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On birational automorphisms of Severi–Brauer surfaces

F. V. Weinstein

Abstract. The generators of the group of birational automorphisms of any Severi-Brauer surface non-
isomorphic over an algebraically non-closed field to the projective plane are explicitly described.

The classical theorem by M. Noether states that the group of birational automorphisms of the projective
plane P2

k
over an algebraically closed field k is generated by projective automorphisms and standard quadratic

Cremona transformations (see [1, Ch. V, §§ 5,6]). In a generalization of this theorem to non-closed fields it
is natural to consider, together with projective plane, the Severi–Brauer surfaces, i.e., surfaces defined over
non-closed fields which become isomorphic to the projective plane if their field of definition is lifted up to its
algebraic closure.

The arising situation has a sapid cohomologic interpretation. Let G = Gal(k/k) be the Galois group of
the algebraic closure. Classes of Severi–Brauer surfaces over k can be identified with elements of the space
H1(G;PGL3(k)), up to a k-isomorphism. It is known (see [14]) that the exact sequence of groups

1 −→ k
× −→ GL3(k) −→ PGL3(k) −→ 1

induces an embedding H1(G;PGL3(k))
δ−→ Br(k), where Br(k) = H2(G, k

×
) is the Brauer group of classes

(up to an equivalence) of central simple k-algebras. The image of the embedding δ consists exactly of the
elements γ ∈ Br(k) with Schur index (see [12]) which divides 3, i.e., is equal to either 1 (the projective plane)
or 3 (a Severi-Brauer surface).

Let S2(γ) be the set of Severi–Brauer surfaces corresponding to γ, and let V ∈ S2(γ). The main result
of this paper is a description of generators of the group of birational automorphisms of V if γ 6= 1, i.e., of
Severi–Brauer surface non-isomorphic over k to the projective plane. It is interesting that this description
requires a reference to V ′ ∈ S2(γ−1). The group of birational automorphisms of V contains a group of
biregular automorphisms of V (described by Theorem 3 of [14]) as a subgroup.

This work had been carried out in 1970 as my MS Diploma thesis at the Department of Mechanics and
Mathematics, Moscow State University. D. Leites translated it and preprinted in proceedings of his “Seminar
on Supersymmetries” (Reports of the Department of Mathematics, Stockholm University, 33/1989-2).

Recently the above-mentioned preprint of this text was cited in an interesting paper by C. Shramov [17].
Since the result of this old work of mine is still useful, I decided to update my preprint, make it available by
putting it in arXiv, and add to it comments I got meanwhile. First of all, from Torsten Ekedahl.

I wish to express my deep gratitude to my former scientific advisor Prof. Yu. I. Manin. I am very thankful
to Torsten Ekedahl for his suggestions how to simplify certain proofs in the above-mentioned preprint; follow-
ing his generous advice I cite his suggestions. I am also thankful to D. Leites for help and to A. Skorobogatov
whose comment I got via D. Leites.
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2 F. V. Weinstein

1 Birational maps of Severi–Brauer surfaces corresponding to points of degree 3.
Fix V ∈ S2(γ) and V ′ ∈ S2(γ−1). Theorem 2 of [14] and the theory of central simple algebras easily imply
that there always exist points of degree 3 on V and V ′, there are no points of lesser degree, and degrees of
all closed points are multiples of 3.

The aim of this section is to associate with every point x ∈ V of degree 3 a birational map ϕ3(x) : V −→ V ′.
In what follows I always assume that the characteristics of the field k over which V is defined is not 2 or 3.
Thus, let x be a point of degree 3 belonging to V . Let us perform a monoidal transformation dilx : V1 −→ V
with the center at x.

An exceptional curve of the first kind L which is different from dil−1x (x) belongs to V1. Contracting this
curve leads again to a Severi-Brauer surface, and we thus obtain a birational map βα(x) : V −→ V ′α. By
Theorem 5 of [14] either V ′α ∈ S2(γ) or V ′α ∈ S2(γ−1).

Lemma 1. V ′α ∈ S2(γ−1).

Proof. Let k(x) be the field of quotients of the local ring at point x and K the minimal normal extension of
k containing k(x). Let G = Gal(K/k) and G1 = Gal(K/k(x)). The natural homomorphism H2(G;K×) −→
Br(k) is an embedding whose image contains γ. Since it will not cause a misunderstanding, the preimage of
γ will be also denoted by γ. Let γ ∈ H2(G;K×) be represented by a system of factors Cσ,τ ∈ K×, where
σ, τ ∈ G. Let (K,G, γ) denote the k-algebra given by the system of relations{

uσuτ = uστ · Cσ,τ
cuσ = uσ · cσ, where c ∈ K×,

i.e., the twisted product of K by G relative the system Cσ,τ .
Let M be an irreducible right (K,G, γ)-module. By Lemma 2 in §5 of [15] there exists T ∈M such that

Tuσ1 = T · cσ1 for all σ1 ∈ G1, where cσ1 ∈ K×. Set Tuρ = T · uρ; we see that M = ⊕ρ∈G mod G1T
uρ ·K.

Since char k 6= 3, the field k(x) is separable over k, and hence the full system of representatives of classes
G mod G1 contains 3 elements: ρ0, ρ1 and ρ2. By setting Ti := Tuρi we have M = T0k ⊕ T1k ⊕ T2k.

Let P2
K = ProjK[T0, T1, T2], let O(2) be the canonical invertible sheaf over P2

K and let Γ(P2
K ,O(2)) be

the K-vector space of its global sections. The subspace M ′ ⊂ Γ(P2
K ,O(2)), where

M ′ = T0T1K ⊕ T1T2K ⊕ T0T2K,

defines a linear system of conics on the plane and the choice of the basis in it given by {T0T1, T1T2, T0T2}
defines a birational isomorphism β : P2

K −→ P2
K which is the standard quadratic Cremona transformation

with the center in the triple

x1 = (0 : 0 : 1), x2 = (0 : 1 : 0), x3 = (1 : 0 : 0).

Let Li be the line in the plane P2
K containing 2 of these points different form xi for i = 1, 2, 3. Evidently,

the cycles Cx = x1 + x2 + x3 and CL = L1 +L2 +L3 on the plane P2
K are simple rational over k cycles with

respect to the Galois group of the covering P2
K
∼= V ⊗k K −→ V . Hence, the cycle Cx defines a closed point

on V which can be considered coinciding with x. Results of [15, § 4] imply that the birational map β can be
descended to a birational map β : V −→ V ′′α , where V ′′α ∈ S2(γ−1).

Due to the regularity of CL it is c1ear that ϕ3(x) coincides, up to a biregular isomorphism V ′α −→ V ′′α ,
with the map βα(x) : V −→ V ′α constructed earlier. �

In March, 1985, A. Skorobogatov informed me of the following short proof of Lemma 1; in particular, this
enables one to get rid of necessity to refer to [15].

By a theorem of Manin (see [9, Ch. IV]), U = V�CL is a principal homogeneous space over 2-dimensional
torus T (K). Consider the following commutative diagram:

1 // K× // GL3(K) // PGL3(K) // 1

1 // K× //

OO

RK/k(Gm(K))
//?�

OO

T (K) //
?�

OO

1
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where RK/k is the Weil functor, Gm(K) is the group of K-points of the multiplicative group, see [16]. Passing
to the Galois cohomology we get, thanks to Hilbert’s Satz 90, the following diagram

1 // H1(G;PGL3(K))

))
H2(G;K×) ⊂ Br(k)

1 // H1(G;T (K))

OO

55

The considered (Cremona) transformation acts on U and being lifted to T (K) is the inversion x 7→ x−1.
Hence, in the group of principal homogeneous spaces, H1(G;T (K)), this transformation induces an inversion,
and therefore it does the same in the Brauer group. Lemma 1 is proved once more.

Now, take a biregular isomorphism ψα : V ′α −→ V ′ and define a birational map

ϕα3 (x) = ψα ◦ βα(x) : V −→ V ′.

The element ϕα3 (x) of the set Bir(V, V ′) of birational maps is defined uniquely up to an action of the
group Aut(V ′) of biregular automorphisms of V ′ on the set Bir(V, V ′).

Now, let Z(V ) = Z(γ) be the group of cycles on V (see [8]). It can be represented as a direct sum
Z(γ) = Pic(V )⊕ Z0(γ), where Z0(γ) is the group of 0-dimensional cycles on V .

It will be convenient for us to describe every 0-dimensional cycle on V as a simple rational cycle on
V ⊗k k ∼= P2

k
. The Picard group of V is isomorphic to a free cyclic group with the anticanonical class as

a generator, i.e., Pic(V ) ∼= Z(−ωγ).

Lemma 2. Let ϕ3(x)∗ : Z(γ) −→ Z(γ−1) be the homomorphism induced by ϕ3(x), let

α = −dωγ − b(x1 + x2 + x3)−
∑
i>4

bixi ∈ Z(V ).

Then,
ϕ3(x)∗(α) = −(2d− b)ωγ−1 − (3d− 2b)(x′1 + x′2 + x′3)−

∑
i>4

bix
′
i,

where x′1 + x′2 + x′3 is a simple rational cycle on V ′ ⊗k k and V ′ ∈ S2(γ−1); this curve is the image of the
exceptional curve of the first kind under contL.

Proof. It is subject to a simple calculation, see [1]. �

2 Birational maps of Severi–Brauer surfaces corresponding to points of degree 6
To every point x ∈ V of degree 6 a birational map ϕ6(x) : V −→ V ′ can also be assigned, where V ′ is a fixed
element of S2(γ−1). We will need the following statement.

Lemma 3. Consider the fiber product V ⊗k k ∼= P2
k

and its projection onto the first factor p : P2
k
→ V . Let

x ∈ V be a closed point of degree 6 and define p−1(x) := (x0, . . . , x5), where the xi are closed points in P2
k
.

Then, no 3 points xi belong to one line and all 6 points do not belong to a conic.

Proof. If no 3 points belong to one line and all 6 belong to a conic, then these points uniquely define this
conic. This conic defines, on V , a simple rational cycle over k. The divisor corresponding to this cycle is of
degree 2 contradicting Proposition 13 of [14].

Now suppose that there is a line in P2
k

containing 3 points xi. The totality of all lines with pair-wise
distinct points xi forms a cycle rational over k. The degree of the divisor corresponding to this cycle is equal
to the number of these lines and due to [14, Proposition 13] should be a multiple of 3. Since the number
of lines which connect pair-wise distinct points xi does not depend on the order of these points on lines, it
follows that from the combinatorial point of view only the following 9 cases are possible:
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1) All 6 points belong to one line.

2) There is a line containing exactly 5 points.

3) There is a line containing exactly 4 points, and there is no line containing 3 points.

4) There exists a line containing exactly 4 points, and a line containing exactly 3 points.

5) There exist exactly two lines each of them containing 3 points, together they contain 5 points, and
there are no lines containing more than 3 points different from these two lines.

5+i) There exist exactly i lines, where i = 1, 2, 3 or 4, each of them containing exactly 3 points, there are
no lines containing more points, and the case 5) fails.

Let nj be the number of lines connecting pairs of points of the set in case j). Then, it is easy to see that
the following relations hold:

j 1 2 3 4 5 6 7 8 9
nj 1 6 10 8 11 13 11 9 7

Due to the above, it follows that only cases 2) and 8) can hold.
Case 2). Let x1, . . ., x5 be points belonging to the line L. By transitivity of the Gal(k/k)-action on

(x1, . . . , x6) we can find g ∈ Gal(k/k) such that g(x1) = x6. Then, g transforms L into a line passing through
x6. But L contains 5 points and not all 6 points belong to one line, hence a contradiction.

Case 8). Let L1, L2, and L3 be lines passing through x1, x2, x3, through x3, x4, x5, and through x5, x6, x1,
respectively. We have g(Li) = Lj , where i, j = 1, 2, 3, for any g ∈ Gal(k/k). Moreover, g(Li∩Lj) = Li′ ∩Lj′
since if it is not so, then through the point not representable in the form Li ∩ Lj two lines from the set
{L1, L2, L3} pass, but then Gal(k/k) does not act transitively on {x1, . . . , x6} contradicting the simplicity of
the cycle x1 + . . .+ x6. �

By Lemma 3 to any point x ∈ V such that degk(x) = 6 we can assign a birational map ϕ6(x) : V −→ V ′.
Let dilx : V −→ P2

k
be a monoidal transformation with the center at the points x1, x2, . . . , x6, and

let Qi be a conic in P2
k

containing {x1, . . . , xi−1, xi+1, . . . , x6}. Let Si be the proper preimage of Qi with
respect to dilx. The curve S = ∪

06i66
Si is contractible since it is an exceptional curve of the first kind.

Let contS : V −→ P2
k be a contraction morphism of S and xi = contS(Si). Thus, we have a birational

isomorphism
β = contS ·dil−1x : P2

k
−→ P2

k
.

It is easy to compute the value of the homomorphism ϕ6(x)∗ : Z(P2
k
) −→ Z(P2

k
) at the anticanonical class

−ωP2
k

= −ω:

β∗(−ω) = −5ω − 6(x1 + . . .+ x6). (1)

Since Q1 + . . .+Q6 is a simple and rational cycle over k, then so is S1 + · · ·+ S6. Hence, ϕ6(x) can descend
to a birational isomorphism βα(x) : V −→ V ′α which is a composition of the blowing up of the point x ∈ V
such that degk(x) = 6 and a contraction of the exceptional curve S of the first kind. By Theorem 5 of [14]
either V ′α ∈ S2(γ) or V ′α ∈ S2(γ−1).

Lemma 4. V ′α ∈ S2(γ−1).

Proof. Let k(x) be the field of quotients of the local ring at point x. Consider the minimal normal extension
K of the field k such that k ⊂ k(x) ⊂ K. Since [k(x) : k] = 6, it follows that Gal(K/k) contains at least one
Sylow 3-subgroup. Let G(3) ⊂ Gal(k/k) be a Sylow 3-subgroup, and K3 ⊂ K the subfield of elements fixed
under G(3).

Set G = Gal(k/k) and G1 = Gal(k/K3). Consider the restriction homomorphism

res : H2(G; k
×

) −→ H2(G1; k
×

).
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Let
res(γ) = γ1.

Since [K3 : k] 6≡ 0 mod 3, then γ1 6= 1. Setting V1 = V ⊗k K3 we see that V1 ∈ S2(γ1). The fiber over x of
the projection p1 : V1 −→ V is isomorphic to

Spec(K3) ×
Spec(k)

Spec(k(x)) = Spec(K3 ⊗k k(x)).

It follows from the construction that

Spec(K3 ⊗k k(x)) = Spec(K1)q Spec(K2),

where [Ki : K3] = 3 for i = 1, 2. Thus, p−1(x0) = {y1, y2} and degK3
(yi) = 3 for i = 1, 2. Since the diagram

P2
k

p

��

p

��
V2

p1 // V2

is commutative, we can assume that

p−1(y1) = {x1, x2, x3} and p−1(y2) = {x4, x5, x6}.

Now suppose Lemma 4 fails. Then, V ′α ∈ S2(γ) and we have a birational isomorphism

β1
α = βa(x)⊗k K3 : V1 −→ X1,

where X1 ∈ S2(γ1). By eq.(1)
β1
α∗(−ωγ1) = −5ωγ1 − 6(x1 + . . .+ x6).

For X ′1 ∈ S2(γ−11 ) and y0 = {x1, x2, x3} ∈ X1, if follows from Lemma 2 and the birational isomorphism
ψ3(y0) : X1 → X ′1 that

ϕ3(y0)∗ ◦ β′α∗(−ωγ1) = −4ωγ−1
1
− 3(x′1 + x′2 + x′3)− 6(x′4 + x′5 + x′6).

Then, for the birational isomorphism ϕ3(y′0) : X ′1 → X1, where y′0 ={x′4, x′5, x′6}, we have

ϕ3(y′0)∗ ◦ ϕ3(y0)∗ ◦ β′α∗(−ωγ1) = −2ωγ1 − 3(x′′1 + x′′2 + x′′3).

Finally, for the birational isomorphism ϕ3(y′′0) : X1 → X ′1, where y′′0 = {x′′1 , x′′2 , x′′3}, we have

ϕ3(y′′0) ◦ ϕ3(y′0)∗ ◦ ϕ3(y0)∗ ◦ β1
α∗(−ωγ1) = −ωγ−1

1
.

Thus, we got a biregular isomorphism V1 −→ X ′1, where X ′1 ∈ S2(γ−11 ). This is a contradiction. �

As it had been done with points of degree 3, we will associate with every x ∈ V a birational map
ϕ6(x) : V −→ V ′.

Lemma 5. Let ϕ6(x)∗ : Z(γ) −→ Z(γ−1) be the homomorphism induced by ϕ6(x). Then,

ϕ6(x)∗

(
− dωγ − b(x1 + . . .+ x6)−

∑
i>7

bixi

)
= −(5d− 4b)ωγ−1 − (6d− 5b)(x′1 + . . .+ x′6)−

∑
i>7

bix
′
i,

where s = x′1 + . . . + x′6 is a simple rational over k cycle on V ′ ⊗k k′ with V ′ ∈ S2(γ−1) which is the image
of contraction of the exceptional curve of the first kind defined by s.

Proof. It suffices to represent the map ϕ6(x) : P2
k
−→ P2

k
as a product of 3 quadratic Cremona transforma-

tions.
�
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3 Proof of the main theorem
Let V ∈ S2(γ) and V ′ ∈ S2(γ−1) be fixed surfaces. The said earlier can be summed up as follows: To
every point x ∈ V such that deg x = 3 or 6 there uniquely corresponds an orbit of the left action of the
group Aut(V ′) of biregular automorphisms on the set Bir(V, V ′) of birational maps V −→ V ′. For every
such point, we will choose, once and for all, an element of the corresponding orbit. It is a birational map
ϕi(x) : V −→ V ′, where i = degk x. Similarly, for any y ∈ V ′, we will construct a map ϕj(y) : V ′ −→ V .

Our goal is the proof of the following statement.

Theorem 1. The group Bir(V ) of birational automorphisms of V is generated by its subgroup of biregular
automorphisms Aut(V ), and automorphisms ϕi(x) and ϕi(y) for all x ∈ V and y ∈ V ′ described above.

The proof of this theorem follows from a series of lemmas. Let g ∈ Bir(V ) be an arbitrary birational
automorphism and let the value of the homomorphism f∗ : Z(γ)→ Z(γ) at −ωγ be equal to −dωγ −

∑
bixi.

Lemma 6. The following relations hold:

9d2 −
∑

b2i = 9; (2)

9d−
∑

bi = 9. (3)

Proof. Let us use the fact that f∗ preserves the arithmetic genus and the index of intersection of cycles on
V , see [8]. We have (

−dωγ −
∑

bixi

)2
= 9d2 −

∑
b2i = (−ωγ)

2
= 9

yielding relation (2). Further,

pa(−dωγ −
∑

bixi) =
9

2
(d2 − d) + 1− 1

2

∑
bi(bi − 1) = pa(−ωγ) = 1

or 9d2 −
∑
b2i = 9d−

∑
bi. Taking relation (2) into account we get relation (3). �

Lemma 7. Let b = max bi. Then,
b > d+ 1 (4)

Proof. Indeed, relation (2) implies 9d2 − b
∑
bi 6 9. Taking relation (3) into account we see that 9d2 − 9 6

b(9d− 9) yielding inequality (4). �

Lemma 8. Let xi0 be a point of the cycle f∗(−ωγ) whose coefficient is b, i.e., xi0 is a point of maximal
multiplicity. Then, degk xi0 < 9.

Proof. Let n = degk xi0 . Then, relation (3) can be rewritten as 9d−nb−
∑
i 6=i0

bi = 9. Thanks to inequality (4)

we get
9d− n(d+ 1)−

∑
i 6=i0

bi ≥ 9 or −
∑
i 6=i0

bi > 9− 9d− n(d+ 1).

Setting n = 9 + 3l we rewrite the latter expression in the form

−
∑
i 6=i0

bi > 18 + 3l(d+ 1)

which is false if l > 0 since bi > 0, see [8, Corollary 1.18]. Hence, l < 0, and then degk xi0 = n 6 6, as was
required. �
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Proof of Theorem 1. It is well known ([1]) that the point x of maximal multiplicity of the cycle g∗(−ωγ)
belongs to V . By Lemma 8 the degree of this point is equal to either 3 or 6. Therefore, applying the
homomorphism ϕi(x) to g∗(−ωγ) we will diminish, thanks to Lemmas 2, 5, 7, the absolute value of the
coefficient of ωγ−1 . Repeatedly applying this procedure we will diminish the degree d to 1. Then, bi = 0 for
all i, as follows from relation (2). Finally, we get either{∏

fjk,ik(y, x)∗

}
◦ g∗(−ωγ) = −ωγ (5)

or {
ϕi(x) ◦

∏
fjk,ik(y, x)∗

}
◦ g∗(−ωγ) = −ωγ . (6)

Formula (6) leads to a contradiction since V and V ′ ∈ S2(γ−1) are not biregularly isomorphic.
Formula (5) implies that {

∏
fjk,ik(y, x)} ◦ f ∈ Aut(V ). Applying transformations inverse to fjk,ik(y, x)

and isomorphisms ϕi to the left-hand side, we get the required. �

Remark 1. On automorphisms of similar (Del Pezzo) surfaces, see [7].

4 Appendix. T. Ekedahl’s comments
Most part of your paper is devoted to proof of Lemmas 1 and 4. The proof is overcomplicated with a long
and rather ugly division into cases in the proof of Lemma 3. It is possible to give a short, uniform and
conceptual treatment of these lemmas.

The main idea is to exploit the simple fact the Picard group is of rank 2 for any k-surface X obtained
by blowing up a closed point on a Severi–Brauer surface V . If we first look at Lemma 3, then X is obtained
blowing up a closed point of order 6.

The statement of the lemma is equivalent to, and may be replaced by, any of the statements:

a) −KX is ample,

b) −KX is very ample,

c) X is isomorphic to a cubic surface (cf. the English version of Manin’s book [9, Ch. IV, § 24]).

It is easy to verify the statement a) by using the ampleness criterion of Moishezon and Nakai (cf. proof
of Statement 24.5.2 in op. cit. or p. 365 in Hartshorne’s book [5]) and the fact that rk Pic X = 2.

It is well known (cf. the comment on “Schäfli’s double-six” in Hartshorne’s book [5]) that there is a natural
set of six (conjugated) lines on X complementing the six exceptional k-lines of X −→ V . In Lemma 4 you
study the surface V ′ obtained by contracting these complementary lines. This is (cf. Manin’s book [9]) a del
Pezzo k-surface of degree 9, i.e., a Severi–Brauer k-surface. We have, therefore, two elements {V } and {V ′}
in Hét(k, PGL3) corresponding to the k-isomorphism classes of V and V ′ (cf. Milne’s book [11, p. 134]).

In Lemma 4 you consider the images 〈V 〉 and 〈V ′〉 of the elements {V } and {V ′} in H2
ét(K,Gm) in the

cohomology sequence corresponding to the exact sequence of étale sheaves (cf. [11, p. 142]):

1 −→ Gm −→ GL3 −→ PGL3 −→ 1.

You prove that these images are inverses of each other.
It is possible to give a much more natural approach and prove Lemmas 1 and 4 at the same time. To

begin with, the definition of the Brauer–Severi schemes implies that 〈V 〉 (resp. 〈V ′〉) belongs to the kernel
of the natural map from H2

ét(K,Gm) to H2
ét(V,Gm) (resp. to H2

ét(V
′, Gm)): use the fact that the image of

{V } in H1
ét(V, PGL3) comes from H1

ét(V,GL3). But it is known ([11, p. 106]) that H2
ét(V,Gm) injects into

H2
ét(K(V ), Gm) = H2

ét(k(V ′), Gm) and this implies that 〈V ′〉 ∈ Ker(H2
ét(k,Gm) −→ H2

ét(V,Gm)).
The Hochschild–Serre spectral sequence

Hp
ét(k,H

q
ét(V ,Gm))⇒ Hp+q

ét (V,Gm),

see [11, p. 105], yields that
Ker(H2

ét(k,Gm) −→ H2
ét(V,Gm)) = Z/3Z,
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and since H1
ét(k,GL3) = 1 (cf. [11, p. 124]) and V (k) = V ′(k) = ∅, it follows that 〈V 〉 and 〈V ′〉 are non-trivial

in H2
ét(k,Gm).

It suffices to prove that 〈V 〉 6= 〈V ′〉 in H2
ét(k,Gm). To show this, use the following commutative diagram

of étale sheaves over V , V ′ and X (cf. [11, p. 143]):

1

��

1

��
1 // µ3

��

// SL3

��

// PGL3

id

��

// 1

1 // Gm

3

��

// GL3

det

��

// PGL3
// 1

Gm

��

Gm

��
1 1

(7)

We then consider the image of {V } ∈ H1
ét(k, PGL3) under the composite map

H1
ét(k, PGL3) −→ H1

ét(V, PGL3) −→ H2
ét(V, µ3).

This image lies in the kernel of the map H2
ét(V, µ3) −→ H2

ét(V,Gm) since the pullback of {V } in H1
ét(V, PGL3)

comes from an element in H1
ét(V,GL3). We have, therefore, by the first column a well-defined element [Dγ ]

in PicV/3 PicV corresponding to the image of {V } in ker(H2
ét(V, µ3) −→ H2

ét(V,Gm)) and we obtain in the
same way an element [Dγ′ ] in PicV ′/3 PicV ′ from {V ′}. If {V } = {V ′} in H1

ét(k, PGL3), then the pullbacks
of [Dγ ] and [Dγ′ ] in PicX/3 PicX must coincide.

But it is easy to compute [Dγ ] and [Dγ′ ]. We already noted that the image of {V } in H1
ét(V, PGL3) comes

from H1
ét(V,GL3) = H1

zar(V,GL3) and it is known (cf., e.g., the end of Quillen’s article [13]) that one may
choose an element in H1

zar(V,GL3) corresponding to a vector bundle Jγ coming from a natural extension

0 −→ Ωγ −→ Jγ −→ Oγ −→ 0,

where Ωγ is the cotangent bundle of V . This implies by the diagram (7) that [Dγ ] is equal to the class of
the line bundle det(Jγ), i.e., to the image [−Kγ ] ∈ PicV/3 PicV of the anti-canonical class −Kγ . But it
is easy to see that the images of [−Kγ ] and [−Kγ′ ] in PicX/3 PicX do not coincide (here it is essential to
consider PicX/3 PicX and not PicX/3 PicX). This proves that {V } 6= {V ′}, thereby completing the proof
of Lemma 1. The same proof works for Lemma 4; the only difference being that X is of degree 6.

It would also be useful for the reader if you include more modern references. It would be valuable to have
a reference to the recent survey article by Manin and Tsfasman [10], so that the reader can compare with
other papers about birational automorphisms on rational varieties like the ones by Iskovskikh and Manin
(see also more recent papers [4], [6]).

It would also be useful if you include a reference to the excellent article by M. Artin [3] (and also to the
one by Amitsur [2]) about Severi–Brauer varieties in Springer LNM vol. 917. Finally, I recommend you to
make a fuller use of étale cohomology (cf. Milne’s book [11]) which is the natural language for many of the
results and arguments of the paper.
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