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Combinatorial description of the principal congruence
subgroup Γ(2) in SL(2,Z)

Flavien Mabilat

Abstract. We characterize sequences of positive integers (c1, c2, . . . , cn) for

which the 2 × 2 matrix

(
c1 −1
1 0

)
· · ·

(
cn −1
1 0

)
belongs to the principal

congruence subgroup of level 2 in SL(2,Z). The answer is given in terms of
dissections of a convex n-gon into a mixture of triangles and quadrilaterals.

1 Introduction
The classical modular group

SL(2,Z) :=

{(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
and its quotient by the center, PSL(2,Z) := SL(2,Z)/{± Id}, play a central role
in several classical areas, such as the theory of continued fractions, hyperbolic
geometry, and the theory of modular forms. The group SL(2,Z) naturally acts on
the upper half-plane, and perhaps the most remarkable fact about it is that the
quotient by this action is the moduli space of elliptic curves (this fact explains the
name “modular group” due to Klein). The structure of the modular group and its
subgroups has been thoroughly studied, see [18]. An important class of subgroups,
Γ(N), are called principal congruence subgroups of level N. These are defined as
follows:

Γ(N) := {A ∈ SL(2,Z) | A = Id ( mod N)} ,
where N is a positive integer.

This note is about a relation of the modular group to combinatorics. The idea
is based on the fact that every element of SL(2,Z) has a (canonical) presentation
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(i.e. a description by means of generators and relations) by a sequence of positive
integers. This has been known for a long time (cf. [19]), but started to be exploited
only very recently; see [17],[15]. One uses a general principle that positive integers
must count some (geometric, combinatorial, etc.) objects.

Our approach is based on the work of Coxeter [8] and Conway-Coxeter [6], [7].
Coxeter and Conway used the notion of frieze pattern to characterize sequences of
positive integers (c1, . . . , cn) such that(

c1 −1
1 0

)(
c2 −1
1 0

)
· · ·

(
cn −1
1 0

)
= − Id, (1)

and that satisfy an extra condition of total positivity, formulated as the positivity
of the entries of Coxeter’s frieze pattern, or just frieze for short. All positive
solutions of equation (1) were classified in [17]. For a detailed explanation of the
total positivity property, see [17],[15] (and also [5]).

Our goal is twofold. We give a short overview of the combinatorial approach
to the modular group, that we believe should be better known. We prove a new
theorem that gives a combinatorial description of Γ(2), the principal congruence
subgroup of level 2.

2 Sequences of positive integers
The group SL(2,Z) has two generators whose standard choice is

T :=

(
1 1
0 1

)
, S :=

(
0 −1
1 0

)
.

These generators satisfy the relations: S2 = (TS)
3

= − Id, and this is a complete
set of relations in SL(2,Z). This classical fact can be found in many textbooks; for
a particularly elementary proof, see [1]. It readily implies that every element A of
SL(2,Z) can be written, for some positive integer n, in the form

A = ±T c1S T c2S · · ·T cnS = ±
(
c1 −1
1 0

)(
c2 −1
1 0

)
· · ·

(
cn −1
1 0

)
, (2)

where c1, . . . , cn are positive integers; see [18],[19],[17], and the explanation below.
We will use the notation

M(c1, . . . , cn) :=

(
c1 −1
1 0

)(
c2 −1
1 0

)
· · ·

(
cn −1
1 0

)
,

For the generators one easily checks

T = −M(2, 1, 1), T−1 = −M(1, 1, 2, 1), and S = −M(1, 1, 2, 1, 1).

A decomposition A = ±M(c1, . . . , cn) with each ci positive can then be obtained for
every chosen A by concatenation of any expression of A in terms of the generators.

The decomposition A = ±M(c1, . . . , cn) is obviously not unique (even though
a canonical, shortest expression was suggested in [15]). The first natural problem
is thus to consider the equation

M(c1, . . . , cn) = ± Id, (3)
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and look for a combinatorial description of the sequences of positive integer
solutions. In other words, this problem is to give an explicit combinatorial de-
scription of relations in PSL(2,Z). This problem was studied in [6], [7], [17]; see
also [2], [15], [11] and Section 4 below. It turns out that equation (3) is related to
triangulations of n-gons and to more sophisticated polygon dissections.

3 The main result of this paper
We will generalize equation (3) and describe the sequences of positive integers
(c1, . . . , cn) for which

M(c1, . . . , cn) ∈ Γ(2), (4)

where Γ(2) is the principal congruence subgroup of SL(2,Z) of level 2, see the
introduction.

Similarly to the case of equation (3), the property of being a solution of equa-
tion (4) is cyclically invariant (i.e., if an n-tuple (c1, . . . , cn) is a solution of equa-
tion (4), then (cn, c1, . . . , cn−1) is also a solution). It is thus often convenient to
consider, instead of an n-tuple (c1, . . . , cn), an n-periodic infinite sequence (ci)i∈Z.

The solutions of equation (4) can be formulated in terms of polygon dissections.

Definition 1. Let a (3|4)-dissection be any partition of a convex n-gon into sub-
polygons by pairwise non-crossing diagonals, such that every subpolygon is a tri-
angle or a quadrilateral.

Example 1. Let us give here simple examples:

• •

• •

• •

• •

•
• •

• •

•
• •

• •
•

•
• •

• •

• •

• •
•

For any integer a, we denote by a := a+2Z the image of a under the projection
Z → Z/2Z. If a is odd, then a = 1; if a is even, then a = 0. The following notion
is analogous to that of [6] and [7].

Definition 2. The quiddity of a (3|4)-dissection of a convex n-gon is the (cyclically
ordered) sequence (c1, . . . , cn) of elements of Z/2Z, such that for every i

ci =

{
1, if the number of triangles adjacent to the ith vertex is odd;

0, if the number of triangles adjacent to the ith vertex is even.

Example 2. The quiddities (c1, . . . , cn) of the (3|4)-dissections of Example 1 are as
follows:

(a) For the first two examples,

(c1, c2, c3, c4) =
(
0, 0, 0, 0

)
and (c1, c2, c3, c4) = (0, 1, 0, 1).

These are the only quiddities for n = 4.
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(b) For the remaining examples one has, respectively,

(c1, . . . , c5) = (1, 1, 1, 0, 0), (c1, . . . , c6) = (0, 0, 0, 0, 0, 0)

and (c1, . . . , c10) = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0).

The following statement is our main result. It gives a combinatorial characteri-
zation of the solutions of equation (4) for n ≥ 3. Note that the product of elements
of SL(2,Z) commutes with the projection of the entries of matrices to Z/2Z. This
allows one to make all the computations in SL(2,Z/2Z).

Theorem 1.

(i) Every quiddity of a (3|4)-dissection of an n-gon is a solution of equation (4).

(ii) Every solution of equation (4) with n ≥ 3 is a quiddity of a (3|4)-dissection
of an n-gon.

This statement is proved in Section 5.
Let us mention that the number of solutions of equation (4), for a fixed n, can

be deduced from the main result of [14] and is given by the Jacobsthal sequence
(A001045 in OEIS [16]).

4 Relations in PSL(2,Z) and polygon dissections
We give a brief overview of the theorems of Conway and Coxeter [6], [7] (see
also [2],[11]) and Ovsienko [17]. The first one relates equation (3) to one of the
most classical notion of combinatorics, namely that of triangulation of an n-gon,
while the second describes all positive integer solutions of equation (3) in terms
of polygon dissections. This overview will allow us to compare equation (3) and
equation (4). It also makes the presentation complete.

4.1 Triangulations and friezes
Fix a triangulation of a convex n-gon. Following [6] and [7], we call a quiddity
of the triangulation the sequence of positive integers (c1, . . . , cn), where ci is equal
to the number of triangles adjacent to the ith vertex of the n-gon.

The theorem of Conway and Coxeter can be formulated in the following way
(cf. [17, Corollary 2.3]).

Theorem 2 ([6] and [7]).

(i) The quiddity of a triangulation of an n-gon is a solution of the equation
M(c1, . . . , cn) = − Id.

(ii) Every solution (c1, . . . , cn) of equation (3) satisfying the condition

c1 + c2 + · · ·+ cn = 3n− 6 (5)

is the quiddity of a triangulation of an n-gon.
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The simplest examples, with n = 3, 4, 5, are

•

• •

•
• •
•

•
• •

• •

It is easy to see that their corresponding quiddities, namely (c1, c2, c3) = (1, 1, 1),
(c1, c2, c3, c4) = (1, 2, 1, 2) and (c1, c2, c3, c4, c5) = (1, 3, 1, 2, 2), are, indeed, solu-
tions of the equation M(c1, . . . , cn) = − Id.

The original formulation of Theorem 2 uses the beautiful notion of Coxeter’s
frieze. Let us recall that a frieze is an array of (n − 1) infinite rows of positive
integers with the rows 1 and n − 1 consisting in 1’s. Every elementary 2 × 2
“diamond”

b
a d

c
,

of the frieze must satisfy the unimodular rule ad−bc = 1. Coxeter proved in [8] that
the row 2 (and n−2) is an n-periodic sequence satisfying equation (1). The Conway-
Coxeter theorem of [6] and [7] identifies Coxeter’s friezes with triangulations.

Let us give here an example of a frieze for n = 5:

· · · 1 1 1 1 1

1 3 1 2 2 · · ·
· · · 2 2 1 3 1

1 1 1 1 1 · · ·

The 5-periodic sequence (1, 3, 1, 2, 2) is the quiddity of a triangulation of a pen-
tagon.

For a survey on friezes, see [13]. Variants of friezes involving other types of
polygon dissections can be found in [4], [12], [10]. Links of friezes to presentations
of SL(2,Z) also appeared in [3].

Remark 1. Let us mention that (5) turns out to be equivalent to the condition of
total positivity, see [17, Corollary 2.3]; and it can be formulated in more standard
terms of continued fractions and total positive (2× 2)-matrices, see [15]. In terms
used by Coxeter, this total positivity means that every entry of the frieze is positive.

4.2 Complete solution of equation (3)

For n ≥ 6, there exist many solutions of equation (3) that cannot be obtained from
triangulations of n-gons. The complete solution of equation (3) was given in [17]
and led to the following notion of “3d-dissection”.

Definition 3.

(i) A 3d-dissection is a partition of a convex n-gon into sub-polygons by means
of pairwise non-crossing diagonals, such that the number of vertices of every
sub-polygon is a multiple of 3.
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(ii) The quiddity of a 3d-dissection of an n-gon is the (cyclically ordered) n-tuple
of positive integers (c1, . . . , cn) such that ci is the number of sub-polygons
adjacent to the ith vertex of the n-gon.

Theorem 3 ([17], Theorem 1). Every quiddity of a 3d-dissection of an n-gon is
a solution of equation (3). Conversely, every solution of equation (3) is a quiddity
of a 3d-dissection of an n-gon.

The simplest examples of 3d-dissections that are not triangulations are

•
• •

• •

• •

•
• •

• •

• •

• •
•

and the corresponding quiddities are: (2, 1, 2, 1, 1, 1, 1) and (2, 1, 1, 1, 1, 2, 1, 1, 1, 1).

4.3 Idea of the proof
The proof of Theorem 3 is inductive. The main idea uses the following “local
surgery” operations:

(α) (c1, . . . , ci, ci+1, . . . , cn) 7→ (c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn),

(β) (c1, . . . , ci−1, ci, ci+1 . . . , cn) 7→ (c1, . . . , ci−1, c
′
i, 1, 1, c′′i , ci+1, . . . , cn),

where c′i+c
′′
i = ci+1. One readily checks that the matrix M(c1, . . . , cn) is invariant

under the operations of type (α) and changes the sign under the operations of
type (β).

A simple lemma then states that a sequence of positive integers (c1, . . . , cn)
satisfying equation (3) always has some entries ci = 1; cf. [6], [7], [17]. This allows
one to construct any solution of equation (3) from the simplest solution (1, 1, 1).

The inductive step in the proof is based on the observation that the above
surgery operations have a combinatorial meaning. Given a dissection of an n-gon,
the operation (α) consists in gluing an additional triangle on the edge (i, i+1), while
the operation (β) changes a 3k-gon adjacent to the ith vertex in the dissection
into a (3k + 3)-gon; see [17].

5 Proof of Theorem 1
Our proof of Theorem 1 is quite similar to that of Theorem 3. We give an inductive
procedure of construction of all the solutions of equation (4).
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5.1 Local surgery
Consider the following two families of “local surgery” operations for sequences of
elements of Z/2Z:

(a) Operations of the first family insert 1 into the sequence (c1, c2, . . . , cn):

(c1, . . . , ci, ci+1, . . . , cn) 7→ (c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn).

(b) Operations from the second family insert two copies of 0 between two con-
secutive positions:

(c1, . . . , ci, ci+1, . . . , cn) 7→ (c1, . . . , ci, 0, 0, ci+1, . . . , cn).

Within the cyclic ordering, the operations (a) and (b) are defined for all 1 ≤ i ≤ n.
Every operation (a) transforms a sequence of n elements of Z/2Z into a sequence
of n + 1 elements of Z/2Z, and every operation (b) transforms a sequence of n
elements of Z/2Z into a sequence of n+ 2 elements of Z/2Z.

The following statement means that equation (4) is invariant under the opera-
tions (a) and (b).

Lemma 1. One has, in the group SL(2,Z/2Z),

M(c1, . . . , cn+1) = M(c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn),

M(c1, . . . , cn+1) = −M(c1, . . . , ci, 0, 0, ci+1, . . . , cn).

Proof. An operation of type (a) replaces the matrix

(
ci 1
1 0

)(
ci+1 1

1 0

)
by

(
ci + 1 1

1 0

)(
1 1
1 0

)(
ci+1 + 1 1

1 0

)
=

(
ci ci + 1
1 1

)(
ci+1 + 1 1

1 0

)
=

(
cici+1 + 1 ci
ci+1 1

)
=

(
ci 1
1 0

)(
ci+1 1

1 0

)
.

Therefore, M(c1, . . . , cn+1) = M(c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn), as an element
of SL(2,Z/2Z). An operation of type (b) adds − Id in the product that defines
Mn(c1, . . . , cn). �

5.2 The special cases n = 2 and n = 3

The equation (4) has no solution if n = 1. Consider now the simplest cases n = 2
and n = 3.

Lemma 2.

(i) For n = 2, a pair (c1, c2) is a solution of equation (4) if and only if

(c1, c2) = (0, 0).
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(ii) For n = 3, the triple (c1, c2, c3) is a solution of equation (4) if and only if

(c1, c2, c3) = (1, 1, 1).

Proof. Part(i). This follows from the equality(
c1 1
1 0

)(
c2 1
1 0

)
=

(
c1c2 + 1 c1
c2 1

)
.

Part (ii). This follows from the equality(
c1 1
1 0

)(
c2 1
1 0

)(
c3 1
1 0

)
=

(
c1c2 + 1 c1
c2 1

)(
c3 1
1 0

)
=

(
c1c2c3 + c1 + c3 c1c2 + 1

c2c3 + 1 c2

)
.

Hence the result. �

5.3 Inductive construction
We now give an inductive procedure for the construction of all the solutions of
equation (4) starting from the simplest case n = 2 and the corresponding solution
(0, 0).

Proposition 1. An n-tuple (c1, . . . , cn) is a solution of equation (4) if and only if
the sequence (c1, . . . , cn) can be obtained from (0, 0) by applying the operations
(a) and (b) in any order.

Proof. The “if” part follows from Lemma 1.
Conversely, given a solution (c1, . . . , cn) of equation (4), one has the following

two possibilities.

A) One has ci = 0 for all i. Then, n is even and (c1, . . . , cn) is obtained from
(0, 0) by a sequence of n−2

2 operations of type (b).

B) ci = 1 for some i, 1 ≤ i ≤ n. Then, the inverse of the operation of type (a)
centered at i can be applied to (c1, . . . , cn). This results in an (n − 1)-tuple
(c1, . . . , ci−1 + 1, ci+1 + 1, . . . , cn). The same computation as in the proof of
Lemma 1 implies that this (n − 1)-tuple is a solution of equation (4). We
conclude by the induction assumption. �

Let us mention that there exists an analog of Proposition 1 in the case of non-
negative integer solutions of (1), see [9, Thm 3.1].

5.4 End of the proof of Theorem 1
We will need the following combinatorial interpretation of operations (a) and (b).
Let (c1, . . . , cn) be a sequence corresponding to a (3|4)-dissection of a convex
n-gon, then the result of either operation is again a sequence corresponding to
a (3|4)-dissection of a convex (n+ 1)-gon or (n+ 2)-gon, respectively.
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(i) To a (3|4)-dissection, operation (a) glues a triangle on the segment (i, i+1).

(ii) Operation (b) glues a quadrilateral on the segment (i, i+ 1).

We are ready to complete the proof of Theorem 1.
Part (i). The induction basis consists of two cases, n = 3 and n = 4. For n = 3,

the quiddity of a (3|4)-dissection of any triangle is (1, 1, 1) which is a solution of
equation (4). For n = 4, the quiddity of a (3|4)-dissection of any quadrilateral is
(1, 0, 1, 0) (quadrilateral cut into two triangles) or (0, 0, 0, 0) (quadrilateral alone)
and it follows from Lemma 1 that they are solutions of equation (4).

Assume that an n-tuple (c1, . . . , cn) is the quiddity of a (3|4)-dissection of a con-
vex n-gon. Every (3|4)-dissection has (at least) one exterior triangle (such a tri-
angle is sometimes called an “ear” in the literature), or quadrilateral. Cutting this
exterior piece, one obtains either an (n − 1)-tuple or an (n − 2)-tuple of elements
of Z/2Z which is the quiddity of a (3|4)-dissection of a convex (n − 1)-gon or
a convex (n − 2)-gon. The result then follows from Lemma 1 and the induction
assumption.

Part (ii). For n = 3, a triple (c1, c2, c3) is a solution of equation (4) if and only
if (c1, c2, c3) = (1, 1, 1), which corresponds to a triangle. Similarly to Lemma 2,
one shows the following: for n = 4, the (cyclically ordered) solutions are (1, 0, 1, 0)
and (0, 0, 0, 0), already considered in Example 1.

Assume that a sequence (c1, . . . , cn) is a solution of equation (4), and let us
show that it is the quiddity of a (3|4)-dissection of a convex n-gon. By Proposi-
tion 1, this sequence is obtained from (0, 0) by a sequence of the surgery operations
(a) and (b).

If ci = 1 for some i, where 0 ≤ i ≤ n, then, by the induction assumption, the
sequence

(c1, . . . , ci−1 + 1, ci+1 + 1, . . . , cn)

is the quiddity of a (3|4)-dissection of a convex (n−1)-gon. Therefore, (c1, . . . , cn)
is the quiddity of a (3|4)-dissection of a convex n-gon, obtained from this (3|4)-
dissection by the gluing of a triangle.

If ci = ci+1 = 0, then the sequence is of the form (c1, . . . , ci−1, 0, 0, ci+2, . . . , cn).
By the induction assumption, (c1, . . . , ci−1, ci+2, . . . , cn) is the sequence associated
to a (3|4)-dissection of a convex (n−2)-gon. Therefore (c1, . . . , cn) is the quiddity
of a (3|4)-dissection of a convex n-gon, obtained from this (3|4)-dissection by the
gluing of a quadrilateral. Theorem 1 is proved. �

Remark 2. Part (ii) of Theorem 1 can be strengthened. Let (c1, . . . , cn) be a solu-
tion of equation (4). Assume that at least one element ci of Z/2Z is different from
0 (i.e., not all of ci are even). It turns out that, under this assumption, (c1, . . . , cn)
is the quiddity of a triangulation of a convex n-gon. For example, the following
two (3|4)-dissections have the same quiddity (1, 1, 1, 0, 0).

•
• •

• •

•
• •

• •
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The proof of this strengthened statement is very similar to that of Theorem 1,
Part (ii). It uses the following idea: if an (n − 1)-tuple, obtained by applying
the operation inverse to (a) centered at i to an n-tuple (c1, . . . , cn), contains only
0, then the (n − 1)-tuple obtained by applying the operation inverse to (a) and
centered at i+ 1 to the n-tuple (c1, . . . , cn) contains an element different from 0.

Remark 3. Let us mention that Part (i) of Theorem 1 can be deduced from the
combinatorial model and results of [10, Thm 7.3]. One can also deduce from this
model that every quiddity (c1, . . . , cn) coming from a (3|4)-dissection can be lifted
to an integer solution (c1, . . . , cn) of equation (1).

Concluding remark. Equation (4) naturally extends to arbitrary principal
congruence subgroups Γ(N) in SL(2,Z), and it would be interesting to find a com-
binatorial description of the set of solutions in the general situation.
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