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Extrinsic upper bounds for the first eigenvalue of the

p-Steklov problem on submanifolds

Julien Roth

Abstract. We prove Reilly-type upper bounds for the first non-zero eigen-
value of the Steklov problem associated with the p-Laplace operator on
submanifolds with boundary of Euclidean spaces as well as for Riemannian
products R×M where M is a complete Riemannian manifold.

1 Introduction
Let (Mn, g) be a compact Riemannian manifold with a possibly non-empty bound-
ary ∂M . For p ∈ (1,+∞), we consider the so-called p-Laplacian defined by

∆pu = −div(‖∇u‖p−2∇u)

for any C2 function. For p = 2, ∆2 is nothing else than the Laplace-Beltrami
operator of (Mn, g).

Over the past years, this operator ∆p, and especially its spectrum, has been in-
tensively studied, mainly for Euclidean domains with Dirichlet or Neumann bound-
ary conditions (see for instance [7] and references therein) but also on Riemannian
manifolds [2], [8].

In the present paper, we will consider the Steklov problem associated with the
p-Laplacian on submanifolds with boundary of the Euclidean space. Namely, we
consider the p-Steklov problem which is the following boundary value problem{

∆pu = 0 in M,

‖∇u‖p−2 ∂u
∂ν = λ|u|p−2u on ∂M,

(S)

where ∂u
∂ν is the derivative of the function u with respect to the outward unit nor-

mal ν to the boundary ∂M . Note that for p = 2, (S) is the usual Steklov problem
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(the reader can for instance refer to [3] for an overview of results about the spec-
tral geometry of the Steklov problem). Little is known about the spectrum of this
p-Steklov problem. IfM is a domain of RN , there exists a sequence of positive eigen-
values λ0 = 0 < λ1 6 λ2 6 · · · 6 λk 6 · · · consisting in the variational spectrum
and obtained by the Ljusternik-Schnirelmann theory (see [7], [12] for instance). One
can refer to [1] for details about the Ljusternik-Schnirelmann principle. Note that,
as mentionned in [8, Remark 1.1], the arguments used in [7] can be extended to
domains on Riemannian manifolds and we have that there exists a non-decreasing
sequence of variational eigenvalues obtained by the Ljusternik–Schnirelman prin-
ciple. Moreover, the eigenvalue 0 is simple with constant eigenfunctions and is
isolated, that is there is no eigenvalue between 0 and λ1. Then, the first positive
eigenvalue of the Steklov problem λ1 satisfies the following variational characteri-
zation

λ1 = inf


∫
M

‖∇u‖pdvg∫
∂M

|u|pdvh

∣∣∣∣∣u ∈W 1,p(M) \ {0},
∫
∂M

|u|p−2udvh = 0

 ,

where dvg and dvh are the Riemannian volume forms respectively associated with
the metric g on M and the induced metric h on ∂M .

Note that all the other eigenvalues λk of this sequence also have a variational
characterization but we don’t know if all the spectrum is contained in this sequence.

In a very recent paper, V. Sheela [13] obtain upper bound for the first eigenvalue
of the p-Steklov problem (S) for Euclidean domain. Namely she proves that for

a bounded domain Ω with smooth boundary, then λ1 6
1

Rp−1
(resp.

np−2

Rp−1
) if

1 < p < 2 (resp. p > 2), where R > 0 satisfies V(Ω) = V(B(R)) where B(R) is a
ball of radius R.

The aim of the present note is also to obtain upper bounds for the first non-
zero eigenvalue λ1 of the p-Steklov problem, but depending on the geometry of the
boundary in the spirit of the classical Reilly upper bounds for the Laplacian on
closed hypersurfaces. Reilly [9] showed that if (Mn, g) is a closed connected and
oriented Riemannian manifold isometrically immersed into Rn+1, then the first
positive eigenvalue of the Laplacian on M satisfies

λ1(∆) 6
n

V (M)

∫
M

H2dvg,

where H is the mean curvature of the immersion. Note that M is not supposed to
be embedded and so does not necessarily bounds a domain of Rn+1. More generally,
Reilly obtained the following inequalities for r ∈ {0, · · · , n}

λ1(∆)

(∫
M

Hrdvg

)2

6 V (M)

∫
M

H2
r+1dvg,

where Hr and Hr+1 stands for the higher order mean curvatures (that we will define
in Section 3). For r = 0, we recover the first mentioned inequality. In addition,
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if equality holds in one these inequality, then M is immersed in a geodesic sphere

of radius
√

n
λ1(∆) . Note that, always in [9], Reilly also obtained similar estimates

for higher codimension submanifolds. Namely, if (Mn, g) is isometrically immersed
into RN , N > n+ 1, then

λ1(∆)

(∫
M

Hrdvg

)2

6 V (M)

∫
M

‖Hr+1‖2dvg,

for any even r ∈ {0, · · · , n} with equality if and only if M is minimally immersed
in a geodesic sphere of RN . Note that, in the case of codimension greater that 1,
Hr is a function and Hr+1 is a normal vector field, contrary to the hypersurface
case where both are functions (see again Section 3 for details).

Recently, Du and Mao [2] proved Reilly type upper bounds for the first eigen-
value λ1(∆p) of the p-Laplace operator on closed submanifolds of RN . Namely,
they proved that

λ1(∆p) 6
np/2

V (M)p−1

(∫
M

‖H‖
p

p−1 dvg

)p−1
{
N

p−2
2 if p > 2

N
2−p
2 if 1 < p 6 2

Moreover, equality occurs if and only if p = 2 and M is minimally immersed
into a geodesic hypersphere. In particular, if N = n + 1, M is a geodesic hy-
persphere. In addition, the authors proved analogous estimates with higher order
mean curvatures.

On the other hand, Ilias and Makhoul [6] proved Reilly-type inequalities for the
first eigenvalue σ1 of the Steklov problem on submanifolds of RN . Namely, they
proved the following estimate

σ1V (∂M)2 6 nV (M)

∫
∂M

‖H‖2dvg,

where (Mn, g) is a compact submanifold of RN with boundary ∂M and H denote
the mean curvature of ∂M . We denote by X the isometric immersion.

The limitting case is also characterized. Namely, they proved that equality

occurs if and only if M is minimally immersed into BN
(

1
λ1

)
so that X(∂M) ⊂

∂BN
(

1
λ1

)
minimally and orthogonally. In particular, if n = N , equality occurs if

and only if p = 2 and X(M) = BN
(

1
λ1

)
. Here again, analogous estimates with

higher order mean curvatures were proven.
The main result of this note is the following estimate for the first non-zero

eigenvalue of the Steklov problem associated with the p-Laplacian. Namely, we
prove

Theorem 1.1. Let (Mn, g) be a compact connected and oriented Riemannian man-
ifold with nonempty boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g) is iso-
metrically immersed into the Euclidean space RN by X. Let λ1 the first eigenvalue
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of the p-Steklov problem{
∆pu = 0 in M ,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂M

(S)

If p > 2, then λ1 satisifes

λ1 6 N
p−2
2 n

p
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1
V (M)

V (∂M)p
.

If 1 < p 6 2, then λ1 satisifes

λ1 6 N
2−p
2 n

p
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1
V (M)

V (∂M)p
.

Moreover, equality occurs in both inequality if and only if p = 2 and X is a

minimal immersion of M into BN
(

1
λ1

)
so that X(∂M) ⊂ ∂BN

(
1
λ1

)
minimally

and orthogonally. In particular, if n = N , equality occurs if and only if p = 2 and

X(M) = BN
(

1
λ1

)
.

After giving the proof of Theorem 1.1 in Section 2, we obtain more general in-
equalities involving higher order mean curvatures (Theorem 3.1 and Corollary 3.2).

We finish with an estimate for domains of products manifolds of the type M×R.
Recently, Xiong [14] obtained extrinsic estimates of Reilly type for closed hypersur-
faces of product spaces (R×N, dt2 ⊕ h), where (Nn, h) is a complete Riemannian
manifold. In particular, he proved that the first eigenvalue α1 of the Laplace opera-
tor and the first eigenvalue σ1 of the Steklov problem for mean-convex hypersurfaces
(bounding a domain for the second one) satisfy respectively

α1 6 nκ+(M)‖H‖∞ and σ1 6 κ+(M)
‖H‖∞
inf
M
H
.

In [11], we proved analogous estimates for a larger class of second order differential
operators, Paneitz-type operators and Steklov problems. In the present note, we
continue this study by considering the p-Steklov problem for domains of products
M × R. Namely, we prove the following result.

Theorem 1.2. Let p > 2 and (Mn, g) be a complete Riemannian manifold. Con-
sider (Σn, g) a closed oriented Riemannian manifold isometrically immersed into
the Riemannian product (R×M, g̃ = dt2 ⊕ g). Moreover, assume that Σ is mean-
convex and bounds a domain Ω in R ×M . Let λ1 be the first eigenvalue of the
p-Steklov problem on Ω{

∆pu = 0 in Ω,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂Ω = Σ.

(S)

Then, λ1 satisfies

λ1 6

κ+(Σ)‖H‖∞
inf
Σ
H

p/2(
V (Ω)

V (Σ)

)1− p
2

.
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Remark 1.3. Note that for p = 2, we recover the result of Xiong [14].

The proof of this last theorem will be given in Section 4.

2 Proof of Theorem 1.1
First, we recall the variational characterization of λ1:

λ1 = inf


∫
M

|∇u|pdvg∫
∂M

|u|pdvh

∣∣∣∣∣∣∣∣ u ∈W
1,p(M) \ {0}},

∫
∂M

|u|p−2udvh = 0

 .

First, give the following lemma.

Lemma 2.1. There exists a point y = (y1, · · · , yN ) ∈ RN so that∫
∂M

|(Xi − yi)|p−2(Xi − yi)dvh = 0

for all i ∈ {1, · · · , N}.

Proof. Proceeding as in [13, Theorem 1], we consider the function f : RN −→ R
defined by

f(y1, . . . , yn) =
1

p

∫
∂M

N∑
i=1

|Xi − yi|pdvh,

where (X1, . . . , XN ) are the Euclidean coordinates centered at the origin. This
function is nonnegative and we denote by α > 0 its infimum. By compactness of
∂M , there exists R > 0 so that ∂M is contained in the ball B(0, R). Moreover,

we set ρ =

(
2αp

V(∂M)

) 1
p

. Now, let (y1, . . . , yn) ∈ RN , outside the hypercube

[−R − ρ,R + ρ]N so that there exists i ∈ {1, . . . , N} so that |yi| > R + ρ. Hence,

for any (X1, . . . , Xn) ∈ ∂M , we have
∑N
i=1 |Xi − yi|p > ρp. From this, we deduce

that

f(y1, . . . , yN ) >
1

p

∫
M

ρpdvh =
1

p
ρp V(∂M) = 2α.

By continuity of f and compactness of [−R − ρ,R + ρ]N , the infimum α of f is
necessarily attained inside [−R − ρ,R + ρ]N . Let y0 = (y1, . . . , yn) a point where
the minimum is attained. At this point, (∇f)y0 = 0 and we deduce that for each
i ∈ {1, . . . , N}, we have

〈∇f, ∂i〉y0 =

∫
∂M

|(Xi − yi)|p−2(Xi − yi)dvh = 0,

where {∂1, . . . , ∂N} is the canonical basis of RN . �

With this lemma, up to translation, we can use the coordinate functions as test
functions without loss of generality.

From this point, we will consider separately the cases p > 2 and 1 < p 6 2.
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The case p > 2. Using the coordinates Xi, 1 6 i 6 N , as test functions and
summing for i from 1 to N , we get

λ1

∫
∂M

N∑
i=1

|Xi|p 6
∫
M

N∑
i=1

‖∇Xi‖p.

First, since p > 2, we have

N∑
i=1

‖∇Xi‖p 6

(
N∑
i=1

‖∇Xi‖2
) p

2

= n
p
2 , (1)

since we have

N∑
i=1

‖∇Xi‖2 = n (see [10, Lemma 2.1] for instance).

Hence, we obtain

λ1

∫
∂M

N∑
i=1

|Xi|pdvh 6 n
p
2 V (M).

Moreover, by the Hölder inequality, we have

‖X‖2 6

(
N∑
i=1

|Xi|p
) 2

p

N
p−2
p , (2)

which gives
N∑
i=1

|Xi|p > 1

N
p−2
2

‖X‖p

and so

λ1

∫
∂M

‖X‖pdvh 6 n
p
2N

p−2
2 V (M).

We mulitply by

(∫
∂M

‖H‖
p

p−1 dvh

)p−1

and use the integral Hölder inequality

to get

λ1

∣∣∣∣∫
∂M

〈X,H〉dvh
∣∣∣∣p 6 n p

2N
p−2
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1

V (M). (3)

We recall the Hsiung-Minkowski formula (see [5] for hypersurfaces and [4] for
its generallization to submanifold of higher codimension)∫

∂M

(
〈H,X〉+ 1

)
dvh = 0. (4)

Using this identity, we get

λ1V (∂M)p 6 n
p
2N

p−2
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1

V (M).
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which gives the desired upper bound for λ1.

Moreover, if equality occurs, then equality holds in all the above inequalities
and in particular in the inequality (1), which implies that p = 2. Therefore,
the end of the proof is similar to the proof of Ilias and Makhoul for the
classical Steklov problem and we have that X is a minimal immersion of M

into BN
(

1
λ1

)
so that X(∂M) ⊂ ∂BN

(
1
λ1

)
minimally and orthogonally. In

particular, if n = N , then X(M) = BN
(

1
λ1

)
.

The case 1 < p 6 2. First, since p 6 2, we have

‖X‖p =

(
N∑
i=1

|Xi|2
) 2

p

6
N∑
i=1

|Xi|p. (5)

On the other hand, by the Hölder inequality, we have

N∑
i=1

‖∇Xi‖p 6 N
2−p
p

(
N∑
i=1

‖∇Xi‖2
) 2

p

= N
2−p
p n

2
p .

Hence, using the last two inequalities in the variational characterization of
λ1, we obtain

λ1

∫
∂M

‖X‖pdvh 6 n
2
pN

2−p
p V (M).

The end of the proof is the same that in the case p 6 2, we mulitply by(∫
∂M

‖H‖
p

p−1 dvh

)p−1

, use the integral Hölder inequality and the Hsiung-

Minkowski formula (4).

If equality holds, then equality occurs in (5). Thus, here again p = 2 and we
conclude as previously.

Remark 2.2. When the hypersurface bounds a Euclidean domain, that is (N = n),
the above upper bounds and the upper bounds of Verma are not express in term
of the same quanities so that one cannot say if one is sharper than the other.
However, we can remark that in the case where the domain is a ball of radius R,
both upper bounds coincide since in that case, the mean curvature ||H|| is constant
and is equal to 1

R , where R is also the radius appearing in the estimates of Verma.
Indeed, if n > 2, we have

λ1 6 N
p−2
2 n

p
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1
V (M)

V (∂M)p
= np−1 1

Rp
V (B(R))

V (S(R))
=
np−2

Rp−1
,

since V (B(R))
V (S(R)) = R

n . Similarly, when 1 < p < 2, we have

λ1 6 N
2−p
2 n

p
2

(∫
∂M

‖H‖
p

p−1 dvh

)p−1
V (M)

V (∂M)p
= n

1

Rp
V (B(R))

V (S(R))
=

1

Rp−1
.
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3 Inequalities with higher order mean curvatures
In this section, we extend Theorem 1.1 to estimates with higher order mean curva-
tures. It will appear as a particular casde of a more general result. Before stating
the result, we briefly give some recalls.

First of all, let T be a divergence-free symmetric (1, 1)-tensor. We associate
with T the second order differential operator LT defined by LTu := − div(T∇u),
for any C2 function u on ∂M . We also associate with T the following normal vector
field:

HT =

n∑
i,j=1

〈Tei, ej〉B(ei, ej), (6)

where B is the second fundamental form of the immersion of M into RN and
{e1, . . . , en} is a local orthonormal frame of T∂M . Moreover, we recall the following
generalized Hsiung-Minkowski formula (see [4], [10] for details and proofs)∫

∂M

(
〈X,HT 〉+ tr(T )

)
dvh = 0. (7)

Now, we can state the following

Theorem 3.1. Let (Mn, g) be a compact connected and oriented Riemannian man-
ifold with nonempty boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g) is iso-
metrically immersed into the Euclidean space RN by X and let T be a symmetric
and divergence-free (2, 0)-tensor on ∂M . Let λ1 the first eigenvalue of the p-Steklov
problem {

∆pu = 0 in M ,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂M

(S)

Then, the following holds

1. If p > 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

tr(T )

∣∣∣∣p 6 N p−2
2 n

p
2

(∫
∂M

‖HT ‖
p

p−1

)p−1

V (M).

2. If 1 < p 6 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

tr(T )

∣∣∣∣p 6 N 2−p
2 n

p
2

(∫
∂M

‖HT ‖
p

p−1

)p−1

V (M).

Moreover, if HT does not vanish identically, then equality occurs in one of both
inequalities if and only if p = 2 and

(a) if N > n, X is a minimal immersion of M into BN
(

1
λ1

)
so that X(∂M) ⊂

∂BN
(

1
λ1

)
minimally and orthogonally and HT is proportional to X|∂M .

(b) if N = n, M is a ball and tr(T ) is constant.
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Proof. The proof is similar to the proof of Theorem 1.1 with the difference that we
use the generalized Hsiung-Minkowski formula (7) instead of the classical one. In
case of equality, we also get that p = 2 by equality in (1) or (5). Then, we conclude
as in Theorem 1.1 by the argument of Ilias and Makhoul. �

Now, let us consider higher order mean curvatures. For r ∈ {1, . . . , n}, we set

Tr =
1

r!

∑
i,i1,...,ir
j,j1,...jr

ε

(
i, i1, . . . , ir
j, j1, . . . , jr

)
〈Bi1j1Bi2j2〉 . . . 〈Bir−1jr−1Birjr 〉e∗i ⊗ e∗j ,

if r is even and

Tr =
1

r!

∑
i,i1,...,ir
j,j1,...,jr

ε

(
i, i1, . . . , ir
j, j1, . . . , jr

)
〈Bi1j1Bi2j2〉 . . . 〈Bir−1jr−1

Birjr 〉Bir,jr ⊗ e∗i ⊗ e∗j ,

where the Bij ’s are the coefficients of the second fundamental form B in a local
orthonormal frame {e1, . . . , en} and ε is the standard signature for permutations.
Here, {e∗1, . . . , e∗n} is the dual coframe of {e1, . . . , en}. By definition, the r-th mean
curvature is Hr = 1

c(r) tr(Tr), where c(r) = (n − r)
(
r
n

)
. Note that Hr is a real

function if r is even and a normal vector field if r is odd, in this case, we will
denote it by Hr. By convention, we set H0 = 1. Moreover, always if r is even, we
show easily that HTr

= c(r)Hr+1, where HTr
is given by the relation (6).

In the case of hypersurfaces, we can consider the higher order mean curvatures
as scalar functions also for odd indices by taking B as the real-valued second
fundamental form.

By the symmetry of B, these tensors are clearly symmetric and it is also a
classical fact that they are divergence-free (see [4] for instance). Hence, in this
case, the Hsiung-Minkowski formula (7) becomes∫

∂M

(
〈X,Hr+1〉+Hr

)
dvh = 0

for any even r ∈ {0, . . . , n} if N > n+ 1, and∫
∂M

(
〈X, ν〉Hr+1 +Hr

)
dvh = 0

for any r ∈ {0, . . . , n} if N = n+ 1, where ν is the normal unit vector field on ∂M
chosen to define the shape operator.

We obtain directly from Theorem 3.1 the following corollary:

Corollary 3.2. Let (Mn, g) be a compact connected and oriented Riemannian man-
ifold with nonempty boundary ∂M and p ∈ (1,+∞). Assume that (Mn, g) is iso-
metrically immersed into the Euclidean space RN by X. Let λ1 the first eigenvalue
of the p-Steklov problem{

∆pu = 0 in M ,

‖∇u‖p−2 ∂u
∂ν = σ|u|p−2u on ∂M.
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1. If N > n+ 1, and r ∈ {0, . . . , n− 1} is an even integer then we have

(a) If p > 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N p−2
2 n

p
2

(∫
∂M

‖Hr+1‖
p

p−1

)p−1

V (M).

(b) If 1 < p 6 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N 2−p
2 n

p
2

(∫
∂M

‖Hr+1‖
p

p−1

)p−1

V (M).

Moreover, if Hr+1 does not vanish identically, then equality occurs in
one of both inequalities if and only if p = 2 and X is a minimal immer-

sion of M into BN
(

1
λ1

)
so that X(∂M) ⊂ ∂BN

(
1
λ1

)
minimally and

orthogonally.

2. If N = n+ 1 and ∈ {0, . . . , n− 1} is any integer, then we have

(a) If p > 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N p−2
2 n

p
2

(∫
∂M

|Hr+1|
p

p−1

)p−1

V (M).

(b) If 1 < p 6 2, then λ1 satisifes

λ1

∣∣∣∣∫
∂M

Hr

∣∣∣∣p 6 N 2−p
2 n

p
2

(∫
∂M

|Hr+1|
p

p−1

)p−1

V (M).

Moreover, if Hr+1 does not vanish identically, then equality occurs in one of

both inequalities if and only if p = 2 and X(M) = BN
(

1
λ1

)
.

4 Proof of Theorem 1.2
In the spirit of the proofs of the results obtained in [14] and [11], we will use as
test function the function t which is the coordinate in the factor R of the product
R × M . First, obviously, up to a possible translation in the direction of R, we

can assume that

∫
Σ

tdvg = 0. Second, since Σ is mean-convex, we deduce that

t does not vanish identically. Indeed, if t vanishes identically over Σ, then Σ is
included in the slice {0} ×M and thus is totally geodesic in the product R ×M .
This is a contradiction with the fact that Σ is mean-convex. Hence, t does not
vanish identically and can be used as a test function. Thus, from the variational
characterization of λ1, we have

λ1

∫
Σ

|t|pdvg 6
∫

Ω

‖∇̃t‖pdvg̃. (8)
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First, since ‖∇̃t‖ = 1, we have∫
Ω

‖∇̃t‖pdvg̃ = V (Ω) =

(∫
Ω

‖∇̃t‖2dvg̃
) p

2

V (Ω)1− p
2 . (9)

In addition, we have∫
Ω

‖∇̃t‖2dvg̃ = −
∫

Ω

t∆̃tdvg̃ +

∫
Ω

divg̃(t∇̃t)dvg̃.

Since ∆̃t = 0, using the Stokes theorem, we get∫
Ω

‖∇̃t‖2dvg̃ =

∫
Σ

〈t∇̃t, ν〉dvg =

∫
Σ

tudvg,

where u is defined by u = 〈∂t, ν〉 = 〈∇̃t, ν〉. Hence, by the Hölder inequality, we
obtain ∫

Ω

‖∇̃t‖2dvg̃ 6
(∫

Σ

|t|pdvg
) 1

p
(∫

Σ

|u|
p

p−1 dvg

) p−1
p

. (10)

Hence, using (9) and (10), (8) becomes

λ1 6

(∫
Σ

|u|
p

p−1 dvg̃

) p−1
2

(∫
Σ

|t|pdvg
) 1

2

V (Ω)1− p
2 . (11)

On the other hand, we have

∆t = −divΣ(∇t)

= −
n∑
i=1

〈∇ei(∇t), ei〉

= −
n∑
i=1

〈∇̃ei(∂t− 〈∂t, ν〉ν)), ei〉,

where ν is a unit normal vector field. Moreover, since ∂t is parallel for ∇̃ and
−∇̃(·)ν is the shape operator S, we get

∆t = −
n∑
i=1

〈∂t, ν〉〈Sei, ei〉

= −nHu.

Hence, multiplying respectively by t and u, we get immediately t∆t = −nHut and
u∆t = −nHu2 which after integration over Σ gives∫

Σ

‖∇t‖2dvg =

∫
Σ

nHutdvg (12)
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∫
Σ

〈S∇t,∇t〉dvg =

∫
Σ

nHu2. (13)

Note that for the second one, we have used the fact that ∇u = −S∇t. Indeed, we
have

∇u =

n∑
i=1

ei(u)ei =

n∑
i=1

ei(〈ν, ∂t〉)ei = −
n∑
i=1

〈Sei, ∂t〉ei = −S(∇t).

Moreover, we have, using (13),

n inf
Σ

(H)

∫
M

u2dvg 6
∫
M

nHu2dvg

6
∫

Σ

〈S∇t,∇t〉dvg

6 κ+(Σ)

∫
Σ

‖∇t‖2dvg,

where κ+(Σ) = max{κ+(x)|x ∈ M} with κ+(x) the biggest principal curvature of
Σ at the point x. Now, we use (12) and the Hölder inequality to get

n inf
Σ

(H)

∫
Σ

u2dvg 6 κ+(Σ)

∫
Σ

nHutdvg

6 nκ+(Σ)‖H‖∞
∫

Σ

utdvg

6 nκ+(Σ)‖H‖∞
(∫

Σ

|t|pdvg
) 1

p
(∫

Σ

|u|
p

p−1 dvg

) p−1
p

.

Finally, using the Hölder inequality a last time, we have

inf
Σ

(H)

(∫
Σ

|u|
p

p−1 dvg

) 2(p−1)
p

V (Σ)
2−p
p

6 κ+(Σ)‖H‖∞
(∫

M

|t|pdvg
) 1

p
(∫

M

|u|
p

p−1 dvg

) p−1
p

.

and so (∫
Σ

|u|
p

p−1 dvg

) p−1
p

(∫
M

|t|pdvg
) 1

p

6
κ+Σ‖H‖∞

infΣ(H)
V (Σ)

p−2
p .

Reporting this in (11), we get the desired inequality:

λ1 6

κ+(Σ)‖H‖∞
inf
Σ
H

p/2(
V (Ω)

V (Σ)

)1− p
2

.
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