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On Lie algebras associated with a spray: Case of infinites-
imal isometries of a Riemannian manifold

Manelo Anona and Hasina Ratovoarimanana

Abstract. The Lie algebra of infinitesimal isometries of a Riemannian manifold
contains at most two commutative ideals. One coming from the horizontal nullity
space of the Nijenhuis tensor of the canonical connection, the other coming from the
constant vectors fields independent of the Riemannian metric.

1 Introduction

Let M be a paracompact differentiable manifold of dimension n > 2 and of class C*,
S a spray on M. To study the Lie algebra of projectable vector fields which commute
with S, which will be denoted by Ag cf.[7], we have associated with S the vector 1—form
J defining the tangent structure on M. The vector 1—form I' = [J, S] is considered as a
connection in the sense of [4]. In [1], we have shown that the elements of Ag, belonging to
the horizontal nullity space of the curvature R of I, form a commutative ideal of Ag. In
2], we found that some constant elements of Ag can constitute a commutative ideal. In
the present study, we show that there are two possible commutative ideals. A Lie algebra
of infinitesimal isometries A_g of a Riemannian manifold is semi-simple if and only if the
horizontal nullity space of the Nijenhuis tensor of I' is zero and that the derived ideal
[A_g, A_g] coincides with A_g. To illustrate our results, we give some examples of Ag and A_g.
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2 Preliminaries

Let K and L be two vector 1—form on a manifold M, x(M) the set of vector fields on
M. The bracket [K, L] cf.[3] is written

[K,L)(X,Y) = [KX,LY]+[LX,KY]+ KL[X,Y] + LK[X,Y] — K[LX,Y]
—L[KX,Y] - K[X,LY] — L|X, KY]

for all X, Y € x(M).
The bracket Ny, = 3[L, L] is called the Nijenhuis tensor of L. The Lie derivative of X

applied to L is written
(X, LY =[X,LY] - LIX,Y].

The exterior derivation dy is defined by d; = [ir,d|, where iy the inner product with
respect to L.

Let I' be a connection in the sense of [4]. The vector 1—form I' is an almost product
structure (I'? = I, I being the identity vector 1—form). Noting

1 1
hzé(I+I’) andvzi(l—l’),

The vector 1—form A is the horizontal projector corresponding to the eigenvalue +1, and
v the vertical projector for the eigenvalue —1. The curvature of I' is defined by R = %[h, h)
which is also equal to £[I', T].

The Lie algebra Ar is defined by

Ar = {X € x(T'M) such that [X,['] = 0}.
The nullity space of the curvature R is:
Nr ={X € x(TM) such that R(X,Y) =0, VY € x(TM)}.

In local natural coordinates on an open set U of M, (z',47) are the coordinates on TU, a
spray S is written

9 A 0
S =y —— —2G"(2, ..., 2"yt .y =
Yo (' ..., 2"y, ,y)ayl
Let Ag = {X € x(T'M) such that [X,S] = 0}. The equation [X,S] = 0 implies that the
projectable elements of Ag are of the form
0,y 0,
ox’ ori 0y’

X = X'()

Let x(M) denote the complete lift on the tangent bundle TM of x(M) on M. The
projectable elements of Ag are in x(M). According to Jacobi’s identity cf.[3], we can write
with the vector 1—form J defining the tangent structure of M,

X, 8], J] + [[S, J], X] + [[J, X], S] = 0.
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By hypothesis we have [X,S] = 0 and, [J, X] = 0 according to a result of [6], we obtain

[X,T] =0,
with I' = [/, S]. Let C denote the Liouville field on the tangent bundle 7'M, the homo-
geneity of X ([C, X] = 0) leads us to study Ag taking S such that [C,S] = S, taking into
account [C, J| = —J.

Thus the connection I' is linear and without torsion according to [4]. For a connection

I' = [J, S], the coefficients of I" become Fz = 9G7 and the projectors horizontal and vertical

oy’
are

h(2) =2 —17 2 0y =170

{ (dgl) o o ,U<agl) ('Z)dy] 7’7] € {Lan}
h(a_yj) = Uayi) = ay7

The curvature R = [h, h] is then
[ i, 0 g _ory ory L ory L ory
R = §Rijdx Adx? @ o where R = 90 D o I oy

for each 4, j, k,l € {1,...,n} As the functions G* are homogeneous of degree 2, the coeffi-

cients Ffj = aizica;; do not depend on ¥, i € {1,...,n}. We then have Rfj = leffZ-j(:v), the
R},;(x) depend only on the coordinates of the manifold M.

Proposition 2.1 ([1]). The Lie algebra Ag coincides with Ar.
Proof. See Proposition 9 of [1]. O

3 The horizontal elements of Ar

Proposition 3.1. The elements of Ar are projectable vector fields.

Proof. A vector field X € Ar means [X,I'] = 0. By definition, the horizontal projector h
is h = &L, The relation [X,I'] = 0 is equivalent to [X, k] = 0.
By expanding [X, h] = 0, we have for all Y € x(T'M)

(X, hY] = h[X,Y].

If Y is a vertical vector field, we find hY = 0. the above relation becomes h[X,Y] = 0 for
any vertical vector field, i.e. X is a projectable vector field. O

We will denote in the following by H° the set of horizontal and projectable vector fields.

Proposition 3.2 ([1]). Let X be a projectable vector field. The following two relationships
are equivalent:
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(i) [hX,J] = 0;
(i) [JX,h] = 0.

Proposition 3.3. Let A% = Ar N H° and A = Al N x(M). The horizontal vector fields

A_[‘h of Ar form a commutative ideal of Ar. The dimension of A_ph corresponds to the
dimension of AL if the rank of Ak is constant.

Proof. From the result of [8], A} is an ideal of Ap, so Al = Al n x(M) is an ideal of
ArNx(M) = Ar. On the other hand, we have v|hZ, hT| = R(Z,T),¥Y Z,T € x(TM). We
then obtain v[X,Y] =0 for X,Y € Al

According to propositions 3.2 and 2 of [1], we have J [X,Y] = 0 for 7,_7 € A_ph, given
[/,T] = 0. The horizontal and vertical parts of [X, Y] are zero, we find [X,Y] = 0.

: ——h - = :
For the existence of such an element of A, we must have h(X) = X, that is to say

A 0 ~ 0 , 0 0X’(z) 0
X' — X' () — = X'(z)=— + ¢/ —.
(@) 5.7 ()1 0 (@) 5+ ¥ g0 oy
The system of equations to be solved becomes
ol —X"(x)T,, with 4, j, L€ {1,...,n}. (1)

The compatibility condition of such a system of equations according to the Frobenius
theorem is

l(axl] - 8[Elj + Flirl;j - Fl]F§z> - 07 (2D ka la S {17 s 7n}‘
that is, XlRﬁij = 0. This condition is satisfied if X € H° N Nz = AL The ideal of A%
is a module over the smooth functions of M and involutive. On the integral sub-manifold
defined by AL, the system (1) admits solutions in the number of the dimension of the said
sub-manifold. O

4 Lie algebras of infinitesimal isometries

Let E be an energy function, a function 7M = TM — {0} into R, with E(0) = 0, of
class C* on T M, of class C? on the null section, and homogeneous of degree two such that
the 2— form Q) = dd;F being of maximum rank. The canonical spray S is defined by

isdd,E = —dE,

the derivation ig is the inner product with respect to S. The 2— form €2 defines a Rie-
mannian metric g on the vertical bundle:

g(JX,JY) =Q(JX,Y)
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for all X, Y € x(T'M). With a natural local coordinate system on an open set U of M,
(x%,97) are the system of coordinates on TU, the function E is written

1 o
E= 59@‘(331, s x )y
where g;;(z', ..., a™) are positive functions such that the symmetric matrix whose (7, j)-th

entry is g;j(x',...,2") is invertible. The relation igdd;E = —dE gives the spray S

) , 0
S =y — —2G" ', ... 2" 1,... " ,
U (', 2"y ,y)ayl
with 1 1 Oge: Ogyn O
LA SO L Ok 9ik _ OFij
Gk’ - 2y y ,ylk’] Where ’sz’] - 2( axl (9$J a$k)7
by
’ij:gkl%lp
we have

L .
GF = 3V yjfyfj, i,j,ke{l,...,n}.
Definition 4.1. A vector field X on a Riemannian manifold (M, E) is called an infinitesimal
automorphism of the symplectic form €2 if Lx€) = 0, where Lx is the Lie derivative with
respect to X.

We notice that the canonical spray S of (M, E') is an infinitesimal automorphism of the
symplectic form €). The set of infinitesimal automorphisms of 2 forms a Lie algebra. We
denote this Lie algebra by A,, even formed by the projectable vector fields, it is in general
of infinite dimension cf. [1].

Proposition 4.2 ([1]). Let A, defined as A, N x(M), we have
a) X € A_g if and only if X is a projectable vector field such that X € A, and Lx E = 0;
b) A_g C Ar; the horizontal elements of Ar form a commutative ideal of A_g.

¢) The elements of A, are Killing fields of the projectable vectors of the metric g be-

longing to Ar. The dimension ofA_g 15 at most equal to @

Proposition 4.3. On a Riemannian manifold (M, E), the horizontal nullity space of the
curvature R is generated as a module by the projectable vector fields belonging to this nullity
space and, orthogonal to the image space ImR of the curvature R.

Proof. 1f the potential R° = igR is zero, then the curvature R is zero, in this case the
horizontal space I'mh is the horizontal nullity space of the curvature R, isomorphic to
X(U), U being an open set of M.
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In the following, we assume that R° # 0. The vertical vector field JX is orthogonal to
the image I'mR of the curvature if and and only if the curvature of the connection D of
Cartan R(S, X)Y =0VY € x(T'M) cf.[1]. We obtain R(X,Y) = R°[JY, X|VY € x(TM).
As R is a semi-basic vector 2—form, the above relation is only possible if X = S or
X € hNg, then X is generated as a module by projectable vector fields in ANg. O]

Theorem 4.4. The Lie algebra A_g is semi-simple if and only if the horizontal nullity space
of the Nijenhuis tensor of I' is zero and, the derived ideal [A,, A,] coincides with A,.

Proof. 1f the Lie algebra A_g is semi-simple, any commutative ideal of A_g is zero by defi-
nition. According to propositions 3.3 and 4.3 the horizontal nullity space of the Nijenhuis
tensor of I' is zero. The derived ideal [4,, A,] coincides with A, according to a classical
result.

Conversely, if X € Ap, we have [X,h] = 0. According to the identity of Jacobi cf.[3]
[X,[h,h]] = 0, that is to say, [X,R] = 0, we then have [X, R(Y,Z)] = R([X,Y],Z) +
R(Y,[X,Z]), for all Y, Z € x(TM). If X and Y are elements of a commutative ideal of
Ar, we find

[X,R(Y,2Z)] = R(Y,[X,Z]), VZ € x(TM). (2)

If the horizontal nullity space of the curvature R is zero, the semi-basic vector 2—form R
is non-degenerate. The only possible case for equation (2) is that the commutative ideal of
A_g is at most formed by constant vector fields %, i€ {l,...,n} such that % = 0 for all
ke {1,...,n} from [2]. These constant vector fields can only form an ideal of affine vector
fields independent of the other elements of A,. The derived ideal [A,, A,] never coincides
with A_g. Hence the result. O

Example 4.5. We take M = R? and the energy function is written:

E = W) + e (") + (")),

The canonical spray of E is written:

0 0 0 0 0 e 0
_ .19 2 U 3 ¢ 13 Y 930 € 1\2 2\2y Y
S=y i tY a2tV s VY yy8y2+2((y)+(y))ay3-

The non-zero coefficients of I" are

3 1 3 2
Yy 1 Y 2 Y 2 Y
M=% =2 T=" T:="
1 27 3 2’ 2 2’ 3 27
5 ex3y1 5 e:z:?’yQ
Fl__ F__ .
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['7 ] €1 €2 €3 €4 €5 €6
€2 — €4 &
€1 0 0 5 €1 B )
€9 0 0 —261 —€g | —€3 | —€4
€3 —672 261 0 0 €g —€5
€4 el e 0 0 —es5 | —eg
es | =5 | es | —es es 0 0
€g 673 €4 €5 €g 0 0

Table 1: Multiplication table of Ap

The horizontal fields are generated as a module by
0 o N eyl 0
oxt 2 oyt 2 Oyd’
R
ox? 2 Oy? 2 Oyd’
o yto o

ox3 20yt 2 0y3

The horizontal nullity space of the curvature is zero. The Lie algebra Ar is generated as
Lie algebra by:

2zt 0 s (@ (2?0 , 0 2zt +yla? 0
- et el = R S
Ayt 2t 0, 0
2 Oy? 4 oy’
_ 3 (951>2 (12)2 0 | 2 0 , 0
s = (=27 + 5 5 )0w1+x$82 523
o D

oy? oy3’
9 0 0 0
BT e T e Y T g
9 o 0 9 9

eq = Ilax1+$282—283+y1ﬁ+y2ﬁ,

e — i

5 - ax27

e — i

07 Oat

The Lie algebra Ap = A_g is simple.

Example 4.6. We take M = R* and the energy function is written:

E = %(6$2(y1)2 + (y2)2 + 6a74(y3>2 + (y4)2).
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The canonical spray of E is written:

0 0 0 0 o 0 o e 0
.1 2 3 4 .12 & 12 3.4 & r3\2
S—ya$1+y 8x2+yax3+yax4 yy8y1+2(y)ay2 yy8y3+2(y)8y4'

The non-zero coefficients of I" are
z2, 1

2 1 4
Y Y ey Y 3_ Y ey
r}:? r;:? rf=- 5 rg:? rgz? I3 =— 5
The horizontal fields are generated as a module by
K N
oxt 2 oyt 2 Oy?’
9y
ox2 2 oyl
9y ey o
ox3 2 0y’ 2 Oyt
9 v
ozt 2 Oyd’

The horizontal nullity space of the curvature is zero. The Lie algebra Ap is generated as
Lie algebra by:

e = (et 4 )8x1+$6x2 ( 2 Ty )8y1+y8y2’
z! 0 0 y? 0 0
62 = _— - =

200 "o 20y BT ogt
_ o @20 g0 =ty a0 50
e, = —(—e* + 1 )8$3+$8a:4 ( 5 +y'e

0 o o 9,

)8y3 Y g

65 = _——_— _— e

2923 ' Ozt 20y3 0 a3

As =45, A,
such thaLA_si_: {e1,e9,e3} = sl(2) and A_Si = {eq,€5,66} = sl(2) are simple. The Lie
algebra Ar = A, is semi-simple.

5 An example of a Lie algebra Ag of maximal rank n% 4+ n with a Lie
a2 - 2 -
algebra A, of maximal rank "™ of different natures.
We take M = R3 and the energy function is
1,
(') + e (1") + e (v*))

E = §<€z
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['7 ] €1 €9 €3 €4 €5 €
er | 0 |—e| 2] 0] 0 |0
€9 €1 0 —€3 0 0 0
€3 —672 €3 0 0 0 0
€4 0 0 0 0 —€4 %5
€5 0 0 0 €y 0 —E€g
€g 0 0 0 —%5 € 0

Table 2: Multiplication table of Ar in Example 4.6

The canonical spray of E is written:

S =y 1 g2 1B 9 _(y1)2 9 __(y2)2 9 _(y3)2 9 .
Ox? 0x? Ox? 2 oyt 2 0y? 2 0y3

The non-zero coefficients I'J of T are
7

=3 I=5 5=
The basis of the horizontal space of I' is written
o y o Jd Yo 9 yo
oxt 20yt 0x2 2 0y?’ Ox3 2 Oy

The curvature R is zero. The Lie algebra Ag is generated as Lie algebra by:

_0 S0 W, 0 o
AT g 2TC Ox! 2 oyt”’ BT g T g oy’
B N et W, _ o2 0 (¥ -y 0
“a=c <8x1 B 2 3y1>’ @ (8x2 a 2 a_yQ)’
_9 . _ %Q(i _ y_gi) _ 7”35’“'2( 0 _ —y3)i)
ST o2 T g2 T oy’ s=e Ox? 2 Oy’
2ot 0 (P -yl) 0 o2t 0 (yP-y?) 0
w=c (GaT 5 g = GaT T 5 gp)
0 3 0 y> 0
1= 55 e (% Ea_y?))J

We then have S
[Ag, As] # As.

All derivations of Ag are inner and, {e3, e7, €12} forms the commutative ideal of Ag and
include in the horizontal nullity space of the curvature.
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[7 ] €1 €2 €3 €4 €5 €6 €7 €3 €9 €10 €11 €12
e _e3 _es e €
er 5 5 5 5 0 0 0 5 0 0 0
€ el e | _€e | _e€s _e2 €10
€9 > 0 0 0 7+ 3 5 5 5 5 0 0 0
es %3 0 0 0 ‘77 0 0 0 % 0 0 0
€4 es el 4 en _e2 _es | _es
€y 5 0 0 0 = 0 0 0 5 T 5 5 B S
o [~F|3-3[-F] -5 [ 0 [ § [0 0 0 5 |00
€6 0 %2 0 0 —%5 0 —%7 —%8 0 ‘3‘70 0 0
er 0 % 0 0 0 %7 0 0 0 % 0 0
e es _es _ec 4 el | _es | _er
es 0 S 0 0 0 > 0 0 S 2+ 4 > 5
o [ - [-F[g-F 0 [0 [0] 37 0 08710
ew | 0| 0 [0 [T oy gl gm0 0 %o
es es _eo _ewn _en
el 0 0 0 5 0 0 0 5 5 5 0 5
el 0 0 0 %3 0 0 0 %7 0 0 ‘% 0

Table 3: Multiplication table of Ag

The Levi decomposition of Ag is
A_S = A_SS + A_ST”

such that Ag, = {e; — e11, €a, €4, €5, €6 — €11, €8, €9, €19} is simple and Ag, = {e; + eg +
e, es, €7, 12} is solvable. Hence, the Lie algebra Ag is not semi-simple.
The Lie algebra A, is generated as Lie algebra by

2ot 0 (Y -y o 22 9 (P-yh) 0

1. = € (8x1 B 2 8y1)_€ (8562 B 2 8y2)’
L 1
g = 6%(1_74_1),
oxrl 2 oyt
13—931 a (yl - yg) a zl—zs a (y3 - yl) a
gs = € 2 ( 1 1)_6 ( 3 3)7
ox 2 dy ox 2 oy
2 2
g = e%(i_y_i)
ox? 2 0y?
2322 8 y2 — y3 8 z2—z3 8 y3 — y2 8
g = W) O e 0 W) 0
ox 2 dy ox 2 oy
3 3
g = @%(%_y_ig)
Ox 2 Oy
We have o
[ gvAg] :Ag
D(g2) = g2

9
The derivations of A, are inner except for the derivation ¢ D(g,) = g4  which is outer
9

D(gs) =
and, {g2, g1 g¢} forms the commutative ideal of A, and include in the horizontal nullity
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[l g o | g3 | g | 95 | g6
g | 0|5 % =% 0
g |20 (=% 0| 0|0
o [ &[=[0 [0 [g|®
g« | 2100 [0 [-®=]0
s [ G040 %
g6 | 0 [0 270 Z 0

Table 4: Multiplication table of A_g

space of the curvature.

[AshA_g] = g-

i

The Levi decomposition of A_g is

Ay = A_gs + Agiv

such that A_g_sz {91,93,95} = so(3) is simple , A_gz‘ = {92, 94, 96} is solvable. Hence, the
Lie algebra A, is not semi-simple.
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