Local derivations of semisimple Leibniz algebras

Ivan Kaygorodov, Karimbergen Kudaybergenov and Inomjon Yuldashev

Abstract

We prove that every local derivation on a complex semisimple finitedimensional Leibniz algebra is a derivation.

The study of local derivations started with Kadison's article [22]. After this work, appear numerous new results related to the description of numerous local mappings (such that local derivations, 2-local derivations, bilocal derivations, bilocal Lie derivations, weak-2-local derivations, local automorphisms, 2-local Lie $*$-automorphisms, 2-local $*$-Lie isomorphisms and so on) of associative algebras (see, for example, [1], [3], [4], [5], [7], [8], [24]). The study of local and 2-local derivations of non-associative algebras was initiated in some papers of Ayupov and Kudaybergenov (for the case of Lie algebras, see [6], [7]). In particular, they proved that there are no non-trivial local and 2-local derivations on complex semisimple finite-dimensional Lie algebras. In [7] it is also given examples of 2-local derivations on nilpotent Lie algebras which are not derivations. After the cited works, the study of local and 2-local derivations was continued for many types of algebras, such that Leibniz algebras [8], Jordan algebras [3], n-ary algebras [19] and so on. The first example of a simple (ternary) algebra with non-trivial local derivations is constructed by Ferreira, Kaygorodov and Kudaybergenov in [19]. After that, the first example of a simple (binary) algebra with non-trivial local derivations/automorphisms was constructed by Ayupov, Elduque and Kudaybergenov in [4],[5]. The present paper is devoted to the study of local derivations of semisimple finite-dimensional Leibniz algebras.

[^0]Definition 0.1. Let \mathbf{A} be an algebra. A linear map $\Delta: \mathbf{A} \rightarrow \mathbf{A}$ is called a local derivation, if for any element $x \in \mathbf{A}$ there exists a derivation $\mathfrak{D}_{x}: \mathbf{A} \rightarrow \mathbf{A}$ such that $\Delta(x)=\mathfrak{D}_{x}(x)$.

1 Structure of semisimple Leibniz algebras and their derivations

1.1 Leibniz algebras

Leibniz algebras present a "non antisymmetric" generalization of Lie algebras. It appeared in some papers of Bloh [in 1960s] and Loday [in 1990s]. Recently, they appeared in many geometric and physics applications (see, for example, [12], [14], [16], [23], [29] and references therein). A systematic study of algebraic properties of Leibniz algebras is started from the Loday paper [26]. So, several classical theorems from Lie algebras theory have been extended to the Leibniz algebras case; many classification results regarding nilpotent, solvable, simple, and semisimple Leibniz algebras are obtained (see, for example, [2], [8], [9], [10], [11], [13], [15], [17], [18], [25], [27], [28], [30], and references therein). Leibniz algebras is a particular case of terminal algebras and, on the other hand, symmetric Leibniz algebras are Poisson admissible algebras.

An algebra $(\mathcal{L},[\cdot, \cdot])$ over a field \mathbb{F} is called a (right) Leibniz algebra if it satisfies the property

$$
[x,[y, z]]=[[x, y], z]-[[x, z], y],
$$

which is called Leibniz identity. For a Leibniz algebra \mathcal{L}, a subspace generated by its squares $\mathcal{I}=\operatorname{span}\{[x, x]: x \in \mathcal{L}\}$ due to Leibniz identity becomes an ideal, and the quotient $\mathcal{G}_{\mathcal{L}}=\mathcal{L} / \mathcal{I}$ is a Lie algebra called liezation of \mathcal{L}. Moreover, $[\mathcal{L}, \mathcal{I}]=0$. Following ideas of Dzhumadildaev [17], a Leibniz algebra \mathcal{L} is called simple if its liezation is a simple Lie algebra and the ideal \mathcal{I} is a simple ideal. Equivalently, \mathcal{L} is simple iff \mathcal{I} is the only nontrivial ideal of \mathcal{L}. A Leibniz algebra \mathcal{L} is called semisimple if its liezation $\mathcal{G}_{\mathcal{L}}$ is a semisimple Lie algebra. Simple and semisimple Leibniz algebras are under certain interest now [8], [9], [14], [17], [18], [27], [28].

Let \mathcal{G} be a Lie algebra and \mathcal{V} a (right) \mathcal{G}-module. Endow on vector space $\mathcal{L}=\mathcal{G} \oplus \mathcal{V}$ the bracket product as follows:

$$
\left[\left(g_{1}, v_{1}\right),\left(g_{2}, v_{2}\right)\right]:=\left(\left[g_{1}, g_{2}\right], v_{1} \cdot g_{2}\right)
$$

where $v \cdot g$ (sometimes denoted as $[v, g])$ is an action of an element g of \mathcal{G} on $v \in \mathcal{V}$. Then \mathcal{L} is a Leibniz algebra, denoted as $\mathcal{G} \ltimes \mathcal{V}$. The following theorem proved by Barnes [11] presents an analog of Levi-Malcev's theorem for Leibniz algebras.

Theorem 1.1. If \mathcal{L} is a finite-dimensional Leibniz algebra over a field of characteristic zero, then $\mathcal{L}=\mathcal{S} \ltimes \mathcal{I}$, where \mathcal{S} is a semisimple Lie subalgebra of \mathcal{L}.

It should be noted that \mathcal{I} is a non-trivial module over the Lie algebra \mathcal{S}. We say that a semisimple Leibniz algebra \mathcal{L} is decomposable, if $\mathcal{L}=\mathcal{L}_{1} \oplus \mathcal{L}_{2}$, where \mathcal{L}_{1} and \mathcal{L}_{2} are non-trivial semisimple Leibniz algebras. Otherwise, we say that \mathcal{L} is indecomposable. Now
we recall the structure of semisimple Leibniz algebras (see [9]). Any complex semisimple finite-dimensional Leibniz algebra \mathcal{L} represented as

$$
\begin{equation*}
\mathcal{L}=\bigoplus_{i=1}^{n}\left(\mathcal{S}_{i} \ltimes \mathcal{I}_{i}\right) \tag{1}
\end{equation*}
$$

where each $\mathcal{S}_{i} \ltimes \mathcal{I}_{i}$ is an indecomposable Leibniz algebra (see [9, Lemma 3.2]).

1.2 Derivations of semisimple Leibniz algebras

Let \mathcal{L} be a semisimple Leibniz algebra of the form (1). It is clear that

$$
\mathfrak{D e r}(\mathcal{L})=\bigoplus_{i=1}^{n} \mathfrak{D e r}\left(\mathcal{S}_{i} \ltimes \mathcal{I}_{i}\right)
$$

Hence

$$
\mathfrak{L} \mathfrak{D e r}(\mathcal{L})=\bigoplus_{i=1}^{n} \mathfrak{L} \mathfrak{D e r}\left(\mathcal{S}_{i} \ltimes \mathcal{I}_{i}\right)
$$

So, it suffices to consider local derivations indecomposable semisimple Leibniz algebras.
Any indecomposable semisimple Leibniz algebra \mathcal{L} represented as

$$
\mathcal{L}=\mathcal{S} \ltimes\left(\bigoplus_{k=1}^{m} \mathcal{V}_{k}\right)
$$

where each $\mathcal{S} \ltimes \mathcal{V}_{k}$ is also indecomposable semisimple Leibniz algebra.
Let $\mathcal{S} \ltimes\left(\bigoplus_{k=1}^{m} \mathcal{V}_{k}\right)$ be an indecomposable semisimple Leibniz algebra. Denote by $\Gamma_{\mathcal{S}}$ the set of all $k=1, \ldots, m$ such that \mathcal{S} and \mathcal{V}_{k} are isomorphic as \mathcal{S}-modules and denote by $\Gamma_{\mathcal{V}}$ the set of all pairs $\{i, j\}$ such that \mathcal{V}_{i} and \mathcal{V}_{j} are isomorphic as \mathcal{S}-modules.

Any $\mathfrak{D} \in \mathfrak{D e r}\left(\mathcal{S} \ltimes\left(\bigoplus_{k=1}^{m} \mathcal{V}_{k}\right)\right)$ is of the form

$$
\begin{equation*}
\mathfrak{D}=R_{a}+\sum_{k \in \Gamma_{\mathcal{S}}} \varpi_{k} \theta_{k}+\sum_{\{i, j\} \in \Gamma_{\mathcal{V}}} \lambda_{i, j} \pi_{i, j}, \tag{2}
\end{equation*}
$$

where $\pi_{i, j} \in \operatorname{Hom}_{\mathcal{S}}\left(\mathcal{V}_{i}, \mathcal{V}_{j}\right), \theta_{k} \in \operatorname{Hom}_{\mathcal{S}}\left(\mathcal{S}, \mathcal{V}_{k}\right)$ and R_{a} is the standard right multiplication on $a \in \mathcal{S}$ (see [9, Theorem 4.5]).

2 Local derivations on semisimple Leibniz algebras

The present part of the paper is dedicated to the proof of the following theorem.

Theorem 2.1. Let $\mathcal{L}=\mathcal{S} \ltimes\left(\bigoplus_{k=1}^{m} \mathcal{V}_{k}\right)$ be a complex semisimple finite-dimensional Leibniz algebra. Then any local derivation Δ on \mathcal{L} is a derivation.

As we have mentioned above it suffices to consider local derivations of indecomposable semisimple Leibniz algebras. From now on $\mathcal{L}=\mathcal{S} \ltimes\left(\bigoplus_{k=1}^{m} \mathcal{V}_{k}\right)$ is a complex finitedimensional indecomposable semisimple Leibniz algebra.

Let \mathcal{H} be a Cartan subalgebra of \mathcal{S}. Consider a root space decomposition of \mathcal{S} :

$$
\mathcal{S}=\mathcal{H} \oplus \bigoplus_{\alpha \in \Gamma} \mathcal{S}_{\alpha}
$$

where Γ is the set of all nonzero linear functionals α of \mathcal{H} such that

$$
\mathcal{S}_{\alpha}=\{x \in \mathcal{S}:[h, x]=\alpha(h) x, \forall h \in \mathcal{H}\} \neq\{0\} .
$$

Let

$$
\mathcal{V}_{k}=\bigoplus_{\beta \in \Phi_{k}} \mathcal{V}_{k}^{\beta}
$$

be a weight decomposition of \mathcal{V}_{k}, where Φ_{k} is the set of all weights.
For $q=1, \ldots, m$ denote by $\operatorname{pr}_{q}: \bigoplus_{k=1}^{m} \mathcal{V}_{k} \rightarrow \mathcal{V}_{q}$ a projection mapping defined as follows

$$
\operatorname{pr}_{q}\left(\sum_{k=1}^{m} v_{k}\right)=v_{q} .
$$

Let us define a mapping $\Delta_{p, q}: \mathcal{S} \ltimes \mathcal{V}_{p} \rightarrow \mathcal{V}_{q}$ as follows

$$
\Delta_{p, q}(x+v)=\operatorname{pr}_{q}(\Delta(x+v)), x+v \in \mathcal{S} \ltimes \mathcal{V}_{p}
$$

By (2) for any $x+v \in \mathcal{S} \ltimes \mathcal{V}_{p}^{\beta}$ there exist $a_{x+v} \in \mathcal{S}$ and complex numbers $\omega_{k}^{(x+v)}, \lambda_{i, j}^{(x+v)}$ such that

$$
\Delta(x+v)=\left[x+v, a_{x+v}\right]+\sum_{k \in \Gamma_{\mathcal{S}}} \omega_{k}^{(x+v)} \theta_{k}(x)+\sum_{\{i, j\} \in \Gamma_{\mathcal{V}}} \lambda_{i, j}^{(x+v)} \pi_{i, j}(v) .
$$

Let $a_{x+v}=h_{x+v}+\sum_{\alpha \in \Gamma} c_{\alpha}^{(x+v)} e_{\alpha} \in \mathcal{H} \oplus \oplus_{\alpha \in \Gamma} \mathcal{S}_{\alpha}$, and denote $\Gamma_{q}=\left\{\alpha:\left[v, e_{\alpha}\right] \in \mathcal{V}_{q}\right\}$. Then

$$
\Delta_{p, q}(x+v)=\quad \operatorname{pr}_{q}\left(\left[x+v, a_{x+v}\right]+\sum_{k \in \Gamma_{\mathcal{S}}} \omega_{k}^{(x+v)} \theta_{k}(x)+\sum_{\{i, j\} \in \Gamma_{\mathcal{V}}} \lambda_{i, j}^{(x+v)} \pi_{i, j}(v)\right)
$$

that is

$$
\begin{equation*}
\Delta_{p, q}(x+v)=\quad \delta_{p, q}\left[v, h_{x+v}\right]+\left[v, \sum_{\alpha \in \Gamma_{q}} c_{\alpha}^{(x+v)} e_{\alpha}\right]+\omega_{q}^{(x+v)} \theta_{q}(x)+\lambda_{p, q}^{(x+v)} \pi_{p, q}(v) \tag{3}
\end{equation*}
$$

where $\delta_{p, q}$ is the Kronecker delta.
If necessary, after renumbering we can assume that there is a number $k \in\{1, \ldots, m\}$ such that \mathcal{S} and \mathcal{V}_{i} are isomorphic \mathcal{S}-modules for all $i=1, \ldots, k$, and \mathcal{S} and \mathcal{V}_{i} are not isomorphic \mathcal{S}-modules for all $i=k+1, \ldots, m$. According (2), we can consider two possible cases separately.

Let us first consider an indecomposable semisimple Leibniz algebra $\mathcal{L}=\mathcal{S} \ltimes\left(\bigoplus_{i=1}^{m} \mathcal{V}_{i}\right)$ such that \mathcal{S} and $\mathcal{V}_{i}(i=1, \ldots, m)$ are isomorphic \mathcal{S}-modules.

Lemma 2.2. Let Δ be a local derivation on \mathcal{L} such that $\Delta(\mathcal{L}) \subseteq \mathcal{V}$. Then Δ is a derivation.
Proof. Fix the indices p, q. Let us show that there are complex numbers ω_{q} and $\lambda_{p, q}$ such that

$$
\Delta_{p, q}=\omega_{q} \theta_{q}+\lambda_{p, q} \pi_{p, q} .
$$

Fix a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ in \mathcal{S}. The system of vectors $\left\{\theta_{s}\left(x_{i}\right)\right\}_{1 \leq i \leq m}$ is a basis in \mathcal{V}_{s} (for $s=p, q)$. Here, θ_{s} is an \mathcal{S}-module isomorphism from \mathcal{S} onto \mathcal{V}_{s}, in particular,

$$
\theta_{s}([x, y])=\left[\theta_{s}(x), y\right] .
$$

Using (3) for $x=x_{i}$ and take a complex number $\omega_{q}^{(i)}$ such that

$$
\Delta_{p, q}\left(x_{i}\right)=\omega_{q}^{(i)} \theta_{q}\left(x_{i}\right)
$$

Now for the element $x=x_{i}+x_{j}$, where $i \neq j$, take a complex number $\omega_{q}^{(i, j)}$ such that

$$
\Delta_{p, q}\left(x_{i}+x_{j}\right)=\omega_{q}^{(i, j)} \theta_{q}\left(x_{i}+x_{j}\right)=\omega_{q}^{(i, j)} \theta_{q}\left(x_{i}\right)+\omega_{q}^{(i, j)} \theta_{q}\left(x_{j}\right)
$$

On the other hand,

$$
\Delta_{p, q}\left(x_{i}+x_{j}\right)=\omega_{q}^{(i)} \theta_{q}\left(x_{i}\right)+\omega_{q}^{(j)} \theta_{q}\left(x_{j}\right)
$$

Comparing the last two equalities we obtain $\omega_{q}^{(i)}=\omega_{q}^{(j)}$ for all i, j. This means that there exists a complex number ϖ_{q} such that

$$
\begin{equation*}
\Delta_{p, q}\left(x_{i}\right)=\varpi_{q} \theta_{q}\left(x_{i}\right) . \tag{4}
\end{equation*}
$$

Now by (3) for $x=x_{i}+\theta_{p}\left(x_{i}\right) \in \mathcal{S} \ltimes \mathcal{V}_{p}$ take complex numbers ω_{i} and λ_{i} such that

$$
\Delta\left(x_{i}+\theta_{p}\left(x_{i}\right)\right)=\omega_{i} \theta_{q}\left(x_{i}\right)+\lambda_{i} \pi_{p, q}\left(\theta_{p}\left(x_{i}\right)\right)=\left(\omega_{i}+\lambda_{i}\right) \theta_{q}\left(x_{i}\right) .
$$

Taking into account (4) we obtain that

$$
\begin{aligned}
\Delta_{p, q}\left(\theta_{p}\left(x_{i}\right)\right) & =\Delta_{p, q}\left(x_{i}+\theta_{p}\left(x_{i}\right)\right)-\Delta_{p, q}\left(x_{i}\right) \\
& =\left(\omega_{i}+\lambda_{i}\right) \theta_{q}\left(x_{i}\right)-\varpi_{q} \theta_{q}\left(x_{i}\right)=\left(\omega_{i}-\varpi_{q}+\lambda_{i}\right) \theta_{q}\left(x_{i}\right) .
\end{aligned}
$$

This means that for every $i \in\{1, \ldots, m\}$ there exists a complex number Λ_{i} such that

$$
\begin{equation*}
\Delta\left(\theta_{p}\left(x_{i}\right)\right)=\Lambda_{i} \theta_{q}\left(x_{i}\right) \tag{5}
\end{equation*}
$$

Take an element $x=x_{i}+x_{j}+\theta_{p}\left(x_{i}+x_{j}\right) \in \mathcal{S} \ltimes \mathcal{V}_{p}$, where $i \neq j$. By (3), we get that

$$
\Delta_{p, q}\left(x_{i}+x_{j}+\theta_{p}\left(x_{i}+x_{j}\right)\right)=\omega_{i, j} \theta_{q}\left(x_{i}+x_{j}\right)+\lambda_{i, j} \theta_{q}\left(x_{i}+x_{j}\right)
$$

Taking into account (4) we obtain that

$$
\begin{aligned}
\Delta_{p, q}\left(\theta_{q}\left(x_{i}+x_{j}\right)\right) & =\Delta_{p, q}\left(x_{i}+x_{j}+\theta_{q}\left(x_{i}+x_{j}\right)\right)-\Delta_{p, q}\left(x_{i}+x_{j}\right) \\
& =\left(\omega_{i, j}-\varpi_{q}+\lambda_{i, j}\right) \theta_{q}\left(x_{i}+x_{j}\right)
\end{aligned}
$$

On the other hand, by (5),

$$
\Delta_{p, q}\left(\theta_{q}\left(x_{i}+x_{j}\right)\right)=\Delta_{p, q}\left(\theta_{q}\left(x_{i}\right)\right)+\Delta_{p, q}\left(\theta_{q}\left(x_{j}\right)\right)=\lambda_{i} \theta_{q}\left(x_{i}\right)+\lambda_{j} \theta_{q}\left(x_{j}\right)
$$

Comparing the last two equalities we obtain that $\lambda_{i}=\lambda_{j}$ for all i and j. This means that there exist a complex number $\lambda_{p, q}$ such that

$$
\begin{equation*}
\Delta_{p, q}\left(\theta_{q}\left(x_{i}\right)\right)=\lambda_{p, q} \theta_{q}\left(x_{i}\right) \tag{6}
\end{equation*}
$$

Combining (4) and (6) we obtain that $\Delta_{p, q}=\varpi_{q} \theta_{q}+\lambda_{p, q} \pi_{p, q}$. This means that Δ is a derivation. The proof is completed.

In the next lemma we consider $\mathcal{L}=\mathcal{S} \ltimes\left(\bigoplus_{k=1}^{m} \mathcal{V}_{k}\right)$, an indecomposable semisimple Leibniz algebra, such that \mathcal{S} and \mathcal{V}_{k} are not isomorphic \mathcal{S}-modules for all $k=1, \ldots, m$.

Lemma 2.3. Let Δ be a local derivation on \mathcal{L} such that $\Delta(\mathcal{L}) \subseteq \mathcal{V}$. Then Δ is a derivation. Proof. Let $\left\{v_{1}^{(1)}, \ldots, v_{n}^{(1)}\right\}$ be a basis of \mathcal{V}_{1}. Since \mathcal{V}_{1} and \mathcal{V}_{k} are isomorphic, it follows that $\left\{v_{i}^{(q)}=\pi_{1, q}\left(v_{i}^{(1)}\right): i=1, \ldots n\right\}$ is a basis of \mathcal{V}_{q}.

Without lost of generality we can assume that for any $v_{i}^{(1)}$ there exists a weight β_{i} such that $v_{i}^{(1)} \in \mathcal{V}_{\beta_{i}}$. Let h_{0} be a strongly regular element in \mathcal{H}, that is, $\alpha\left(h_{0}\right) \neq \beta\left(h_{0}\right)$ for any $\alpha, \beta \in \Gamma, \alpha \neq \beta$. For $x=h_{0}+v_{i}^{(1)} \in \mathcal{S} \ltimes \mathcal{V}_{1}$ take an element $a_{x} \in \mathcal{S}$ and complex numbers $\lambda_{k}^{(x)}$ such that

$$
\Delta\left(h_{0}+v_{i}^{(1)}\right)=\left[h_{0}, a_{x}\right]+\left[v_{i}^{(1)}, a_{x}\right]+\sum_{k \in \Gamma_{1, k}} \lambda_{k}^{(x)} v_{i}^{(k)} .
$$

Taking into account that h_{0} is strongly regular, from $\left[h_{0}, a_{x}\right]=0$, we have that $a_{x} \in \mathcal{H}$. Further

$$
\begin{aligned}
\Delta\left(v_{i}^{(1)}\right) & =\Delta\left(h_{0}+v_{i}^{(1)}\right) \\
& =\left[v_{i}^{(1)}, a_{x}\right]+\sum_{k \in \Gamma_{1, k}} \lambda_{k}^{(x)} v_{i}^{(k)}=\left(\beta_{i}\left(a_{x}\right)+\lambda_{1}^{(x)}\right) v_{i}^{(1)}+\sum_{1<k \in \Gamma_{1, k}} \lambda_{k}^{(x)} v_{i}^{(k)} .
\end{aligned}
$$

Now we change the element $x=h_{0}+v_{i}^{(1)}$ to the element $\bar{x}=h_{0}+v_{i}^{(1)}+v_{j}^{(1)}(i \neq j)$, then similar as above we get that

$$
\Delta\left(v_{i}^{(1)}+v_{j}^{(1)}\right)=(*) v_{i}^{(1)}+(*) v_{j}^{(1)}+\sum_{1<k \in \Gamma_{1, k}} \lambda_{k}^{(\bar{x})}\left(v_{i}^{(k)}+v_{j}^{(k)}\right)
$$

Comparing the last two equalities we can see that there are $\lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
\Delta\left(v_{i}^{(1)}\right)=(*) v_{i}^{(1)}+\sum_{1<k \in \Gamma_{1, k}} \lambda_{k} v_{i}^{(k)}
$$

Replacing Δ with $\Delta-\sum_{1<k \in \Gamma_{1, k}} \lambda_{k} \pi_{1, k}$ we obtain a new local derivation which maps \mathcal{V}_{1} into itself. Due to (2), there exist complex numbers $\lambda_{i}, i=1, \ldots, n$ such that

$$
\begin{equation*}
\Delta\left(v_{i}^{(1)}\right)=\lambda_{i} v_{i}^{(1)} \tag{7}
\end{equation*}
$$

We shall show that $\lambda_{1}=\ldots=\lambda_{n}$. For a fixed $v_{i}^{(1)}(i \neq 1)$ we have that

$$
\begin{equation*}
\Delta\left(v_{1}^{(1)}+v_{i}^{(1)}\right)=\lambda_{1} v_{1}^{(1)}+\lambda_{i} v_{i}^{(1)} \tag{8}
\end{equation*}
$$

Without loss of generality we can assume that β_{1} is a fixed highest weight of \mathcal{V}_{1}. It is known [20, Page 108] that the weight $\beta_{1}-\beta_{i}$ can be represented as

$$
\beta_{1}-\beta_{i}=n_{1} \alpha_{1}+\ldots+n_{l} \alpha_{l}
$$

where $\alpha_{1}, \ldots, \alpha_{l}$ are simple roots of $\mathcal{S}, n_{1}, \ldots, n_{l}$ are non negative integers.
Below we shall consider two separated cases.
Case 1. $\alpha_{0}=n_{1} \alpha_{1}+\ldots+n_{l} \alpha_{l}$ is not a root. Take the following element

$$
y=n_{1} e_{\alpha_{1}}+\ldots+n_{l} e_{\alpha_{l}}+v_{1}^{(1)}+v_{i}^{(1)}
$$

By the definition of local derivation we can find an element $a_{y}=h+\sum_{\alpha \in \Gamma} c_{\alpha} e_{\alpha} \in \mathcal{S}$ and a number $\lambda^{(y)}$ such that

$$
\Delta(y)=\left[y, a_{y}\right]+\lambda^{(y)}\left(v_{1}^{(1)}+v_{i}^{(1)}\right)
$$

Taking into account (7) and $\Delta(y) \in \mathcal{V}$, we obtain that

$$
\left[\sum_{s=1}^{l} n_{s} e_{\alpha_{s}}, h+\sum_{\alpha \in \Gamma} c_{\alpha} e_{\alpha}\right]=0
$$

Thus

$$
\sum_{s=1}^{l} n_{s} \alpha_{s}(h) e_{\alpha_{s}}+\sum_{t=1}^{l} \sum_{\alpha \in \Gamma}(*) e_{\alpha+\alpha_{t}}=0
$$

where the symbols $(*)$ denote appropriate coefficients. The second summand does not contain any element of the form $e_{\alpha_{s}}$. Indeed, if we assume that $\alpha_{s}=\alpha+\alpha_{t}$, we have that $\alpha=\alpha_{s}-\alpha_{t}$. But $\alpha_{s}-\alpha_{t}$ is not a root, because α_{s}, α_{t} are simple roots. Hence all coefficients of the first summand are zero, i.e.,

$$
n_{1} \alpha_{1}(h)=\ldots=n_{l} \alpha_{l}(h)=0
$$

Further

$$
\Delta\left(v_{1}^{(1)}+v_{i}^{(1)}\right)=\Delta(y)=\left[v_{1}^{(1)}+v_{i}^{(1)}, a_{x}\right]+\lambda^{(y)}\left(v_{1}^{(1)}+v_{i}^{(1)}\right)
$$

Let us calculate the product $\left[v_{1}^{(1)}+v_{i}^{(1)}, a_{x}\right]$. We have

$$
\begin{aligned}
{\left[v_{1}^{(1)}+v_{i}^{(1)}, a_{x}\right] } & =\left[v_{1}^{(1)}+v_{i}^{(1)}, h+\sum_{\alpha \in \Phi} c_{\alpha} e_{\alpha}\right] \\
& =\beta_{1}(h) v_{\beta_{1}}^{(1)}+\beta_{2}(h) v_{\beta_{2}}^{(1)}+\sum_{t=1}^{2} \sum_{\alpha \in \Phi}(*) v_{\beta_{t}+\alpha}^{(1)}
\end{aligned}
$$

The last summand does not contain $v_{\beta_{1}}^{(1)}$ and $v_{\beta_{i}}^{(1)}$, because $\beta_{1}-\beta_{i}$ is not a root by the assumption. This means that

$$
\begin{equation*}
\Delta\left(v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}\right)=\left(\beta_{1}(h)+\lambda^{(y)}\right) v_{\beta_{1}}^{(1)}+\left(\beta_{i}(h)+\lambda^{(y)}\right) v_{\beta_{i}}^{(1)} . \tag{9}
\end{equation*}
$$

The difference of the coefficients of the right side is

$$
\beta_{1}(h)-\beta_{i}(h)=\sum_{s=1}^{l} n_{s} \alpha_{s}(h)=0
$$

because of $n_{1} \alpha_{1}(h)=\ldots=n_{l} \alpha_{l}(h)=0$. Finally, comparing coefficients in (8) and (9) we get

$$
\lambda_{1}=\beta_{1}(h)+\lambda^{(y)}=\beta_{i}(h)+\lambda^{(y)}=\lambda_{i} .
$$

Case 2. $\alpha_{0}=n_{1} \alpha_{1}+\ldots+n_{l} \alpha_{l}$ is a root. Note that $\operatorname{dim} \mathcal{V}_{\beta_{1}}=1$, because β_{1} is a highest weight. Since $\beta_{1}-\beta_{i}$ is a root, [21, Lemma 3.2.9] implies that $\operatorname{dim} \mathcal{V}_{1, \beta_{i}}=\operatorname{dim} \mathcal{V}_{1, \beta_{1}}$, and hence there exist numbers $t_{-\alpha_{0}} \neq 0$ and $t_{\alpha_{0}}$ such that

$$
\left[v_{\beta_{1}}^{(1)}, e_{-\alpha_{0}}\right]=t_{-\alpha_{0}} v_{\beta_{i}}^{(1)},\left[v_{\beta_{i}}^{(1)}, e_{\alpha_{0}}\right]=t_{\alpha_{0}} v_{\beta_{1}}^{(1)} .
$$

Take the following element

$$
z=t_{-\alpha_{0}} e_{\alpha_{0}}+t_{\alpha_{0}} e_{-\alpha_{0}}+v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)},
$$

and choose an element $a_{z}=h+\sum_{\alpha \in \Phi} c_{\alpha} e_{\alpha} \in \mathcal{S}$ and a number λ_{z} such that

$$
\Delta(z)=\left[z, a_{z}\right]+\lambda_{z}\left(v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}\right) .
$$

Since $\Delta(z) \in \mathcal{V}$, we obtain that

$$
\left[t_{-\alpha_{0}} e_{\alpha_{0}}+t_{\alpha_{0}} e_{-\alpha_{0}}, h+\sum_{\alpha \in \Phi} c_{\alpha} e_{\alpha}\right]=0
$$

Now rewrite the last equality as

$$
\alpha_{0}(h) t_{-\alpha_{0}} e_{\alpha_{0}}-\alpha_{0}(h) t_{\alpha_{0}} e_{-\alpha_{0}}+\left(t_{-\alpha_{0}} c_{-\alpha_{0}}-t_{\alpha_{0}} c_{\alpha_{0}}\right) h_{\alpha_{0}}+\sum_{\alpha \neq \pm \alpha_{0}}(*) e_{\alpha \pm \alpha_{0}}=0,
$$

where $h_{\alpha_{0}}=\left[e_{\alpha_{0}}, e_{-\alpha_{0}}\right] \in \mathcal{H}$. The last summand in the sum does not contain elements $e_{\alpha_{0}}$ and $e_{-\alpha_{0}}$. Indeed, if we assume that $\alpha_{0}=\alpha-\alpha_{0}$, we have that $\alpha=2 \alpha_{0}$. But $2 \alpha_{0}$ is not a root. Hence the first three coefficients of this sum are zero, i.e.,

$$
\begin{equation*}
\alpha_{0}(h)=0, t_{\alpha_{0}} c_{\alpha_{0}}=t_{-\alpha_{0}} c_{-\alpha_{0}} . \tag{10}
\end{equation*}
$$

Further

$$
\Delta\left(v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}\right)=\Delta(z)=\left[v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}, a_{z}\right]+\lambda_{z}\left(v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}\right)
$$

Let us consider the element $\left[v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}, a_{z}\right]$. We have

$$
\begin{aligned}
{\left[v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}, a_{z}\right]=} & {\left[v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}, h+\sum_{\alpha \in \Phi} c_{\alpha} e_{\alpha}\right] } \\
= & {\left[v_{\beta_{1}}^{(1)}, h\right]+c_{\alpha_{0}}\left[v_{\beta_{i}}^{(1)}, e_{\alpha_{0}}\right]+\left[v_{\beta_{i}}^{(1)}, h\right] } \\
& +c_{-\alpha_{0}}\left[v_{\beta_{1}}^{(1)}, e_{-\alpha_{0}}\right]+c_{\alpha_{0}}\left[v_{\beta_{1}}^{(1)}, e_{\alpha_{0}}\right]+c_{-\alpha_{0}}\left[v_{\beta_{i}}^{(1)}, e_{-\alpha_{0}}\right] \\
& +\sum_{\alpha \neq \pm \alpha_{0}} c_{\alpha}\left[v_{\beta_{1}}^{(1)}, e_{\alpha}\right]+\sum_{\alpha \neq \pm \alpha_{0}} c_{\alpha}\left[v_{\beta_{i}}^{(1)}, e_{\alpha}\right] \\
= & \left(\beta_{1}(h)+t_{\alpha_{0}} c_{\alpha_{0}}\right) v_{\beta_{1}}^{(1)}+\left(\beta_{i}(h)+t_{-\alpha_{0}} c_{-\alpha_{0}}\right) v_{\beta_{i}}^{(1)} \\
& +(*) v_{2 \beta_{1}-\beta_{i}}^{(1)}+(*) v_{2 \beta_{i}-\beta_{1}}^{(1)} \\
& +\sum_{\alpha \neq \pm \alpha_{0}}(*) v_{\beta_{1}+\alpha}^{(1)}+\sum_{\alpha \neq \pm \alpha_{0}}(*) v_{\beta_{i}+\alpha}^{(1)} .
\end{aligned}
$$

The last three summands do not contain $v_{\beta_{1}}^{(1)}$ and $v_{\beta_{i}}^{(1)}$, because $\beta_{1}-\beta_{i}=\alpha_{0}$ and $\alpha \neq \pm \alpha_{0}$. This means that

$$
\begin{align*}
\Delta\left(v_{\beta_{1}}^{(1)}+v_{\beta_{i}}^{(1)}\right)= & \left(\beta_{1}(h)+t_{\alpha_{0}} c_{\alpha_{0}}+\lambda_{z}\right) v_{\beta_{1}}^{(1)} \tag{11}\\
& +\left(\beta_{i}(h)+t_{-\alpha_{0}} c_{-\alpha_{0}}+\lambda_{z}\right) v_{\beta_{i}}^{(1)}
\end{align*}
$$

Taking into account (10) we find the difference of coefficients on the right side:

$$
\left(\beta_{1}(h)+t_{\alpha_{0}} c_{\alpha_{0}}\right)-\left(\beta_{i}(h)+t_{-\alpha_{0}} c_{-\alpha_{0}}\right)=\alpha_{0}(h)+t_{\alpha_{0}} c_{\alpha_{0}}-t_{-\alpha_{0}} c_{-\alpha_{0}}=0 .
$$

Combining (8) and (11) we obtain that

$$
\lambda_{1}=\beta_{1}(h)+t_{\alpha_{0}} c_{\alpha_{0}}+\lambda_{z}=\beta_{i}(h)+t_{-\alpha_{0}} c_{-\alpha_{0}}+\lambda_{z}=\lambda_{i} .
$$

So, we have proved that $\Delta\left(v_{i}^{(1)}\right)=\lambda_{1} v_{i}^{(1)}$ for all $i=1, \ldots, n$. By a similar way we obtain that $\Delta\left(v_{i}^{(k)}\right)=\lambda_{k} v_{i}^{(k)}$ for all $i=1, \ldots, n_{k}$. Thus $\Delta=\sum_{k=1}^{m} \lambda_{k} \pi_{k, k}$, and therefore Δ is a derivation.

The proof is completed.
Proof of Theorem 2.1. Let Δ be an arbitrary local derivation on \mathcal{L}. For an arbitrary element $x \in \mathcal{S}$ take a derivation $\mathfrak{D}=R_{a_{x}}+\sum_{k \in \Gamma_{\mathcal{S}}} \varpi_{k}^{(x)} \theta_{k}^{(x)}+\sum_{\{i, j\} \in \Gamma_{\mathcal{V}}} \lambda_{i, j}^{(x)} \pi_{i, j}^{(x)}$ of the form (2) such that

$$
\Delta(x)=\left[x, a_{x}\right]+\sum_{k \in \Gamma_{\mathcal{S}}} \omega_{x, k}^{(x)} \theta_{k}^{(x)}(x) .
$$

Then the mapping

$$
x \in \mathcal{S} \rightarrow\left[x, a_{x}\right] \in \mathcal{S}
$$

is a well-defined local derivation on \mathcal{S}, and by [6, Theorem 3.1] it is a derivation generated by an element $a \in \mathcal{S}$. Then the local derivation $\Delta-R_{a_{x}}$ maps \mathcal{L} into \mathcal{V}. By Lemmas 2.2 and 2.3 we get that $\Delta-R_{a_{x}}$ is a derivation and therefore Δ is also a derivation. The proof is completed.

References

[1] Albeverio S.; Ayupov Sh. A.; Kudaybergenov K. K.; Nurjanov B. O.: Local derivations on algebras of measurable operators. Communications in Contemporary Mathematics 13 (4) (2011) 643-657.
[2] Alvarez M.; Kaygorodov I.: The algebraic and geometric classification of nilpotent weakly associative and symmetric Leibniz algebras. Journal of Algebra 588 (2021) 278-314.
[3] Ayupov Sh. A.; Arzikulov F.: 2-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra and its Applications 522 (2017) 28-50.
[4] Ayupov Sh. A.; Elduque A.; Kudaybergenov K. K.: Local and 2-local derivations of Cayley algebras. arXiv:2105.08423.
[5] Ayupov Sh. A.; Elduque A.; Kudaybergenov K. K.: Local and 2-local automorphisms of Cayley algebras. arXiv:2107.01147.
[6] Ayupov Sh. A.; Kudaybergenov K. K.: Local derivations on finite-dimensional Lie algebras. Linear Algebra and Its Applications 493 (2016) 381-398.
[7] Ayupov Sh. A.; Kudaybergenov K. K.: 2-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra and Its Applications 507 (2016) 121-131.
[8] Ayupov Sh. A.; Kudaybergenov K. K.; Omirov B. A.: Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bulletin of the Malaysian Mathematical Sciences Society 43 (3) (2020) 2199-2234.
[9] Ayupov Sh. A.; Kudaybergenov K. K; Omirov B. A., Zhao K.: Leibniz algebras: Structure and Classification. Taylor \& Francis Group Publisher (2019).
[10] Ayupov Sh.A.; Omirov B.A.; Rakhimov I.S: Leibniz algebras: Structure and Classification. Taylor \& Francis Group Publisher (2019).
[11] Barnes D.: On Levi's theorem for Leibniz algebras. Bulletin of the Australian Mathematical Society 86 (2) (2012) 184-185.
[12] Bonezzi R., Hohm O.: Leibniz gauge theories and infinity structures. Communications in Mathematical Physics 377 (3) (2020) 2027-2077.
[13] Boyle K.; Misra K.; Stitzinger E.: Complete Leibniz algebras. Journal of Algebra 557 (2020) 172-180.
[14] Bui T.; Yamskulna G.: Vertex algebroids and conformal vertex algebras associated with simple Leibniz algebras. Journal of Algebra 586 (2021) 357-401.
[15] Camacho L.; Kaygorodov I.; Omirov B.; Solijanova G.: Some cohomologically rigid solvable Leibniz algebras. Journal of Algebra 560 (2020) 502-520.
[16] Dherin B.; Wagemann F.: Deformation quantization of Leibniz algebras. Advances in Mathematics 270 (2015) 21-48.
[17] Dzhumadildaev A.; Abdykassymova S.: Leibniz algebras in characteristic p. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique 332 (12) (2001) 1047-1052.
[18] Feldvoss J.; Wagemann F.: On Leibniz cohomology. Journal of Algebra 569 (2021) 276-317.
[19] Ferreira B.; Kaygorodov I.; Kudaybergenov K.: Local and 2-local derivations of simple n-ary algebras. Ricerche di Matematica DOI: 10.1007/s11587-021-00602-3 (2021) .
[20] Humphreys J.: Introduction to Lie algebras and representation theory. Graduate Text in Math. vol. 255 (1972).
[21] Goodman R.; Wallach N. R.: Symmetry, Representations, and Invariants. Springer Dordrecht Heidelberg London New York (2009).
[22] Kadison R.V.: Local derivations. Journal of Algebra 130 (2) (1990) 494-509.
[23] Kotov A.; Strobl T.: The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories. Communications in Mathematical Physics 376 (1) (2020) 235-258.
[24] Khrypchenko M.: Local derivations of finitary incidence algebras. Acta Mathematica Hungarica 154 (1) (2018) 48-55.
[25] Ladra M.; Shahryari M.; Zargeh C.: HNN-extensions of Leibniz algebras. Journal of Algebra 532 (2019) 183-200.
[26] Loday J.-L.: Une version non commutative des algébres de Lie: les algébres de Leibniz.
L'Enseignement Mathématique 39 (3-4) (1993) 269-293.
[27] Mugniery J.; Wagemann F.: Ext groups in the category of bimodules over a simple Leibniz algebra. Journal of Pure and Applied Algebra 225 (6) (2021) 106637.
[28] Rakhimov I. S.; Masutova K. K.; Omirov B. A.: On derivations of semisimple Leibniz algebras. Bulletin of the Malaysian Mathematical Sciences Society 40 (1) (2017) 295-306.
[29] Strobl T.; Wagemann F.: Enhanced Leibniz algebras: structure theorem and induced Lie 2-algebra. Communications in Mathematical Physics 376 (1) (2020) 51-79.
[30] Towers D.: Lattice isomorphisms of Leibniz algebras. Journal of Algebra 578 (2021) 421-432.
Received: January 03, 2022
Accepted for publication: January 28, 2022
Communicated by: Friedrich Wagemann

[^0]: This work is supported by the Russian Science Foundation under grant 18-71-10007.
 MSC 2020: 17A32, 17A60, 17B10, 17B20.
 Keywords: Lie algebra, Leibniz algebra, simple algebra, semisimple algebra, local derivation. Affiliation:

 Ivan Kaygorodov - Centro de Matemática e Aplicações, Universidade da Beira Interior, Covilhã, Portugal
 Siberian Federal University, Krasnoyarsk, Russia
 E-mail: kaygorodov.ivan@gmail.com
 Karimbergen Kudaybergenov - V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
 Karakalpak State University, Nukus, Uzbekistan
 E-mail: karim2006@mail.ru
 Inomjon Yuldashev - Nukus State Pedagogical Institute, Nukus, Uzbekistan
 E-mail: i.yuldashev1990@mail.ru

