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Rook placements in G, and F; and associated coadjoint
orbits

Mikhail V. Ignatev, Matvey A. Surkov

Abstract. Let n be a maximal nilpotent subalgebra of a simple complex Lie algebra
with root system ®. A subset D of the set ®* of positive roots is called a rook
placement if it consists of roots with pairwise non-positive scalar products. To each
rook placement D and each map & from D to the set C* of nonzero complex numbers
one can naturally assign the coadjoint orbit {2p ¢ in the dual space n*. By definition,
Qp¢ is the orbit of fp¢, where fp¢ is the sum of root covectors e, multiplied by
&(a), a € D (in fact, almost all coadjoint orbits studied at the moment have such a
form, for certain D and &). It follows from the results of André that if £ and &, are
distinct maps from D to C* then 2p ¢, and Qp ¢, do not coincide for classical root
systems ®. We prove that this is true if ® is of type Go, or if ® is of type Fy and D
is orthogonal.

1 Introduction and the main result

Let g be a simple complex Lie algebra, b be a Borel subalgebra of g, ® be the root
system of g, ®* be the set of positive roots corresponding to b, n be the nilradical of b,
N = exp(n) be the corresponding nilpotent algebraic group, and n* be the dual space to n.
The group N acts on n by the adjoint action; the dual action of NV on the space n* is called
coadjoint; we will denote the result of this action by g.A for ¢ € N, A € n*. According
to the orbit method discovered by A.A. Kirillov in 1962, coadjoint orbits play a key role
in representation theory of N (see [10], [11]). We will consider a special class of coadjoint
orbits defined below.
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Definition 1.1. A subset D of ® is called a rook placement if (o, 8) < 0 for all distinct
a, B € D, where (—, —) denotes the inner product.

The root vectors e,, a € ®* form a basis of n; we denote by {e’,a € D} the dual basis
of n*. Given a rook placement D and a map &: D — C*, we put

foe=> &la)e, en.

aeD

Definition 1.2. We say that the coadjoint orbit {2p, of the linear form fp is associated
with the rook placement D and the map &.

It turns out that almost all coadjoint orbit studied to the moment are associated with
certain D and & (see, e.g. [1], [2], [12], [13], [14], [7], [3], [4], [5]). On the other hand, C.A.M.
André discovered that, for the case of A, _;, rook placements themselves provide a nice
splitting of n* into a disjoint union of N-stable affine subvarieties called basic subvarieties.
(We will recall André’s results in detail in Section 2, because we will use them for the case
of Fy.) By definition, the basic subvariety Op ¢ corresponding to a rook placement D and

amap £: D — C* is
Ope = Qape,

aceD

where &, is the restriction of £ to {a}. For A,_1, n* = LpeOpe and all Op¢’s are affine
subvarieties of n* (see [1, Theorem 1]).

Even for B,, C, and D,, the analogous question is still open. Nevertheless, we may
formulate the following conjecture for an arbitrary root system. Non-singularity of a rook
placement D means that if o, € D and « # 8 then o — 8 ¢ ®7; for A, 1, all rook
placements are automatically non-singular.

Conjecture 1.3. Each basic subvariety Op ¢ is an affine subvariety of n*, and
n = |_| Opf,
D¢

where the union is taken over all non-singular rook placements D and all maps &: D — C*.

Direct computations show that this conjecture is true for classical root systems of low
rank. In the present paper, we check that this conjecture is true for the case of GG5. This
is our first main result. In fact, given D and &, we present an explicit system of equations
describing Op .

Theorem 1.4. Let & = Gy. Then each basic subvariety Op ¢ is an affine subvariety of n*,
and
11* = |_| ODf,
D¢

where the union is taken over all non-singular rook placements D and all maps &: D — C*.
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It turns out that, for A,,_1, if D is a rook placement and &;, & are distinct maps from
D to C* then the associated orbits Qp ¢, and Qp ¢, do not coincide (it follows immediately
from André’s theory, since Qp¢ C Opg, see Section 2). For other classical root systems
this fact can be obtained as a corollary of the case of A,_; (see also [2]). This was used by
M.V. Ignatyev and I. Penkov in [8] and [6] for explicit classification of centrally generated
primitive ideals in the universal enveloping algebra U(n) for classical root systems.

In [9], M.V. Ignatyev and A.A. Shevchenko, while classifying centrally generated prim-
itive ideals in U(n) for exceptional root systems, proved that the analogous is true for
certain orthogonal rook placements in Fy and Eg, E;, Es. This allows us to formulate the
second conjecture for an arbitrary root system.

Conjecture 1.5. Let D be a non-singular rook placement and &, & be distinct maps from
D to C*. Then the associated coadjoint orbits Cdp ¢, and Qp¢, do not coincide.

Our second main result is that this conjecture is true for Fy if D is orthogonal (i.e. if
all roots from D are pairwise orthogonal).

Theorem 1.6. Let ® = Fy, D be an orthogonal non-singular rook placement and &1, & be
distinct maps from D to C*. Then the associated coadjoint orbits dp¢, and Qp ¢, do not
coincide.

2 André’s theory

In this section, we briefly recall André’s results from [1], which will be needed in the
sequel. Throughout this section, ® will be of type A,,_1. As usual, we identify the set of
positive roots with the following subset of the Euclidean space R™:

A:_1:{€i—8j,1gl.<j§n},

with the standard inner product. Here, €1, ..., &, denotes the standard basis of R".

In this case, n can be identified with the space of strictly upper-triangular nxn matrices.
Given oo = ¢; — ¢; € ®*, one can pick the (7, j)-th elementary matrix e; ; as a root vector
€q, SO that [e,, e5] = teqip for a,f € &1 (we put eqqp = 0 if a+ 5 ¢ PT). We will
identify the dual space n* with the space n™ of strictly lower-triangular n x n matrices via
the formula (A, x) = tr(A\z) for € n, A € n=. The root vectors e,, o € T form a basis
of n; let {e},, @ € @} be the dual basis of n* (in fact, ej; = ¢;;).

The group N is the group of all upper-triangular n xn matrices with 1’s on the diagonal.
It acts on its Lie algebra n via the adjoint action Ady(z) = gzg™', g € N, x € n. The dual
action of N on the space n* is called coadjoint; we will denote the result of this action by
g\, g € N, A € n*. It is easy to check that, after the identification of n* with n™, this
action has the form g.A = (gAg™")ow. Here, given an n X n matrix a, we set

a;;, ifi>j
(Cllow)i,j - { w0 7

0 otherwise.
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Definition 2.1. Pick a number k£ from 1 to n. We call the sets
R :{Ej—é-fk,l §j< /C},Ck: {8k—8i,k<i§n}

the k-th row and the k-th column of @, respectively. We say that the number i (respec-
tively, the number j) is the row (respectively, the column) of a root o = ¢; — ¢;.

Example 2.2. Let n = 6. On the picture below boxes from R5 U Cy are grey. Here we
identify a root ¢; — e; € ®T with the box (j,1).

1 2 3 4 5 6

= W N =

(W}

(=)

To each rook placement D C ®* and each map £: D — C*, one can assign the linear

form
fD,§ = Z f(&)@z < ‘I'l*.

aeD

Example 2.3. Let n =8, D = {e1—¢3,60—¢¢,63—€7,64—€5,66—Es . On the picture below
we schematically draw the linear form fp¢ putting symbols ® in the boxes corresponding
to the roots from D.

= W N
&

o =1 o8 O
X

®

It follows immediately from the definition of a rook placement that

IDNRe| <1,|DNC <1
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for all k. This explains the term “rook placement”: if we identify symbols ® from fp
with rooks on the lower-triangular chessboard, then these rooks do not hit each other.
Now, given a root a € D, we denote by &, the restriction of the map £ to the subset
{a}, and put
Ope = Ofajc

aeD
Clearly, QD@ C OD,g-

Definition 2.4. The set Op is called a basic subvariety of n* corresponding to the rook
placement D and the map &.

Accordingly to [1, Theorem 1], n* is a disjoint unions of basic subvarieties:
11* = |_| O D¢
D¢

where the union is taken over all rook placements in At | and all maps £&: D — C*.
Formally, André considered the case of finite ground field, but his proofs are valid over
C, too. Furthermore, each basic subvariety Op, is in fact an affine subvariety of n*, and
André presented an explicit set of defining equations for it. To describe this set, we need
some more notation.

Definition 2.5. A root a € 7 is called S3-singular for a root 3 € ®* if 3 —a € d+. The
set of all S-singular roots is denoted by S(f3).
Let D be a rook placement and £: D — C* be a map. We denote

s(D)=J 53)

BeD

and R(D) = &+ \ S(D). Obviously, D C R(D). Roots from S(D) (respectively, from
R(D)) are called D-singular (respectively, D-regular).

Example 2.6. Let n = 10, D = {&1 — 4,63 — €10,€5 — €8}. On the picture below, boxes
corresponding to the roots from D are filled by ®’s, as above, while the boxes corresponding
by the D-singular roots are marked gray.
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It turns out that to each D-regular root o one can assign the defining equation of Op .
Namely, there is a natural partial order on ®*: we write o < 3 if 8 — « is a sum of positive
roots. Evidently, ¢, —¢; < &, — & if and only if s < j and r > 4 (in other words, on our
pictures €, — ¢, is located non-strictly to the South-West from ¢; — ¢;). Given a € R(D),
we set D(a) = {a}U{B € D | B> a}. Now, let Rp(«) (respectively Cp(a)) be the set of
all rows (respectively, of all columns) of the roots from D(«). Finally, for a matrix A € n*,
we denote by AZ()) the minor of the matrix A\ with the set of rows Rp(a) and the set
of columns Cp(a). We assume that the numbers of rows and columns are taken in the
increasing order.

For instance, in the previous example, if @ = ¢4 — €5 then

D(a) = {e1 — €6,63 — €10,64 — €5},
hence Rp(a) = {5,6,10}, Cp(a) = {1,3,4} and

As1 o As3 Asa
Ag(A)I /\6,1 )\6,3 >\6,4 .
Ao A103 Aoa

On the other hand, for & = e5—eg € D, one has D(«) = {e3—e10,e5—¢s}, Rp(a) = {8, 10},
Cp(a) = {3,5}, and, consequently,

Ag3  Agp
Moz Ao

ATZ(N) =

Thanks to [1, Proposition 2], a matrix A € n* belongs to Op if and only if
AP(N) = AP (fpe) for all X € R(D).
Precisely, AP(A) = 0 for all @ € R(D)\ D and AP(\) = £[[pcp(e §(8) for @ € D. Tt

follows immediately that

dim OD,{ = |S(D)|
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Remark 2.7. Actually, André’s proof of the fact that each A € n* belongs to a certain
basic subvariety Op, is very straightforward. Namely, there is a total order <; on &%
refining the partial order < defined above. By definition, ¢, —¢; <; &, — &5 if s < j or
s = j,1 <r. Now, given A € n*, we inductively construct Op¢ containing A. If A = 0,
then D = @ and ¢ is the unique empty map from @ to C*. If A # 0 then we find the
smallest (with respect to <;) root a; from ®* such that A(e,,) # 0, and put D = {a;},
E(a1) = AMaq). If X € Opg, then we are done. Otherwise, let ay be the smallest root such
that AL (X) # AL (fpe). Then we add o to D and define £(aw) in the obvious way. Now,
one can repeat this procedure to obtain the required basic subvariety Op .

3 Case & =G>

In this section, we prove our first main result, Theorem 1.4. First, we briefly recall
some basic facts about the simple Lie algebra g of type G and its maximal nilpotent
subalgebra n. By definition, the root system ® = G5 has the form ® = ®* U &, where
ot = {a,B,a + B,2a + 3,3a + 3,3a + 28}, &~ = —®T and «, B are vectors from R?
such that [|af|> = 1,]|8]|> = 3 and the angle between o and 8 equals 57/6. There is a
Cartan decomposition g = h ® n @® n_, where h is a Cartan subalgebra of g, and n has a
basis consisting of the root vectors e,, v € ®.

It is well known that there exists nonzero scalars ¢;, 1 <7 < 5, such that

Ca; 65] = C1 - €ayp,
€ 7ea+5] = C2 " €204

[

[ea

[eaa e2a+ﬁ] = (3 * €3a+p
(€304, €8] = Ca* €3a128
[

Catp €2a+8] = C5 * €3a128-

In fact, one can choose the root vectors so that ¢; = 1, co =2, ¢35 =3, ¢4 = 1, ¢5 = 3,
but we will not use these explicit values in the sequel. One can immediately check that
c1c5 = c3¢4 for an arbitrary choice of the root vectors.

Recall the definition of the group N = exp(n) and the coadjoint action of N on the
dual space n*. It is straightforward to check that this action has the form

(exp(x).A)(y) = Alexp(—ad.)(y))
= A~ e, ) + Mo [ o) — -

for z,y € n, A € n*.

Now, let D be a non-singular rook placement in ®*. Recall that non-singularity means
that v ¢ S(0) for all distinct 7,0 € D, where S(d) denotes the set of d-singular roots in
d*. Fix amap £: D — C*, and recall that, by definition, Qp ¢ is the coadjoint orbit of the
linear form fpe. It follows immediately that if v is a maximal (with respect to the partial
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order < on &%) among all roots from D then A(e,) = fpe(e,) = &(7) for all A € Qpe.
Similarly, A(ey) = 0 for all A\ € Qpg, if there are no § € D such that § > ~. Recall also
the definition of Op.

Given y € ®F, we write A, = A(e,), sothat A = > 4. \el. We will prove Theorem1.4
as an immediate corollary of the following key proposition:

Proposition 3.1. Let D be a non-singular rook placement in ®*, £&: D — C* be a map.
Pick a linear form A € n*. Then A € Opg if and only if X satisfy the following system of
equations.

H

| D

| System of equations for Op ¢

1G]

Ay =0 for ally € &F

«

Aazg(a)7
A =0 fory#a

B

As = &(B),
Ay =0 fory #p

a+p

)\OH-/B = 5(0[ + 5);
Aot = A3a48 = A3at2s = 0

20+

>\204+/3 = 5(20{ + ﬁ);
202)\5)\2a+,8 — cl)‘i—&—,@ = O,

A3atf = Azaq28 = 0

3o+

60§A5A§a+ﬂ — clcQAgaJrB =0,
203)\a+5>\3a+5 — Cg)\%a+5 = 0,
/\3a+,3 = f(ga + 6)7

Azaq2s = 0

3a+ 28

205 AaA30428 = 263Nt N30t 8 T C2A50 45 = 0,
Asat23 = £(3a + 203)

a,

)\a :g(Oé)7
As = &(8),
Ay =0 fory #a,p

B, 2+ 3

)\2a+,3 = £(2Oé + ﬁ);
202)\6)\2a+,8 — Cl)\i_;,_ﬁ =

2e2€(B)E(2a + B),
)\3a+,3 — )\3a+2ﬂ =0

10

B,3a+

60?’))\5)\504—&—[3 - 0102>\§a+5 = 6055(6)5(3(1 + 5)27
23\ atp M348 — C2N50 g = 0,

)\3a+,6’ = 5(3@ + ﬁ);

)\3a+25 =0

11

a+5,3a+

203)\a+,6’)\3a+5 - 02)\3044,_,3 = 2036(0{ + 5)5(3& + 5)7
)\3Ol+/3 = 6(304 + 6);
A3at28 = 0
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12 | a,3a+ 20 205 0 A30428 — 2C3Na48N3048 T czAgaJrﬁ = c5&()€(Ba+ 20),
Asat2s = §(3a + 213)

Proof. The proof will be performed for all rook placements in ®* subsequently. First,
assume that |D| = 1, and in that case, Qp¢ = Ope. Pick a linear form A € Op¢. Then
there exists x = Zveqﬁ z,e, € n such that A = exp(z).fpe. Let us proceed case-by-case.
Cases 1, 2, 3 from the table above are evident, so we start from case 4.

Case 4: D ={a+ S}.

It follows immediately from the paragraph before Proposition 3.1 that A\,45 = (a+ )
and Aoat+3 = Asa+s = Azat2s = 0. To compute \,, we note that, obviously, (o + ) — «
can be uniquely represented as a sum of positive roots: (a + ) — a = 5. Therefore,

Ao = Aeq) = E(a+ 6)624—5(6@ —[7,e4]) = (a+ ﬁ)e:l-i-ﬁ(_[‘%ﬂeﬂ’ ea)) = (o + ﬂ)clxﬂ'

Similarly, A\g = —&(a + f)c124. Since x, and x5 can be arbitrary, we obtain the required
system of equations.

Case 5: D = {2a + (}.

Here Aonip = &(2a+ ) and Asatp = Asatos = 0. Now, (2o + ) — (o + ) = « is the
unique representation of (2a + ) — (a + ) as a sum of positive roots, hence

)\a+ﬁ = )‘(GOH-,B) = 5(2a + 5)6;a+ﬂ(ea+5 - [377 ea+6]) = _€(2a + /B)CQxa-

Next, since (2a + ) — 8 = 2« is the unique representation of (2a + 3) — 8 as a sum of
positive roots, we obtain

As = Aeg)
1
21

= 2620+ A)ardeiass(lea cars]) = 5620+ Blacs?,

[z, [z, ep])€(2a + 5)6%%(1[%% [Zatas es]l)

= §(2a + 5)63044-,8(6/3 - [.17, 6,3] + 2

Finally, since 2a ¢ ®*, we can obtain 2« + [ either by adding to « the roots 5 and «
subsequently, or by adding to a the root a4+ 3. So,

1

—,[35, [z, eal]) = £(2a+ B)(caTarp — %ClcQ$ax5>'

Ao = Aeq) = £(2a +5)€§a+,3(604 — [z, ea] + o

Thus, A, can be arbitrary, while 2co\an 1 sAs = 102 +p» as required.
Case 6: D = {3a + (}.
Arguing as above, we see that Asa15 = £(3a + ), Asat2s =0,

1 1
Aoatp = —5(304 + 5)0333a, Aats = 55(304 + 5)02039537 Ag = —65(304 + 5)01020351727

1
Ao = EBa+ B)(c3x2048 — 50203xama+5 + 8010203m2x5).
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Now, it is clear that the equations from the table above define Op .
Case 7: D = {3a + 20}.
Here Agat28 = £(3a +28), Asaqp = (3 + 28)cawg,

1
A2t p = 5(304 + 25)(—053&'a+5 - 5030495&36/3),

1 1
Aats = EBa + 20)(c5x2048 + §CQC5xama+5 + 60203c4mix5),
1 1
Mg =B+ 20)(—ca3arp — 561C5$a$2a+5 — 601020537355%6 — ﬂC1C2C3C4$’iZ‘5),
1 1
Ao = E(Ba + 20)(c16525%9048 — 50265xi+6 + ﬂclcgc;;cwia:%).

One can immediately check that A satisfies the required system of equations. On the other

hand, given arbitrary Asa4s, Aoy, Ag, one can put xg = m’
rory = Mot + 5C3CaTapE (30 +28)  Asasp + %03)\3a+/3:€a’
cs€(3a + 20) €3+ 25)
o — Aatp — %0205xaxa+5£(3a +20) — %C2C3C4$§x55(3a +28)
5§ (3 + 23)
_ Aays t %C2xa(A2a+ﬁ + %Cg)\ga+5zpa) — é0263)\3a+5:ﬂ3
cs& (3o +23)
Aatp + %C2$a)\2a+,3 + 11_20203/\3a+6$i
- cs€(3a +23)

It is straightforward to check that, for these values of x3, 2445 and xs443, one has

2
C3Aat 5 N30+ _ C2A204

Ao = :

C5A30428 2530428

Thus, Op ¢ = Qp ¢ is exactly the set of solutions of the required system of equations.
Cases 8-12 can be considered uniformly (in all these cases |D| = 2). In all cases, except

case 11, D contains a basis root v (y = a or v = ). Since the coadjoint orbit of {(7)e? is

{€(v)ex}, everything is evident. Case 11 is an easy exercise. ]

We are now ready to prove our first main result, Theorem 1.4, which claims that, for
d =Gy ' =1, ¢ Op,¢, where the union is taken over all non-singular rook placements
D and all maps £&: D — C*.

Proof of Theorem 1.4. Using Proposition 3.1, one can check that each A € n* belongs to
exactly one orbit Op¢. Namely, pick a linear form A € n*. Then exactly one of the
following cases can occur.

o\, = )\5 = )\a+5 = >\20¢+ﬁ = )\30[_,_/3 = )\3a+25 = 0. Then X € (9@75.
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® Ag = Aaig = A28 = Asa+8 = Agar2s = 0, Aa # 0. Then A € Opqy .

° >\a+ﬁ = )\2a+6 = )\3,14_5 = )\3a+26 =0, )\5 7£ 0. If A\, =0 then \ € 0{5}757 if A\, 7A 0
then A\ € O{a,g}@.

L )\2a+ﬁ = )\3a+6 = /\3a+26 =0, )\aJrﬁ 7& 0. Then A\ € O{oz-f—ﬁ}:f'

i\
¢ Nois = Asaszs = 0, hoags # 0. If Ay = — then A\ € Oparpye, otherwise
209 \2048

A € O atpye-

2

c1Ca N2 CoA
 Nsaros = 0, Asass # 0. I Ay = —22T and Ay g = —22 then A € Ogsarsye.

ClcQ}\%a—&—ﬁ C2/\go¢+ﬁ 02)\504—&—6
If As # ——222 and Mass = —22 then A € Ofgaassre. If Aasg £ —otl
B 6C§>\§a+5 +8 2C3 )\3a+5 {B:3a+8}.€ +8 263)\3a+ﬁ

then A\ € O{a+573a+5}7§.

)\a A a c )\2(1
® Minrop # 0. If A\, = C3hatpA3ath _T272eth then A € Oyzai98¢, otherwise
C5 30428 2530428
A € Ofa3a+28) -
The proof is complete. n

Remark 3.2. i) In fact, Op¢ = Qp¢ for all D (and &), except case 11.

ii) There exists exactly one singular rook placement in G, namely, D = {a,a + 3}.
We do not consider this rook placement because

Qpe = Opg¢ = Uarp)tars = OtatB)bars

where {o45 = §|{a+5}-

iii) It follows from Proposition 3.1 that dim Op¢ = [S(D)| does not depend on &, as for
At .

4 Case & = F,

In this section we prove our second main result, Theorem 1.6. To do this, we firstly
prove the following simple lemma. Let D be a non-singular orthogonal rook placement
in ®*, where ® = Fy, and &,&%: D — C* be a map. Assume that there is the unique
maximal root 5y in D (with respect to the natural order on ®7).
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Lemma 4.1. Let B € D\ {Bo} be such that v # B for all v € D\ {Bo}. Assume that
Bo— B =m+...+7 can be uniquely expressed as a sum of positive roots v;, 1 < j < k.
Further, assume that
5 -+ Z Yj € dr
jet
for each subset J C {1,...,k}. If &(B) # &(B), then Qpg, and Qpe, do not coincide.

Proof. Suppose that Qp¢, = Qpg,. Then & (8y) = &2(8p). Let £: D — C* be a map. Pick
an element x € n and denote y1 = expx.fp¢. One has

:u(e,BO*’Yj) = (eXpQ:-fD,é)(eﬁO*’Yj)
= fD7€(eﬁo—’Yj - [QS, 6/30—%'] + .. )
=a— fDé([x’Yje’Yj’ 630—%])
= a — oy, fpg(leq,, eg—,])

= a— 1y - ¢ - £(Po),

where ¢; is the nonzero scalar such that [e,;, es,—+,| = ¢jes,, while

L {w), £ oy = B,

0 otherwise.

Hence, all z,, are uniquely defined by ;. Now, let Sy, be the symmetric group on k letters.
We obtain

(exp . fp6) es) = fog (e + (<1 [ [ [wes] ] )

vV
k commutators

=&(B) + fDﬁ((—l)k . % [le%.e%., [lefyje,yj, i ..[lewew,eﬁ} .- H)

- g(ﬁ) + <_1)k ’ %H Loyj fD,E Z [675(1)7 [6’75(2)7 s [6’)’6(k)’ 65] X ]] .
k! e

0ESK

Denote the second summand by F. Then F' is uniquely defined by pu, because x.,
and £(fy) are uniquely defined by p. If Qpe, = Qpg, then there exist x;, x5, for which
expri.fpeg = expxa.fpe,. S0, (expxi.fpe)(es) = (expza.fpe,)(es), or equivalently,
&(B)+ F =&(B) + F, hence &(8) = &(B), a contradiction. O

Now, we need a general construction, which can be applied to an arbitrary root system.
Namely, let g, b and N = exp(n) be as in the introduction. Let h be the Cartan subalgebra
of g such that g =n @ h @ n~, where n™ is the nilradical of the Borel subalgebra opposite
to b, and let @~ be the set of negative roots. Then the root vectors e,, a € &7, form a
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basis of n~. Further, let a4, ..., a, be the simple roots from ®, and h,,, 1 <7 <n, be a
basis of h such that {e,,a € ®} U {h,,,1 <i <n}is a Chevalley basis of g.

We fix a total order <; on this basis such that e, <; h,, <; e_p for all a,3 € @,
1 <i<mn,and e, <; eg if a, € ® and a > . This identifies gl(g) with the Lie
algebra gly;, 4(C), and ad(n) with a subalgebra of the Lie algebra u of all the strictly
upper-triangular matrices of gy, 4(C).

Let GL(V') be the group of all invertible linear operators on a vector space V. Since
we have fixed a basis for g, the group GL(g) can be identified with the group GLgim4(C),
and expad(n) = N is identified with a subgroup of the group U of all upper-triangular
matrices from GLgimg(C) with 1’s on the diagonal. Furthermore, using the Killing form
on g and the trace form on gl(g), one can identify n* with the space n_ = (e_,,a € ®)¢
and u* with the space u_ = u’, where the superscript T denotes the transposed matrix.
Under all these identifications, it is enough to check that the coadjoint U-orbits of the
linear forms fpe, and fpg, are distinct. Here, given a map {: D — C*, we denote by fp

the matrix N .
T SRR e

We will now study the matrix f = fD,g in more detail. The rows and the columns of
matrices from gl(g) are now indexed by the elements of the Chevalley basis fixed above.
Given a matrix z from gl(g) and two basis elements a, b, we will denote by z,, the entry
of z lying in the ath row and the bth column. The following proposition was proved in
[9]. For the reader’s convenience, we reproduce the proof here, because our main technical
tool used in the proof of Theorem 1.6 is based on similar ideas.

Proposition 4.2 ([9, Proposition 4.2]). Let ® be an irreducible root system, and D be a
non-singular rook placement in ®*. Let By be a root in D, & and & be maps from D to
C* for which & (5o) # &2(Bo). Assume that there exists a simple root ag € A satisfying

(a, Bo) # 0 and (ap, B) =0 for all B € D such that B £ By. Then Qpe, # Qpeg, .

Proof. Since

2(a, fo)
adeﬁo (hao) = [6507 hao) = _meﬁov
. _ 2(, Bo) . .
we obtain fhao’eﬁo == (ﬁo)ﬁ # 0. One may assume without loss of generality that
&o, Co
hag >t ha, for all a; # ap. We claim that
Jhagiea = Je_yes, = 0forall eq <;eg, and all e, a,y € o, (1)
Indeed, if o ¢ D then, evidently, fy, e, = 0. If a = 3 € D and ez <; eg, then 3 £ 5,
hence 200, 5)
Qp,
eg — = 07
fha07 8 g(ﬁ) (OZO’OCO)

because (o, 5) = 0. On the other hand, if fe_eq, 7 0 for some vy € ®* then By = 5 — 7.
This contradicts the condition Gy ¢ S(53).
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Thus, (fD,&)hao,ea and (fp@)hamea are different nonzero scalars, and (1) is satisfied

both for f = fp¢, and for f = fpg,. Now it follows immediately from the proof of [1,
Proposition 3] (or from Remark 2.7) that the coadjoint U-orbits of these matrices are
distinct, and, consequently, Qp¢, # Clpg,, as required. n

Our main technical tool generalizes the proposition above in the following way. Fix an
order {f,...,8n} on D and an order {a,...,a,} on the simple roots in ®* such that
ha; <t ha, and eg; <; eg, for i < j. Note that

o 2(@1', BJ)

fhai,eﬂj - g(ﬁ]) (Oliyai) :
Given J € {1,...,m} and I C {1,...,n} with |I| = |J|, denote by A7(£) the minor of the
matrix f with the set of rows {hq,, 7 € I} and the set of columns {es,, j € J}. Furthermore,

~ 2 15 ]
let A7 be the determinant of the matrix, which (i, j)-th element equals p; ; = ((a—ﬁj)), SO
Q;, O
that A7 (§) = +11;e, £(8)A7-
Proposition 4.3. Assume that there exist an m-tuple I = (i1, ..., iy) such that, for all

1<k<m, 3?: # 0, where I, = {i; | | < k,4 > ix} and J, = {j | i; € I;}. Assume also

that, for all 1 < k <m, thff/ =0 forl ¢ {i1,...,ix_1}, | > i), where

II={}yU{is|s<kyis>1} and J ={k}U{jli; e]\{i}}.
Let & and & be maps from D to C*. If & # & then Qpe, # Qpe,.

Proof. For simplicity, we denote ® = {§ | e; <; eg for all 3 € D} and &5 = &+\ (DUD]).

First, note that feﬂ,e;aj = 0 and fp, ¢ = 0 for all 7,6 € o, a; € A, B; € D.
Indeed, fe_, ¢, equals the coefficient of eg, in the expression > sep&(B)les, e—,]. But if
this coefficient is nonzero then 8 — v = j; for some 8 € D, which contradicts the non-
singularity of D. On the other hand, f, ., equals the coeflicient of e; in the expression
>_sep §(B)les, ha,] which is clearly zero, because [eg, ho,| is parallel to es for each 8 € D,
while § ¢ D. On the picture below we draw schematically the matrix f. Marks ®, D,
®F, A, = mean that the corresponding rows and columns of the matrix f are indexed by
es for 6 € ®F, eg; for B € D, e, for v € O, h,, for a; € A, e, for a € = respectively.
We replaced by big zeroes the blocks A x &1 and ®~ x D filled in zero entries. The minors
Af; are the determinants of submatrices of the grey block A x D.
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o |0

The Lie algebra u corresponds to the root system Ay_1, where N = |®|+rk ®. Let D
be the subset of A} | and fz D — C* be the map such that f; = fD@ (as an element
of u*) belongs to the basic subvariety Og & of u* defined in Section 2, ¢ = 1,2. Put
J={ea,a € @} U{h,,,a; € A}. Each pair (z,y) € J x J such that the (x y)-th entry of
fi lies under the diagonal corresponds to the unique root ¢, — e, € A% ;. We denote the
inverse map from A}, to J x J by 7.

Put L = {eq,a € 7} x {e55c41} and DL = 7(D;) N L. According to André’s theory,

we may assume without loss of generality that DI = lN)L and g(sy — &) = é(ey — &)
for each (z,y) € DF (if not, then Op, & # Op, g and, consequently, Qpg, # Cpg,.) We
will prove that §1(6j) §g(ﬁ]) for all 1 < j < m by induction on j. The case j = 0 (with
Iy = @) can be considered as an evident inductive base case.

Let j > 1. Note that each 3, 1 <1 < m, belongs to D;, and the intersection of 7‘(52)
with {hg,,i € A} x {eg, 3 € D} (ie., with the “grey” area) coincides with {(ha, , %) }2;

(this follows immediately from Remark 2.7). Furthermore, recall the notion of AZ¢(f;) for

a € A}, , from Section 2, where fi is considered as an element of u*. It also follows from
Remark 2.7 that, for each [ from 1 to m and for i = 1,2,

D; _ ~ L
AT ! ho‘zl eﬁl) =+ HaEﬁi,T(a)eDL g ( )A[ = COHStZlA

where const;; is a scalar depending only on D;; = BZL U {(ha,

ig )

€s,),8 < Liha,, >t ha}
=&

2%

that 51(6]-) = 52(5]-), as required and the proof is complete. ]

. We conclude
Dy,

and on 5 . By the inductive assumption, D; ; = D, ; and 52
il

Remark 4.4. It follows from the conditions of Proposition 4.3 that if such an m-tuple I
exists then it is unique.

From now on, let ® = F};. Recall that the set A of simple roots can be identified with
the following subset of R*:

1
AZ{Oq252—53,@2253—547043254704425(51—82—53—64)}'
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Here {g;}1_; is the standard basis of R* (with the standard inner product). The set of
positive roots is as follows:

ot = {al, Qo, 3, 4, Q1 + Qo, Qo + a3, Qo + 203, az + g, a1 + as + ag,
a1 + ag + 2a3, ag + 200 4+ 203, Qo + a3 + ay, as + 2a3 + ay, as + 2as + 20y,
a1+ Qo + ag 4+ oy, a1+ g 4+ 203 + g, a1 + o + 203 + 20y,
ay + 200 + 203 + ay, a1 + 209 + 203 + 20401 + 200 + 33 + g,
a1 + 209 + 3as + 20y, a1 + 200 4+ das + 20, a1 + 3as + dag + 20y,
201 + 3ag + daz + 2a4}.

We will apply Proposition 4.3 above to the following rook placements.

Proposition 4.5. Let ® = Fy, and D = {f1,...,Bm} be one of rook placements from the
table below. Then the orders on A and D and the sets I; = {i1,...,i;}, 1 < j <m, from
the table below satisfy the conditions of Proposition 4.3.

H ‘ Rook placement D ‘ Order on A ‘ M,y im H
1 |61 = a1+ 3as +4ag + 204, P2 = a1 + as + 2a3 + 204, al,04,09,a3 | 3,2,1
B3 = a1 + ag + 2a3
2 |B1 =01+ ax+ 203+ 204, f2 =01 +az+ a3 g, a1, 04,03 | 3,2

3 |1 =01+ 3as+ 4dasz + 204, Bo = a1 + as + 2a3 + 2ay, ap, s, 04,03 | 2,3,4,1
f3 = a1+ ax +2a3, By = a1 + az

4 |B1 =a1+ as+ 203 + 204, Bo = a1 + as + 2as3, a, o, 04,3 | 3,4,2
B3 =1+

5 |B1 =01+ 3as + 4as + 2a4, B2 = a1 + as + 2as, al,ao,03,04 | 2,4,3
B3 =01+

6 |B1=a1+3as+4das+ 204, B2 = a1 + ag + 2a3 + ay, a1, o, a3,04 | 2,3,1
B3 =1+

7 |B1 =01+ as+2a3+ g, Bo = a1 + oy ap,00,03,04 | 3,2

8 ﬂl = a1 + 3ag + 4asg + 2ay, 52:a1+2a2+2a3+2a4, g, a3, 04,01 | 2,3,1,4
f3 = a1 + 202 + 203, B1 = a1
9 | f1 = a1+ 202 +4ag + 204, B2 = a1 + 202 + 203 + Ay, asg,ag,a1,04 | 2,1,3

B3 = a1

10 |81 = a1 + 209 + 2a3 + 204, Po = a3 + g Qy, Q3,090,071 | 3,2

11 | By = 21 + 3as + dag + 204, B = as + ag + oy, a1, a3, 04,00 | 1,4,3
B3 = a9 + 2a3

12 |51 = a1 + 2a0 + 2a3 + g, B2 = as + 2a3 + 204, a1, 04,038,090 | 4,2,3
B3 = az + 2a3

13 |B1 = a1 + 3as +4asg + 20y, Po = a1 + as + a3z + ay, as, oy, 01,00 | 4,3,2
B3 = a1 + ag + 203

14 |81 = aq + 3as + 4dag + 20y, P2 = a1 + as + 2az3, a1, qo,03,04 | 2,4,3

B3 = a3+ ay
15 | B1 = a1 + 3ag +4az + 20y, fo=a1 + o, B3 =0y a1, q,03,04 | 2,3,4
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16 |81 = aq + 2a0 + 3ag + ay, B2 = a1 + as + 2a3 + 20, g, a3, 01,09 | 2,4,3
B3 = a1 + az

17 | B1 = a1 + as + 2a3 + 2ay, B2 = as + ag + ay, Qy, o, 09,03 | 3,4,2
B3 =ar + o

18 |81 = a1 + 2a0 + 4ag + 204, Po = a1 + o + a3 + g, asg, o, 04,1 | 2,4,3
B3 = aq + 2a2 + 203

19 | 51 a1 + 2as + 4dag + 20y, Po = as + 2a3 + ay, ap,an, 04,03 | 2,4,3
B3 = a1 + 202 + 203

20 | B1 = a1 4+ 29 + dag + 2ay, B2 = a1 + 202 + 2a3 + 204 g, ag,a1,04 | 2,1

21 | B = a1 + 2as + 23 + 204, B2 = ag + ay, B3 = a; ag, oy, 00,00 | 3,2,4

22 | B1 = a1 + as + 2a3 + ag, B2 = ao + 2ag + 20y, o, a1, 03,04 | 3,4,2
B3 = o + 203

23 | B1 = a1 + 29 + 203 + oy, Bo = a1 + g + 2a3 + 204, o, aq, 03,04 | 3,4,2
B3 = a1 + as + 2a3

24 | B1 = a1 + 2a0 + 3a3 + 2a4, s = a1 + as + 2as, o, q,a3,04 | 4,3,2
f3 = a1+ as

Proof. The proof is case-by-case and is completely straightforward. As an example, con-
sider the 17th rook placement D.

Clearly, the root 33 (respectively, ;) is orthogonal to the unique simple root, namely,
to as (respectively, to ay). There are no simple roots orthogonal to fs. Write out the
minor of the matrix f, which rows correspond to h,,, o; € A, and columns correspond to
es;, Bj € D. Recall the notion of p;; introduced before Proposition 4.3.

Obviously, ZE& = |ps1| = 0, while, for i; = 3,

Qy
aq
&%)
a3

A{f = |p3,1| =

B3
P11
P21
P3a

0

B2
P12
P22
P32
P42

2<0427 53)

(a2, z)

b
0

P23
P33
Pags

= —1#0.

Hence, in fact we have the only possibility for #;: 7; = 3. Next, for i, = 4, one has

Eij = |p4,2| =

2(a3, Ba)

(a3, a3)

= —1#0.
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Therefore, we have to put i; = 4. Finally, for i3 = 2, we obtain

P21 P22 P23 8 (a1, 83) (o, B2) (a1, pr)

(a2, 83) (a2,B2) (2, B1)
(e aaz 02l 05) | g 7 (ag, ) (as, 1)

J.
A[; = P31 P32 P33 =

0 Dpa2 Pas
1 -1 1
=2|—-1 1 1|=4+#0.
0 —3 —1

Thus, there is the only candidate for 73: i3 = 2. It is easy to check that the sequence
(3,4, 2) satisfies the conditions of Proposition 4.3.
All other rook placements from the table above can be considered similarly. O]

We are now ready to prove our second main result, Theorem 1.6, which claims that,
for a non-singular orthogonal rook placement D C F;" and two distinct maps &;, & from
D to C*, the associated coadjoint orbits 2p ¢, {2p ¢, do not coincide.

Proof of Theorem 1.6. This proof is based on a case-by-case analysis. Namely, we split
the rook placements in F," into several “classes” and then apply Lemma 4.1 and Propo-
sitions 4.2, 4.3 to these classes. We start with the maximal (possibly, singular) rook
placements. It is easy to check that there are 24 maximal rook placements in F;:

Dy = {p1 = a1 + 29 + 3z + 20, B2 = a1 + ag + as, B3 = as + az, fi = az},

Dy = {p1 = a1 + 205 + 3z + 201, o = a1 + o + a3, B3 = @z + 203, By = s},

D3 = {B1 = a1 + 205 + 3a3 + 204, f2 = o1 + 20 + 203, B3 = as, s = a1 },

Dy = {p1 = a1 + 209 + dag + 20y, P2 = a1 + 209 + 203 + 20y, B3 = ag + ag + as,
By = ay + as},

Ds = {f1 = 201 + 3as + dag + 20y, B2 = as + 203 + 20y, B3 = an + as, B4 = as},

Dg = {p1 = 2011 + 3ag + dag + 20y, B2 = ag + 2a3 + 2y, B3 = ag + 2a, By = s},

D7 = {B1 = 201 + 3ay + daz + 204, B = ap + 203 + au, B3 = ay, fs = aso},

Dg = {B1 = a1 + 200 + 3a3 + g, fo = a1 + g + g + au, f3 = g + 203 + 20y,

54:042},

Dy = {B1 = a1 + 205 + 303 + g, o = 1 + g + g + ay, 3 = g + a3 + oy,
By = az + ay},

Dyg = {81 = a1 + 20 + 203+, B = a1 + ap + 203 + ay, f3 = az + 203 + ay,
54=Oé4},

Dy = {01 = aq + 209 + 3az + 2ay, o = a1 + ag + 203, 3 = g + a3, By = a1 + as},
Diy = {81 = a1 + 3ay + daz + 204, B = a1 + ap + 203 + 20, B3 = 1 + ap + as,

By = az},
Diz = {f1 =201 + 30 + 4az + 20, fo = aa + az + au, B3 = a3 + au, By = ap + 203},
Dy = {B1 = a1 + 205 + 203 + ay, B2 = a1 + a + 203 + au, 3 = ap + 203 + 20y,



Rook placements in G2 and F); and associated coadjoint orbits 147

By = g + 203},

D5 ={p1 = aq + 3ag + das + 2ay, P = a1 + a9 + 203 + 20y, 3 = a1 + g + 2as,
By = a1 + ay},

Dig = {01 = ag + 3ag + daz + 2ay, fo = aq + g + a3 + ay, f3 = a1 + as + 203,
By = az + ays},

D7 = {B1 = a1 + 30z + 4oz + 204, By = a1 + g + 203 + oy, B3 = o + g, By = oy},
Dig = {01 = aq + 200 + 2a3 + au, fo = a1 + g + 203 + 20y, 3 = s + 203 + ay,

By =y + ag + 203},
Dyg = {f1 = a1 + 2a9 + 3ag + ay, B = a1 + ag + 203 + 2, f3 = g + ag + ay,

fs= a1 + as},
D20 = {ﬂl =1 + 2&2 + 40(3 + 2064, 52 =1 + 20&2 + 20(3 + 2064, 63 =1 + 20(2 + 2&3,
Bs = a1},

Doy = {B1 = a1 + 20 + daz + 20, B2 = a1 + ap + a3 + ay, f3 = a1 + 205 + 203,
By = ay + az + ays},
Doy = {1 = a1 + 200 + 4oz + 20, B2 = o + 200 + 203 + 0, B3 = au, Ba = ou },
D3 = {f1 = a1 + 200 + 203 + 204, B2 = a1 + g + 203 + ay, B3 = g + 203 + au,
By = oy + 209 + 203},
Doy = {1 = aq + 209 + 3az + au, o = oy + 20 + 203 + 20y, f3 = ag + oy, By = a1 }.

The first root f; is maximal among all roots in each of these rook placements. In the

rook placements
DS; D147 D187D197D24

the second root [, is maximal, too. As we mentioned above, if D is a subset of D;
containing a maximal root f§ from D; and Qp¢, = Qpg, then &(8) = &(B) (here &, &
are maps from D to C*).

Next, it is straightforward to check that the following maximal rook placements D;
(together with a simple root ag and a distinguished root fy € D;) satisfy the conditions of
Proposition 4.2, except the non-singularity of D;:

Dy, By = B3, 0 = a1
D3, By = B4, g = au;
Ds, By = B2, g = aug;
Dg, Bo = B3, g = au3;
Dz, By = b1, g = aug;
D3, By = Ba, ap = z;
Dis, Bo = B3, ap = as;
Do, Bo = Ba, g = auy;
Do3, By = Pa, ap = au;

Dy, By = Ba, g = az;
Dy, By = B2, g = auy;
Ds, By = B3, g = aug;
Dg, Bo = b1, g = a;
Dg, By = B4, g = a;
Di3, By = Ba, ap = g;
D17, Bo = P2, g = ai3;
Dy, Bo = B2, g = ay;
Doy, By = Ba, ap = .

D3, By = B2, g = a;
Dy, By = B3, 0 = au;
Dg, By = B2, g = auy;
Dz, By = B2, g = auz;
Dy, By = Ba, a9 = au;
D5, By = Ba, ap = au;
Dso, Bo = P2, g = au;
Dy, Bo = Ba, g = a;
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This implies that if D is a non-singular rook placement contained in one of these
maximal rook placements and containing the root 5y, then D, Sy, ap satisfy the conditions
of Proposition 4.2. Hence, if Qp¢, = Qpg, then & (8o) = &2(5o)-

Now, let D be a non-singular subset of one of the rook placements Dy, ..., Dig. Assume
that D C D;. Note that 5, € S(5;) for all 2 <i <4 and 1 < j < i. Hence, |D| =1,
and there is nothing to prove. If D C Dy contains f; then 5 ¢ D, because B, € S(f1).
On the other hand, if 51 ¢ D and [ € D then (5 is maximal in D. For (3, 84 see the
previous paragraph. Another example: assume that D C Ds. If §; € D then 83 ¢ D,
because 3 € S(p1). If 1 ¢ D and 3 € D then D, 5y = f3, ap = ag satisfy the
condition of Proposition 4.2. For the roots [, B4, see the previous paragraph. All other
rook placements Dy, ..., Dy can be considered in a similar way.

Most of the remaining rook placements (i.e., non-singular subsets of D1y, ..., Doy) can
be considered by completely similar arguments. The exceptions are the 24 rook placements
from Proposition 4.5 and the 8 following rook placements:

Dys = {51 =)+ az + 2043,52 = Q2 +CY3,/33 = a1 + Ozg};

Dos = {1 = a1 + ao + 203, f2 = ap + a3 };

Doy ={p1 = a1 + as +2a3, s = oy + an};

Dog = {1 = aq + ag + 2a3 + 2y, fo = g + 203 + ay, B3 = a1 + a9 + 203}

Doy = {B1 = a1 + 202 + 203 + 20w, f2 = aq + 200 + 203, f3 = oq };

D3y = {81 = a1 + 200 + 203 + 20y, B2 = a1 + 203 + 2a3};

D31 = {51 = a1 + 205 + 2a3 + 2, fo = o + g + 203 + @y, P = a1 + 200 + 203}
D3y = {p1 = ag + 200 + 2a3 + 2auy, fo = a9 + 203 + ay, P35 = a1 + 209 + 203}

Proposition 4.3 completes the proof for 24 rook placements from Proposition 4.5. For the
rook placements Dos, . .., D3s, one can apply Lemma 4.1 with § = (5 or 3 for Do, 8 = [

for Dag, B = By for Doy, 8 = By or B3 for Dag, 8 = By for Doy, B = (B for D3y, B = B3
for D31, B = P3 for D3y. All other roots from these rook placements either are maximal or

satisfy the conditions of Proposition 4.2 for an appropriate simple root «g, as we mentioned
above. This completes the proof. O
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