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Local derivations of semisimple Leibniz algebras

Ivan Kaygorodov, Karimbergen Kudaybergenov and Inomjon Yuldashev

Abstract. We prove that every local derivation on a complex semisimple finite-
dimensional Leibniz algebra is a derivation.

The study of local derivations started with Kadison’s article [22]. After this work,
appear numerous new results related to the description of numerous local mappings (such
that local derivations, 2-local derivations, bilocal derivations, bilocal Lie derivations, weak-
2-local derivations, local automorphisms, 2-local Lie ∗-automorphisms, 2-local ∗-Lie iso-
morphisms and so on) of associative algebras (see, for example, [1], [3], [4], [5], [7], [8],
[24]). The study of local and 2-local derivations of non-associative algebras was initiated
in some papers of Ayupov and Kudaybergenov (for the case of Lie algebras, see [6], [7]).
In particular, they proved that there are no non-trivial local and 2-local derivations on
complex semisimple finite-dimensional Lie algebras. In [7] it is also given examples of
2-local derivations on nilpotent Lie algebras which are not derivations. After the cited
works, the study of local and 2-local derivations was continued for many types of algebras,
such that Leibniz algebras [8], Jordan algebras [3], n-ary algebras [19] and so on. The
first example of a simple (ternary) algebra with non-trivial local derivations is constructed
by Ferreira, Kaygorodov and Kudaybergenov in [19]. After that, the first example of a
simple (binary) algebra with non-trivial local derivations/automorphisms was constructed
by Ayupov, Elduque and Kudaybergenov in [4],[5]. The present paper is devoted to the
study of local derivations of semisimple finite-dimensional Leibniz algebras.
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Definition 0.1. Let A be an algebra. A linear map ∆ : A→ A is called a local derivation,
if for any element x ∈ A there exists a derivation Dx : A→ A such that ∆(x) = Dx(x).

1 Structure of semisimple Leibniz algebras and their derivations

1.1 Leibniz algebras

Leibniz algebras present a ”non antisymmetric” generalization of Lie algebras. It ap-
peared in some papers of Bloh [in 1960s] and Loday [in 1990s]. Recently, they appeared
in many geometric and physics applications (see, for example, [12], [14], [16], [23], [29]
and references therein). A systematic study of algebraic properties of Leibniz algebras is
started from the Loday paper [26]. So, several classical theorems from Lie algebras the-
ory have been extended to the Leibniz algebras case; many classification results regarding
nilpotent, solvable, simple, and semisimple Leibniz algebras are obtained (see, for example,
[2], [8], [9], [10], [11], [13], [15], [17], [18], [25], [27], [28], [30], and references therein). Leib-
niz algebras is a particular case of terminal algebras and, on the other hand, symmetric
Leibniz algebras are Poisson admissible algebras.

An algebra (L, [·, ·]) over a field F is called a (right) Leibniz algebra if it satisfies the
property

[x, [y, z]] = [[x, y], z]− [[x, z], y],

which is called Leibniz identity. For a Leibniz algebra L, a subspace generated by its
squares I = span {[x, x] : x ∈ L} due to Leibniz identity becomes an ideal, and the quotient
GL = L/I is a Lie algebra called liezation of L. Moreover, [L, I] = 0. Following ideas of
Dzhumadildaev [17], a Leibniz algebra L is called simple if its liezation is a simple Lie
algebra and the ideal I is a simple ideal. Equivalently, L is simple iff I is the only non-
trivial ideal of L. A Leibniz algebra L is called semisimple if its liezation GL is a semisimple
Lie algebra. Simple and semisimple Leibniz algebras are under certain interest now [8],
[9], [14], [17], [18], [27], [28].

Let G be a Lie algebra and V a (right) G-module. Endow on vector space L = G ⊕ V
the bracket product as follows:

[(g1, v1), (g2, v2)] := ([g1, g2], v1 · g2),

where v · g (sometimes denoted as [v, g]) is an action of an element g of G on v ∈ V . Then
L is a Leibniz algebra, denoted as G n V . The following theorem proved by Barnes [11]
presents an analog of Levi-Malcev’s theorem for Leibniz algebras.

Theorem 1.1. If L is a finite-dimensional Leibniz algebra over a field of characteristic
zero, then L = S n I, where S is a semisimple Lie subalgebra of L.

It should be noted that I is a non-trivial module over the Lie algebra S. We say that
a semisimple Leibniz algebra L is decomposable, if L = L1 ⊕ L2, where L1 and L2 are
non-trivial semisimple Leibniz algebras. Otherwise, we say that L is indecomposable. Now
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we recall the structure of semisimple Leibniz algebras (see [9]). Any complex semisimple
finite-dimensional Leibniz algebra L represented as

L =
n⊕
i=1

(Si n Ii) , (1)

where each Si n Ii is an indecomposable Leibniz algebra (see [9, Lemma 3.2]).

1.2 Derivations of semisimple Leibniz algebras

Let L be a semisimple Leibniz algebra of the form (1). It is clear that

Der (L) =
n⊕
i=1

Der (Si n Ii) .

Hence

LDer (L) =
n⊕
i=1

LDer (Si n Ii) .

So, it suffices to consider local derivations indecomposable semisimple Leibniz algebras.
Any indecomposable semisimple Leibniz algebra L represented as

L = S n

(
m⊕
k=1

Vk

)
,

where each S n Vk is also indecomposable semisimple Leibniz algebra.

Let Sn
(

m⊕
k=1

Vk
)

be an indecomposable semisimple Leibniz algebra. Denote by ΓS the

set of all k = 1, . . . ,m such that S and Vk are isomorphic as S-modules and denote by ΓV
the set of all pairs {i, j} such that Vi and Vj are isomorphic as S-modules.

Any D ∈ Der

(
S n

(
m⊕
k=1

Vk
))

is of the form

D = Ra +
∑
k∈ΓS

$kθk +
∑

{i,j}∈ΓV

λi,jπi,j, (2)

where πi,j ∈ HomS (Vi,Vj), θk ∈ HomS (S,Vk) and Ra is the standard right multiplication
on a ∈ S (see [9, Theorem 4.5]).

2 Local derivations on semisimple Leibniz algebras

The present part of the paper is dedicated to the proof of the following theorem.
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Theorem 2.1. Let L = S n
(

m⊕
k=1

Vk
)

be a complex semisimple finite-dimensional Leibniz

algebra. Then any local derivation ∆ on L is a derivation.

As we have mentioned above it suffices to consider local derivations of indecompos-

able semisimple Leibniz algebras. From now on L = S n
(

m⊕
k=1

Vk
)

is a complex finite-

dimensional indecomposable semisimple Leibniz algebra.
Let H be a Cartan subalgebra of S. Consider a root space decomposition of S :

S = H⊕
⊕
α∈Γ

Sα,

where Γ is the set of all nonzero linear functionals α of H such that

Sα = {x ∈ S : [h, x] = α(h)x, ∀h ∈ H} 6= {0}.

Let
Vk =

⊕
β∈Φk

Vβk

be a weight decomposition of Vk, where Φk is the set of all weights.

For q = 1, . . . ,m denote by prq :
m⊕
k=1

Vk → Vq a projection mapping defined as follows

prq

(
m∑
k=1

vk

)
= vq.

Let us define a mapping ∆p,q : S n Vp → Vq as follows

∆p,q(x+ v) = prq (∆(x+ v)) , x+ v ∈ S n Vp.

By (2) for any x + v ∈ S n Vβp there exist ax+v ∈ S and complex numbers ω
(x+v)
k , λ

(x+v)
i,j

such that

∆(x+ v) = [x+ v, ax+v] +
∑
k∈ΓS

ω
(x+v)
k θk(x) +

∑
{i,j}∈ΓV

λ
(x+v)
i,j πi,j(v).

Let ax+v = hx+v +
∑
α∈Γ

c
(x+v)
α eα ∈ H ⊕⊕α∈ΓSα, and denote Γq = {α : [v, eα] ∈ Vq}. Then

∆p,q(x+ v) = prq

[x+ v, ax+v] +
∑
k∈ΓS

ω
(x+v)
k θk(x) +

∑
{i,j}∈ΓV

λ
(x+v)
i,j πi,j(v)

 ,

that is

∆p,q(x+ v) = δp,q[v, hx+v] +

v,∑
α∈Γq

c(x+v)
α eα

+ ω(x+v)
q θq(x) + λ(x+v)

p,q πp,q(v), (3)
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where δp,q is the Kronecker delta.
If necessary, after renumbering we can assume that there is a number k ∈ {1, . . . ,m}

such that S and Vi are isomorphic S-modules for all i = 1, . . . , k, and S and Vi are not
isomorphic S-modules for all i = k+1, . . . ,m. According (2), we can consider two possible
cases separately.

Let us first consider an indecomposable semisimple Leibniz algebra L = S n
(

m⊕
i=1

Vi
)

such that S and Vi (i = 1, . . . ,m) are isomorphic S-modules.

Lemma 2.2. Let ∆ be a local derivation on L such that ∆(L) ⊆ V. Then ∆ is a derivation.

Proof. Fix the indices p, q. Let us show that there are complex numbers ωq and λp,q such
that

∆p,q = ωqθq + λp,qπp,q.

Fix a basis {x1, . . . , xm} in S. The system of vectors {θs(xi)}1≤i≤m is a basis in Vs (for
s = p, q). Here, θs is an S-module isomorphism from S onto Vs, in particular,

θs([x, y]) = [θs(x), y].

Using (3) for x = xi and take a complex number ω
(i)
q such that

∆p,q(xi) = ω(i)
q θq(xi).

Now for the element x = xi + xj, where i 6= j, take a complex number ω
(i,j)
q such that

∆p,q(xi + xj) = ω(i,j)
q θq(xi + xj) = ω(i,j)

q θq(xi) + ω(i,j)
q θq(xj).

On the other hand,
∆p,q(xi + xj) = ω(i)

q θq(xi) + ω(j)
q θq(xj).

Comparing the last two equalities we obtain ω
(i)
q = ω

(j)
q for all i, j. This means that there

exists a complex number $q such that

∆p,q(xi) = $qθq(xi). (4)

Now by (3) for x = xi + θp(xi) ∈ S n Vp take complex numbers ωi and λi such that

∆(xi + θp(xi)) = ωiθq(xi) + λiπp,q(θp(xi)) = (ωi + λi) θq(xi).

Taking into account (4) we obtain that

∆p,q(θp(xi)) = ∆p,q(xi + θp(xi))−∆p,q(xi)
= (ωi + λi)θq(xi)−$qθq(xi) = (ωi −$q + λi)θq(xi).
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This means that for every i ∈ {1, . . . ,m} there exists a complex number Λi such that

∆(θp(xi)) = Λiθq(xi). (5)

Take an element x = xi + xj + θp(xi + xj) ∈ S n Vp, where i 6= j. By (3), we get that

∆p,q(xi + xj + θp(xi + xj)) = ωi,jθq(xi + xj) + λi,jθq(xi + xj).

Taking into account (4) we obtain that

∆p,q (θq(xi + xj)) = ∆p,q(xi + xj + θq(xi + xj))−∆p,q(xi + xj)

= (ωi,j −$q + λi,j)θq(xi + xj).

On the other hand, by (5),

∆p,q(θq(xi + xj)) = ∆p,q(θq(xi)) + ∆p,q(θq(xj)) = λiθq(xi) + λjθq(xj).

Comparing the last two equalities we obtain that λi = λj for all i and j. This means that
there exist a complex number λp,q such that

∆p,q(θq(xi)) = λp,qθq(xi). (6)

Combining (4) and (6) we obtain that ∆p,q = $qθq + λp,qπp,q. This means that ∆ is a
derivation. The proof is completed.

In the next lemma we consider L = S n
(

m⊕
k=1

Vk
)

, an indecomposable semisimple

Leibniz algebra, such that S and Vk are not isomorphic S-modules for all k = 1, . . . ,m.

Lemma 2.3. Let ∆ be a local derivation on L such that ∆(L) ⊆ V. Then ∆ is a derivation.

Proof. Let
{
v

(1)
1 , . . . , v

(1)
n

}
be a basis of V1. Since V1 and Vk are isomorphic, it follows that{

v
(q)
i = π1,q(v

(1)
i ) : i = 1, . . . n

}
is a basis of Vq.

Without lost of generality we can assume that for any v
(1)
i there exists a weight βi such

that v
(1)
i ∈ Vβi . Let h0 be a strongly regular element in H, that is, α(h0) 6= β(h0) for any

α, β ∈ Γ, α 6= β. For x = h0 + v
(1)
i ∈ S n V1 take an element ax ∈ S and complex numbers

λ
(x)
k such that

∆
(
h0 + v

(1)
i

)
= [h0, ax] +

[
v

(1)
i , ax

]
+
∑
k∈Γ1,k

λ
(x)
k v

(k)
i .

Taking into account that h0 is strongly regular, from [h0, ax] = 0, we have that ax ∈ H.
Further

∆
(
v

(1)
i

)
= ∆

(
h0 + v

(1)
i

)
=
[
v

(1)
i , ax

]
+
∑
k∈Γ1,k

λ
(x)
k v

(k)
i = (βi(ax) + λ

(x)
1 )v

(1)
i +

∑
1<k∈Γ1,k

λ
(x)
k v

(k)
i .
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Now we change the element x = h0 + v
(1)
i to the element x = h0 + v

(1)
i + v

(1)
j (i 6= j), then

similar as above we get that

∆
(
v

(1)
i + v

(1)
j

)
= (∗)v(1)

i + (∗)v(1)
j +

∑
1<k∈Γ1,k

λ
(x)
k

(
v

(k)
i + v

(k)
j

)
.

Comparing the last two equalities we can see that there are λ2, . . . , λn ∈ C such that

∆
(
v

(1)
i

)
= (∗)v(1)

i +
∑

1<k∈Γ1,k

λkv
(k)
i .

Replacing ∆ with ∆−
∑

1<k∈Γ1,k

λkπ1,k we obtain a new local derivation which maps V1 into

itself. Due to (2), there exist complex numbers λi, i = 1, . . . , n such that

∆
(
v

(1)
i

)
= λiv

(1)
i . (7)

We shall show that λ1 = . . . = λn. For a fixed v
(1)
i (i 6= 1) we have that

∆
(
v

(1)
1 + v

(1)
i

)
= λ1v

(1)
1 + λiv

(1)
i . (8)

Without loss of generality we can assume that β1 is a fixed highest weight of V1. It is
known [20, Page 108] that the weight β1 − βi can be represented as

β1 − βi = n1α1 + . . .+ nlαl,

where α1, . . . , αl are simple roots of S, n1, . . . , nl are non negative integers.
Below we shall consider two separated cases.

Case 1. α0 = n1α1 + . . .+ nlαl is not a root. Take the following element

y = n1eα1 + . . .+ nleαl
+ v

(1)
1 + v

(1)
i .

By the definition of local derivation we can find an element ay = h +
∑
α∈Γ

cαeα ∈ S

and a number λ(y) such that

∆(y) = [y, ay] + λ(y)
(
v

(1)
1 + v

(1)
i

)
.

Taking into account (7) and ∆(y) ∈ V , we obtain that[
l∑

s=1

nseαs , h+
∑
α∈Γ

cαeα

]
= 0.

Thus
l∑

s=1

nsαs(h)eαs +
l∑

t=1

∑
α∈Γ

(∗)eα+αt = 0,
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where the symbols (∗) denote appropriate coefficients. The second summand does
not contain any element of the form eαs . Indeed, if we assume that αs = α + αt, we
have that α = αs − αt. But αs − αt is not a root, because αs, αt are simple roots.
Hence all coefficients of the first summand are zero, i.e.,

n1α1(h) = . . . = nlαl(h) = 0.

Further

∆
(
v

(1)
1 + v

(1)
i

)
= ∆(y) =

[
v

(1)
1 + v

(1)
i , ax

]
+ λ(y)

(
v

(1)
1 + v

(1)
i

)
.

Let us calculate the product
[
v

(1)
1 + v

(1)
i , ax

]
. We have

[
v

(1)
1 + v

(1)
i , ax

]
=

[
v

(1)
1 + v

(1)
i , h+

∑
α∈Φ

cαeα

]

= β1(h)v
(1)
β1

+ β2(h)v
(1)
β2

+
2∑
t=1

∑
α∈Φ

(∗)v(1)
βt+α

.

The last summand does not contain v
(1)
β1

and v
(1)
βi

, because β1 − βi is not a root by
the assumption. This means that

∆
(
v

(1)
β1

+ v
(1)
βi

)
=
(
β1(h) + λ(y)

)
v

(1)
β1

+
(
βi(h) + λ(y)

)
v

(1)
βi
. (9)

The difference of the coefficients of the right side is

β1(h)− βi(h) =
l∑

s=1

nsαs(h) = 0,

because of n1α1(h) = . . . = nlαl(h) = 0. Finally, comparing coefficients in (8) and
(9) we get

λ1 = β1(h) + λ(y) = βi(h) + λ(y) = λi.

Case 2. α0 = n1α1 + . . . + nlαl is a root. Note that dimVβ1 = 1, because β1 is a highest
weight. Since β1 − βi is a root, [21, Lemma 3.2.9] implies that dimV1,βi = dimV1,β1 ,
and hence there exist numbers t−α0 6= 0 and tα0 such that[

v
(1)
β1
, e−α0

]
= t−α0v

(1)
βi
,
[
v

(1)
βi
, eα0

]
= tα0v

(1)
β1
.

Take the following element

z = t−α0eα0 + tα0e−α0 + v
(1)
β1

+ v
(1)
βi
,
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and choose an element az = h+
∑
α∈Φ

cαeα ∈ S and a number λz such that

∆(z) = [z, az] + λz

(
v

(1)
β1

+ v
(1)
βi

)
.

Since ∆(z) ∈ V , we obtain that[
t−α0eα0 + tα0e−α0 , h+

∑
α∈Φ

cαeα

]
= 0.

Now rewrite the last equality as

α0(h)t−α0eα0 − α0(h)tα0e−α0 + (t−α0c−α0 − tα0cα0)hα0 +
∑
α 6=±α0

(∗)eα±α0 = 0,

where hα0 = [eα0 , e−α0 ] ∈ H. The last summand in the sum does not contain elements
eα0 and e−α0 . Indeed, if we assume that α0 = α − α0, we have that α = 2α0. But
2α0 is not a root. Hence the first three coefficients of this sum are zero, i.e.,

α0(h) = 0, tα0cα0 = t−α0c−α0 . (10)

Further

∆
(
v

(1)
β1

+ v
(1)
βi

)
= ∆(z) =

[
v

(1)
β1

+ v
(1)
βi
, az

]
+ λz

(
v

(1)
β1

+ v
(1)
βi

)
.

Let us consider the element
[
v

(1)
β1

+ v
(1)
βi
, az

]
. We have

[
v

(1)
β1

+ v
(1)
βi
, az

]
=

[
v

(1)
β1

+ v
(1)
βi
, h+

∑
α∈Φ

cαeα

]
=
[
v

(1)
β1
, h
]

+ cα0

[
v

(1)
βi
, eα0

]
+
[
v

(1)
βi
, h
]

+ c−α0

[
v

(1)
β1
, e−α0

]
+ cα0

[
v

(1)
β1
, eα0

]
+ c−α0

[
v

(1)
βi
, e−α0

]
+
∑
α 6=±α0

cα

[
v

(1)
β1
, eα

]
+
∑
α6=±α0

cα

[
v

(1)
βi
, eα

]
= (β1(h) + tα0cα0)v

(1)
β1

+ (βi(h) + t−α0c−α0)v
(1)
βi

+ (∗)v(1)
2β1−βi + (∗)v(1)

2βi−β1

+
∑
α 6=±α0

(∗)v(1)
β1+α +

∑
α 6=±α0

(∗)v(1)
βi+α

.

The last three summands do not contain v
(1)
β1

and v
(1)
βi

, because β1 − βi = α0 and
α 6= ±α0. This means that

∆
(
v

(1)
β1

+ v
(1)
βi

)
= (β1(h) + tα0cα0 + λz)v

(1)
β1

(11)

+ (βi(h) + t−α0c−α0 + λz)v
(1)
βi
.
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Taking into account (10) we find the difference of coefficients on the right side:

(β1(h) + tα0cα0)− (βi(h) + t−α0c−α0) = α0(h) + tα0cα0 − t−α0c−α0 = 0.

Combining (8) and (11) we obtain that

λ1 = β1(h) + tα0cα0 + λz = βi(h) + t−α0c−α0 + λz = λi.

So, we have proved that ∆
(
v

(1)
i

)
= λ1v

(1)
i for all i = 1, . . . , n. By a similar way

we obtain that ∆
(
v

(k)
i

)
= λkv

(k)
i for all i = 1, . . . , nk. Thus ∆ =

m∑
k=1

λkπk,k, and

therefore ∆ is a derivation.

The proof is completed.

Proof of Theorem 2.1. Let ∆ be an arbitrary local derivation on L. For an arbitrary
element x ∈ S take a derivation D = Rax +

∑
k∈ΓS

$
(x)
k θ

(x)
k +

∑
{i,j}∈ΓV

λ
(x)
i,j π

(x)
i,j of the form (2)

such that
∆(x) = [x, ax] +

∑
k∈ΓS

ω
(x)
x,kθ

(x)
k (x).

Then the mapping
x ∈ S → [x, ax] ∈ S

is a well-defined local derivation on S, and by [6, Theorem 3.1] it is a derivation generated
by an element a ∈ S. Then the local derivation ∆− Rax maps L into V . By Lemmas 2.2
and 2.3 we get that ∆−Rax is a derivation and therefore ∆ is also a derivation. The proof
is completed.
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