple g-shifted factorials are defined by

(a'1> ag, ..., 0m,; Q)n = (a'l; Q)n(aQ; Q)n o (am; Q)m qc C,
(CL1, Az, ..., G, Q>oo = (al; Q)oo(a2; Q>oo T (am; Q)oou |Q| < L

Some useful identities for g-shifted factorial:

(a;q)n = C(LZ;?;;O cag"#qF k=1,2,3,..., (1)
(@; @)tk = (a3 @)n(aq”; @), (2)
(a Q)an = (a;¢*)n(aq; ¢*)n, (3)
(0% ¢*)n = (a5 @)n(—a; @) (4)
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In our work, we will use the identities for binomial coefficients:
n+k\ (n n k ok
2 ) \2 2 ’
n—=~k n k
("3 =(5) + (5) +ra-n.

The g-binomial coefficient is defined by

mq N (q;quzs;) Z)n—k'

The g-binomial coefficient satisfies

S Rt PSR I PR
mq = %(—q")kq_@)-

The ,¢, basic hypergeometric series is defined by
ai,as,...,a, > (al,ag,...,ar;q)n n (n) 1+s—r "
r¢s( ;q,Z)Z [—1 qZ] 2"
bl,bg,...,bs ; (q;q)n(bl,bg,...,bs;q)n ( )
In this paper, we will frequently use the ¢g-binomial theorem:

o\ _(050x N~ (@0
1%(— 7q’ ) Ee ;](q;Q)n ’ ©

n

The g-exponential e,(z) is defined by

eq(Z):Z & —1%(8;(1,2): _1

(G0 (2 @)oo

Another g-analogue of the classical exponential function is

Eq<z>=n§;q<’5> T —un( D) = o

(@ @)n B

For all u € C, we define the following function, which we will call the deformed ¢-
exponential function,

eq(z,u) = Ssould Gan w0
1+ l%q if u=0.

3
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Some deformed ¢-exponential functions are:
eq(2,1) = €q(2) =
eq(—2,q) = Eq(—2)
= 0
€ ) ( 3 y ) € (C7
(2, V4 Zq ’q)n 1¢1<—\/§ V4 Z) z

n=0

1
;2 <1,
@)oo

(2
= (z; )oo,zeC

N

’fL

eq(q2,¢%) Z q" z€C,
where &,(z) is the Exton g-exponential function and R,(z) is the Rogers-Ramanujan
function. The function e,(z, u) is an u-deformed g-exponential function since when u +— 1,
then e,(z,u) — e,(z) and since e,(z) is a g-deformation of the exponential function e?,
then the function e,(z,u) defines a double deformation of the exponential function.
Associated to the deformed g-exponential function e,(z,u) we have the deformed ho-
mogeneous polynomials R,,(z, y; u|q) defined by

Rk = 32 [1] oty @)

k=0

whose generating function is

eq(xt) eq(yt, u) ZR (z,y;ulq) ( ) (8)

The polynomials R,,(z, y; u|q) are a generalization of classical polynomials. For example:
o Ifzx=1y=uz, and u =1, then
Rn(1,2:1q) = hn(z]g), (9)

where h,(x|q) is the classical Rogers-Szegé polynomial of degree n. The Rogers-
Szego polynomials play an important role in the theory of the orthogonal polyno-
mials [8] and physics [3].

o If u=1, then
Ro(z,y:1q) = ra(,y), (10)
where 1, (z,y) is a generalization of the Rogers-Szegd polynomials given by Saad et
al. [6].
o If y — —y and u = ¢, then
Ru(z, —y3qlq) = Pu(z,y), (11)

where P, (z,y) are the Cauchy polynomials

n—1

Po(z,y) = (z —y)(x — qy)(x — ¢y) - - - (x — " 'y).

4
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o Ifx =1,y =qr, and u = ¢°, then

R (1, q2:6°|0) = (q;9)n Sn(739) = 191 ( qo 1 q, —q"“x) , (12)

where S, (z; q) are the Stieltjes-Wigert polynomials.

In this paper, we give basic properties of the polynomials R,,, their g-difference equa-
tion, representations, and recurrence relations. Five types of generating functions for the
polynomials R,,(z, y;u|q) are obtained

o0

> 0B Ry (. ysulg)

n=0

T , (Deformed generating function)
49

(

ZR (z,y;ulq) (a, q)"t", (Srivastava-Agarwal type)
(¢ @)n

_ (mgat"

% Q) O

ZR z,y;ulq) RO

n

t
Z Rn(x> Y; u|q) R'n(za w; U|Q)Wa (Mehler type)

0(3)p(3)gn
Z Z Roim (2, 5 ulg) TR qt) (Rogers type)

n=0 m=0

and many special cases are given. These generating functions are expressed in terms of
the deformed basic hypergeometric series ,®, defined by

-l Bt e [y ()] )

The paper is divided into the following sections: Section 2 discusses the basic identi-
ties of the g-differential operator. In Section 3, the deformed basic hypergeometric series
@, is introduced. As we will note later, these series are closely related to the poly-
nomials R, (z, y;u,v|q). In this section, we will give the equation in g¢-difference of the
o®P-series. Section 4 introduces the deformed homogeneous polynomials. Basic prop-
erties, ¢-difference equations, basic hypergeometric representations, and recurrence rela-
tions are given. Section 5 introduces the deformed ¢-exponential operator and provides
some identities for this operator. In Section 6, generating functions for R, (x,y; u|q) are
given: generalized g-binomial theorem, generalization of Heine’s transformation formula,
Mehler’s, Srivastava-Agarwal, and Rogers type formulas. New transformation formulas
for basic hypergeometric series are given.



Ronald Orozco Loépez

2 The q-differential operator

The g-differential operator D, is defined by:
f(z) = flgz)

T

Dyf(x) =

and the Leibniz rule for D, is

n

Dytf(@lae)} = - 4| DD ol

k=0
Then
(¢ Qk—n

From Eq. (14), we have identities for the deformed g-exponential function:

eq(z,u) —e,(qz,u) — ze,(uz, u) = 0.

D{eq(az,u)} = a*u(2) eq(au®z, u).
According to the Leibniz formula and from Eqs. (15) and (16),

Di{eq(az,u) e (bx,v)}

= {n] u(3)y("2") gkt €q (aukx,u) €q (bqun_kx,v) .
k=0 q

If u=wv=qin Eq. (18), then
n n n a
D{(az, b3 q)oc} = q18) (az, bg" 23 ) { ] T e
q

If u=¢qand v=11in Eq. (18), then

py {ama=)_ o

T (b759)s0

If u=v=11in Eq. (18), then

1 1 = [n
Dy = 0 (b ) -
e {(ax, bx; q)oo} (ax,bx; @)oo L{:} qa (b 0

(14)

(15)

(16)
(17)

(18)

(19)

(20)

(21)
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3 Deformed basic hypergeometric series

Definition 3.1. Set 0 < |¢| < 1 and take u € C. We define the u-deformed basic hyper-
geometric series , P, as

al,ag,...,ar'
T(I)S b b 14, Uy 2
.-y Us

=3 ul3) (;‘“b’laz;' “quj;n {(_1)"(1(’5)] s (22)

By letting that u take values 1, ¢, ¢* or \/q, we obtain the following basic hypergeo-
metric series:

o If u=1, then ,®, = ,.¢,.
o If u=gq,
ay,ag,...,0,,0 - ap,Gg, ..., 0p
7‘+1®7‘ ( bl’...,br 7q7 q7 Z) - 7‘¢7‘ ( bl,bQ,...,br 7q7 Z) (23)
for all z € C.
o If u = ¢? and mapping z — ¢z,
A1y .o vy Qpyq . 2 . A1y e vy Qpg .
7‘+1(I)7‘ ( bla---abr 4,4 ,QZ) _T—|—1¢7‘+2 ( bl,...,br,0,0 7q,qz) (24)
for all z € C.

o Ifu=,/7,
A1y .o vy Qpyq
r+1Pr IRVE
+ (bl,...,bT q\/az)
. Va1, —/a1 5.y A/Qri1, —A/Qrp1 . .
—sve( Vi Y Vi e ) @)
for all z € C.

Therefore, a deformed basic hypergeometric series generalizes the basic hypergeometric
series. A series Y~ v, is a deformed basic hypergeometric series if the quotient v,,41/v,
is a rational function of ¢" for a fixed base ¢ and if it is proportional to ™. The most
general form of the quotient is

1— (1 — ). (1 — a.q"
Un+1_un( a1q"”)( azq") -+ GQ)(_ n)1+s—7"Z

v (=g (1 —=big") - (1 —byg)

normalizing vy = 1.
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Theorem 3.2. Some convergence conditions for the .®,-series are

o 1+s—r#£0. If0 < |ug™7"| < 1, then ., is an entire function. If lug'™*™"| =1,
then @, converges for |z| < 1. If lug*™*7"| > 1, then ,®, is divergent.

e l+s—r=0. If0 < |ul <1, then .4 is an entire function. If |u| =1, then , P
converges for |z| < 1. If |u| > 1, then @, is divergent.

The deformed g-exponential function has the following representation in u-deformed
basic hypergeometric series

eq(z,u) = 1P < E i q, U, z) . (26)

The deformed basic hypergeometric series 5@ is

b = n 7b7 n n
2Py ( a,c ;q,u,z) = Zu(2)Mz ) (27)

(¢ @)n(q; @)n

n=0

The g-difference operator applied to the o®;-series:

. a,b m (@, b;q)n aq”, bq" n
quq)l( c ;q7u7’z) :U(z)mzqh cq” 14U, Uz (28)

which can be checked directly.

Theorem 3.3. The deformed basic hypergeometric series o®1, Eq. (27), satisfies the q-
difference equation

czDgf(z) — aquzDgf(uz) + (1 —c)D,f(2)
+ [(1 —a)(1=0)—(1-— abq)}quf(uz) —(1—=a)(1 =0)f(uz) =0. (29)

Proof. Suppose that f(z) =" " v,2" is the solution of Eq. (29). Then

czD? f(z) — abqz* D} f(uz) + (1 — ¢) Do f (2)
+ [(1 —a)(1-0)—(1—- abq)}quf(uz) —(1—=a)(1=0)f(uz)

= chn(l — ") (1 =g H T — abqun(l —¢")(1 — ¢ Hu"

+(1=0)> vl =g+ [(L—a)(1—b) — (1 —abg)] Y va(1 —g")u"2"
—(L—a)(1=b)) wvu"z" =0,
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Therefore,

Un+1

_ uMabg(1 —¢")(1—¢" ") = (L—a)(1—b) — (1 —abg))(1 — ¢") + (1 —a)(1 — o),
c(1—g)(1—g")+(1—c)(1—g"t) !
n (I —aq")(1 —bq")

(=g (T —cq) ™

Then

Uy = n_lukm — u(;‘)w
' k[[o (¢ @)n(c; @)n (¢ O)n(c;@)n

normalizing vy = 1. O

Replacing a, b, ¢ with ¢2, ¢°, ¢¢ in Eq. (29) and then dividing by (1 — ¢)?, and taking
formal limits, shows that Eq. (29) tends to the functional-differential equation

2f"(2) = 2f"(w2) + f (2) = (a+ b+ 1)z f'(uz) — abf (uz) =0 (30)

as ¢ — 1. Equation (30) has the solution

o F, ( “b ., z) _ iu(’é) (@)n () 2" (31)

() n!

n=0

When u = 1, we recover the classical hypergeometric function.

4 Deformed homogeneous polynomials

4.1 Definition and basic properties

Definition 4.1. We define the (u, v)-deformed homogeneous polynomial as

Ro(z, i, vlg) = 3 [Z] a2y B) g kyt, (32)
k=0 q
Some specializations of R, (x,y; u|q) are:

Rn(l',y;l,”(]) :I'n(l','y), (33)

Rollaiguala) = hualg) =@ 3 1] 440t (31)

k=0 q

R,(1, —2;1,4|q) = (z;@)n, (35)
Rn(1,q2;1,¢%|q) = Sp(x;q) = (45 ¢)nSn(z;q). (36)
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We define two new polynomials: The homogeneous Stieltjes-Wigert polynomials

n

SHERTEDYS m qq’“Qx""“y’“ (37)

k=0

and the Exton polynomials
Co) — : N (%) =k, k
E,(z,y:9) = Ra(z,y;1,/4lq) = ) \/5 "y (38)

_ (= \/_’\/‘_In (5) yn—ko b
ZH iy Ry L (39)

As we will see below, the Stieltjes-Wigert and Exton polynomials are related to the
Rogers-Ramanujan and Exton g-exponential functions, respectively. As

Ro(, g3, olg) = uld) R, u'~"y; 1, welg), (40)
then we will deal with u-deformed homogeneous polynomials
Ry(z,y3ulq) = Ralz, y; 1, ulq). (41)

4.2 Recurrence relations

Theorem 4.2. The polynomials R, (z,y;ulq) satisfy the following recursion relations

Rot1(z, y;ulg) = xRy (z, qy; ulq) + y R (2, uy; ulg), (42)

Proof. By Eq. (41),

xRy (z, qy;U|q)+yR (x wy; ulq)

[l

+
1 1
> 3
—_
Q

<
—~

Ead

ot
—

8
ko

<
ko

_l’_

=

10
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Now, by using Eq. (5) we have,
2R (2, qu; ulg) + y Ra(, uy; ulq)
— g+l g (1T i +Z { B{j &+ L{: ﬁ J }u(g)xn+l—kyk
k=1 q q

n - 1
=t g ( gl)ynﬂ + Z {”Z } u(g)xn-‘rl—kyk
k=1 q

n+1
-3 {” Z:‘ 1} w(B) ik b
q

k=0
= Ry (@, y;ulq).

The proof is reached. O

By iterating the above theorem, we have the following result.

Theorem 4.3. For m > 0,

m m . ~ .
Roim(,y;ulg) =) [k] uD) e R R, (2, g R uty; ulg). (44)
k=0 q

4.3 Deformed g-exponential function as limit of deformed homogeneous polyno-
mials

Theorem 4.4. If0 < |q| < 1, then

lim R, (1, z;u|q) = e, (2, u). (45)
n—oo
Proof. As
lim [n} L
i = ,
n—oo | k q (Qa Q)k
then . - i
n . KX
lim R, (1, z;u|g) = lim u(2)xk = u(2) =e,(x,u).
O
4.4 Deformed basic hypergeometric representation
Theorem 4.5. For alln >0 and x # 0,
n q_n7 0 n
R,.(z,y;ulg) = 2" 2P ( g u,q y/fﬂ) : (46)

11
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Proof.
2"y ( v ;q,u,q"y/w) —ay “(];)w(—l)kq_@(qny/x)k
2o | 7 _ kZ:O (¢: )k

k q

k=0

The basic hypergeometric representation of polynomials Eqgs. (33)-(38) are
n _n7 O n n _n7 O n
r,(7,y) = 2<I>o(q_ 1q:1,q y/x)zx 2¢o<q_ 14, q y/x)-

_ n —TL’O n _n,O
ha(zlg™) = ¢(2)2d, ( T ;q,qz,qy) = ¢3¢, ( “ ;q,qy) :

_n70 _n?o n
(x;q)n=2<1>o<q_ 10, g — )—2¢1( 105 q x)

n _n’O n n - n
Su(z,y;q) = 2"2P ( LR “y/x) = 2"1¢1 ( qo $q, — “y/x)

—-n

;0 n
a4V, q y/x)

-n/2 _ ,—n/2 0
= 2" 402 < I \’/aq_\/c—jq’ ;\/Fj,q"y/£f> :

4.5 The ¢-difference equation

E,(z,y;q) = 2"2P ( q

Theorem 4.6. The polynomials y(x) = R, (1, z;u|q) are solutions of the proportional
functional difference equation

(Dgy)(u™"'2) + " 2(Dgy)(q~'7) = (1 = ¢")y(2), (47)
with initial value y(0) = 1.
Proof. As
Dy R (1, 25 ulq) = (1 = ¢") Rna (1, ua; ulg),
then the left side of Eq. (47) is equal to
(Dgy)(u™"'w) + q"‘lx(qu)(q‘lx)
= (1= ¢") Raa(Lzsulg) + "7 (1 = ¢")a Ruoa (1, ug™ ' ulq)

ool e £l

k

0
- n
=3 [ w0t = 0Btz
=0

12
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Eq. (47) is equivalent to
flu'z) = flqu™'z) +¢"u " af(q" ) —uT w f(z) = 0. (48)

5 The deformed g-exponential operator

Definition 5.1. Set © € C. Define the u-deformed g-exponential operator E(yD,|u) b
letting

ByD, ) = 3 ul) W2 (19)

—~ (9

The u-deformed ¢-exponential operator E(yD,|u) generalizes the operators given by

Chen [9]:
>

n

E(bD,|1), (50)
and by Saad et al. [7]: .
> ng(3)
R(ED) = S_(-1)" LS B, 1)

When u = /g, we define the Exton operator £ (yD ) as

£(yD,) = E(yD, V) Zf ( R yD) (52)

When u = ¢ and by the mapping vy — qy, we define the Rogers-Ramanujan operator
R(yD,) as

R(yD,) = E(qyD,lq?) Z q" (53)

The deformed homogeneous polynomials R,,(x, y; u|q) can be represented by the deformed
g-exponential operator E(yD,|u) as follows:

Proposition 5.2. For all u,v € C

E(yDylu){z"} = Ra(z, y;ulq). (54)
Proof. By applying the deformed g-exponential operator we get

E(yDyu){a"} = Z ff{x”}

o

R, (7, y;ulq),

which implies the statement. O

8
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Below, we have some g-operator identities.

Theorem 5.3. Ifu,v € C, u # 0, then

E(yD,lu){ eg(az,v)} = 3 (u)() (ay)

Proof. From Eq. (16),

E(qu|u){eq(ax>U)} = Z (

The proof is completed.
If v=11in Eq. (55), then

D0

k=0

u(3)yk
e

D’q‘“{eq(ax, v)}

(a3 @)oo

for |az| < 1. If v = ¢ in Eq. (55), then

0,0
E(yD,|u){(az;q)oo} = (a%;q)so - 2P1 ( o ;q,qu,ay),

for |az| < 1.

Theorem 5.4. [f u,v,w € C, u # 0, then
E(yDg|u){eq(ax,v) eq(bz, w)}

oo o0

Proof.

E(yDylu){e,(az,v)

k

=0 n=

k

(uv)(2)

0

(1) () ()" (")

1 } _eq(ay,u)

(ar;q)0’

n—k

n

2") eq(av®z, v) e, (bgw

eq(av®x, v) e (bg"w™z, w).

n—kl,

eq(bqkw”x, w)

> (uw (2) uFby)™
a3 () D)

(¢ Dn

eq(av

(b, w)}
o (q?j;)nD "{eg(az, v) ey(br, w)}
O[]
(uw)(2) ((;yé))’; oo >
g(uv)(g) (uw) () ((;yq))’; (Z]Iibqy))nn

k

z,v) eq(bg"w™z, w).

W)

(55)

(58)
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O
We have some specializations of the above theorem:
Corollary 5.5. If v =w =1, then
1 1 2y (b2 Q) (ay)*
E(yD,|u = u(a) DL DY) ok u). 59
(@D ){(aw, bw;q)oo} (az, bx; ¢)os < (@ 0w oty ) (59)

Corollary 5.6. Ifv =1, w = q and setting b — —b, then

k

By D, 1) { (ba; q)oo} _ (br39)s f: u(z)(ay)k) 3, ( bxoq’f ;q,u,ukby) O (60)

(az; q)o (023 @)oo €= (5 @)k (b5 )i

Corollary 5.7. If v =q, w = 1 and setting a — —a, then

ax; ax; . (ug)®) (—ay)*
E(qu\u) {( 7Q)OO} _ ( 7Q)OO Z( Q) ( y) eq(ukby,u). (61)

(b; @)oo (b2 @)oo £=2 (43 Q)i (a; @)
Theorem 5.8.
(a7;q0)00 | (a75q) oo a/b,0
Do) { ™ | = iy =etn (1 o). (92)
Proof.

_ :fzu(z) (qﬁ"/Z)n D {1% < afb ., bx) }
e
et (" o)

Corollary 5.9. If v = w = ¢ and setting a — —a and b — —b, then
E(yDylu){(az, bx; q)c }

00 ) —CL k
Y 0
(az, bx; q) OOZ ) ) 1Py ( baq* ;q,u,ukby) . (63)

— (az; q)i bx Dr(a Ok

15
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6 Generating functions for R, (x, y; u|q)

6.1 Generalized q-binomial theorem

Theorem 6.1.
S U(Z) T, Yy, Uu = = S uv (g) (yZ)k € Uk:L'Z v
nz:% Bn, 05 |q)(q;q)n ,;( ) (¢; D) o (V'22,0)
Proof. From Theorem 5.3
o) Rz g wl)—— = S @) BlyD, ) { &2
— Bal, 9 |q)(q;Q)n nz:% B ){(q;q)n}
— E(yD,Ju) {Z o) }

= E(yDy|u) {eq(x2,v)}

S ) 02
k:o( ) (¢ O)n

k

Corollary 6.2. Set |yz| <1 and |v| < 1. Then

> o) Ra(, g0~ g)—

n

—~ (Ga)n = (GDn (VY2 @)
Proof.
N ’U(g) X v 1 Zn = N (yZ)k € v Tz,
nZ:O Bal.9: ‘q>(Q§Q)n ;(Q;Q)k o (vVoz0)
_N W) 5 () @)
=2 (¢; 9)x 2 (¢; Dn

From Corollary 6.2 we have the following results:

GOn (Y259

>\ (n " 1
Zq<2) R (2, y; q‘1|Q)( = 101 ( yoz 14 —fcz) :
n=0

16

eq (Vizz,0).
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Deformed homogeneous polynomials and the deformed g-exponential operator

Corollary 6.3. Set v = ¢, w=q~2, and z — qz in Theorem 6.1. Then

n

- n2 _ z
> q" Rulx,y;07 ) —
—~ (¢ @Dn

! N 24, —\/Y=q | 2
:(yZ;q)oo4¢ <\/_ \670(\)/% \/y—qvq,qxz). (67)

Proof. Set v = ¢*, uw = ¢~2, and by mapping z — ¢z, then

n

(¢ O)n
_ f: - (xz)™ 1

(q, Dm (™Y2; @)so

n2 —
> ¢" Ru(,y;07 %)
n=0

(x2)™(y2; q)am
(4 @)m
1 ¢ qm2 (22)" vz )m (W28 )
(yZ;q)oo — (¢ Om
- . (22)" (V% D (—TZ: D (VIZT (= V2T O
E m—0 (4 @m
e (”’_ TR ez,

Corollary 6.4. Set v = ,/q and uw = \/q~" in Theorem 6.1. Then

; \/5(9 Ro(7, 55 vV ) (;;n

o 1 07070 . ) 2)
= (yz’ q)oo3¢4< \/67_\/67 —q,yz 4, \/al' z
0,0,0

- (1 -9 (Vayz; q)oo3¢4 ( 49—/, =4, 1Yz

i) (6)

17
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Proof. Set v = ,/q, u = +/q~'. Then

o) R (s o)
VA Ry Ta) s

N .
mz::(]\/é (¢:9) (q’”/Qyz ?)oo
N ) @) SR R e M
mZ:O\/C_I (@ Dom (@Y% @)oo mz (gq; q)2 11 (@™t 2y2: @) e
_ N ey e
(yz; Q)oomZ:O\/a (q;Q)zm(y @
1 > oy (m2)™™ ) N
+(ﬂyz;Q)m,;ﬂ (0 Qo V5
Now by using the identities Eq. (3) and Eq. (4),
Z\@(Z)R (
(Y2 @m(x )2""”
o o VG D= D (=@ D (43 Om
! (73) (Vayz: D (22)" !
" (1—q)(\/6y2'qooz\/a (=@ D @ D (=0T Dm(9/T D

- G (fngo q’q’ﬂ“)

(i)

" (1—- Q)(\/Gyz; o’

U
Corollary 6.5 (Generalized ¢-binomial theorem). If v =1 in Theorem 6.1, then
= t eq(yt, u)
R, (x,y;ulq =1 ) 69
; (@95 )(q; On (@) (69)

Eq. (69) is a generalization of the g-binomial theorem, and Eq. (6) and Theorem 6.1
provide a very straightforward proof for this. On the other hand,

e fx=1y=u2 and u=11in Eq. (69), then

" 1
ghn(;ﬁ\q) G = gy mexlll l=tl) <1.

18



Deformed homogeneous polynomials and the deformed g-exponential operator

o If y— —y and u = ¢ in Eq. (69), then

ipn(%y) r__wh Q)OO, |t < 1.
—~ (G (29

o Ifu=q% y+— qy,and y # 0 in Eq. (69), and if yz = 1, then

< oyt Ry 1
2 Sn(v™5a) (@0 (i 0x (@07 00(60)00 (0% 0) oo

n=0
If yz = ¢, then
- RN Rqy(9) 1
Sn(, gy "5 q = = .
; ( )(q; Do @ o (29710062 0%) 0 (6% 67) oo

R,(1) and R,(q) are the Rogers-Ramanujan functions [4, 5]

1 1

Ro(1) = (¢4:6°)0 (0% 0°) e and Ry(q) = (0% 4°)oo(4% ¢°)oe

o If u=,/gin Eq. (69). Then

¢ & (yt)

; A e M P

Corollary 6.6. If v = q in Theorem 6.1, then

;(—D”q(g) R,.(z,y;ulq) (qf;)n = (22, @)oc1®P1 ( xOZ ;q,u,yZ)-
Proof.
N —1)ng(3) T, YU 2 = N U (2) (_yz)ke —¢ xz
;( 1)"q2) Ry (2, v |Q)(q;q)n k:o( q) @O o (—d"x2,q)
) S (a8 (92
(@25 0)oe 3 (u0) (z2;0)1(q; @)

k=0

0
- (113'2’7(_])00 '1(1)1 ( Tz 7Q>u>yz) .

Some specializations of Corollary 6.6 are

19
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If u=1, then

n=0

If u = g, then

[ ]

—f
—H
IS

I
LS
\'1\3
—+
=
@D

=

°
p—
=
I

|

S
-+
=
@
=

E e T,y = (zz; . 0 : z
nzo(_l) q( )En( 7y7q> (q7Q)n ( 7q)00 1¢3 ( /_$Z,—\/E,—\/§ 7\/579 ) .
(78)

6.2 Generalization of Heine’s transformation formula

Heine’s transformation formula is

201 ( a;:b ;(LZ) = w2¢1 ( ¢/b,z 1 q, b) (79)

where |z| < 1 and |b| < 1. In this section, we investigate a generalization of Heine’s
transformation formula via the generating function

(a2 @)n(d; On

Definition 6.7. We define the following representation for the deformed homogeneous
polynomials R,,(z, y; u|q) based on the basic hypergeometric series

- 50
ZRn(w,y;UIQ)¥t :
n=0

,a

oo aiy ... ro.
TRS <x7y7u7 b17...7bs 7q7t>

= 3 Rl st [y 0] e (50
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Deformed homogeneous polynomials and the deformed g-exponential operator

For u =1, q, ¢, V4, we have, respectively:

Ry <af,y; CI:Z ;q,t)

> al,.. ar;q)n n (n) 1+5—T’n
e —1)7q (5 (81
= mle ) e | 1) (81
a,...,a
Py (xy bi oy ;q,t)

B (a1, ari @) n (]
- (@ y ¢ Qn(b1, .-, bs; @n [(_1) q( )} . (82)

- S, <xy CI:Z ;q,t)

R s (R M

a,...,a
o (xy bi oy ;q,t)

=3 Ealgia) et [y e (s

From Egs. (66),

p— 1 z
Ro(z a7 — a—2) = ———on [ 7 5q,—a2).
(Y2 ¢)oo 0

t
1Ry (x,y;w 0 ;q,z) :M_
- (2t;q)oo

- 0
oRo (x,y;w i, Z) = (22, @)oc1®1 ( . ;q,u,yZ)-

Theorem 6.8. We get the following representation for the deformed homogeneous polyno-
mials Ry, (x, y; ulq)

1Ry (x,y;w aZZ 1q, b) = ((&Zeq ybq" U)Mzn, (85)

xb, az; q) (¢ Q)n

where |b] <1 and |z| < 1.
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Proof. From generalized ¢-binomial theorem

€q(ybg", u) (ybq™, u) ( nym
(b 1) ZR (s ul) g (86)
Hence,
(0 D@0 D _ (0 N (G (b 1),
nzoeq A (4;9)n = b’q)wnz:o(q,Q)n (2bq"; 0)oo

i = (a;9)n oy (bq”)mzn
- b’q“;m,q)n;}% e
I S
= (et ) Rl i) (q?:)m (azzqq;:;qq)to
o (CLZ,LL’b;qOO - U (Z'q) bm
(59 ;Rm( Y |q)(az D@ D

O

Corollary 6.9. From Theorem 6.8 we have the following representation for the generalized
Rogers-Szeqo polynomials

2,0 B (2:9) 0 a,br,by
2 Rl <LI§', Y, az ' q, b) - (CI,Z, bl’, by, q)oo3¢2 ( 07 0 4,2 ). (87)
Proof. Set uw =1 in Theorem 6.8. Then
S nr, G o (30 Z (@ @)n (025 )n(by; D
o (az; q) (¢ @)n (b, by, az; @)oo “ (¢ @)n

(39 a, bz, by
_(otz,ba:,by;q)oogqb2 0,0 hE )

U
Corollary 6.10. From Theorem 6.8, we have the following representation for the Cauchy
polynomials
2,0 (2,09 @)oo a, bx
P b | = T : 88
241 (%% az 14, ) (CI,Z, bl'7C_I)oo2¢1 by 14, < ( )
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Proof. Set uw = q and y — —y in Theorem 6.8. Then

- (ZDn (B0 Nyon gy (@O0 D,
;P"(x’y)(w;q)n(q;q)nb (b, a2 9)oo Z(byq’q)m (¢; n

n=0
oo

(2 by;9)s0 Z n(bx; q)"z”
(br, a2; q)oo by @)n(q; )

n
n—=

_ (Z? byﬂ )OO CL, b.f(}' .
— (bl’, az; q)oo2¢l by 14, % ] -

O

Corollary 6.11. From Theorem 6.8 we have the following representation for the homoge-
neous Stieltjes- Wigert polynomials

2,0 q)n(xbv Q)n

S 77 hq,b) = g Ry( — " 89

291 <$>y; az 4, ) l’b az; q (q7Q)n z ( )

Corollary 6.12. From Theorem 6.8, we have the following representation for the Exton

polynomials

2,0 a; Q)n (205 @)

E ) E b — " 90

2 (xyya az 4, ) flfb az; q (q7q>n z, ( )

where |bx| < 1 and |az| < 1.

Theorem 6.13 (Generalized Heine's transformation formula).

2 (a,brz;q) oo z
1R (Sc,y;U; 2 b) =Ry <a/b,y;w - ;q,b) : (91)

(az,bz;¢)o
where 0 < |b] < 1.

Proof. Repeat the proof of the above theorem with

3

eq(ybq", u) - b
ealyby” u) ZRm (/b ; ulg) L)

(@ @) = G @m (52)

—~

3

Some specialization of the Theorem 6.13 are

e We get Heine’s transformation formula Eq. (79) if we set u = ¢, z = 1, y = —c¢/b,
z =10, and a = b in Theorem 6.13.
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abxzq

o) =
) = ™

N—

a/by7 bZ7q7b

abxzq

N—

a/b,y; bm 1q,b

az (az, b:L' 7)o

lPl <$7317 N 7q7b

z _ (a,brz; q
IS €Y, az 4, ) - az b!lﬁ' q <Cl,/ Y; b.ﬁ(} 4, b)
* b
oz _ (a,brz; q
1E1 <$,% az 4, ) - az b!lﬁ' q <a'/b Y; brz aqab)

6.3 Mehler’s formula for R,,(x, y; u|q)
Theorem 6.14 (Mehler's formula).

o0 tTL
> Ralz,y;ulg) Ru(z, w; U\Q)W

o0

— 1 (UU)(S) (twy>k<t2x; Q)k
(t27; o = (4 D

Proof. By Eq. (69),

eq(twav® v) e, (tyzu®, u). (93)

n t’]’L

> R yiule) Rz, wivlg) - = ZE (yD,u){"} Rz, ws vl)
= E(yD,|u) {ZR (z,w; v|q

Dy { )

(zxt;q)oo

SO oy {fr}

(¢ On
wt)"

)

=

(¢ @)n
B (szjq)oo ZU(Q) ((qgitq);n [Z} U(g)wkzn_k(’zxt;q>keq(UJt$Uk,U)
= ! N uv ()( q)k(wyt) (w 20k - " (u ytz
Gt o et o) )
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This completes the proof. O

e fu=v=1,r=2=1,y =2, w=y in the Theorem 6.14, we obtain the following
identity for the Rogers-Szego polynomials

Zh ()b y\q)(tn i

Q) (Lot yt, zyt; @)

where max{|t|, |xt|, |yt], |zyt|} < 1.

e If u=v =1, we obtain the following identity [6] for generalized the Rogers-Szego

polynomials
S t (zyzwt®; q)oo
Zrn (z,y) r,(2,w) =
—~ (¢ @)n  (toz, tow, tyw, tyz; )

where max{|tzz|, |[zwt|, [tyw], [tyw|} < 1

o Ifu=v=y¢q, y— —y, and w — —w, we obtain the following identity

s " twx, tYz; q)so t
ZPn(x,y) P.(z,w) = ( yz;q) 102 < - ;qatyw> : (94)
n=0

(¢ On (txz; q)oo tow, tyz

o If u=¢% v =¢q?% and with the maps y — qy and w — quw, then

ZS £,4; q) Sulz, w: g)
¢ Dn

—~

- tzx q i ok o
(t22; @)oo Z D (tzy)"Rq(tyzq™" ) Re(tzwg™).  (95)

o If u=v=,/q, then

0 m
; (¢ @)n

> t:z:z 0
mzq Zq qk twy)’“é( \/a7q,—txwf)

* k=0
xlasl( q,q,—tyz\/ék)- (96)

Other identities that arise as special cases of Theorem 6.14 are
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o Ifu=1,v=¢q, and w+— —w, then

oo

" (twz; q) o tzx
n\+, Pn ) = X ,t . 97
or ) Palz ) (¢ @)n  (tzz,tzy; q)oolgZSl ( twz wy) 1)

n=

o Ifu=1,v=¢? and w — quw, then

oo

t’ﬂ

> ra(,y) Sulz, w; C.I)( ]

prt ¢ @)n

1 - w2 (E225 Q) k 2k
R twy)F R, (twz 98
(tyz,tzw;Q)ookZ:Oq (Q§Q)k( b Ryltwag™) 58)
_ 1 2 (twa)”

—(tyzjtzw;q)w;q @ 1¢2( qu,tqu ) (99)

If u=1and v = ,/q, then

o0 tn
2 (w3 4) (¢; 9)n

n=0

Z[ tz:L' ? (twy)* 16, < _(\)/a V4 —thqk/2.) . (100)

(tyz t2; q) oo

If u=¢? v=gq, and y — qy and w — —w, then

[o¢] t"
Sn(®,y;q) Pu(z,w
nz:% ( )Pl )(q; Dn

_ (twzi @)oo e ik (BEOE e o
C(t27; ) k:O( 1 (thﬂﬁk(q;q)k(t Y)"R(tyzq™). (101)

If u=¢* v=.,/q, and with the map y — gy, then

o0

tn
Sn(z,y5q (z,w;q)——
Z )(qu)n
= LIRS twy (tzx; q)k /2 ok
t t . 102
o g kz @ L€, (twag" )R, (ty g™ (102)

If u=.,/q, v=gq, and w — —w, then

tn
ZE =P >(q7q)

_ (wz39)e 3(s)__ (tzaia) wi)F L2
- () Z;q oz gnlg g WY) Ealtyza). - (103)
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6.4 Srivastava-Agarwal type formulas

Srivastava and Agarwal [2] derived a large number of generating functions of the form

;Qn(fﬁ7q) @ (104)

where @, (z;q) is a g-polynomial. In this section, we will use Mehler’s formula, Theo-
rem 6.14, to derive the Srivastava- Agarwal generating function of the polynomials R, (x, y; u|q).

Corollary 6.15. The representation type Srivastava-Agarwal, Eq. (104), of R, (x, y; ulq) is

@ Q)n (0175 q)o b (—aty)* (tz; )i 5
R (x,y;ulq ": eq(tyu”, u). 105
Z DGt = G Z Gtz qhelas g, - (105)

Proof. Set v=¢q, 2 =1, w = —a in Theorem 6.14. Then

—~ (45 @)n
> —aty)"(tzx; q)k
Z uq ) ) (atzq"; q)se eq(tyzuk,u)
)oc (4 On
(atz; ¢) oo —aty)* (tza; Q) k
= eq(tyzu”®, u).
(t2; ¢)oo kz atx Drlaa)r

O

elfu=1v=q,x=2=1,y =2z, w= —y in Corollary 6.15, then we obtain the
following result of Srivastava and Agarwal [2]

(a;9)n (atz; q) oo tx
1, (7, ) " = 1$1 iq,aty | .
: (¢ Dn (tz, ty: @)oo atz

oo

n=

elfu=9q v=¢ wr —w, z=1,and y — qy in Corollary 6.15, then the
representation type Srivastava-Agarwal of S, (x,y;q) is

> (a;q)n atx q ~ 3k2 k tx q ( aty)k ok
E Sn(z,y; t" = E R t : 106

e The representation type Srivastava-Agarwal of E, (z,y; q) is
- @G Qn
ZEn(x,y;Q)( : ; t

(ty; @)oo (5 () a)E 0 -
Z 00 Do (s ). (aon

(tz; ¢)oo Qr(ty; q
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6.5 Transformation formulas for ,®,

Setting a — b and b — a in corollaries 5.6 and 5.7, then matching with Theorem 5.8,
we obtain, respectively

a/b.0 o ul)t o,

2‘I>1 ( ar 7q,u,by> = ;m CI)l aqu sq,uutay | . (108)
= () (—ay)t
= eq(u by, u). 109
,; (¢: @)r(az; @) oy, ) (109)
Corollary 6.16. From Eq. (108) with u = 1, we obtain
a/b,0 o (by)* 0
' =2 T A (o ; : 11

201 < ax ,q,ay) ; (@ q)k(ax;q)kl(bl azq” 4, ay (110)

Corollary 6.17 (Transformation formula for o¢). From Eq. (109) with v = 1, we obtain
the tmportant transformation formula from o¢1 sum to 1¢;

a/b,0 B 1 0
2¢1 ( ar 4, by) - (by7Q)ool¢1 < ax 7q7ay) . (111)
Corollary 6.18. If we set u = q in Eq. (108), we obtain the identity

161 ( by —by) = ;Mo% ( i —qkay) : (112)

azr ¢; q)k(az; )k axrq

Corollary 6.19 (Transformation formula for 1¢1). From Eq. (109) with u = q, we obtain
the important transformation formula from 1¢1 sum to 1¢s

101 < a/b 14, —by) = (bY; q) o102 < axoby ;q,ay) : (113)

axr

Corollary 6.20. From Egs. (108) and (109), with u = ¢*, and y — qy, we obtain the

identities
alb o~ oyt - %
192 ( 0z, 0 7q,qby) = : ko¢2 axgh 0 DLW

Rq(q°"by).

0 . k)2
k:0m1¢3< Jardh, —Jaz g, g Vo ay>. (114)
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Finally, set x = 2 =1, y = x, and w = y in Eq. (94). Then we have the corollary.

Corollary 6.22 (Transformation formula for 1¢9). For |t| < 1, then

t (59w T,y
1¢2 ( t,’lﬂ',ty 7q7t$y) - (tl’,ty, q)oo2¢1 ( 0 7q7t . (115)

6.6 Rogers type formulas
Theorem 6.23 (Rogers formula).

o(3)(3)gngm
Z Z Roym (2, ?Jﬂﬂ@w

n=0 m=0
i i(uv) (<qtyq))kk (E';ksqy))" eq(t'l}kl', U) eq(sqkwnl,’ w) (116)
k=0 n=0 ) y4d)n
Proof.
- U(g)w(rg)tngm
n=0 m=0 Rn+m o q)m
NS By,
(@3 Dn(& Drm

o

n=0 m=

— E(yD,|u) {iw;) (tr)" - w(?)ﬂ}

o S (/) ey (¢ @)m

eq(tv"z,v) e (sgFw™z, w).

== CHAP U
U

Corollary 6.24. [fv =w =1 in Theorem 6.23, then

27;) ’ |)(q Q) (q Dm
= (sz; q k k
(tx . z%u (ty)" eq(u”sy, u). (117)
e The Rogers formula for h,(x|q) is
53 huinlolo) = Do ] . o], ]} < 1.

) (q Om (2, 5,25 ¢)o

n=0 m=0
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If w =1, we obtain the following results in [6]

2 - " s™ B (stzy; @)oo
Zn;)r"““ ( . : -

“— GO Dm (L2, 52, 59, 1Y ¢)o0

If u = g, then we get the following result in [7],

— trs™ (sY; @) ST
Pn m = ; at
Z Z + . . (tx, ST C_I)oo 101 sy q,ty

== (q7 Onl@ Om

where |tz| < 1, [sz| < 1.

If u = ¢? and mapping y — qy, then

S 3 Sy i )

(q D@ Om

n=0 m=0
(tr, 577q) o0 qu2 ty)kR (7% sy). (118)
o If u=,/q, then
tn m
En m ZIZ' y7
27;0 : ( D@ O
(tx, 573 q)oo Z\/_ (ty)kg (¢"sy). (119)
Corollary 6.25. If v =1,w = q in Theorem 6.23, then
5 S Rl
Rosm(,y5ulq) 77—
"t ’ (¢ 0)a(4; 2
(573 @)oo~ ) (ty)* ( 0 i )
- ut 1@ 1, u,u"sy ) 120
(tr;q)0e = (swi @@k \ s7¢" (120)

e If u =1 in Corollary 6.25, then
q('r;)tnsm

2.2 1”"”””)(- ><~>

n=0 m=0
OO i 101 < 0 k4, sy) . (121)
)oo (575 0)k(q; @k sTq

k=0
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o If u = ¢ in Corollary 6.25, then

m q
E § (_1> Pn—l—m(xvy) (Q'q> (Q'q>

k
oo - k
— E N A g, —q"sy | . 122
(525 @)k qq)k°¢l<5$qk b y) (122)

o If u = ¢® and mapping y — qy in Corollary 6.25, then
[oe) o0 q('r;)tnsm

Z Z S, 30) (4 D@ @)

n= =0
_ (sz;Q)oo - 2 (ty)k
C(t759) ;qk m0¢2 < szq", 0 T y) - (123)

o If u=,/q in Corollary 6.25, then

(B gngm

ZZ(_”m Bnn(:430) <q, I m

n=0 m=0

k

L N )

(124)

Corollary 6.26. If v = w = q in Theorem 6.23, then

oo 0 (5)+(%) gngm
E E ntm voyulg) 5
(F)™ R (@, 5 ul0) (¢:0)n(¢; @)m

n=0 m=0

00 . . k
= (tz, sx; q)wZ(qu)@ (=ty) 194 < s:qu ;q7u7uksy) . (125)

—~ (t; k(575 Q)r(g; O

e If u =1 in Corollary 6.26, then

o (5)+(%) gngm
nZ:o mzzo wernl ) G @
N N0 ()t (0
(1 55:0)0 2 O G o e (8%@1’“ & y) (126)

k=0
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e If u = ¢ in Corollary 6.26, then

n

q(z)"'(?)t”sm
(¢ Dn(G Dm

(—ty)"* ( -, )
k=0 (t: @) (53 O B30 0SY )

sxq
(127)
o If u = ¢* and mapping y — qy in Corollary 6.26, then
& (G)+(3) gngm
n+m q S

ZZ(_l) * Sn-i—m(l’ay;Q)%
n=0 m=0 (qa Q)n(Q7 Q>m
= (m Sx'q) iq%ik (—ty)k 0¢2 < - g q2k+1sy) (128)

B 0 (tz; Or(s2: @)r(q; Or srq*,0 77

o If u=,/q in Corollary 6.26, then

% oo (5)+(5)ngm
n+m T q S
nZ:OmZ:O(_l) B0 00 s
(o, 230) 3 VD G et
><1¢3<\/quk’_\(}squj_ﬁ;\/Fz,q’“”sy). (129)
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