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Deformed homogeneous polynomials and the deformed q-

exponential operator

Ronald Orozco López

Abstract. In this paper, we introduce the deformed homogeneous polynomials
Rn(x, y;u|q). These polynomials generalize some classical polynomials: the Rogers-
Szegö polynomials hn(x|q), the generalized Rogers-Szegö polynomials rn(x, y), the
Stieltjes-Wigert polynomials Sn(x; q), among others. Basic properties of the poly-
nomial Rn are given, along with recurrence relations, its q-difference equation, and
representations. Generating functions for the polynomials Rn(x, y;u|q) are given.
These functions include generalizations of the Mehler and Rogers formulas. In addi-
tion, generalizations of the q-binomial formula and the Heine transformation formula
are obtained. These results are obtained via the u-deformed q-exponential operator
E(yDq|u), defined here. From this operator, we obtain for free the operators T(yDq)
the Chen, R(yDq) of Saad, E(yDq) of Exton, and R(yDq) of Rogers-Ramanujan
when u = 1, q,

√
q, q2, respectively. We introduce the deformed basic hypergeomet-

ric series rΦs, a generalization of the classical basic hypergeometric series. New
transformation formulas for basic hypergeometric series are obtained.
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1 Introduction

We begin with some notation and terminology for basic hypergeometric series [1]. The
q-shifted factorial is defined by

(a; q)n =

{

1 if n = 0;
∏n−1

k=0(1− qka), if n 6= 0,
q ∈ C,

(a; q)∞ = lim
n→∞

(a; q)n =

∞
∏

k=0

(1− aqk), |q| < 1.

The multiple q-shifted factorials are defined by

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, q ∈ C,

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞, |q| < 1.

Some useful identities for q-shifted factorial:

(a; q)n =
(a; q)∞
(aqn; q)∞

, aqn 6= q−k, k = 1, 2, 3, . . . , (1)

(a; q)n+k = (a; q)n(aq
n; q)k, (2)

(a; q)2n = (a; q2)n(aq; q
2)n, (3)

(a2; q2)n = (a; q)n(−a; q)n. (4)
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In our work, we will use the identities for binomial coefficients:
(

n+ k

2

)

=

(

n

2

)

+

(

k

2

)

+ nk,

(

n− k

2

)

=

(

n

2

)

+

(

k

2

)

+ k(1− n).

The q-binomial coefficient is defined by
[

n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k
.

The q-binomial coefficient satisfies
[

n+ 1

k

]

q

=

[

n

k

]

q

+ qn+1−k

[

n

k − 1

]

q

= qk
[

n

k

]

q

+

[

n

k − 1

]

q

, (5)

[

n

k

]

q

=
(q−n; q)k
(q; q)k

(−qn)kq−(
k

2).

The rφs basic hypergeometric series is defined by

rφs

(

a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

)

=

∞
∑

n=0

(a1, a2, . . . , ar; q)n
(q; q)n(b1, b2, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

zn.

In this paper, we will frequently use the q-binomial theorem:

1φ0

(

a
− ; q,−z

)

=
(az; q)∞
(z; q)∞

=

∞
∑

n=0

(a; q)n
(q; q)n

zn. (6)

The q-exponential eq(z) is defined by

eq(z) =
∞
∑

n=0

zn

(q; q)n
= 1φ0

(

0
− ; q, z

)

=
1

(z; q)∞
.

Another q-analogue of the classical exponential function is

Eq(z) =

∞
∑

n=0

q(
n

2)
zn

(q; q)n
= 0φ0

(

−
− ; q,−z

)

= (−z; q)∞.

For all u ∈ C, we define the following function, which we will call the deformed q-
exponential function,

eq(z, u) =

{

∑∞
n=0 u

(n2) zn

(q;q)n
if u 6= 0;

1 + z
1−q

if u = 0.
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Some deformed q-exponential functions are:

eq(z, 1) = eq(z) =
1

(z; q)∞
, |z| < 1,

eq(−z, q) = Eq(−z) = (z; q)∞, z ∈ C,

eq(z,
√
q) = Eq(z) =

∞
∑

n=0

q
1

2(
n

2) zn

(q; q)n
= 1φ1

(

0
−√

q
;
√
q,−z

)

, z ∈ C,

eq(qz, q
2) = Rq(z) =

∞
∑

n=0

qn
2 zn

(q; q)n
, z ∈ C,

where Eq(z) is the Exton q-exponential function and Rq(z) is the Rogers-Ramanujan
function. The function eq(z, u) is an u-deformed q-exponential function since when u 7→ 1,
then eq(z, u) 7→ eq(z) and since eq(z) is a q-deformation of the exponential function ez,
then the function eq(z, u) defines a double deformation of the exponential function.

Associated to the deformed q-exponential function eq(z, u) we have the deformed ho-
mogeneous polynomials Rn(x, y; u|q) defined by

Rn(x, y; u|q) =
n

∑

k=0

[

n

k

]

q

u(
k

2)xn−kyk, (7)

whose generating function is

eq(xt) eq(yt, u) =

∞
∑

n=0

Rn(x, y; u|q)
tn

(q; q)n
. (8)

The polynomials Rn(x, y; u|q) are a generalization of classical polynomials. For example:

• If x = 1, y = x, and u = 1, then

Rn(1, x; 1|q) = hn(x|q), (9)

where hn(x|q) is the classical Rogers-Szegö polynomial of degree n. The Rogers-
Szegö polynomials play an important role in the theory of the orthogonal polyno-
mials [8] and physics [3].

• If u = 1, then
Rn(x, y; 1|q) = rn(x, y), (10)

where rn(x, y) is a generalization of the Rogers-Szegö polynomials given by Saad et
al. [6].

• If y 7→ −y and u = q, then

Rn(x,−y; q|q) = Pn(x, y), (11)

where Pn(x, y) are the Cauchy polynomials

Pn(x, y) = (x− y)(x− qy)(x− q2y) · · · (x− qn−1y).
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• If x = 1, y = qx, and u = q2, then

Rn(1, qx; q
2|q) = (q; q)n Sn(x; q) = 1φ1

(

q−n

0
; q,−qn+1x

)

, (12)

where Sn(x; q) are the Stieltjes-Wigert polynomials.

In this paper, we give basic properties of the polynomials Rn, their q-difference equa-
tion, representations, and recurrence relations. Five types of generating functions for the
polynomials Rn(x, y; u|q) are obtained

∞
∑

n=0

v(
n

2) Rn(x, y; u|q)
tn

(q; q)n
, (Deformed generating function)

∞
∑

n=0

Rn(x, y; u|q)
(a; q)n
(q; q)n

tn, (Srivastava-Agarwal type)

∞
∑

n=0

Rn(x, y; u|q)
(z; q)nt

n

(az; q)n(q; q)n
,

∞
∑

n=0

Rn(x, y; u|q) Rn(z, w; v|q)
tn

(q; q)n
, (Mehler type)

∞
∑

n=0

∞
∑

m=0

Rn+m(x, y; u|q)
v(

n

2)w(
m

2 )tn

(q; q)n(q; q)m
, (Rogers type)

and many special cases are given. These generating functions are expressed in terms of
the deformed basic hypergeometric series rΦs defined by

rΦs

(

a1, a2, . . . , ar
b1, . . . , bs

; q, u, z

)

=
∞
∑

n=0

u(
n

2) (a1, a2, . . . , ar; q)n
(q, b1, b2, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

zn. (13)

The paper is divided into the following sections: Section 2 discusses the basic identi-
ties of the q-differential operator. In Section 3, the deformed basic hypergeometric series

rΦs is introduced. As we will note later, these series are closely related to the poly-
nomials Rn(x, y; u, v|q). In this section, we will give the equation in q-difference of the

2Φ1-series. Section 4 introduces the deformed homogeneous polynomials. Basic prop-
erties, q-difference equations, basic hypergeometric representations, and recurrence rela-
tions are given. Section 5 introduces the deformed q-exponential operator and provides
some identities for this operator. In Section 6, generating functions for Rn(x, y; u|q) are
given: generalized q-binomial theorem, generalization of Heine’s transformation formula,
Mehler’s, Srivastava-Agarwal, and Rogers type formulas. New transformation formulas
for basic hypergeometric series are given.
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2 The q-differential operator

The q-differential operator Dq is defined by:

Dqf(x) =
f(x)− f(qx)

x
(14)

and the Leibniz rule for Dq is

Dn
q {f(x)g(x)} =

n
∑

k=0

qk(k−n)

[

n

k

]

q

Dk
q{f(x)}Dn−k

q {g(qkx)}. (15)

Then

Dn
q x

k =
(q; q)k
(q; q)k−n

xk−n.

From Eq. (14), we have identities for the deformed q-exponential function:

eq(z, u)− eq(qz, u)− z eq(uz, u) = 0. (16)

Dk
q{eq(ax, u)} = aku(

k

2) eq(au
kx, u). (17)

According to the Leibniz formula and from Eqs. (15) and (16),

Dn
q {eq(ax, u) eq(bx, v)}

=

n
∑

k=0

[

n

k

]

q

u(
k

2)v(
n−k

2 )akbn−k eq
(

aukx, u
)

eq
(

bqkvn−kx, v
)

. (18)

If u = v = q in Eq. (18), then

Dn
q {(ax, bx; q)∞} = q(

n

2)(ax, bqnx; q)∞

n
∑

k=0

[

n

k

]

q

qk(k−n) a
kbn−k

(ax; q)k
. (19)

If u = q and v = 1 in Eq. (18), then

Dn
q

{

(−ax; q)∞
(bx; q)∞

}

=
(−ax; q)∞
(bx; q)∞

n
∑

k=0

[

n

k

]

q

q(
k

2)akbn−k (bx; q)k
(−ax; q)k

. (20)

If u = v = 1 in Eq. (18), then

Dn
q

{

1

(ax, bx; q)∞

}

=
1

(ax, bx; q)∞

n
∑

k=0

[

n

k

]

q

akbn−k(bx; q)k. (21)
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3 Deformed basic hypergeometric series

Definition 3.1. Set 0 < |q| < 1 and take u ∈ C. We define the u-deformed basic hyper-
geometric series rΦs as

rΦs

(

a1, a2, . . . , ar
b1, . . . , bs

; q, u, z

)

=
∞
∑

n=0

u(
n

2) (a1, a2, . . . , ar; q)n
(q, b1, b2, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

zn. (22)

By letting that u take values 1, q, q2 or
√
q, we obtain the following basic hypergeo-

metric series:

• If u = 1, then rΦs = rφs.

• If u = q,

r+1Φr

(

a1, a2, . . . , ar, 0
b1, . . . , br

; q, q, z

)

= rφr

(

a1, a2, . . . , ar
b1, b2, . . . , br

; q,−z

)

(23)

for all z ∈ C.

• If u = q2 and mapping z 7→ qz,

r+1Φr

(

a1, . . . , ar+1

b1, . . . , br
; q, q2, qz

)

= r+1φr+2

(

a1, . . . , ar+1

b1, . . . , br, 0, 0
; q, qz

)

(24)

for all z ∈ C.

• If u =
√
q,

r+1Φr

(

a1, . . . , ar+1

b1, . . . , br
; q,

√
q, z

)

= 2r+2φ2r+2

( √
a1,−

√
a1 , . . . ,

√
ar+1,−

√
ar+1√

b1,−
√
b1 , . . . ,

√
br,−

√
br,−

√
q, 0

;
√
q,−z

)

(25)

for all z ∈ C.

Therefore, a deformed basic hypergeometric series generalizes the basic hypergeometric
series. A series

∑∞
n=0 vn is a deformed basic hypergeometric series if the quotient vn+1/vn

is a rational function of qn for a fixed base q and if it is proportional to un. The most
general form of the quotient is

vn+1

vn
= un (1− a1q

n)(1− a2q
n) · · · (1− arq

n)

(1− qn+1)(1− b1qn) · · · (1− bsqn)
(−qn)1+s−rz

normalizing v0 = 1.
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Theorem 3.2. Some convergence conditions for the rΦs-series are

• 1+ s− r 6= 0. If 0 < |uq1+s−r| < 1, then rΦs is an entire function. If |uq1+s−r| = 1,
then rΦs converges for |z| < 1. If |uq1+s−r| > 1, then rΦs is divergent.

• 1 + s − r = 0. If 0 < |u| < 1, then rΦs is an entire function. If |u| = 1, then rΦs

converges for |z| < 1. If |u| > 1, then rΦs is divergent.

The deformed q-exponential function has the following representation in u-deformed
basic hypergeometric series

eq(z, u) = 1Φ0

(

0
− ; q, u, z

)

. (26)

The deformed basic hypergeometric series 2Φ1 is

2Φ1

(

a, b
c

; q, u, z

)

=

∞
∑

n=0

u(
n

2)
(a, b; q)n

(c; q)n(q; q)n
zn. (27)

The q-difference operator applied to the 2Φ1-series:

Dn
q 2Φ1

(

a, b
c

; q, u, z

)

= u(
n

2)
(a, b; q)n
(c; q)n

2Φ1

(

aqn, bqn

cqn
; q, u, unz

)

(28)

which can be checked directly.

Theorem 3.3. The deformed basic hypergeometric series 2Φ1, Eq. (27), satisfies the q-
difference equation

czD2
qf(z)− abqz2D2

qf(uz) + (1− c)Dqf(z)

+
[

(1− a)(1− b)− (1− abq)
]

zDqf(uz)− (1− a)(1− b)f(uz) = 0. (29)

Proof. Suppose that f(x) =
∑∞

n=0 vnz
n is the solution of Eq. (29). Then

czD2
qf(z)− abqz2D2

qf(uz) + (1− c)Dqf(z)

+
[

(1− a)(1− b)− (1− abq)
]

zDqf(uz)− (1− a)(1− b)f(uz)

= c

∞
∑

n=0

vn(1− qn)(1− qn−1)zn−1 − abq

∞
∑

n=0

vn(1− qn)(1− qn−1)unzn

+ (1− c)

∞
∑

n=0

vn(1− qn)zn−1 +
[

(1− a)(1− b)− (1− abq)
]

∞
∑

n=0

vn(1− qn)unzn

− (1− a)(1− b)

∞
∑

n=0

vnu
nzn = 0,

8
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Therefore,

vn+1

=
un[abq(1 − qn)(1− qn−1)− ((1− a)(1− b)− (1− abq))(1− qn) + (1− a)(1− b)]

c(1− qn+1)(1− qn) + (1− c)(1− qn+1)
vn

= un (1− aqn)(1− bqn)

(1− qn+1)(1− cqn)
vn.

Then

vn =

n−1
∏

k=0

uk (a; q)n(b; q)n
(q; q)n(c; q)n

= u(
n

2)
(a; q)n(b; q)n
(q; q)n(c; q)n

,

normalizing v0 = 1.

Replacing a, b, c with qa, qb, qc in Eq. (29) and then dividing by (1 − q)2, and taking
formal limits, shows that Eq. (29) tends to the functional-differential equation

zf ′′(z)− z2f ′′(uz) + cf ′(z)− (a + b+ 1)zf ′(uz)− abf(uz) = 0 (30)

as q → 1. Equation (30) has the solution

2 F1

(

a, b
c

; u, z

)

=
∞
∑

n=0

u(
n

2) (a)n(b)n
(c)n

zn

n!
. (31)

When u = 1, we recover the classical hypergeometric function.

4 Deformed homogeneous polynomials

4.1 Definition and basic properties

Definition 4.1. We define the (u, v)-deformed homogeneous polynomial as

Rn(x, y; u, v|q) =
n

∑

k=0

[

n

k

]

q

u(
n−k

2 )v(
k

2)xn−kyk. (32)

Some specializations of Rn(x, y; u|q) are:

Rn(x, y; 1, 1|q) = rn(x, y), (33)

Rn(1, x; q, q|q) = hn(x|q−1) = q(
n

2)
n

∑

k=0

[

n

k

]

q

qk(k−n)xk, (34)

Rn(1,−x; 1, q|q) = (x; q)n, (35)

Rn(1, qx; 1, q
2|q) = S∗

n(x; q) = (q; q)nSn(x; q). (36)

9
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We define two new polynomials: The homogeneous Stieltjes-Wigert polynomials

Sn(x, y; q) =

n
∑

k=0

[

n

k

]

q

qk
2

xn−kyk (37)

and the Exton polynomials

En(x, y; q) = Rn(x, y; 1,
√
q|q) =

n
∑

k=0

[

n

k

]

q

√
q(

k

2)xn−kyk (38)

=

n
∑

k=0

[

n

k

]

√
q

(−√
q;
√
q)n

(−√
q;
√
q)k(−

√
q;
√
q)n−k

√
q(

n

2)xn−kyk. (39)

As we will see below, the Stieltjes-Wigert and Exton polynomials are related to the
Rogers-Ramanujan and Exton q-exponential functions, respectively. As

Rn(x, y; u, v|q) = u(
n

2) Rn(x, u
1−ny; 1, uv|q), (40)

then we will deal with u-deformed homogeneous polynomials

Rn(x, y; u|q) ≡ Rn(x, y; 1, u|q). (41)

4.2 Recurrence relations

Theorem 4.2. The polynomials Rn(x, y; u|q) satisfy the following recursion relations

Rn+1(x, y; u|q) = xRn(x, qy; u|q) + yRn(x, uy; u|q), (42)

Rn+1(x, y; u|q) = xRn(x, y; u|q) + yRn(qx, uy; u|q). (43)

Proof. By Eq. (41),

xRn(x, qy; u|q) + yRn(x, uy; u|q)

=
n

∑

k=0

[

n

k

]

q

qku(
k

2)xn+1−kyk +
n

∑

k=0

[

n

k

]

q

u(
k+1

2 )xn−kyk+1

=
n

∑

k=0

[

n

k

]

q

qku(
k

2)xn+1−kyk +
n+1
∑

k=1

[

n

k − 1

]

q

u(
k

2)xn+1−kyk

= xn+1 + u(
n+1

2 )yn+1 +
n

∑

k=1

[

n

k

]

q

qku(
k

2)xn+1−kyk +
n

∑

k=1

[

n

k − 1

]

q

u(
k

2)xn+1−kyk.

10
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Now, by using Eq. (5) we have,

xRn(x, qy; u|q) + yRn(x, uy; u|q)

= xn+1 + u(
n+1

2 )yn+1 +
n

∑

k=1

{[

n

k

]

q

qk +

[

n

k − 1

]

q

}

u(
k

2)xn+1−kyk

= xn+1 + u(
n+1

2 )yn+1 +

n
∑

k=1

[

n+ 1

k

]

q

u(
k

2)xn+1−kyk

=

n+1
∑

k=0

[

n+ 1

k

]

q

u(
k

2)xn+1−kyk

= Rn+1(x, y; u|q).

The proof is reached.

By iterating the above theorem, we have the following result.

Theorem 4.3. For m ≥ 0,

Rn+m(x, y; u|q) =
m
∑

k=0

[

m

k

]

q

u(
k

2)xm−kyk Rn(x, q
m−kuky; u|q). (44)

4.3 Deformed q-exponential function as limit of deformed homogeneous polyno-

mials

Theorem 4.4. If 0 < |q| < 1, then

lim
n→∞

Rn(1, x; u|q) = eq(x, u). (45)

Proof. As

lim
n→∞

[

n

k

]

q

=
1

(q; q)k
,

then

lim
n→∞

Rn(1, x; u|q) = lim
n→∞

n
∑

k=0

[

n

k

]

q

u(
k

2)xk =

∞
∑

k=0

u(
k

2) xk

(q; q)k
= eq(x, u).

4.4 Deformed basic hypergeometric representation

Theorem 4.5. For all n ≥ 0 and x 6= 0,

Rn(x, y; u|q) = xn
2Φ0

(

q−n, 0
− ; q, u, qny/x

)

. (46)

11
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Proof.

xn
2Φ0

(

q−n, 0
− ; q, u, qny/x

)

= xn
∞
∑

k=0

u(
k

2)
(q−n; q)k
(q; q)k

(−1)kq−(
k

2)(qny/x)k

=
n

∑

k=0

[

n

k

]

q

u(
k

2)xn−kyk.

The basic hypergeometric representation of polynomials Eqs. (33)-(38) are

rn(x, y) = xn
2Φ0

(

q−n, 0
− ; q, 1, qny/x

)

= xn
2φ0

(

q−n, 0
− ; q, qny/x

)

.

hn(x|q−1) = q(
n

2)2Φ0

(

q−n, 0
− ; q, q2, qy

)

= q(
n

2)1φ1

(

q−n, 0
− ; q, qy

)

.

(x; q)n = 2Φ0

(

q−n, 0
− ; q, q,−qnx

)

= 2φ1

(

q−n, 0
0

; q, qnx

)

.

Sn(x, y; q) = xn
2Φ0

(

q−n, 0
− ; q, q2, qn+1y/x

)

= xn
1φ1

(

q−n

0
; q,−qn+1y/x

)

.

En(x, y; q) = xn
2Φ0

(

q−n, 0
− ; q,

√
q, qny/x

)

= xn
4φ2

(

q−n/2,−q−n/2, q, 0√
q,−√

q
;
√
q, qny/x

)

.

4.5 The q-difference equation

Theorem 4.6. The polynomials y(x) = Rn(1, x; u|q) are solutions of the proportional

functional difference equation

(Dqy)(u
−1x) + qn−1x(Dqy)(q

−1x) = (1− qn)y(x), (47)

with initial value y(0) = 1.

Proof. As
Dq Rn(1, x; u|q) = (1− qn) Rn−1(1, ux; u|q),

then the left side of Eq. (47) is equal to

(Dqy)(u
−1x) + qn−1x(Dqy)(q

−1x)

= (1− qn) Rn−1(1, x; u|q) + qn−1(1− qn)xRn−1(1, uq
−1x; u|q)

= (1− qn)

( n−1
∑

k=0

[

n− 1

k

]

q

u(
k

2)xk +
n

∑

k=1

[

n− 1

k − 1

]

q

u(
k

2)qn−kxk

)

= (1− qn)
n

∑

k=0

[

n

k

]

q

u(
k

2)xk = (1− qn) Rn(1, x; u|q).

12
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Eq. (47) is equivalent to

f(u−1x)− f(qu−1x) + qnu−1xf(q−1x)− u−1xf(x) = 0. (48)

5 The deformed q-exponential operator

Definition 5.1. Set u ∈ C. Define the u-deformed q-exponential operator E(yDq|u) by
letting

E(yDq|u) =
∞
∑

n=0

u(
n

2)
(yDq)

n

(q; q)n
. (49)

The u-deformed q-exponential operator E(yDq|u) generalizes the operators given by
Chen [9]:

T(bDq) =
∞
∑

n=0

(bDq)
n

(q; q)n
= E(bDq|1), (50)

and by Saad et al. [7]:

R(bDq) =
∞
∑

n=0

(−1)n
(bDq)

nq(
n

2)

(q; q)n
= E(−bDq|q). (51)

When u =
√
q, we define the Exton operator E(yDq) as

E(yDq) = E(yDq|
√
q) =

∞
∑

n=0

√
q(

n

2) (yDq)
n

(q; q)n
= 1φ1

(

0
−√

q
;
√
q,−yDq

)

. (52)

When u = q2 and by the mapping y 7→ qy, we define the Rogers-Ramanujan operator
R(yDq) as

R(yDq) = E(qyDq|q2) =
∞
∑

n=0

qn
2 (yDq)

n

(q; q)n
. (53)

The deformed homogeneous polynomials Rn(x, y; u|q) can be represented by the deformed
q-exponential operator E(yDq|u) as follows:

Proposition 5.2. For all u, v ∈ C

E(yDq|u)
{

xn
}

= Rn(x, y; u|q). (54)

Proof. By applying the deformed q-exponential operator, we get

E(yDq|u)
{

xn
}

=

∞
∑

k=0

u(
k

2) yk

(q; q)k
Dk

q{xn}

=

∞
∑

k=0

[

n

k

]

q

u(
k

2)xn−kyk

= Rn(x, y; u|q),
which implies the statement.

13
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Below, we have some q-operator identities.

Theorem 5.3. If u, v ∈ C, u 6= 0, then

E(yDq|u)
{

eq(ax, v)
}

=
∞
∑

k=0

(uv)(
k

2) (ay)k

(q; q)k
eq
(

avkx, v
)

. (55)

Proof. From Eq. (16),

E(yDq|u)
{

eq(ax, v)
}

=
∞
∑

k=0

u(
k

2)yk

(q; q)k
Dk

q{eq(ax, v)}

=
∞
∑

k=0

u(
k

2) yk

(q; q)k
akv(

k

2) eq
(

avkx, v
)

.

The proof is completed.

If v = 1 in Eq. (55), then

E(yDq|u)
{

1

(ax; q)∞

}

=
eq(ay, u)

(ax; q)∞
, (56)

for |ax| < 1. If v = q in Eq. (55), then

E(yDq|u){(ax; q)∞} = (ax; q)∞ · 2Φ1

(

0, 0
ax

; q, qu, ay

)

, (57)

for |ax| < 1.

Theorem 5.4. If u, v, w ∈ C, u 6= 0, then

E(yDq|u){eq(ax, v) eq(bx, w)}

=
∞
∑

k=0

∞
∑

n=0

(uv)(
k

2)(uw)(
n

2) (ay)
k

(q; q)k

(ukby)n

(q; q)n
eq(av

kx, v) eq(bq
kwnx, w). (58)

Proof.

E(yDq|u){eq(ax, v) eq(bx, w)}

=
∞
∑

n=0

u(
n

2)
yn

(q; q)n
Dn

q {eq(ax, v) eq(bx, w)}

=
∞
∑

n=0

u(
n

2) yn

(q; q)n

n
∑

k=0

[

n

k

]

q

akv(
k

2)bn−kw(
n−k

2 ) eq(av
kx, v) eq(bq

kwn−kx, w)

=

∞
∑

k=0

(uv)(
k

2)
(ay)k

(q; q)k
eq(av

kx, v)

∞
∑

n=0

(uw)(
n

2)(ukby)n

(q; q)n
eq(bq

kwnx, w)

=

∞
∑

k=0

∞
∑

n=0

(uv)(
k

2)(uw)(
n

2)
(ay)k

(q; q)k

(ukby)n

(q; q)n
eq(av

kx, v) eq(bq
kwnx, w).

14
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We have some specializations of the above theorem:

Corollary 5.5. If v = w = 1, then

E(yDq|u)
{

1

(ax, bx; q)∞

}

=
1

(ax, bx; q)∞

∞
∑

k=0

u(
k

2)
(bx; q)k(ay)

k

(q; q)k
eq(u

kby, u). (59)

Corollary 5.6. If v = 1, w = q and setting b 7→ −b, then

E(yDq|u)
{

(bx; q)∞
(ax; q)∞

}

=
(bx; q)∞
(ax; q)∞

∞
∑

k=0

u(
k

2)(ay)k

(q; q)k(bx; q)k
1Φ1

(

0
bxqk

; q, u, ukby

)

. (60)

Corollary 5.7. If v = q, w = 1 and setting a 7→ −a, then

E(yDq|u)
{

(ax; q)∞
(bx; q)∞

}

=
(ax; q)∞
(bx; q)∞

∞
∑

k=0

(uq)(
k

2)(−ay)k

(q; q)k(ax; q)k
eq(u

kby, u). (61)

Theorem 5.8.

E(yDq|u)
{

(ax; q)∞
(bx; q)∞

}

=
(ax; q)∞
(bx; q)∞

2Φ1

(

a/b, 0
ax

; q, u, by

)

. (62)

Proof.

E(yDq|u)
{

(ax; q)∞
(bx; q)∞

}

=

∞
∑

n=0

u(
n

2)
yn

(q; q)n
Dn

q

{

(ax; q)∞
(bx; q)∞

}

=

∞
∑

n=0

u(
n

2)
yn

(q; q)n
Dn

q

{

1φ0

(

a/b
− ; q, bx

)}

=
∞
∑

n=0

u(
n

2)
(by)n

(q; q)n
(a/b; q)n · 1φ0

(

aqn/b
− ; q, bx

)

=
∞
∑

n=0

u(
n

2) (a/b; q)n
(q; q)n

(by)n
(aqnx; q)∞
(bx; q)∞

=
(ax; q)∞
(bx; q)∞

2Φ1

(

a/b, 0
ax

; q, u, by

)

.

Corollary 5.9. If v = w = q and setting a 7→ −a and b 7→ −b, then

E(yDq|u){(ax, bx; q)∞}

= (ax, bx; q)∞

∞
∑

k=0

(qu)(
k

2)(−ay)k

(ax; q)k(bx; q)k(q; q)k
1Φ1

(

0
bxqk

; q, u, ukby

)

. (63)
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6 Generating functions for Rn(x, y;u|q)

6.1 Generalized q-binomial theorem

Theorem 6.1.

∞
∑

n=0

v(
n

2) Rn(x, y; u|q)
zn

(q; q)n
=

∞
∑

k=0

(uv)(
k

2) (yz)k

(q; q)k
eq
(

vkxz, v
)

. (64)

Proof. From Theorem 5.3

∞
∑

n=0

v(
n

2) Rn(x, y; u|q)
zn

(q; q)n
=

∞
∑

n=0

v(
n

2) E(yDq|u)
{

(xz)n

(q; q)n

}

= E(yDq|u)
{

∞
∑

n=0

v(
n

2)
(xz)n

(q; q)n

}

= E(yDq|u) {eq(xz, v)}

=

∞
∑

k=0

(uv)(
k

2) (yz)k

(q; q)k
eq
(

vkxz, v
)

.

Corollary 6.2. Set |yz| < 1 and |v| < 1. Then

∞
∑

n=0

v(
n

2) Rn(x, y; v
−1|q) zn

(q; q)n
=

∞
∑

n=0

v(
n

2) (xz)
n

(q; q)n

1

(vnyz; q)∞
. (65)

Proof.

∞
∑

n=0

v(
n

2) Rn(x, y; v
−1|q) zn

(q; q)n
=

∞
∑

k=0

(yz)k

(q; q)k
eq
(

vkxz, v
)

=

∞
∑

k=0

(yz)k

(q; q)k

∞
∑

n=0

v(
n

2)
(vkxz)n

(q; q)n

=

∞
∑

n=0

v(
n

2)
(xz)n

(q; q)n

∞
∑

k=0

(vnyz)k

(q; q)k

=
∞
∑

n=0

v(
n

2)
(xz)n

(q; q)n

1

(vnyz; q)∞
.

From Corollary 6.2 we have the following results:

∞
∑

n=0

q(
n

2) Rn(x, y; q
−1|q) zn

(q; q)n
=

1

(yz; q)∞
1φ1

(

yz
0

; q,−xz

)

. (66)
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Corollary 6.3. Set v = q2, u = q−2, and z 7→ qz in Theorem 6.1. Then

∞
∑

n=0

qn
2

Rn(x, y; q
−2|q) zn

(q; q)n

=
1

(yz; q)∞
4φ5

( √
yz,−√

yz,
√
yzq,−√

yzq
0, 0, 0, 0, 0

; q, q2xz

)

. (67)

Proof. Set v = q2, u = q−2, and by mapping z 7→ qz, then

∞
∑

n=0

qn
2

Rn(x, y; q
−2|q) zn

(q; q)n

=

∞
∑

m=0

qm
2 (xz)m

(q; q)m

1

(q2myz; q)∞

=
1

(yz; q)∞

∞
∑

m=0

qm
2 (xz)m(yz; q)2m

(q; q)m

=
1

(yz; q)∞

∞
∑

m=0

qm
2 (xz)m(yz; q2)m(yzq; q

2)m
(q; q)m

=
1

(yz; q)∞

∞
∑

m=0

qm
2 (xz)m(

√
yz; q)m(−

√
yz; q)m(

√
yzq; q)m(−

√
yzq; q)m

(q; q)m

=
1

(yz; q)∞
4φ5

( √
yz,−√

yz,
√
yzq,−√

yzq
0, 0, 0, 0, 0

; q, qxz

)

.

Corollary 6.4. Set v =
√
q and u =

√

q−1 in Theorem 6.1. Then

∞
∑

n=0

√
q(

n

2) Rn(x, y;
√

q−1|q) zn

(q; q)n

=
1

(yz; q)∞
3φ4

(

0, 0, 0√
q,−√

q,−q, yz
; q,

√
qx2z2

)

+
xz

(1− q)(
√
qyz; q)∞

3φ4

(

0, 0, 0
q
√
q,−q

√
q,−q,

√
qyz

; q, q
√
qx2z2

)

. (68)
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Proof. Set v =
√
q, u =

√

q−1. Then

∞
∑

n=0

√
q(

n

2) Rn(x, y;
√

q−1|q) zn

(q; q)n

=
∞
∑

m=0

√
q(

m

2 ) (xz)
m

(q; q)m

1

(qm/2yz; q)∞

=
∞
∑

m=0

√
q(

2m

2 ) (xz)
2m

(q; q)2m

1

(qmyz; q)∞
+

∞
∑

m=0

√
q(

2m+1

2 ) (xz)
2m+1

(q; q)2m+1

1

(qm+1/2yz; q)∞

=
1

(yz; q)∞

∞
∑

m=0

√
q(

2m

2 ) (xz)
2m

(q; q)2m
(yz; q)m

+
1

(
√
qyz; q)∞

∞
∑

m=0

√
q(

2m+1

2 ) (xz)
2m+1

(q; q)2m+1
(
√
qyz; q)m.

Now by using the identities Eq. (3) and Eq. (4),

∞
∑

n=0

√
q(

n

2) Rn(x, y;
√

q−1|q) zn

(q; q)n

=
1

(yz; q)∞

∞
∑

m=0

√
q(

2m

2 ) (yz; q)m(xz)
2m

(
√
q; q)m(−

√
q; q)m(−q; q)m(q; q)m

+
1

(1− q)(
√
qyz; q)∞

∞
∑

m=0

√
q(

2m+1

2 ) (
√
qyz; q)m(xz)

2m+1

(−q; q)m(q; q)m(−q
√
q; q)m(q

√
q; q)m

=
1

(yz; q)∞
2φ3

(

yz, 0√
q,−√

q,−q
; q,

√
qx2z2

)

+
xz

(1− q)(
√
qyz; q)∞

2φ3

( √
qyz, 0

q
√
q,−q

√
q,−q

; q, q
√
qx2z2

)

.

Corollary 6.5 (Generalized q-binomial theorem). If v = 1 in Theorem 6.1, then

∞
∑

n=0

Rn(x, y; u|q)
tn

(q; q)n
=

eq(yt, u)

(xt; q)∞
. (69)

Eq. (69) is a generalization of the q-binomial theorem, and Eq. (6) and Theorem 6.1
provide a very straightforward proof for this. On the other hand,

• If x = 1, y = x, and u = 1 in Eq. (69), then

∞
∑

n=0

hn(x|q)
tn

(q; q)n
=

1

(t, xt; q)∞
, max{|t|, |xt|} < 1.

18
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• If y 7→ −y and u = q in Eq. (69), then

∞
∑

n=0

Pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

, |xt| < 1.

• If u = q2, y 7→ qy, and y 6= 0 in Eq. (69), and if yz = 1, then

∞
∑

n=0

Sn(x, y
−1; q)

yn

(q; q)n
=

Rq(1)

(xy−1; q)∞
=

1

(xy−1; q)∞(q; q5)∞(q4; q5)∞
. (70)

If yz = q, then

∞
∑

n=0

Sn(x, qy
−1; q)

yn

(q; q)n
=

Rq(q)

(xy−1; q)∞
=

1

(xy−1; q)∞(q2; q5)∞(q3; q5)∞
. (71)

Rq(1) and Rq(q) are the Rogers-Ramanujan functions [4, 5]

Rq(1) =
1

(q; q5)∞(q4; q5)∞
and Rq(q) =

1

(q2; q5)∞(q3; q5)∞
. (72)

• If u =
√
q in Eq. (69). Then

∞
∑

n=0

En(x, y; q)
tn

(q; q)n
=

Eq(yt)
(xt; q)∞

. (73)

Corollary 6.6. If v = q in Theorem 6.1, then

∞
∑

n=0

(−1)nq(
n

2) Rn(x, y; u|q)
zn

(q; q)n
= (xz; q)∞1Φ1

(

0
xz

; q, u, yz

)

. (74)

Proof.

∞
∑

n=0

(−1)nq(
n

2) Rn(x, y; u|q)
zn

(q; q)n
=

∞
∑

k=0

(uq)(
k

2) (−yz)k

(q; q)k
eq
(

−qkxz, q
)

= (xz; q)∞

∞
∑

k=0

(uq)(
k

2) (−yz)k

(xz; q)k(q; q)k

= (xz; q)∞ · 1Φ1

(

0
xz

; q, u, yz

)

.

Some specializations of Corollary 6.6 are
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• If u = 1, then

∞
∑

n=0

(−1)nq(
n

2) Rn(x, y)
zn

(q; q)n
= (xz; q)∞ · 1φ1

(

0
xz

; q, yz

)

. (75)

• If u = q, then

∞
∑

n=0

(−1)nq(
n

2) Pn(x, y)
zn

(q; q)n
= (xz; q)∞ · 0φ1

(

−
xz

; q,−yz

)

. (76)

• If u = q2, then

∞
∑

n=0

(−1)nq(
n

2) Sn(x, y; q)
zn

(q; q)n
= (xz; q)∞ · 0φ2

(

0
xz, 0

; q, yz

)

. (77)

• If u =
√
q, then

∞
∑

n=0

(−1)nq(
n

2) En(x, y; q)
zn

(q; q)n
= (xz; q)∞ · 1φ3

(

0√
xz,−√

xz,−√
q
;
√
q, yz

)

.

(78)

6.2 Generalization of Heine’s transformation formula

Heine’s transformation formula is

2φ1

(

a, b
c

; q, z

)

=
(b, az; q)∞
(c, z; q)∞

2φ1

(

c/b, z
az

; q, b

)

(79)

where |z| < 1 and |b| < 1. In this section, we investigate a generalization of Heine’s
transformation formula via the generating function

∞
∑

n=0

Rn(x, y; u|q)
(z; q)n

(az; q)n(q; q)n
tn.

Definition 6.7. We define the following representation for the deformed homogeneous
polynomials Rn(x, y; u|q) based on the basic hypergeometric series

rRs

(

x, y; u;
a1, . . . , ar
b1, . . . , bs

; q, t

)

=
∞
∑

n=0

Rn(x, y; u|q)
(a1, . . . , ar; q)n

(q; q)n(b1, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

tn. (80)
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For u = 1, q, q2,
√
q, we have, respectively:

r Rs

(

x, y;
a1, . . . , ar
b1, . . . , bs

; q, t

)

=

∞
∑

n=0

rn(x, y)
(a1, . . . , ar; q)n

(q; q)n(b1, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

tn. (81)

r Ps

(

x, y;
a1, . . . , ar
b1, . . . , bs

; q, t

)

=

∞
∑

n=0

Pn(x, y)
(a1, . . . , ar; q)n

(q; q)n(b1, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

tn. (82)

r Ss

(

x, y;
a1, . . . , ar
b1, . . . , bs

; q, t

)

=
∞
∑

n=0

Sn(x, y; q)
(a1, . . . , ar; q)n

(q; q)n(b1, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

tn. (83)

r Es

(

x, y;
a1, . . . , ar
b1, . . . , bs

; q, t

)

=
∞
∑

n=0

En(x, y; q)
(a1, . . . , ar; q)n

(q; q)n(b1, . . . , bs; q)n

[

(−1)nq(
n

2)
]1+s−r

tn. (84)

From Eqs. (66),

0R0

(

x, y; q−1;
−
− ; q,−z

)

=
1

(yz; q)∞
1φ1

(

yz
0

; q,−xz

)

.

1R0

(

x, y; u;
0
− ; q, z

)

=
eq(yt, u)

(xt; q)∞
.

0R0

(

x, y; u;
−
− ; q, z

)

= (xz; q)∞1Φ1

(

0
xz

; q, u, yz

)

.

Theorem 6.8. We get the following representation for the deformed homogeneous polyno-

mials Rn(x, y; u|q)

1R1

(

x, y; u;
z
az

; q, b

)

=
(z; q)∞

(xb, az; q)∞

∞
∑

n=0

eq(ybq
n, u)

(a; q)n(xb; q)n
(q; q)n

zn, (85)

where |b| < 1 and |z| < 1.
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Proof. From generalized q-binomial theorem

eq(ybq
n, u)

(xbqn; q)∞
=

∞
∑

m=0

Rm(x, y; u|q)
(bqn)m

(q; q)m
. (86)

Hence,

∞
∑

n=0

eq(ybq
n, u)

(a; q)n(xb; q)n
(q; q)n

zn = (xb; q)∞

∞
∑

n=0

(a; q)n
(q; q)n

eq(ybq
n, u)

(xbqn; q)∞
zn

= (xb; q)∞

∞
∑

n=0

(a; q)n
(q; q)n

∞
∑

m=0

Rm(x, y; u|q)
(bqn)m

(q; q)m
zn

= (xb; q)∞

∞
∑

m=0

Rm(x, y; u|q)
bm

(q; q)m

∞
∑

n=0

(a; q)n
(q; q)n

(zqm)n

= (xb; q)∞

∞
∑

m=0

Rm(x, y; u|q)
bm

(q; q)m

(azqm; q)∞
(zqm; q)∞

=
(az, xb; q)∞
(z; q)∞

∞
∑

m=0

Rm(x, y; u|q)
(z; q)mb

m

(az; q)m(q; q)m

Corollary 6.9. From Theorem 6.8 we have the following representation for the generalized

Rogers-Szegö polynomials

2R1

(

x, y;
z, 0
az

; q, b

)

=
(z; q)∞

(az, bx, by; q)∞
3φ2

(

a, bx, by
0, 0

; q, z

)

. (87)

Proof. Set u = 1 in Theorem 6.8. Then

∞
∑

n=0

rn(x, y)
(z; q)n

(az; q)n(q; q)n
bn =

(z; q)∞
(bx, by, az; q)∞

∞
∑

n=0

(a; q)n(bx; q)n(by; q)n
(q; q)n

zn

=
(z; q)∞

(az, bx, by; q)∞
3φ2

(

a, bx, by
0, 0

; q, z

)

.

Corollary 6.10. From Theorem 6.8, we have the following representation for the Cauchy

polynomials

2 P1

(

x, y;
z, 0
az

; q, b

)

=
(z, by; q)∞
(az, bx; q)∞

2φ1

(

a, bx
by

; q, z

)

. (88)
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Proof. Set u = q and y 7→ −y in Theorem 6.8. Then

∞
∑

n=0

Pn(x, y)
(z; q)n

(az; q)n(q; q)n
bn =

(z; q)∞
(bx, az; q)∞

∞
∑

n=0

(byqn; q)∞
(a; q)n(bx; q)n

(q; q)n
zn

=
(z, by; q)∞
(bx, az; q)∞

∞
∑

n=0

(a; q)n(bx; q)n
(by; q)n(q; q)n

zn

=
(z, by; q)∞
(bx, az; q)∞

2φ1

(

a, bx
by

; q, z

)

.

Corollary 6.11. From Theorem 6.8 we have the following representation for the homoge-

neous Stieltjes-Wigert polynomials

2 S1

(

x, y;
z, 0
az

; q, b

)

=
(z; q)∞

(xb, az; q)∞

∞
∑

n=0

Rq(ybq
n)
(a; q)n(xb; q)n

(q; q)n
zn. (89)

Corollary 6.12. From Theorem 6.8, we have the following representation for the Exton

polynomials

2 E1

(

x, y;
z, 0
az

; q, b

)

=
(z; q)∞

(xb, az; q)∞

∞
∑

n=0

Eq(ybqn)
(a; q)n(xb; q)n

(q; q)n
zn, (90)

where |bx| < 1 and |az| < 1.

Theorem 6.13 (Generalized Heine’s transformation formula).

1R1

(

x, y; u;
z
az

; q, b

)

=
(a, bxz; q)∞
(az, bx; q)∞

1R1

(

a/b, y; u;
z
bxz

; q, b

)

, (91)

where 0 < |b| < 1.

Proof. Repeat the proof of the above theorem with

eq(ybq
n, u)

(aqn; q)∞
=

∞
∑

m=0

Rm(a/b, y; u|q)
(bqn)m

(q; q)m
. (92)

Some specialization of the Theorem 6.13 are

• We get Heine’s transformation formula Eq. (79) if we set u = q, x = 1, y = −c/b,
z = b, and a = b in Theorem 6.13.
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•

1R1

(

x, y;
z
az

; q, b

)

=
(a, bxz; q)∞
(az, bx; q)∞

1R1

(

a/b, y;
z
bxz

; q, b

)

•

1 P1

(

x, y;
z
az

; q, b

)

=
(a, bxz; q)∞
(az, bx; q)∞

1 P1

(

a/b, y;
z
bxz

; q, b

)

•

1 S1

(

x, y;
z
az

; q, b

)

=
(a, bxz; q)∞
(az, bx; q)∞

1 S1

(

a/b, y;
z
bxz

; q, b

)

•

1 E1

(

x, y;
z
az

; q, b

)

=
(a, bxz; q)∞
(az, bx; q)∞

1 E1

(

a/b, y;
z
bxz

; q, b

)

6.3 Mehler’s formula for Rn(x, y;u|q)

Theorem 6.14 (Mehler’s formula).

∞
∑

n=0

Rn(x, y; u|q) Rn(z, w; v|q)
tn

(q; q)n

=
1

(tzx; q)∞

∞
∑

k=0

(uv)(
k

2) (twy)
k(tzx; q)k

(q; q)k
eq(twxv

k, v) eq(tyzu
k, u). (93)

Proof. By Eq. (69),

∞
∑

n=0

Rn(x, y; u|q) Rn(z, w; v|q)
tn

(q; q)n
=

∞
∑

n=0

E(yDq|u){xn}Rn(z, w; v|q)
tn

(q; q)n

= E(yDq|u)
{

∞
∑

n=0

Rn(z, w; v|q)
(xt)n

(q; q)n

}

= E(yDq|u)
{

eq(wxt, v)

(zxt; q)∞

}

=

∞
∑

n=0

u(
n

2) yn

(q; q)n
Dn

q

{

eq(wxt, v)

(zxt; q)∞

}

Now, by applying Leibniz’s formula Eq. (15)

∞
∑

n=0

Rn(x, y; u|q) Rn(z, w; v|q)
tn

(q; q)n

=
1

(zxt; q)∞

∞
∑

n=0

u(
n

2)
(yt)n

(q; q)n

n
∑

k=0

[

n

k

]

q

v(
k

2)wkzn−k(zxt; q)k eq(wtxv
k, v)

=
1

(zxt; q)∞

∞
∑

k=0

(uv)(
k

2)
(zxt; q)k(wyt)

k

(q; q)k
eq(wtxv

k, v)

∞
∑

n=0

u(
n

2)
(ukytz)n

(q; q)n
.
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This completes the proof.

• If u = v = 1, x = z = 1, y = x, w = y in the Theorem 6.14, we obtain the following
identity for the Rogers-Szegö polynomials

∞
∑

n=0

hn(x|q) hn(y|q)
tn

(q; q)n
=

(xyt2; q)∞
(t, xt, yt, xyt; q)∞

,

where max{|t|, |xt|, |yt|, |xyt|} < 1.

• If u = v = 1, we obtain the following identity [6] for generalized the Rogers-Szegö
polynomials

∞
∑

n=0

rn(x, y) rn(z, w)
tn

(q; q)n
=

(xyzwt2; q)∞
(txz, txw, tyw, tyz; q)∞

,

where max{|txz|, |xwt|, |tyw|, |tyw|} < 1

• If u = v = q, y 7→ −y, and w 7→ −w, we obtain the following identity

∞
∑

n=0

Pn(x, y) Pn(z, w)
tn

(q; q)n
=

(twx, tyz; q)∞
(txz; q)∞

1φ2

(

txz
txw, tyz

; q, tyw

)

. (94)

• If u = q2, v = q2, and with the maps y 7→ qy and w 7→ qw, then

∞
∑

n=0

Sn(x, y; q) Sn(z, w; q)
tn

(q; q)n

=
1

(tzx; q)∞

∞
∑

k=0

q4k
2 (tzx; q)k
(q; q)k

(txy)kRq(tyzq
2k)Rq(txwq

2k). (95)

• If u = v =
√
q, then

∞
∑

n=0

En(x, y; q) En(z, w; q)
tn

(q; q)n

=
1

(txz; q)∞

∞
∑

k=0

q(
k

2)
(txz; q)k
(q; q)k

(twy)k1φ1

(

0
−√

q
; q,−txw

√
qk.

)

× 1φ1

(

0
−√

q
; q,−tyz

√
qk
)

. (96)

Other identities that arise as special cases of Theorem 6.14 are
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• If u = 1, v = q, and w 7→ −w, then
∞
∑

n=0

rn(x, y) Pn(z, w)
tn

(q; q)n
=

(twx; q)∞
(tzx, tzy; q)∞

1φ1

(

tzx
twx

; q, twy

)

. (97)

• If u = 1, v = q2, and w 7→ qw, then
∞
∑

n=0

rn(x, y) Sn(z, w; q)
tn

(q; q)n

=
1

(tyz, tzw; q)∞

∞
∑

k=0

qk
2 (tzx; q)k
(q; q)k

(twy)kRq(twxq
2k) (98)

=
1

(tyz, tzw; q)∞

∞
∑

n=0

qn
2 (twx)n

(q; q)n
1φ2

(

tzx
0, 0

; q, twyq2n−1

)

. (99)

• If u = 1 and v =
√
q, then

∞
∑

n=0

rn(x, y) En(z, w; q)
tn

(q; q)n

=
1

(tyz, tzx; q)∞

∞
∑

k=0

√
q(

k

2) (tzx; q)k
(q; q)k

(twy)k1φ1

(

0
−√

q
;
√
q,−twxqk/2.

)

. (100)

• If u = q2, v = q, and y 7→ qy and w 7→ −w, then
∞
∑

n=0

Sn(x, y; q) Pn(z, w)
tn

(q; q)n

=
(twx; q)∞
(tzx; q)∞

∞
∑

k=0

(−1)kq
3k

2
−k

2

(tzx; q)k
(twx; q)k(q; q)k

(twy)kR(tyzq2k). (101)

• If u = q2, v =
√
q, and with the map y 7→ qy, then

∞
∑

n=0

Sn(x, y; q) En(z, w; q)
tn

(q; q)n

=
1

(tzx; q)∞

∞
∑

k=0

q
5k

2
−k

2

(twy)k(tzx; q)k
(q; q)k

Eq(twxqk/2)Rq(tyzq
2k). (102)

• If u =
√
q, v = q, and w 7→ −w, then

∞
∑

n=0

En(x, y; q) Pn(z, w)
tn

(q; q)n

=
(twx; q)∞
(tzx; q)∞

∞
∑

k=0

q
3

2(
k

2)
(tzx; q)k

(twx; q)k(q; q)k
(twy)kEq(tyzqk/2). (103)
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6.4 Srivastava-Agarwal type formulas

Srivastava and Agarwal [2] derived a large number of generating functions of the form

∞
∑

n=0

Qn(x; q)
(λ; q)n
(q; q)n

tn, (104)

where Qn(x; q) is a q-polynomial. In this section, we will use Mehler’s formula, Theo-
rem 6.14, to derive the Srivastava-Agarwal generating function of the polynomials Rn(x, y; u|q).

Corollary 6.15. The representation type Srivastava-Agarwal, Eq. (104), of Rn(x, y; u|q) is
∞
∑

n=0

Rn(x, y; u|q)
(a; q)n
(q; q)n

tn =
(atx; q)∞
(tx; q)∞

∞
∑

k=0

(uq)(
k

2)
(−aty)k(tx; q)k
(atx; q)k(q; q)k

eq(tyu
k, u). (105)

Proof. Set v = q, z = 1, w = −a in Theorem 6.14. Then

∞
∑

n=0

Rn(x, y; u|q)
(a; q)n
(q; q)n

tn

=
1

(tzx; q)∞

∞
∑

k=0

(uq)(
k

2)
(−aty)k(tzx; q)k

(q; q)k
(atxqk; q)∞ eq(tyzu

k, u)

=
(atx; q)∞
(tzx; q)∞

∞
∑

k=0

(uq)(
k

2) (−aty)k(tzx; q)k
(atx; q)k(q; q)k

eq(tyzu
k, u).

• If u = 1, v = q, x = z = 1, y = x, w = −y in Corollary 6.15, then we obtain the
following result of Srivastava and Agarwal [2]

∞
∑

n=0

rn(x, y)
(a; q)n
(q; q)n

tn =
(atx; q)∞
(tx, ty; q)∞

1φ1

(

tx
atx

; q, aty

)

.

• If u = q, v = q2, w 7→ −w, z = 1, and y 7→ qy in Corollary 6.15, then the
representation type Srivastava-Agarwal of Sn(x, y; q) is

∞
∑

n=0

Sn(x, y; q)
(a; q)n
(q; q)n

tn =
(atx; q)∞
(tx; q)∞

∞
∑

k=0

q
3k

2
−k

2

(tx; q)k(−aty)k

(q; q)k(atx; q)k
Rq(tyq

2k). (106)

• The representation type Srivastava-Agarwal of En(x, y; q) is

∞
∑

n=0

En(x, y; q)
(a; q)n
(q; q)n

tn

=
(ty; q)∞
(tx; q)∞

∞
∑

k=0

(q
√
q)(

k

2)
(tx; q)k

(q; q)k(ty; q)k
(tay)k1φ1

(

0
−√

q
;
√
q, taxqk/2

)

. (107)
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6.5 Transformation formulas for 2Φ1

Setting a 7→ b and b 7→ a in corollaries 5.6 and 5.7, then matching with Theorem 5.8,
we obtain, respectively

2Φ1

(

a/b, 0
ax

; q, u, by

)

=

∞
∑

k=0

u(
k

2)(by)k

(q; q)k(ax; q)k
1Φ1

(

0
axqk

; q, u, ukay

)

. (108)

=
∞
∑

k=0

(uq)(
k

2)(−ay)k

(q; q)k(ax; q)k
eq(u

kby, u). (109)

Corollary 6.16. From Eq. (108) with u = 1, we obtain

2φ1

(

a/b, 0
ax

; q, ay

)

=
∞
∑

k=0

(by)k

(q; q)k(ax; q)k
1φ1

(

0
axqk

; q, ay

)

. (110)

Corollary 6.17 (Transformation formula for 2φ1). From Eq. (109) with u = 1, we obtain

the important transformation formula from 2φ1 sum to 1φ1

2φ1

(

a/b, 0
ax

; q, by

)

=
1

(by; q)∞
1φ1

(

0
ax

; q, ay

)

. (111)

Corollary 6.18. If we set u = q in Eq. (108), we obtain the identity

1φ1

(

a/b
ax

; q,−by

)

=
∞
∑

k=0

q(
k

2)(by)k

(q; q)k(ax; q)k
0φ1

(

−
axqk

; q,−qkay

)

. (112)

Corollary 6.19 (Transformation formula for 1φ1). From Eq. (109) with u = q, we obtain

the important transformation formula from 1φ1 sum to 1φ2

1φ1

(

a/b
ax

; q,−by

)

= (by; q)∞1φ2

(

0
ax, by

; q, ay

)

. (113)

Corollary 6.20. From Eqs. (108) and (109), with u = q2, and y 7→ qy, we obtain the

identities

1φ2

(

a/b
ax, 0

; q, qby

)

=
∞
∑

k=0

qk
2

(by)k

(q; q)k(ax; q)k
0φ2

(

−
axqk, 0

; q, q2kay

)

=
∞
∑

k=0

q
3k

2
−k

2 (−ay)k

(q; q)k(ax; q)k
Rq(q

2kby).

Corollary 6.21. From Eq. (108) with u =
√
q we obtain

3φ3

( √

a/b,−
√

a/b, 0√
ax,−√

ax,−√
q
;
√
q,−by

)

=

∞
∑

k=0

q
1

2(
k

2)(by)k

(q; q)k(ax; q)k
1φ3

(

0
√

axqk,−
√

axqk,−√
q
;
√
q, qk/2ay

)

. (114)

28



Deformed homogeneous polynomials and the deformed q-exponential operator

Finally, set x = z = 1, y = x, and w = y in Eq. (94). Then we have the corollary.

Corollary 6.22 (Transformation formula for 1φ2). For |t| < 1, then

1φ2

(

t
tx, ty

; q, txy

)

=
(t; q)∞

(tx, ty; q)∞
2φ1

(

x, y
0

; q, t

)

. (115)

6.6 Rogers type formulas

Theorem 6.23 (Rogers formula).

∞
∑

n=0

∞
∑

m=0

Rn+m(x, y; u|q)
v(

n

2)w(
m

2 )tnsm

(q; q)n(q; q)m

=
∞
∑

k=0

∞
∑

n=0

(uv)(
k

2)(uw)(
n

2) (ty)k

(q; q)k

(uksy)n

(q; q)n
eq(tv

kx, v) eq(sq
kwnx, w). (116)

Proof.

∞
∑

n=0

∞
∑

m=0

Rn+m(x, y; u|q)
v(

n

2)w(
m

2 )tnsm

(q; q)n(q; q)m

=

∞
∑

n=0

∞
∑

m=0

E(yDq|u){xn+m}v
(n2)w(

m

2 )tnsm

(q; q)n(q; q)m

= E(yDq|u)
{

∞
∑

n=0

v(
n

2)
(tx)n

(q; q)n

∞
∑

m=0

w(
m

2 )
(sx)m

(q; q)m

}

=
∞
∑

k=0

∞
∑

n=0

(uv)(
k

2)(uw)(
n

2)
(ty)k

(q; q)k

(uksy)n

(q; q)n
eq(tv

kx, v) eq(sq
kwnx, w).

Corollary 6.24. If v = w = 1 in Theorem 6.23, then

∞
∑

n=0

∞
∑

m=0

Rn+m(x, y; u|q)
tnsm

(q; q)n(q; q)m

=
1

(tx, sx; q)∞

∞
∑

k=0

u(
k

2) (sx; q)k
(q; q)k

(ty)k eq(u
ksy, u). (117)

• The Rogers formula for hn(x|q) is:
∞
∑

n=0

∞
∑

m=0

hn+m(x|q)
tn

(q; q)n

sm

(q; q)m
=

(xst; q)∞
(t, xt, s, xs; q)∞

, max{|s|, |t|, |xs|, |xt|} < 1.
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• If u = 1, we obtain the following results in [6]

∞
∑

n=0

∞
∑

m=0

rn+m(x, y)
tnsm

(q; q)n(q; q)m
=

(stxy; q)∞
(tx, sx, sy, ty; q)∞

.

• If u = q, then we get the following result in [7],

∞
∑

n=0

∞
∑

m=0

Pn+m(x, y)
tnsm

(q; q)n(q; q)m
=

(sy; q)∞
(tx, sx; q)∞

1φ1

(

sx
sy

; q, ty

)

where |tx| < 1, |sx| < 1.

• If u = q2 and mapping y 7→ qy, then

∞
∑

n=0

∞
∑

m=0

Sn+m(x, y; q)
tnsm

(q; q)n(q; q)m

=
1

(tx, sx; q)∞

∞
∑

k=0

qk
2 (sx; q)k
(q; q)k

(ty)kRq(q
2ksy). (118)

• If u =
√
q, then

∞
∑

n=0

∞
∑

m=0

En+m(x, y; q)
tnsm

(q; q)n(q; q)m

=
1

(tx, sx; q)∞

∞
∑

k=0

√
q(

k

2) (sx; q)k
(q; q)k

(ty)kEq(qk/2sy). (119)

Corollary 6.25. If v = 1, w = q in Theorem 6.23, then

∞
∑

n=0

∞
∑

m=0

(−1)mRn+m(x, y; u|q)
q(

m

2 )tnsm

(q; q)n(q; q)m

=
(sx; q)∞
(tx; q)∞

∞
∑

k=0

u(
k

2) (ty)k

(sx; q)k(q; q)k
1Φ1

(

0
sxqk

; q, u, uksy

)

. (120)

• If u = 1 in Corollary 6.25, then

∞
∑

n=0

∞
∑

m=0

(−1)m rn+m(x, y)
q(

m

2 )tnsm

(q; q)n(q; q)m

=
(sx; q)∞
(tx; q)∞

∞
∑

k=0

(ty)k

(sx; q)k(q; q)k
1φ1

(

0
sxqk

; q, sy

)

. (121)
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• If u = q in Corollary 6.25, then

∞
∑

n=0

∞
∑

m=0

(−1)m Pn+m(x, y)
q(

m

2 )tnsm

(q; q)n(q; q)m

=
(sx; q)∞
(tx; q)∞

∞
∑

k=0

q(
k

2)
(ty)k

(sx; q)k(q; q)k
0φ1

(

−
sxqk

; q,−qksy

)

. (122)

• If u = q2 and mapping y 7→ qy in Corollary 6.25, then

∞
∑

n=0

∞
∑

m=0

(−1)m Sn+m(x, y; q)
q(

m

2 )tnsm

(q; q)n(q; q)m

=
(sx; q)∞
(tx; q)∞

∞
∑

k=0

qk
2 (ty)k

(sx; q)k(q; q)k
0φ2

(

−
sxqk, 0

; q, q2k+1sy

)

. (123)

• If u =
√
q in Corollary 6.25, then

∞
∑

n=0

∞
∑

m=0

(−1)m En+m(x, y; q)
q(

m

2 )tnsm

(q; q)n(q; q)m

=
(sx; q)∞
(tx; q)∞

∞
∑

k=0

√
q(

k

2) (ty)k

(sx; q)k(q; q)k
1φ3

(

0
√

sxqk,−
√

sxqk,−√
q
;
√
q,−qk/2sy

)

.

(124)

Corollary 6.26. If v = w = q in Theorem 6.23, then

∞
∑

n=0

∞
∑

m=0

(−1)n+mRn+m(x, y; u|q)
q(

n

2)+(
m

2 )tnsm

(q; q)n(q; q)m

= (tx, sx; q)∞

∞
∑

k=0

(qu)(
k

2) (−ty)k

(tx; q)k(sx; q)k(q; q)k
1Φ1

(

0
sxqk

; q, u, uksy

)

. (125)

• If u = 1 in Corollary 6.26, then

∞
∑

n=0

∞
∑

m=0

(−1)n+m rn+m(x, y)
q(

n

2)+(
m

2 )tnsm

(q; q)n(q; q)m

= (tx, sx; q)∞

∞
∑

k=0

q(
k

2)
(−ty)k

(tx; q)k(sx; q)k(q; q)k
1φ1

(

0
sxqk

; q, sy

)

. (126)
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• If u = q in Corollary 6.26, then

∞
∑

n=0

∞
∑

m=0

(−1)n+m Pn+m(x, y)
q(

n

2)+(
m

2 )tnsm

(q; q)n(q; q)m

= (tx, sx; q)∞

∞
∑

k=0

qk
2 (−ty)k

(tx; q)k(sx; q)k(q; q)k
0φ1

(

−
sxqk

; q,−qksy

)

.

(127)

• If u = q2 and mapping y 7→ qy in Corollary 6.26, then

∞
∑

n=0

∞
∑

m=0

(−1)n+m Sn+m(x, y; q)
q(

n

2)+(
m

2 )tnsm

(q; q)n(q; q)m

= (tx, sx; q)∞

∞
∑

k=0

q
3k

2
−k

2

(−ty)k

(tx; q)k(sx; q)k(q; q)k
0φ2

(

−
sxqk, 0

; q, q2k+1sy

)

. (128)

• If u =
√
q in Corollary 6.26, then

∞
∑

n=0

∞
∑

m=0

(−1)n+m En+m(x, y; q)
q(

n

2)+(
m

2 )tnsm

(q; q)n(q; q)m

= (tx, sx; q)∞

∞
∑

k=0

(q
√
q)(

k

2) (−ty)k

(tx; q)k(sx; q)k(q; q)k

× 1φ3

(

0
√

sxqk,−
√

sxqk,−√
q
;
√
q, qk/2sy

)

. (129)
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