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Rook placements in G2 and F4 and associated coadjoint
orbits

Mikhail V. Ignatev, Matvey A. Surkov

Abstract. Let n be a maximal nilpotent subalgebra of a simple complex Lie algebra
with root system Φ. A subset D of the set Φ+ of positive roots is called a rook
placement if it consists of roots with pairwise non-positive scalar products. To each
rook placement D and each map ξ from D to the set C× of nonzero complex numbers
one can naturally assign the coadjoint orbit ΩD,ξ in the dual space n∗. By definition,
ΩD,ξ is the orbit of fD,ξ, where fD,ξ is the sum of root covectors e∗α multiplied by
ξ(α), α ∈ D (in fact, almost all coadjoint orbits studied at the moment have such a
form, for certain D and ξ). It follows from the results of André that if ξ1 and ξ2 are
distinct maps from D to C× then ΩD,ξ1 and ΩD,ξ2 do not coincide for classical root
systems Φ. We prove that this is true if Φ is of type G2, or if Φ is of type F4 and D
is orthogonal.

1 Introduction and the main result

Let g be a simple complex Lie algebra, b be a Borel subalgebra of g, Φ be the root
system of g, Φ+ be the set of positive roots corresponding to b, n be the nilradical of b,
N = exp(n) be the corresponding nilpotent algebraic group, and n∗ be the dual space to n.
The group N acts on n by the adjoint action; the dual action of N on the space n∗ is called
coadjoint; we will denote the result of this action by g.λ for g ∈ N , λ ∈ n∗. According
to the orbit method discovered by A.A. Kirillov in 1962, coadjoint orbits play a key role
in representation theory of N (see [10], [11]). We will consider a special class of coadjoint
orbits defined below.
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Definition 1.1. A subset D of Φ+ is called a rook placement if (α, β) ≤ 0 for all distinct
α, β ∈ D, where (−,−) denotes the inner product.

The root vectors eα, α ∈ Φ+ form a basis of n; we denote by {e∗α, α ∈ D} the dual basis
of n∗. Given a rook placement D and a map ξ : D → C×, we put

fD,ξ =
∑
α∈D

ξ(α)e∗α ∈ n∗.

Definition 1.2. We say that the coadjoint orbit ΩD,ξ of the linear form fD,ξ is associated
with the rook placement D and the map ξ.

It turns out that almost all coadjoint orbit studied to the moment are associated with
certain D and ξ (see, e.g. [1], [2], [12], [13], [14], [7], [3], [4], [5]). On the other hand, C.A.M.
André discovered that, for the case of An−1, rook placements themselves provide a nice
splitting of n∗ into a disjoint union of N -stable affine subvarieties called basic subvarieties.
(We will recall André’s results in detail in Section 2, because we will use them for the case
of F4.) By definition, the basic subvariety OD,ξ corresponding to a rook placement D and
a map ξ : D → C× is

OD,ξ =
∑
α∈D

Ω{α},ξα ,

where ξα is the restriction of ξ to {α}. For An−1, n∗ =
⊔
D,ξOD,ξ and all OD,ξ’s are affine

subvarieties of n∗ (see [1, Theorem 1]).
Even for Bn, Cn and Dn, the analogous question is still open. Nevertheless, we may

formulate the following conjecture for an arbitrary root system. Non-singularity of a rook
placement D means that if α, β ∈ D and α 6= β then α − β /∈ Φ+; for An−1, all rook
placements are automatically non-singular.

Conjecture 1.3. Each basic subvariety OD,ξ is an affine subvariety of n∗, and

n∗ =
⊔
D,ξ

OD,ξ,

where the union is taken over all non-singular rook placements D and all maps ξ : D → C×.

Direct computations show that this conjecture is true for classical root systems of low
rank. In the present paper, we check that this conjecture is true for the case of G2. This
is our first main result. In fact, given D and ξ, we present an explicit system of equations
describing OD,ξ.

Theorem 1.4. Let Φ = G2. Then each basic subvariety OD,ξ is an affine subvariety of n∗,
and

n∗ =
⊔
D,ξ

OD,ξ,

where the union is taken over all non-singular rook placements D and all maps ξ : D → C×.
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It turns out that, for An−1, if D is a rook placement and ξ1, ξ2 are distinct maps from
D to C× then the associated orbits ΩD,ξ1 and ΩD,ξ2 do not coincide (it follows immediately
from André’s theory, since ΩD,ξ ⊂ OD,ξ, see Section 2). For other classical root systems
this fact can be obtained as a corollary of the case of An−1 (see also [2]). This was used by
M.V. Ignatyev and I. Penkov in [8] and [6] for explicit classification of centrally generated
primitive ideals in the universal enveloping algebra U(n) for classical root systems.

In [9], M.V. Ignatyev and A.A. Shevchenko, while classifying centrally generated prim-
itive ideals in U(n) for exceptional root systems, proved that the analogous is true for
certain orthogonal rook placements in F4 and E6, E7, E8. This allows us to formulate the
second conjecture for an arbitrary root system.

Conjecture 1.5. Let D be a non-singular rook placement and ξ1, ξ2 be distinct maps from
D to C×. Then the associated coadjoint orbits ΩD,ξ1 and ΩD,ξ2 do not coincide.

Our second main result is that this conjecture is true for F4 if D is orthogonal (i.e. if
all roots from D are pairwise orthogonal).

Theorem 1.6. Let Φ = F4, D be an orthogonal non-singular rook placement and ξ1, ξ2 be
distinct maps from D to C×. Then the associated coadjoint orbits ΩD,ξ1 and ΩD,ξ2 do not
coincide.

2 André’s theory

In this section, we briefly recall André’s results from [1], which will be needed in the
sequel. Throughout this section, Φ will be of type An−1. As usual, we identify the set of
positive roots with the following subset of the Euclidean space Rn:

A+
n−1 = {εi − εj, 1 ≤ i < j ≤ n},

with the standard inner product. Here, ε1, . . . , εn denotes the standard basis of Rn.
In this case, n can be identified with the space of strictly upper-triangular n×nmatrices.

Given α = εi − εj ∈ Φ+, one can pick the (i, j)-th elementary matrix ei,j as a root vector
eα, so that [eα, eβ] = ±eα+β for α, β ∈ Φ+ (we put eα+β = 0 if α + β /∈ Φ+). We will
identify the dual space n∗ with the space n− of strictly lower-triangular n×n matrices via
the formula 〈λ, x〉 = tr(λx) for x ∈ n, λ ∈ n−. The root vectors eα, α ∈ Φ+ form a basis
of n; let {e∗α, α ∈ Φ+} be the dual basis of n∗ (in fact, e∗i,j = ej,i).

The group N is the group of all upper-triangular n×n matrices with 1’s on the diagonal.
It acts on its Lie algebra n via the adjoint action Adg(x) = gxg−1, g ∈ N , x ∈ n. The dual
action of N on the space n∗ is called coadjoint; we will denote the result of this action by
g.λ, g ∈ N , λ ∈ n∗. It is easy to check that, after the identification of n∗ with n−, this
action has the form g.λ = (gλg−1)low. Here, given an n× n matrix a, we set

(alow)i,j =

{
ai,j, if i > j,

0 otherwise.
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Definition 2.1. Pick a number k from 1 to n. We call the sets

Rk = {εj − εk, 1 ≤ j < k}, Ck = {εk − εi, k < i ≤ n}

the k-th row and the k-th column of Φ+, respectively. We say that the number i (respec-
tively, the number j) is the row (respectively, the column) of a root α = εi − εj.

Example 2.2. Let n = 6. On the picture below boxes from R5 ∪ C2 are grey. Here we
identify a root εi − εj ∈ Φ+ with the box (j, i).

To each rook placement D ⊂ Φ+ and each map ξ : D → C×, one can assign the linear
form

fD,ξ =
∑
α∈D

ξ(α)e∗α ∈ n∗.

Example 2.3. Let n = 8, D = {ε1−ε3, ε2−ε6, ε3−ε7, ε4−ε5, ε6−ε8}. On the picture below
we schematically draw the linear form fD,ξ putting symbols ⊗ in the boxes corresponding
to the roots from D.

It follows immediately from the definition of a rook placement that

|D ∩Rk| ≤ 1, |D ∩ Ck| ≤ 1
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for all k. This explains the term “rook placement”: if we identify symbols ⊗ from fD,ξ
with rooks on the lower-triangular chessboard, then these rooks do not hit each other.

Now, given a root α ∈ D, we denote by ξα the restriction of the map ξ to the subset
{α}, and put

OD,ξ =
∑
α∈D

O{α},ξα .

Clearly, ΩD,ξ ⊂ OD,ξ.

Definition 2.4. The set OD,ξ is called a basic subvariety of n∗ corresponding to the rook
placement D and the map ξ.

Accordingly to [1, Theorem 1], n∗ is a disjoint unions of basic subvarieties:

n∗ =
⊔
D,ξ

OD,ξ,

where the union is taken over all rook placements in A+
n−1 and all maps ξ : D → C×.

Formally, André considered the case of finite ground field, but his proofs are valid over
C, too. Furthermore, each basic subvariety OD,ξ is in fact an affine subvariety of n∗, and
André presented an explicit set of defining equations for it. To describe this set, we need
some more notation.

Definition 2.5. A root α ∈ Φ+ is called β-singular for a root β ∈ Φ+ if β − α ∈ Φ+. The
set of all β-singular roots is denoted by S(β).

Let D be a rook placement and ξ : D → C× be a map. We denote

S(D) =
⋃
β∈D

S(β)

and R(D) = Φ+ \ S(D). Obviously, D ⊂ R(D). Roots from S(D) (respectively, from
R(D)) are called D-singular (respectively, D-regular).

Example 2.6. Let n = 10, D = {ε1 − ε6, ε3 − ε10, ε5 − ε8}. On the picture below, boxes
corresponding to the roots from D are filled by⊗’s, as above, while the boxes corresponding
by the D-singular roots are marked gray.
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It turns out that to each D-regular root α one can assign the defining equation of OD,ξ.
Namely, there is a natural partial order on Φ+: we write α ≤ β if β−α is a sum of positive
roots. Evidently, εi − εj ≤ εr − εs if and only if s ≤ j and r ≥ i (in other words, on our
pictures εr − εs is located non-strictly to the South-West from εi − εj). Given α ∈ R(D),
we set D(α) = {α} ∪ {β ∈ D | β ≥ α}. Now, let RD(α) (respectively CD(α)) be the set of
all rows (respectively, of all columns) of the roots from D(α). Finally, for a matrix λ ∈ n∗,
we denote by ∆D

α (λ) the minor of the matrix λ with the set of rows RD(α) and the set
of columns CD(α). We assume that the numbers of rows and columns are taken in the
increasing order.

For instance, in the previous example, if α = ε4 − ε5 then

D(α) = {ε1 − ε6, ε3 − ε10, ε4 − ε5},

hence RD(α) = {5, 6, 10}, CD(α) = {1, 3, 4} and

∆D
α (λ) =

∣∣∣∣∣∣
λ5,1 λ5,3 λ5,4

λ6,1 λ6,3 λ6,4

λ10,1 λ10,3 λ10,4

∣∣∣∣∣∣ .
On the other hand, for α = ε5−ε8 ∈ D, one has D(α) = {ε3−ε10, ε5−ε8}, RD(α) = {8, 10},
CD(α) = {3, 5}, and, consequently,

∆D
α (λ) =

∣∣∣∣ λ8,3 λ8,5

λ10,3 λ10,5

∣∣∣∣ .
Thanks to [1, Proposition 2], a matrix λ ∈ n∗ belongs to OD,ξ if and only if

∆D
α (λ) = ∆D

α (fD,ξ) for all λ ∈ R(D).

Precisely, ∆D
α (λ) = 0 for all α ∈ R(D) \ D and ∆D

α (λ) = ±
∏

β∈D(α) ξ(β) for α ∈ D. It
follows immediately that

dimOD,ξ = |S(D)|.
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Remark 2.7. Actually, André’s proof of the fact that each λ ∈ n∗ belongs to a certain
basic subvariety OD,ξ is very straightforward. Namely, there is a total order ≤t on Φ+

refining the partial order ≤ defined above. By definition, εi − εj <t εr − εs if s < j or
s = j, i < r. Now, given λ ∈ n∗, we inductively construct OD,ξ containing λ. If λ = 0,
then D = ∅ and ξ is the unique empty map from ∅ to C×. If λ 6= 0 then we find the
smallest (with respect to ≤t) root α1 from Φ+ such that λ(eα1) 6= 0, and put D = {α1},
ξ(α1) = λ(α1). If λ ∈ OD,ξ, then we are done. Otherwise, let α2 be the smallest root such
that ∆D

α2
(λ) 6= ∆D

α2
(fD,ξ). Then we add α2 to D and define ξ(α2) in the obvious way. Now,

one can repeat this procedure to obtain the required basic subvariety OD,ξ.

3 Case Φ = G2

In this section, we prove our first main result, Theorem 1.4. First, we briefly recall
some basic facts about the simple Lie algebra g of type G2 and its maximal nilpotent
subalgebra n. By definition, the root system Φ = G2 has the form Φ = Φ+ ∪ Φ−, where
Φ+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β}, Φ− = −Φ+, and α, β are vectors from R2

such that ||α||2 = 1, ||β||2 = 3 and the angle between α and β equals 5π/6. There is a
Cartan decomposition g = h ⊕ n ⊕ n−, where h is a Cartan subalgebra of g, and n has a
basis consisting of the root vectors eγ, γ ∈ Φ+.

It is well known that there exists nonzero scalars ci, 1 ≤ i ≤ 5, such that

[eα, eβ] = c1 · eα+β,

[eα, eα+β] = c2 · e2α+β

[eα, e2α+β] = c3 · e3α+β

[e3α+β, eβ] = c4 · e3α+2β

[eα+β, e2α+β] = c5 · e3α+2β.

In fact, one can choose the root vectors so that c1 = 1, c2 = 2, c3 = 3, c4 = 1, c5 = 3,
but we will not use these explicit values in the sequel. One can immediately check that
c1c5 = c3c4 for an arbitrary choice of the root vectors.

Recall the definition of the group N = exp(n) and the coadjoint action of N on the
dual space n∗. It is straightforward to check that this action has the form

(exp(x).λ)(y) = λ(exp(−adx)(y))

= λ(y)− λ([x, y]) +
1

2!
λ([x, [x, y]])− . . . ,

for x, y ∈ n, λ ∈ n∗.
Now, let D be a non-singular rook placement in Φ+. Recall that non-singularity means

that γ /∈ S(δ) for all distinct γ, δ ∈ D, where S(δ) denotes the set of δ-singular roots in
Φ+. Fix a map ξ : D → C×, and recall that, by definition, ΩD,ξ is the coadjoint orbit of the
linear form fD,ξ. It follows immediately that if γ is a maximal (with respect to the partial
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order ≤ on Φ+) among all roots from D then λ(eγ) = fD,ξ(eγ) = ξ(γ) for all λ ∈ ΩD,ξ.
Similarly, λ(eγ) = 0 for all λ ∈ ΩD,ξ, if there are no δ ∈ D such that δ ≥ γ. Recall also
the definition of OD,ξ.

Given γ ∈ Φ+, we write λγ = λ(eγ), so that λ =
∑

γ∈Φ+ λγe
∗
γ. We will prove Theorem1.4

as an immediate corollary of the following key proposition:

Proposition 3.1. Let D be a non-singular rook placement in Φ+, ξ : D → C× be a map.
Pick a linear form λ ∈ n∗. Then λ ∈ OD,ξ if and only if λ satisfy the following system of
equations.

D System of equations for OD,ξ
1 ∅ λγ = 0 for all γ ∈ Φ+

2 α λα = ξ(α),
λγ = 0 for γ 6= α

3 β λβ = ξ(β),
λγ = 0 for γ 6= β

4 α + β λα+β = ξ(α + β),
λ2α+β = λ3α+β = λ3α+2β = 0

5 2α + β λ2α+β = ξ(2α + β),
2c2λβλ2α+β − c1λ

2
α+β = 0,

λ3α+β = λ3α+2β = 0
6 3α + β 6c2

3λβλ
2
3α+β − c1c2λ

3
2α+β = 0,

2c3λα+βλ3α+β − c2λ
2
2α+β = 0,

λ3α+β = ξ(3α + β),
λ3α+2β = 0

7 3α + 2β 2c5λαλ3α+2β − 2c3λα+βλ3α+β + c2λ
2
2α+β = 0,

λ3α+2β = ξ(3α + 2β)
8 α, β λα = ξ(α),

λβ = ξ(β),
λγ = 0 for γ 6= α, β

9 β, 2α + β λ2α+β = ξ(2α + β),
2c2λβλ2α+β − c1λ

2
α+β =

2c2ξ(β)ξ(2α + β),
λ3α+β = λ3α+2β = 0

10 β, 3α + β 6c2
3λβλ

2
3α+β − c1c2λ

3
2α+β = 6c2

3ξ(β)ξ(3α + β)2,
2c3λα+βλ3α+β − c2λ

2
2α+β = 0,

λ3α+β = ξ(3α + β),
λ3α+2β = 0

11 α + β, 3α + β 2c3λα+βλ3α+β − c2λ
2
2α+β = 2c3ξ(α + β)ξ(3α + β),

λ3α+β = ξ(3α + β),
λ3α+2β = 0
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12 α, 3α + 2β 2c5λαλ3α+2β − 2c3λα+βλ3α+β + c2λ
2
2α+β = c5ξ(α)ξ(3α + 2β),

λ3α+2β = ξ(3α + 2β)

Proof. The proof will be performed for all rook placements in Φ+ subsequently. First,
assume that |D| = 1, and in that case, ΩD,ξ = OD,ξ. Pick a linear form λ ∈ OD,ξ. Then
there exists x =

∑
γ∈Φ+ xγeγ ∈ n such that λ = exp(x).fD,ξ. Let us proceed case-by-case.

Cases 1, 2, 3 from the table above are evident, so we start from case 4.
Case 4: D = {α + β}.
It follows immediately from the paragraph before Proposition 3.1 that λα+β = ξ(α+β)

and λ2α+β = λ3α+β = λ3α+2β = 0. To compute λα, we note that, obviously, (α + β) − α
can be uniquely represented as a sum of positive roots: (α + β)− α = β. Therefore,

λα = λ(eα) = ξ(α + β)e∗α+β(eα − [x, eα]) = ξ(α + β)e∗α+β(−[xβeβ, eα]) = ξ(α + β)c1xβ.

Similarly, λβ = −ξ(α + β)c1xα. Since xα and xβ can be arbitrary, we obtain the required
system of equations.

Case 5: D = {2α + β}.
Here λ2α+β = ξ(2α + β) and λ3α+β = λ3α+2β = 0. Now, (2α + β)− (α + β) = α is the

unique representation of (2α + β)− (α + β) as a sum of positive roots, hence

λα+β = λ(eα+β) = ξ(2α + β)e∗2α+β(eα+β − [x, eα+β]) = −ξ(2α + β)c2xα.

Next, since (2α + β) − β = 2α is the unique representation of (2α + β) − β as a sum of
positive roots, we obtain

λβ = λ(eβ)

= ξ(2α + β)e∗2α+β(eβ − [x, eβ] +
1

2!
[x, [x, eβ]])ξ(2α + β)e∗2α+β(

1

2
[xαeα, [xαeα, eβ]])

=
1

2
ξ(2α + β)c1x

2
αe
∗
2α+β([eα, eα+β]) =

1

2
ξ(2α + β)c1c2x

2
α.

Finally, since 2α /∈ Φ+, we can obtain 2α + β either by adding to α the roots β and α
subsequently, or by adding to α the root α + β. So,

λα = λ(eα) = ξ(2α+β)e∗2α+β(eα− [x, eα] +
1

2!
[x, [x, eα]]) = ξ(2α+β)(c2xα+β−

1

2
c1c2xαxβ).

Thus, λα can be arbitrary, while 2c2λ2α+βλβ = c1λ
2
α+β, as required.

Case 6: D = {3α + β}.
Arguing as above, we see that λ3α+β = ξ(3α + β), λ3α+2β = 0,

λ2α+β = −ξ(3α + β)c3xα, λα+β =
1

2
ξ(3α + β)c2c3x

2
α, λβ = −1

6
ξ(3α + β)c1c2c3x

3
α,

λα = ξ(3α + β)(c3x2α+β −
1

2
c2c3xαxα+β +

1

6
c1c2c3x

2
αxβ).
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Now, it is clear that the equations from the table above define OD,ξ.
Case 7: D = {3α + 2β}.
Here λ3α+2β = ξ(3α + 2β), λ3α+β = ξ(3α + 2β)c4xβ,

λ2α+β = ξ(3α + 2β)(−c5xα+β −
1

2
c3c4xαxβ),

λα+β = ξ(3α + 2β)(c5x2α+β +
1

2
c2c5xαxα+β +

1

6
c2c3c4x

2
αxβ),

λβ = ξ(3α + 2β)(−c4x3α+β −
1

2
c1c5xαx2α+β −

1

6
c1c2c5x

2
αxα+β −

1

24
c1c2c3c4x

3
αxβ),

λα = ξ(3α + 2β)(c1c5xβx2α+β −
1

2
c2c5x

2
α+β +

1

24
c1c2c3c4x

2
αx

2
β).

One can immediately check that λ satisfies the required system of equations. On the other

hand, given arbitrary λ2α+β, λα+β, λβ, one can put xβ =
λ3α+β

c4ξ(3α + 2β)
,

xα+β = −
λ2α+β + 1

2
c3c4xαxβξ(3α + 2β)

c5ξ(3α + 2β)
= −

λ2α+β + 1
2
c3λ3α+βxα

c5ξ(3α + 2β)
,

x2α+β =
λα+β − 1

2
c2c5xαxα+βξ(3α + 2β)− 1

6
c2c3c4x

2
αxβξ(3α + 2β)

c5ξ(3α + 2β)

=
λα+β + 1

2
c2xα(λ2α+β + 1

2
c3λ3α+βxα)− 1

6
c2c3λ3α+βx

2
α

c5ξ(3α + 2β)

=
λα+β + 1

2
c2xαλ2α+β + 1

12
c2c3λ3α+βx

2
α

c5ξ(3α + 2β)
.

It is straightforward to check that, for these values of xβ, xα+β and x2α+β, one has

λα =
c3λα+βλ3α+β

c5λ3α+2β

−
c2λ

2
2α+β

2c5λ3α+2β

.

Thus, OD,ξ = ΩD,ξ is exactly the set of solutions of the required system of equations.
Cases 8–12 can be considered uniformly (in all these cases |D| = 2). In all cases, except

case 11, D contains a basis root γ (γ = α or γ = β). Since the coadjoint orbit of ξ(γ)e∗γ is
{ξ(γ)e∗γ}, everything is evident. Case 11 is an easy exercise.

We are now ready to prove our first main result, Theorem 1.4, which claims that, for
Φ = G2, n∗ =

⊔
D,ξOD,ξ, where the union is taken over all non-singular rook placements

D and all maps ξ : D → C×.

Proof of Theorem 1.4. Using Proposition 3.1, one can check that each λ ∈ n∗ belongs to
exactly one orbit OD,ξ. Namely, pick a linear form λ ∈ n∗. Then exactly one of the
following cases can occur.

• λα = λβ = λα+β = λ2α+β = λ3α+β = λ3α+2β = 0. Then λ ∈ O∅,ξ.
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• λβ = λα+β = λ2α+β = λ3α+β = λ3α+2β = 0, λα 6= 0. Then λ ∈ O{α},ξ.

• λα+β = λ2α+β = λ3α+β = λ3α+2β = 0, λβ 6= 0. If λα = 0 then λ ∈ O{β},ξ, if λα 6= 0
then λ ∈ O{α,β},ξ.

• λ2α+β = λ3α+β = λ3α+2β = 0, λα+β 6= 0. Then λ ∈ O{α+β},ξ.

• λ3α+β = λ3α+2β = 0, λ2α+β 6= 0. If λβ =
c1λ

2
α+β

2c2λ2α+β

then λ ∈ O{2α+β},ξ, otherwise

λ ∈ O{β,2α+β},ξ.

• λ3α+2β = 0, λ3α+β 6= 0. If λβ =
c1c2λ

2
2α+β

6c2
3λ

2
3α+β

and λα+β =
c2λ

2
2α+β

2c3λ3α+β

then λ ∈ O{3α+β},ξ.

If λβ 6=
c1c2λ

2
2α+β

6c2
3λ

2
3α+β

and λα+β =
c2λ

2
2α+β

2c3λ3α+β

then λ ∈ O{β,3α+β},ξ. If λα+β 6=
c2λ

2
2α+β

2c3λ3α+β

then λ ∈ O{α+β,3α+β},ξ.

• λ3α+2β 6= 0. If λα =
c3λα+βλ3α+β

c5λ3α+2β

−
c2λ

2
2α+β

2c5λ3α+2β

then λ ∈ O{3α+2β},ξ, otherwise

λ ∈ O{α,3α+2β},ξ.

The proof is complete.

Remark 3.2. i) In fact, OD,ξ = ΩD,ξ for all D (and ξ), except case 11.

ii) There exists exactly one singular rook placement in G+
2 , namely, D = {α, α + β}.

We do not consider this rook placement because

ΩD,ξ = OD,ξ = Ω{α+β},ξα+β = O{α+β},ξα+β ,

where ξα+β = ξ|{α+β}.

iii) It follows from Proposition 3.1 that dimOD,ξ = |S(D)| does not depend on ξ, as for
A+
n−1.

4 Case Φ = F4

In this section we prove our second main result, Theorem 1.6. To do this, we firstly
prove the following simple lemma. Let D be a non-singular orthogonal rook placement
in Φ+, where Φ = F4, and ξ1, ξ2 : D → C× be a map. Assume that there is the unique
maximal root β0 in D (with respect to the natural order on Φ+).
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Lemma 4.1. Let β ∈ D \ {β0} be such that γ ≯ β for all γ ∈ D \ {β0}. Assume that
β0 − β = γ1 + . . .+ γk can be uniquely expressed as a sum of positive roots γj, 1 ≤ j ≤ k.
Further, assume that

β +
∑
j∈J

γj ∈ Φ+

for each subset J ⊂ {1, . . . , k}. If ξ1(β) 6= ξ2(β), then ΩD,ξ1 and ΩD,ξ2 do not coincide.

Proof. Suppose that ΩD,ξ1 = ΩD,ξ2 . Then ξ1(β0) = ξ2(β0). Let ξ : D → C× be a map. Pick
an element x ∈ n and denote µ = expx.fD,ξ. One has

µ(eβ0−γj) = (exp x.fD,ξ)(eβ0−γj)

= fD,ξ(eβ0−γj − [x, eβ0−γj ] + . . .)

= a− fD,ξ([xγjeγj , eβ0−γj ])
= a− xγjfD,ξ([eγj , eβ0−γj ])
= a− xγj · cj · ξ(β0),

where cj is the nonzero scalar such that [eγj , eβ0−γj ] = cjeβ0 , while

a =

{
ξ(β), if β0 − γj = β,

0 otherwise.

Hence, all xγj are uniquely defined by µ. Now, let Sk be the symmetric group on k letters.
We obtain

(expx.fD,ξ)(eβ) = fD,ξ

(
eβ + (−1)k · 1

k!
[x, [x, . . . [x, eβ] . . .]]︸ ︷︷ ︸

k commutators

)

= ξ(β) + fD,ξ

(
(−1)k · 1

k!

[ k∑
j=1

xγjeγj ,
[ k∑
j=1

xγjeγj , . . .
[ k∑
j=1

xγjeγj , eβ

]
. . .
]])

= ξ(β) + (−1)k · 1

k!

k∏
j=1

xγj · fD,ξ
(∑
δ∈Sk

[eγδ(1) , [eγδ(2) , . . . [eγδ(k) , eβ] . . .]]
)
.

Denote the second summand by F . Then F is uniquely defined by µ, because xγj
and ξ(β0) are uniquely defined by µ. If ΩD,ξ1 = ΩD,ξ2 then there exist x1, x2, for which
expx1.fD,ξ1 = expx2.fD,ξ2 . So, (expx1.fD,ξ1)(eβ) = (expx2.fD,ξ2)(eβ), or equivalently,
ξ1(β) + F = ξ2(β) + F , hence ξ1(β) = ξ2(β), a contradiction.

Now, we need a general construction, which can be applied to an arbitrary root system.
Namely, let g, b and N = exp(n) be as in the introduction. Let h be the Cartan subalgebra
of g such that g = n⊕ h⊕ n−, where n− is the nilradical of the Borel subalgebra opposite
to b, and let Φ− be the set of negative roots. Then the root vectors eα, α ∈ Φ−, form a
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basis of n−. Further, let α1, . . . , αn be the simple roots from Φ, and hαi , 1 ≤ i ≤ n, be a
basis of h such that {eα, α ∈ Φ} ∪ {hαi , 1 ≤ i ≤ n} is a Chevalley basis of g.

We fix a total order ≤t on this basis such that eα <t hαi <t e−β for all α, β ∈ Φ+,
1 ≤ i ≤ n, and eα <t eβ if α, β ∈ Φ and α > β. This identifies gl(g) with the Lie
algebra gldim g(C), and ad(n) with a subalgebra of the Lie algebra u of all the strictly
upper-triangular matrices of gldim g(C).

Let GL(V ) be the group of all invertible linear operators on a vector space V . Since
we have fixed a basis for g, the group GL(g) can be identified with the group GLdim g(C),
and exp ad(n) ∼= N is identified with a subgroup of the group U of all upper-triangular
matrices from GLdim g(C) with 1’s on the diagonal. Furthermore, using the Killing form
on g and the trace form on gl(g), one can identify n∗ with the space n− = 〈e−α, α ∈ Φ+〉C
and u∗ with the space u− = uT , where the superscript T denotes the transposed matrix.
Under all these identifications, it is enough to check that the coadjoint U -orbits of the
linear forms f̃D,ξ1 and f̃D,ξ2 are distinct. Here, given a map ξ : D → C×, we denote by f̃D,ξ
the matrix

f̃D,ξ =
(

ad
(∑

β∈D
ξ(β)eβ

))T
∈ u− ∼= u∗.

We will now study the matrix f = f̃D,ξ in more detail. The rows and the columns of
matrices from gl(g) are now indexed by the elements of the Chevalley basis fixed above.
Given a matrix x from gl(g) and two basis elements a, b, we will denote by xa,b the entry
of x lying in the ath row and the bth column. The following proposition was proved in
[9]. For the reader’s convenience, we reproduce the proof here, because our main technical
tool used in the proof of Theorem 1.6 is based on similar ideas.

Proposition 4.2 ([9, Proposition 4.2]). Let Φ be an irreducible root system, and D be a
non-singular rook placement in Φ+. Let β0 be a root in D, ξ1 and ξ2 be maps from D to
C× for which ξ1(β0) 6= ξ2(β0). Assume that there exists a simple root α0 ∈ ∆ satisfying
(α0, β0) 6= 0 and (α0, β) = 0 for all β ∈ D such that β ≮ β0. Then ΩD,ξ1 6= ΩD,ξ2.

Proof. Since

adeβ0 (hα0) = [eβ0 , hα0 ] = −2(α0, β0)

(α0, α0)
eβ0 ,

we obtain fhα0 ,eβ0 = −ξ(β0)
2(α0, β0)

(α0, α0)
6= 0. One may assume without loss of generality that

hα0 >t hαi for all αi 6= α0. We claim that

fhα0 ,eα = fe−γ ,eβ0 = 0 for all eα <t eβ0 and all e−γ, α, γ ∈ Φ+. (1)

Indeed, if α /∈ D then, evidently, fhα0 ,eα = 0. If α = β ∈ D and eβ <t eβ0 then β ≮ β0,
hence

fhα0 ,eβ = −ξ(β)
2(α0, β)

(α0, α0)
= 0,

because (α0, β) = 0. On the other hand, if fe−γ ,eβ0 6= 0 for some γ ∈ Φ+ then β0 = β − γ.
This contradicts the condition β0 /∈ S(β).
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Thus, (f̃D,ξ1)hα0 ,eα and (f̃D,ξ2)hα0 ,eα are different nonzero scalars, and (1) is satisfied

both for f = f̃D,ξ1 and for f = f̃D,ξ2 . Now it follows immediately from the proof of [1,
Proposition 3] (or from Remark 2.7) that the coadjoint U -orbits of these matrices are
distinct, and, consequently, ΩD,ξ1 6= ΩD,ξ2 , as required.

Our main technical tool generalizes the proposition above in the following way. Fix an
order {β1, . . . , βm} on D and an order {α1, . . . , αn} on the simple roots in Φ+ such that
hαi <t hαj and eβi <t eβj for i < j. Note that

fhαi ,eβj = −ξ(βj)
2(αi, βj)

(αi, αi)
.

Given J ∈ {1, . . . ,m} and I ⊂ {1, . . . , n} with |I| = |J |, denote by ∆J
I (ξ) the minor of the

matrix f with the set of rows {hαi , i ∈ I} and the set of columns {eβj , j ∈ J}. Furthermore,

let ∆̃J
I be the determinant of the matrix, which (i, j)-th element equals pi,j =

2(αi, βj)

(αi, αi)
, so

that ∆J
I (ξ) = ±

∏
j∈J ξ(βj)∆̃

J
I .

Proposition 4.3. Assume that there exist an m-tuple I = (i1, . . . , im) such that, for all

1 ≤ k ≤ m, ∆̃Jk
Ik
6= 0, where Ik = {il | l ≤ k, il ≥ ik} and Jk = {j | ij ∈ Ik}. Assume also

that, for all 1 ≤ k ≤ m, ∆̃
J ′l
I′l

= 0 for l /∈ {i1, . . . , ik−1}, l > ik, where

I ′l = {l} ∪ {is | s < k, is > l} and J ′l = {k} ∪ {j | ij ∈ I ′l \ {l}}.

Let ξ1 and ξ2 be maps from D to C×. If ξ1 6= ξ2 then ΩD,ξ1 6= ΩD,ξ2.

Proof. For simplicity, we denote Φ+
1 = {δ | eδ <t eβ for all β ∈ D} and Φ+

2 = Φ+\(D∪Φ+
1 ).

First, note that fe−γ ,eβj = 0 and fhαi ,eδ = 0 for all γ, δ ∈ Φ+
1 , αi ∈ ∆, βj ∈ D.

Indeed, fe−γ ,eβj equals the coefficient of eβj in the expression
∑

β∈D ξ(β)[eβ, e−γ]. But if

this coefficient is nonzero then β − γ = βj for some β ∈ D, which contradicts the non-
singularity of D. On the other hand, fhαi ,eδ equals the coefficient of eδ in the expression∑

β∈D ξ(β)[eβ, hαi ] which is clearly zero, because [eβ, hαi ] is parallel to eβ for each β ∈ D,

while δ /∈ D. On the picture below we draw schematically the matrix f . Marks Φ+
1 , D,

Φ+
2 , ∆, Φ− mean that the corresponding rows and columns of the matrix f are indexed by

eδ for δ ∈ Φ+
1 , eβj for βj ∈ D, eγ for γ ∈ Φ+

2 , hαi for αi ∈ ∆, eα for α ∈ Φ− respectively.
We replaced by big zeroes the blocks ∆×Φ+

1 and Φ−×D filled in zero entries. The minors
∆Jl
Il

are the determinants of submatrices of the grey block ∆×D.
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The Lie algebra u corresponds to the root system AN−1, where N = |Φ|+ rk Φ. Let D̃i

be the subset of A+
N−1 and ξ̃i : D̃i → C× be the map such that fi = f̃D,ξi (as an element

of u∗) belongs to the basic subvariety OD̃i,ξ̃i of u∗ defined in Section 2, i = 1, 2. Put
J = {eα, α ∈ Φ} ∪ {hαi , αi ∈ ∆}. Each pair (x, y) ∈ J× J such that the (x, y)-th entry of
fi lies under the diagonal corresponds to the unique root εy − εx ∈ A+

N−1. We denote the
inverse map from A+

N−1 to J× J by τ .

Put L = {eα, α ∈ Φ−} × {eδ,δ∈Φ+
1
} and D̃L

i = τ(D̃i) ∩ L. According to André’s theory,

we may assume without loss of generality that D̃L
1 = D̃L

2 and ξ̃1(εy − εx) = ξ̃2(εy − εx)

for each (x, y) ∈ D̃L
i (if not, then OD̃1,ξ̃1

6= OD̃2,ξ̃2
and, consequently, ΩD,ξ1 6= ΩD,ξ2 .) We

will prove that ξ1(βj) = ξ2(βj) for all 1 ≤ j ≤ m by induction on j. The case j = 0 (with
I0 = ∅) can be considered as an evident inductive base case.

Let j ≥ 1. Note that each βl, 1 ≤ l ≤ m, belongs to D̃i, and the intersection of τ(D̃i)
with {hαi , i ∈ ∆} × {eβ, β ∈ D} (i.e., with the “grey” area) coincides with {(hαil , βl)}

m
l=1

(this follows immediately from Remark 2.7). Furthermore, recall the notion of ∆D̃i
α̃ (fi) for

α̃ ∈ A+
N−1 from Section 2, where f̃i is considered as an element of u∗. It also follows from

Remark 2.7 that, for each l from 1 to m and for i = 1, 2,

∆D̃i
τ−1(hαil

,eβl )
= ±

∏
α̃∈D̃i,τ(α̃)∈D̃Li

ξ̃i(α̃)∆Jl
Il

= consti,l∆̃
Jl
Il
,

where consti,l is a scalar depending only on Di,l = D̃L
i ∪ {(hαis , eβs), s < l, hαis >t hαil}

and on ξ̃i

∣∣∣
Di,l

. By the inductive assumption, D1,j = D2,j and ξ̃2

∣∣∣
Di,j

= ξ̃2

∣∣∣
D2,j

. We conclude

that ξ̃1(βj) = ξ̃2(βj), as required and the proof is complete.

Remark 4.4. It follows from the conditions of Proposition 4.3 that if such an m-tuple I
exists then it is unique.

From now on, let Φ = F4. Recall that the set ∆ of simple roots can be identified with
the following subset of R4:

∆ = {α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 =
1

2
(ε1 − ε2 − ε3 − ε4)}.
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Here {εi}4
i=1 is the standard basis of R4 (with the standard inner product). The set of

positive roots is as follows:

Φ+ = {α1, α2, α3, α4, α1 + α2, α2 + α3, α2 + 2α3, α3 + α4, α1 + α2 + α3,

α1 + α2 + 2α3, α1 + 2α2 + 2α3, α2 + α3 + α4, α2 + 2α3 + α4, α2 + 2α3 + 2α4,

α1 + α2 + α3 + α4, α1 + α2 + 2α3 + α4, α1 + α2 + 2α3 + 2α4,

α1 + 2α2 + 2α3 + α4, α1 + 2α2 + 2α3 + 2α4α1 + 2α2 + 3α3 + α4,

α1 + 2α2 + 3α3 + 2α4, α1 + 2α2 + 4α3 + 2α4, α1 + 3α2 + 4α3 + 2α4,

2α1 + 3α2 + 4α3 + 2α4}.

We will apply Proposition 4.3 above to the following rook placements.

Proposition 4.5. Let Φ = F4, and D = {β1, . . . , βm} be one of rook placements from the
table below. Then the orders on ∆ and D and the sets Ij = {i1, . . . , ij}, 1 ≤ j ≤ m, from
the table below satisfy the conditions of Proposition 4.3.

Rook placement D Order on ∆ i1, . . . , im

1 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3 + 2α4,
β3 = α1 + α2 + 2α3

α1, α4, α2, α3 3, 2, 1

2 β1 = α1 + α2 + 2α3 + 2α4, β2 = α1 + α2 + α3 α2, α1, α4, α3 3, 2

3 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3 + 2α4,
β3 = α1 + α2 + 2α3, β4 = α1 + α2

α1, α2, α4, α3 2, 3, 4, 1

4 β1 = α1 + α2 + 2α3 + 2α4, β2 = α1 + α2 + 2α3,
β3 = α1 + α2

α1, α2, α4, α3 3, 4, 2

5 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3,
β3 = α1 + α2

α1, α2, α3, α4 2, 4, 3

6 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3 + α4,
β3 = α1 + α2

α1, α2, α3, α4 2, 3, 1

7 β1 = α1 + α2 + 2α3 + α4, β2 = α1 + α2 α1, α2, α3, α4 3, 2

8 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + 2α2 + 2α3 + 2α4,
β3 = α1 + 2α2 + 2α3, β4 = α1

α2, α3, α4, α1 2, 3, 1, 4

9 β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α1 + 2α2 + 2α3 + α4,
β3 = α1

α3, α2, α1, α4 2, 1, 3

10 β1 = α1 + 2α2 + 2α3 + 2α4, β2 = α3 + α4 α4, α3, α2, α1 3, 2

11 β1 = 2α1 + 3α2 + 4α3 + 2α4, β2 = α2 + α3 + α4,
β3 = α2 + 2α3

α1, α3, α4, α2 1, 4, 3

12 β1 = α1 + 2α2 + 2α3 + α4, β2 = α2 + 2α3 + 2α4,
β3 = α2 + 2α3

α1, α4, α3, α2 4, 2, 3

13 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + α3 + α4,
β3 = α1 + α2 + 2α3

α3, α4, α1, α2 4, 3, 2

14 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3,
β3 = α3 + α4

α1, α2, α3, α4 2, 4, 3

15 β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2, β3 = α4 α1, α2, α3, α4 2, 3, 4
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16 β1 = α1 + 2α2 + 3α3 + α4, β2 = α1 + α2 + 2α3 + 2α4,
β3 = α1 + α2

α2, α3, α1, α2 2, 4, 3

17 β1 = α1 + α2 + 2α3 + 2α4, β2 = α2 + α3 + α4,
β3 = α1 + α2

α4, α1, α2, α3 3, 4, 2

18 β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α1 + α2 + α3 + α4,
β3 = α1 + 2α2 + 2α3

α3, α2, α4, α1 2, 4, 3

19 β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α2 + 2α3 + α4,
β3 = α1 + 2α2 + 2α3

α1, α2, α4, α3 2, 4, 3

20 β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α1 + 2α2 + 2α3 + 2α4 α2, α3, α1, α4 2, 1

21 β1 = α1 + 2α2 + 2α3 + 2α4, β2 = α3 + α4, β3 = α1 α3, α4, α2, α1 3, 2, 4

22 β1 = α1 + α2 + 2α3 + α4, β2 = α2 + 2α3 + 2α4,
β3 = α2 + 2α3

α2, α1, α3, α4 3, 4, 2

23 β1 = α1 + 2α2 + 2α3 + α4, β2 = α1 + α2 + 2α3 + 2α4,
β3 = α1 + α2 + 2α3

α2, α1, α3, α4 3, 4, 2

24 β1 = α1 + 2α2 + 3α3 + 2α4, β2 = α1 + α2 + 2α3,
β3 = α1 + α2

α2, α1, α3, α4 4, 3, 2

Proof. The proof is case-by-case and is completely straightforward. As an example, con-
sider the 17th rook placement D.

Clearly, the root β3 (respectively, β1) is orthogonal to the unique simple root, namely,
to α3 (respectively, to α4). There are no simple roots orthogonal to β2. Write out the
minor of the matrix f , which rows correspond to hαi , αi ∈ ∆, and columns correspond to
eβj , βj ∈ D. Recall the notion of pi,j introduced before Proposition 4.3.

β3 β2 β1

α4 p1,1 p1,2 0
α1 p2,1 p2,2 p2,3

α2 p3,1 p3,2 p3,3

α3 0 p4,2 p4,3

Obviously, ∆̃
{1}
{4} = |p4,1| = 0, while, for i1 = 3,

∆̃J1
I1

= |p3,1| =
2(α2, β3)

(α2, α2)
= −1 6= 0.

Hence, in fact we have the only possibility for i1: i1 = 3. Next, for i2 = 4, one has

∆̃J2
I2

= |p4,2| =
2(α3, β2)

(α3, α3)
= −1 6= 0.
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Therefore, we have to put i2 = 4. Finally, for i3 = 2, we obtain

∆̃J3
I3

=

∣∣∣∣∣∣
p2,1 p2,2 p2,3

p3,1 p3,2 p3,3

0 p4,2 p4,3

∣∣∣∣∣∣ =
8

(α1, α1)(α2, α2)(α3, α3)

∣∣∣∣∣∣
(α1, β3) (α1, β2) (α1, β1)
(α2, β3) (α2, β2) (α2, β1)

0 (α3, β2) (α3, β1)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
1 −1 1
−1 1 1
0 −1

2
−1

∣∣∣∣∣∣ = 4 6= 0.

Thus, there is the only candidate for i3: i3 = 2. It is easy to check that the sequence
(3, 4, 2) satisfies the conditions of Proposition 4.3.

All other rook placements from the table above can be considered similarly.

We are now ready to prove our second main result, Theorem 1.6, which claims that,
for a non-singular orthogonal rook placement D ⊂ F+

4 and two distinct maps ξ1, ξ2 from
D to C×, the associated coadjoint orbits ΩD,ξ1 , ΩD,ξ2 do not coincide.

Proof of Theorem 1.6. This proof is based on a case-by-case analysis. Namely, we split
the rook placements in F+

4 into several “classes” and then apply Lemma 4.1 and Propo-
sitions 4.2, 4.3 to these classes. We start with the maximal (possibly, singular) rook
placements. It is easy to check that there are 24 maximal rook placements in F+

4 :

D1 = {β1 = α1 + 2α2 + 3α3 + 2α4, β2 = α1 + α2 + α3, β3 = α2 + α3, β4 = α3},
D2 = {β1 = α1 + 2α2 + 3α3 + 2α4, β2 = α1 + α2 + α3, β3 = α2 + 2α3, β4 = α2},
D3 = {β1 = α1 + 2α2 + 3α3 + 2α4, β2 = α1 + 2α2 + 2α3, β3 = α3, β4 = α1},
D4 = {β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α1 + 2α2 + 2α3 + 2α4, β3 = α1 + α2 + α3,

β4 = α2 + α3},
D5 = {β1 = 2α1 + 3α2 + 4α3 + 2α4, β2 = α2 + 2α3 + 2α4, β3 = α2 + α3, β4 = α3},
D6 = {β1 = 2α1 + 3α2 + 4α3 + 2α4, β2 = α2 + 2α3 + 2α4, β3 = α2 + 2α3, β4 = α2},
D7 = {β1 = 2α1 + 3α2 + 4α3 + 2α4, β2 = α2 + 2α3 + α4, β3 = α4, β4 = α2},
D8 = {β1 = α1 + 2α2 + 3α3 + α4, β2 = α1 + α2 + α3 + α4, β3 = α2 + 2α3 + 2α4,

β4 = α2},
D9 = {β1 = α1 + 2α2 + 3α3 + α4, β2 = α1 + α2 + α3 + α4, β3 = α2 + α3 + α4,

β4 = α3 + α4},
D10 = {β1 = α1 + 2α2 + 2α3 + α4, β2 = α1 + α2 + 2α3 + α4, β3 = α2 + 2α3 + α4,

β4 = α4},
D11 = {β1 = α1 + 2α2 + 3α3 + 2α4, β2 = α1 + α2 + 2α3, β3 = α2 + α3, β4 = α1 + α2},
D12 = {β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3 + 2α4, β3 = α1 + α2 + α3,

β4 = α3},
D13 = {β1 = 2α1 + 3α2 + 4α3 + 2α4, β2 = α2 + α3 + α4, β3 = α3 + α4, β4 = α2 + 2α3},
D14 = {β1 = α1 + 2α2 + 2α3 + α4, β2 = α1 + α2 + 2α3 + α4, β3 = α2 + 2α3 + 2α4,
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β4 = α2 + 2α3},
D15 = {β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3 + 2α4, β3 = α1 + α2 + 2α3,

β4 = α1 + α2},
D16 = {β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + α3 + α4, β3 = α1 + α2 + 2α3,

β4 = α3 + α4},
D17 = {β1 = α1 + 3α2 + 4α3 + 2α4, β2 = α1 + α2 + 2α3 + α4, β3 = α1 + α2, β4 = α4},
D18 = {β1 = α1 + 2α2 + 2α3 + α4, β2 = α1 + α2 + 2α3 + 2α4, β3 = α2 + 2α3 + α4,

β4 = α1 + α2 + 2α3},
D19 = {β1 = α1 + 2α2 + 3α3 + α4, β2 = α1 + α2 + 2α3 + 2α4, β3 = α2 + α3 + α4,

β4 = α1 + α2},
D20 = {β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α1 + 2α2 + 2α3 + 2α4, β3 = α1 + 2α2 + 2α3,

β4 = α1},

D21 = {β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α1 + α2 + α3 + α4, β3 = α1 + 2α2 + 2α3,

β4 = α2 + α3 + α4},
D22 = {β1 = α1 + 2α2 + 4α3 + 2α4, β2 = α1 + 2α2 + 2α3 + α4, β3 = α4, β4 = α1},
D23 = {β1 = α1 + 2α2 + 2α3 + 2α4, β2 = α1 + α2 + 2α3 + α4, β3 = α2 + 2α3 + α4,

β4 = α1 + 2α2 + 2α3},
D24 = {β1 = α1 + 2α2 + 3α3 + α4, β2 = α1 + 2α2 + 2α3 + 2α4, β3 = α3 + α4, β4 = α1}.

The first root β1 is maximal among all roots in each of these rook placements. In the
rook placements

D8, D14, D18, D19, D24

the second root β2 is maximal, too. As we mentioned above, if D is a subset of Di

containing a maximal root β from Di and ΩD,ξ1 = ΩD,ξ2 then ξ1(β) = ξ2(β) (here ξ1, ξ2

are maps from D to C×).
Next, it is straightforward to check that the following maximal rook placements Di

(together with a simple root α0 and a distinguished root β0 ∈ Di) satisfy the conditions of
Proposition 4.2, except the non-singularity of Di:

D2, β0 = β3, α0 = α1; D2, β0 = β4, α0 = α2; D3, β0 = β2, α0 = α2;
D3, β0 = β4, α0 = α1; D4, β0 = β2, α0 = α4; D4, β0 = β3, α0 = α1;
D5, β0 = β2, α0 = α4; D5, β0 = β3, α0 = α2; D6, β0 = β2, α0 = α4;
D6, β0 = β3, α0 = α3; D6, β0 = β4, α0 = α2; D7, β0 = β2, α0 = α3;
D7, β0 = β4, α0 = α2; D8, β0 = β4, α0 = α2; D11, β0 = β2, α0 = α1;
D12, β0 = β2, α0 = α2; D13, β0 = β2, α0 = α2; D15, β0 = β2, α0 = α4;
D15, β0 = β3, α0 = α3; D17, β0 = β2, α0 = α3; D20, β0 = β2, α0 = α4;
D20, β0 = β4, α0 = α1; D21, β0 = β2, α0 = α1; D22, β0 = β4, α0 = α1;
D23, β0 = β2, α0 = α1; D24, β0 = β4, α0 = α1.
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This implies that if D is a non-singular rook placement contained in one of these
maximal rook placements and containing the root β0, then D, β0, α0 satisfy the conditions
of Proposition 4.2. Hence, if ΩD,ξ1 = ΩD,ξ2 then ξ1(β0) = ξ2(β0).

Now, let D be a non-singular subset of one of the rook placements D1, . . . , D10. Assume
that D ⊂ D1. Note that βi ∈ S(βj) for all 2 ≤ i ≤ 4 and 1 ≤ j < i. Hence, |D| = 1,
and there is nothing to prove. If D ⊂ D2 contains β1 then β2 /∈ D, because β2 ∈ S(β1).
On the other hand, if β1 /∈ D and β2 ∈ D then β2 is maximal in D. For β3, β4 see the
previous paragraph. Another example: assume that D ⊂ D3. If β1 ∈ D then β3 /∈ D,
because β3 ∈ S(β1). If β1 /∈ D and β3 ∈ D then D, β0 = β3, α0 = α3 satisfy the
condition of Proposition 4.2. For the roots β2, β4, see the previous paragraph. All other
rook placements D4, . . . , D10 can be considered in a similar way.

Most of the remaining rook placements (i.e., non-singular subsets of D11, . . . , D24) can
be considered by completely similar arguments. The exceptions are the 24 rook placements
from Proposition 4.5 and the 8 following rook placements:

D25 = {β1 = α1 + α2 + 2α3, β2 = α2 + α3, β3 = α1 + α2};
D26 = {β1 = α1 + α2 + 2α3, β2 = α2 + α3};
D27 = {β1 = α1 + α2 + 2α3, β2 = α1 + α2};
D28 = {β1 = α1 + α2 + 2α3 + 2α4, β2 = α2 + 2α3 + α4, β3 = α1 + α2 + 2α3};
D29 = {β1 = α1 + 2α2 + 2α3 + 2α4, β2 = α1 + 2α2 + 2α3, β3 = α1};
D30 = {β1 = α1 + 2α2 + 2α3 + 2α4, β2 = α1 + 2α2 + 2α3};
D31 = {β1 = α1 + 2α2 + 2α3 + 2α4, β2 = α1 + α2 + 2α3 + α4, β3 = α1 + 2α2 + 2α3};
D32 = {β1 = α1 + 2α2 + 2α3 + 2α4, β2 = α2 + 2α3 + α4, β3 = α1 + 2α2 + 2α3}.

Proposition 4.3 completes the proof for 24 rook placements from Proposition 4.5. For the
rook placements D25, . . . , D32, one can apply Lemma 4.1 with β = β2 or β3 for D25, β = β2

for D26, β = β2 for D27, β = β2 or β3 for D28, β = β2 for D29, β = β2 for D30, β = β3

for D31, β = β3 for D32. All other roots from these rook placements either are maximal or
satisfy the conditions of Proposition 4.2 for an appropriate simple root α0, as we mentioned
above. This completes the proof.
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