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Invariance analysis and some new exact analytic

solutions of the time-fractional coupled

Drinfeld-Sokolov-Wilson equations

Astha Chauhan, Rajan Arora

Abstract. In this work, the fractional Lie symmetry method is used to find
the exact solutions of the time-fractional coupled Drinfeld-Sokolov-Wilson
equations with the Riemann-Liouville fractional derivative. Time-fractional
coupled Drinfeld-Sokolov-Wilson equations are obtained by replacing the
first-order time derivative to the fractional derivatives (FD) of order α in
the classical Drinfeld-Sokolov-Wilson (DSW) model. Using the fractional
Lie symmetry method, the Lie symmetry generators are obtained. With the
help of symmetry generators, FCDSW equations are reduced into fractional
ordinary differential equations (FODEs) with Erdélyi-Kober fractional dif-
ferential operator. Also, we have obtained the exact solution of FCDSW
equations and shown the effects of non-integer order derivative value on the
solutions graphically. The effect of fractional order α on the behavior of
solutions are studied graphically. Finally, new conservation laws are con-
structed along with the formal Lagrangian and fractional generalization of
Noether operators. It is quite interesting the exact analytic solutions are
obtained in explicit form.

1 Introduction
Water waves in oceans is always a topic of great interest for researchers. However,
the phenomena is very complex and no single model is available that may describe
the fully non-linear dynamics of the waves. Many mathematical models have been
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proposed by researchers for simpler case where the pressure difference in vertical
direction is negligible. It means the horizontal length scale (wavelength) is larger
than the depth of the fluid. Further, the fluid is ir-rotational. In the recent few
years, many modified models of the problem have been proposed by researchers by
using Fractional Derivatives (FD) (a derivative of arbitrary order). However, the
topic of fractional derivatives is quite old and reported first in 1695 by G.W. Leib-
niz, its application remains limited till last century. In the last decade, researchers
have recognised the usefulness of FD to adequately model a problem than the tra-
ditional integer derivatives. Fractional order differential equations are the general-
izations of classical integer-order differential equations. Many researchers are de-
voted to the interpretation, properties and applications of fractional order integrals
and derivatives [23], [29], [39]. In the recent years, fractional differential equations
(FDEs) have been studied frequently to model various physical problems in hydrol-
ogy, visco-elasticity, mechanics, neurons, image processing, physics, control-theory,
electrochemistry and finance [2], [3], [11], [13], [28], [30], [31]. Fractional differential
equations (FDEs) attract considerable interest in the various fields of engineering
and science. Many powerful and efficient methods have been developed to obtain
the exact and numerical solutions of FDEs like (G′/G)-expansion method [37],
functional variable method [17], modified trial equation method [25], exponential
function method [42], sub equational method [38], homotopy perturbation method
[40] and so on.

The Lie symmetry method was first introduced by Sophus Lie [16]. The main
aim of this method is to obtain the infinitesimal generators which leaves the con-
sidered differential equation invariant in form. This method provides powerful
structure in the working of differential equations. Adapting the Lie group anal-
ysis method and proposing the prolongation formulas for fractional derivatives,
Gazizov et al. [12] studied the symmetry properties of fractional order differential
equations with the help of Riemann-Liouville and Caputo fractional derivatives
[8]. Since few attributes of FD are non-identical to the integer order derivatives,
obtaining the Lie symmetries and the conservation laws for fractional partial dif-
ferential equations (FPDEs) are of interest for researchers. Despite the importance
of conservation laws in internal properties and, existence and uniqueness analysis
of differential equations, the conservation laws for FDEs are not widely discussed.
The real-world physical processes can be better modeled by FDEs rather by integer
order differential equations. Fractional order representations possess long memory
characteristics that makes the system behave in more realistic manner.

Most phenomena in Physics, Astrophysics and fluid dynamics are non-linear in
nature. Among these non-linear phenomena, the dynamics of water waves in ocean
is quite fascinating. Many models have been proposed for the shallow water waves
involving mostly integer order derivatives. Fractional order derivative significantly
affects the properties of the equation. In the recent few years, lot of studies have
appeared on the ”Fractional Derivatives (FD)” to model these problems more ac-
curately. We have considered the time-fractional coupled Drinfeld-Sokolov-Wilson
equations (FCDSW) [33], [35] which are used are used to describe the model of
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shallow water waves.

Dα
t u+ awwx = 0, (1)

Dα
t w + bwxxx + cwux + duwx = 0. (2)

Here α denotes the order of FD with 0 < α ≤ 1 and a, b c and d are nonzero
constants. For α = 1, Eqs. (1)-(2) represent the classical DSW equations, which
was first introduced by Drienfel’d and Sokolov [9], [10] and studied by Wilson [41].

In the recent years, many numerical and analytical solutions of FCDSW equa-
tions have been presented by the researchers due to its wide applications in the
modeling of water waves. Yao et al. [18] have studied the bifurcations of travel-
ling wave solutions of generalized DSW equations. Recently, Sahoo and Ray [33]
have obtained the double-periodic solutions of FCDSW equations in the shallow
water waves.

In this work, we have obtained the explicit solution expression of FCDSW
equations. We have applied fractional Lie group method to obtain the symmetry
properties and conservation laws for the FCDSW equations. Using the Lie symme-
try transformations, the time fractional coupled DSW equations are reduced into
fractional differential equations with Erdélyi-Kober operator. The fractional order
differential equations are in Euler-Lagrange forms. Therefore, the conservation laws
of these equations is obtained by using the Noether’s theorem by Lie symmetries.

The primary contents of this paper are as follows: A brief introduction is given
in detail about the fractional order differential equations in section 1. Section 2
contains preliminaries in which definition of fractional derivative and the basic idea
of fractional Lie symmetry method are presented. In section 3, we have applied the
proposed method to the FCDSW equations and determined the symmetry genera-
tors of fractional equations. Using these symmetry generators, FCDSW equations
are reduced into the fractional ordinary differential equations with the help of
Erdélyi-Kober fractional differential operator with Riemann fractional derivative.
In section 4, exact solution of FCDSW equations is obtained and the nonlinearity
property of the solution is studied with the help of two and three dimensional plots.
In section 5, new conservation laws have been developed along with new conserved
vectors using new conservation theorem and fractional generalization of Noether
operators. In section 5, conclusion is presented about the whole study.

2 Preliminaries
2.1 Definition of Fractional derivative

The Riemann-Liouville FD of a function u(x, t), for order α > 0, is defined as
follows [4], [14], [26], [34]:

Dα
t u(x, t) (3)

=

{
1

Γ(m−α)
∂m

∂tm

∫ t
0
(t− σ)m−α−1u(σ, x)dσ, m− 1 ≤ α ≤ m,m ∈ N , t > 0,

∂m

∂tm , α = m ∈ N ,

where Γ denotes Euler’s gamma function.
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2.2 Basic Idea of the Proposed Fractional Lie Symmetry Method

We have considered the coupled time fractional non-linear PDEs with two inde-
pendent variables given in the following form:

Dα
t u = f(x, t, u, ux, ut, uxx, uxxx, w, wx, wt, wxx, wxxx, . . . ), (4)

Dα
t w = g(x, t, u, ux, ut, uxx, uxxx, w, wx, wt, wxx, wxxx, . . . ), (5)

where α > 0 and subscripts represent the partial derivatives.
Consider the following symmetry generator of one-parameter Lie group of trans-

formations under which Eqs. (4) and (5) remain invariant

x̃ = x+ εξ(x, t, u, w) +O(ε2),

t̃ = t+ ετ(x, t, u, w) +O(ε2),

ũ = u+ εη(x, t, u, w) +O(ε2),

w̃ = w + εν(x, t, u, w) +O(ε2),

Dα
t ũ = Dα

t u+ εηα,t(x, t, u, w) +O(ε2), (6)

Dα
t w̃ = Dα

t w + ενα,t(x, t, u, w) +O(ε2),

∂ũ

∂x̃
=
∂u

∂x
+ εηx(x, t, u, w) +O(ε2),

∂w̃

∂x̃
=
∂w

∂x
+ ενx(x, t, u, w) +O(ε2),

∂3w̃

∂x̃3
=
∂3w

∂x3
+ ενxxx(x, t, u, w) +O(ε2),

where ε is the group parameter and ξ, τ , η and ν are the infinitesimals of the trans-
formations.

The infinitesimal generator X can be written in following form:

X = ξ(x, t, u, w)∂x + τ(x, t, u, w)∂t + η(x, t, u, w)∂u + ν(x, t, u, w)∂w. (7)

The k-th order prolongation of the fractional vector field is given as

Pr(α,k)X = X + ηα,t
∂

∂uαt
+ ηx

∂

∂ux
+ ηxx

∂

∂uxx
+ · · ·+ ηxx...ik

∂

∂uxx...ik
(8)

+ να,t
∂

∂wαt
+ νx

∂

∂wx
+ νxx

∂

∂wxx
+ · · ·+ νxx...ik

∂

∂wxx...ik
, k ≥ 1.

where the operators ηi and νi are extended infinitesimals [22] and ηα,t, να,t are the
fractional extended infinitesimals defined as follows:

ηα,t = Dα
t (η) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (u(Dtτ))−Dα+1
t (τu) + τDα+1

t (u),

να,t = Dα
t (ν) + ξDα

t (wx)−Dα
t (ξwx) +Dα

t (w(Dtτ))−Dα+1
t (τw) + τDα+1

t (w),

ηx = Dx(η)− uxDx(ξ)− utDx(τ),

νx = Dx(ν)− wxDx(ξ)− wtDx(τ),

νxx = Dx(νx)− wxxDx(ξ)− wxtDx(τ),

νxxx = Dx(νxx)− wxxxDx(ξ)− wxxtDx(τ), (9)
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where Dx and Dt denote the total derivatives with respect to independent variables,
defined as

Dt = ∂t + ut∂u + wt∂w + utt∂ut + wtt∂wt + uxt∂ux + wxt∂wx . . . ,

Dx = ∂x + ux∂u + wx∂w + uxx∂ux + wxx∂wx + utx∂ut + wtx∂wt . . . .

Now, we focus on the expressions for ηα,t and να,t. The generalized Leibnitz rule
is given by

Dα
t (f(t)h(t)) =

∞∑
m=0

(
α

m

)
Dm
t f(t)Dα−m

t h(t), (10)

where (
α

m

)
=

Γ(α+ 1)

Γ(m+ 1)Γ(α+ 1−m)
.

Now, using Leibnitz’s rule (10) in the expressions of ηα,t and να,t, we have

ηα,t = Dα
t (η)− αDt(τ)

∂αu

∂tα

−
∞∑
m=0

(
α

m

)
Dm
t (ξ)Dα−m

t ux −
∞∑
m=0

(
α

m+ 1

)
Dm+1
t (τ)Dα−m

t u,

να,t = Dα
t (ν)− αDt(τ)

∂αw

∂tα
(11)

−
∞∑
m=0

(
α

m

)
Dm
t (ξ)Dα−m

t wx −
∞∑
m=0

(
α

m+ 1

)
Dm+1
t (τ)Dα−m

t w.

The chain rule for a composite function is as follows (see [24]):

dαf(g(t))

dtα
=

∞∑
k=0

k∑
r=0

(
k

r

)
1

k!
[−g(t)]r

dkf(g)

dfk
∂α

∂tα
[(g(t))k−r]. (12)

Using Eqs. (10) and (12) in Eqs. (11) with f(t) = 1, we have

Dα
t (η) = ∂αt η +

(
ηu∂

α
t u− u∂αt ηu

)
+

(
ηw∂

α
t w − w∂αt ηw

)
+

∞∑
m=1

(
α

m

)
∂mt ηuD

α−m
t u+

∞∑
m=1

(
α

m

)
∂mt ηwD

α−m
t w + µ1 + µ2,

Dα
t (ν) = ∂αt ν +

(
νw∂

α
t w − w∂αt νw

)
+

(
νu∂

α
t u− u∂αt νu

)
(13)

+

∞∑
m=1

(
α

m

)
∂mt νwD

α−m
t w +

∞∑
m=1

(
α

m

)
∂mt νuD

α−m
t u+ λ1 + λ2,
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where

µ1 =

∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−u)r

∂n

∂tn
(uj−r)

∂m−n+jη

∂tm−n∂uj
,

µ2 =

∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−w)r

∂n

∂tn
(wj−r)

∂m−n+jη

∂tm−n∂wj
,

λ1 =
∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−u)r

∂n

∂tn
(uj−r)

∂m−n+jν

∂tm−n∂uj
,

λ2 =

∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−w)r

∂n

∂tn
(wj−r)

∂m−n+jν

∂tm−n∂wj
.

Thus, Eq. (11) yields

ηα,t = ∂αt η +

(
ηu − αDt(τ)

)
∂αt u− u∂αt ηu +

(
ηw∂

α
t w − w∂αt ηw

)
+ µ1 + µ2

+

∞∑
m=1

[(
α

m

)
∂mt ηu −

(
α

m+ 1

)
Dm+1
t (τ)

]
Dα−m
t (u)

+

∞∑
m=1

(
α

m

)
∂mt ηwD

α−m
t w −

∞∑
m=1

(
α

m

)
Dm
t (ξ)Dα−m

t ux,

να,t = ∂αt ν +

(
νw − αDt(τ)

)
∂αt w − w∂αt νw +

(
νu∂

α
t u− u∂αt νu

)
+ λ1 + λ2

+

∞∑
m=1

[(
α

m

)
∂mt νw −

(
α

m+ 1

)
Dm+1
t (τ)

]
Dα−m
t (w)

+

∞∑
m=1

(
α

m

)
∂mt νuD

α−m
t u−

∞∑
m=1

(
α

m

)
Dm
t (ξ)Dα−m

t wx. (14)

The infinitesimal generator X must satisfy the invariance conditions [32] for Eqs.
(4) and (5), which are given as follows:

Pr(α, k)X(∆u)|∆u=0 = 0 and Pr(α, k)X(∆w)|∆w=0 = 0, (15)

where ∆u = Dα
t u− f and ∆w = Dα

t w − g.

3 FCDSW equations
3.1 Lie symmetries

The time fractional coupled DSW equations are as follows:

Dα
t u+ awwx = 0, (16)

Dα
t w + bwxxx + cwux + duwx = 0, (17)
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where Dα
t (u) and Dα

t (w) are Riemann-Liouville FDs of order α with respect to t.
Applying prolongation of fractional vector field on Eqs. (16) and (17), we obtain

ηα,t + awνx + aνwx = 0, (18)

να,t + cwηx + cνux + dwνx + dηwx + bνxxx = 0. (19)

Now, using the Eqs. (9) and (14) in the Eqs. (18) and (19), we get the following
set of infinitesimals for FCDSW equations:

ξ =
1

3
αc3x+ c1, τ = c3t+ c2, η = −2

3
αc3u and ν = −2

3
αc3w, (20)

where c1, c2 and c3 are the arbitrary constants.
Since the lower limit of the integral (3) is fixed, therefore for preservation of its

structure under the transformations (6), the condition τ(x, t, u, w)|t=0 = 0 should
hold. Therefore, c2 must be zero (i.e. τ = c3t).

So, the symmetry generators to form a Lie algebra of Eqs. (18) and (19) are
found as:

X1 =
∂

∂x
, (21)

X3 =
1

3
αx

∂

∂x
+ t

∂

∂t
− 2

3
αu

∂

∂u
− 2

3
αw

∂

∂w
. (22)

Theorem 3.1. A solution u = z1(x, t) and w = z2(x, t), is invariant solutions of
Eq. (4) and (5) iff

(i) u = z1(x, t) and w = z2(x, t) satisfy the FPDE (4) and (5), respectively;

(ii) u = z1(x, t) and w = z2(x, t) are the invariant surfaces, i.e.
Xz1 = 0 iff

(
ξ(x, t, u, w) ∂∂x + τ(x, t, u, w) ∂∂t + η(x, t, u, w) ∂∂u + ν(x, t, u, w) ∂

∂w

)
z1 = 0,

Xz2 = 0 iff

(
ξ(x, t, u, w) ∂∂x + τ(x, t, u, w) ∂∂t + η(x, t, u, w) ∂∂u + ν(x, t, u, w) ∂

∂w

)
z2 = 0.

3.2 Symmetry reduction of FCDSW equations

In this section, we obtain the reduced equations for (18) and (19) by imposing the
Lie symmetries. For the vector field X3, the characteristic equations will be

dx

αx
=
dt

3t
=

du

−2αu
=

dw

−2αw
. (23)

After solving the Eq. (23), we obtain the following similarity variables:

z = xt−
α
3 , u = f(z)t−

2α
3 , w = g(z)t−

2α
3 . (24)

Theorem 3.2. The transformations (24) reduce the Eqs. (16) and (17) in the
fractional non-linear ordinary equations given as follows:(

P
1− 5α

3 , α
3
α

f

)
(z) + aggz = 0, (25)
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and (
P

1− 5α
3 , α

3
α

g

)
(z) + cgfz + dfgz + bgzzz = 0, (26)

with the Erd é lyi-Kober fractional differential operator P τ, αβ [15], [19] defined as(
P τ, αβ f

)
:=

m−1∏
j=0

(
τ + j − 1

β
z
d

dz

)(
Kτ+α,m−α
β f

)
(z), (27)

and (
P τ, αβ g

)
:=

m−1∏
j=0

(
τ + j − 1

β
z
d

dz

)(
Kτ+α,m−α
β g

)
(z), (28)

where

m =

{
[α] + 1, α /∈ N ,
α, α ∈ N ,

(29)

(
Kτ+α,m−α
β f

)
(z) :=

 1
Γ(α)

∫∞
1

(u− 1)α−1u−(τ+α)f

(
zu

1
β

)
du, α > 0,

f(z), α = 0,
(30)

and(
Kτ+α,m−α
β g

)
(z) :=

 1
Γ(α)

∫∞
1

(w − 1)α−1w−(τ+α)g

(
zw

1
β

)
dw, α > 0,

g(z), α = 0
(31)

are the Erdélyi-Kober fractional integral operators [19].

Proof: When m− 1 < α < m,m = 1, 2, 3, . . . , from Riemann-Liouville FD, we
have

Dα
t u(x, t) =

∂m

∂tm

[
1

Γ(m− α)

∫ t

0

(t− s)m−α−1s
−2α
3 f

(
xs

−α
3

)
ds

]
. (32)

Let p = t
s , then ds = − t

p2 dp.

So Eq. (32) can be expressed as

Dα
t u(x, t) =

∂m

∂tm

[
tm−

5α
3

Γ(m− α)

∫ ∞
1

(p− 1)m−α−1pm+1−α− 2α
3 f

(
zp

α
3

)
dp

]
=

∂m

∂tm

[
tm−

5α
3

(
K

1− 2α
3 ,m−α

3
α

f

)
(z)

]
=

∂m−1

∂tm−1

[
∂

∂t

(
tm−

5α
3

(
K

1− 2α
3 ,m−α

3
α

f

)
(z)

)]
. (33)

For z = xt
−α
3 and a function φ(z) ∈ C1(0,∞), we get

t
d

dt
φ(z) = tztφ

′(z) = tx(−α
3

)t
−α
3 −1φ′(z) = −α

3
z
d

dz
φ(z). (34)
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From relation (34), Eq. (33) can be re-written as follows:

Dα
t u(x, t) =

∂m−1

∂tm−1

[(
tm−1− 5α

3

((
m− 5α

3
− α

3
z
d

dz

)(
K

1− 2α
3 ,m−α

3
α

f

)
(z)

))]
.

(35)
Repeating the same process m− 1 times, we obtain

Dα
t u(x, t) = t−

5α
3

m−1∏
j=0

(
1− 5α

3
+ j − α

3
z
d

dz

(
K

1− 2α
3 ,m−α

3
α

f

)
(z)

)
. (36)

Using Eq. (27) in Eq. (36), we obtain

Dα
t u(x, t) = t−

5α
3

(
P

1− 5α
3 , α

3
α

f

)
(z). (37)

Therefore, Eq. (16) can be written into a non-linear FODE as follows:(
P

1− 5α
3 , α

3
α

f

)
(z) + aggz = 0. (38)

For reducing Eq. (17), let m − 1 < α < m, m = 1, 2, 3, . . . . Then, from the
definition of Riemann-Liouville FD and using the similar procedure as above, we
have

Dα
t w(x, t) = t

−5α
3

(
P

1− 5α
3 , α

3
α

g

)
(z). (39)

Therefore, Eq. (17) can be written into a non-linear FODE as follows:(
P

1− 5α
3 ,α

3
α

g

)
(z) + cgfz + dfgz + bgzzz = 0. (40)

4 Exact analytic solution of the FCDSW equations
From the similarity analysis, we have u = f(z)ta1 and w = g(z)ta2 , where a1 =
a2 = −2α

3 and z = xt−b, (b = α
3 ). In order to determine the exact explicit so-

lution expression of FCDSW equations, let us first introduce f(z) = A1z
k1 and

g(z) = A2z
k2 , The parameters A1, A2, k1 and k2 are the real valued constants. As

mentioned in the work of Costa et al. [7] and Bira et al. [6], we have

∂βu

∂tβ
=

1

Γ(1− β)

∂

∂t

∫ t

0

(t− r)−βra1f(xr−b)dr. (41)

Putting τ = r
t in the above equation, we obtain

∂βu

∂tβ
=

1

Γ(1− β)

∂

∂t

∫ 1

0

(1− τ)−βta1−β+1τa1f(zτ−b)dτ

=
∂

∂t

[
ta1−β+1

(
F a1,bβ f

)
(z)

]
, (42)
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where (
F a1, bβ f

)
(z) =

1

Γ(1− β)

∫ 1

0

(1− τ)−βτa1f(zτ−b)dτ.

After some manipulation, Eq.(42) can be rewritten as

∂βu

∂tβ
= ta1−β

[(
1− β + a1 − bz

d

dz

)(
F a1, bβ f

)
(z)

]
. (43)

In the similar manner, we can find ∂βw
∂tβ

as follows:

∂βw

∂tβ
= ta2−β

[(
1− β + a2 − bz

d

dz

)(
F a2, bβ g

)
(z)

]
. (44)

Α = 0.2

Α = 0.3

Α = 0.4

0.0 0.2 0.4 0.6 0.8 1.0
t

1

2

3

4
u

Figure 1: 2D profiles of the solution u(x, t) for 0 < α < 1 and fixed x.

Substituting Eqs.(43) and (44) in Eqs.(16) and (17), we obtain[(
1− β + a1 − bz

d

dz

)(
F a1, bβ f

)
(z)

]
+ aggz = 0,[(

1− β + a2 − bz
d

dz

)(
F a2, bβ g

)
(z)

]
+ bgzzz + cgfz + dfgz = 0. (45)



Invariance analysis and analytic solutions of DSW equations 73

0.0

0.5

1.0

t

0

2

4

x

0.8

1.0

1.2

1.4

u

(a)

0.0

0.5

1.0

t

0

2

4

x

0.6

0.8

1.0

1.2

1.4

u

(b)

0.0

0.5

1.0

t

0

2

4

x

0.4

0.6

0.8

1.0

u

(c)

Figure 2: 3D profiles of the solution u(x, t) for (a) α = 0.2 (b) α = 0.3 (c) α = 0.4.

After calculating the operators F a1, bβ (zk1) and F a2, bβ (zk2) as in the work of Costa
et al. [7], we obtain

F a1, bβ (zk1) =
1

Γ(1− β)

∫ 1

0

(1− τ)−βτa1zk1τ−bk1dτ

=
Γ(1 + a1 − bk1)

Γ(2 + a1 − bk1 − β)
zk1 ,

F a2, bβ (zk2) =
Γ(1 + a2 − bk2)

Γ(2 + a2 − bk2 − β)
zk2 . (46)

Using (46) in Eqs. (45) we obtain

Γ(1 + a1 − bk1)

Γ(1 + a1 − bk1 − β)
A1z

k1 + ak2A
2
2z

2k2−1 = 0,

Γ(1 + a2 − bk2)

Γ(1 + a2 − bk2 − β)
A2z

k2 + bk2A2(k2 − 1)(k2 − 2)zk2−3+ (47)

ck1A1A2z
k1+k2−1 + dk2A1A2z

k1+k2−1. (48)

Substituting β = α, a1 = a2 = − 2α
3 , b = α

3 in (47) and for k1 = k2 = 1, we obtain

A1 = − 1

(c+ d)

Γ(1− α)

Γ(1− 2α)
and A2 =

1√
{a(c+ d)}

Γ(1− α)

Γ(1− 2α)
. (49)
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Figure 3: 2D profiles of the solution w(x, t) for 0 < α < 1 and fixed x.

Hence the solution of original coupled FPDEs can be written as

u(x, t) = − 1

(c+ d)

Γ(1− α)

Γ(1− 2α)

x

tα
, (50)

and

w(x, t) =
1√

{a(c+ d)}
Γ(1− α)

Γ(1− 2α)

x

tα
. (51)

The above solution is called a dipole solution or singular solution. From Figures
1-4, one can observe that a change in the value of α affects the soliton behaviour
in a fundamental way [1], which results that FD can be used to change the shape
of waves without changing the nonlinearity and dissipative effect in the medium.

5 Conservation laws
In this part, the conserved vectors for the FCDSW equations using the new conser-
vation theorem are determined. The conservation laws [27], [36] for the FCDSW
equations have been also obtained.

The conservation laws for Eqs. (16) and (17) are defined as a vector field
T = (T 1, T 2), where T 1 = T 1(x, t, u, w, . . . ) and T 2 = T 2(x, t, u, w, . . . ) are called
conserved vectors for Eqs. (16) and (17), if T 1 and T 2 satisfy the conservation
theorem given as follows:

[DtT
1 +DxT

2](16),(17) = 0. (52)

The formal Lagrangian of Eqs. (16) and (17) is obtained as

L = γ1(x, t)(Dα
t u+ awwx) + γ2(x, t)(Dα

t w + cuxw + duwx + bwxxx). (53)
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Figure 4: 3D profiles of the solution solution w(x, t) for (a) α = 0.2 (b) α = 0.3 (c)
α = 0.4.

Here ω1 and γ1 are the functions of x and t.
The Euler Lagrangian operators are defined as follows:

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+D2

x

∂

∂uxx
−D3

x

∂

∂uxxx
+ · · ·+ (Dα

t )∗
∂

∂Dα
t u
, (54)

and

δ

δw
=

∂

∂w
−Dx

∂

∂wx
+D2

x

∂

∂wxx
−D3

x

∂

∂wxxx
+ · · ·+ (Dα

t )∗
∂

∂Dα
t w

, (55)

where (Dα
t )∗ is the adjoint operator of fractional differential operator Dα

t , given as
follows:

(Dα
t )∗ = (−1)mIm−αs Dm

t ,

where Im−αs is the right-hand-sided fractional integral operator of order m − α,
which is defined as

Im−αs f(x, t) =
1

Γ(m− α)

∫ s

t

f(x, p)

(p− t)α+1−m dp,

where m = [α] + 1.
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So, the adjoint equations can be written as

δL

δu
= 0 and fracδLδw = 0. (56)

The component of conserved vectors are obtained by applying Noether operators to
the Lagrangian. The fractional Noether operator for t-component can be written
by the following formula [5], [20], [21]:

T 1 = τ Ĩ +

m−1∑
k=0

(−1)kDα−1−k
t (W1)Dk

t

∂L

∂Dα
t u
− (−1)mI

(
W1, D

m
t

∂L

∂Dα
t u

)

+

m−1∑
k=0

(−1)kDα−1−k
t (W2)Dk

t

∂L

∂Dα
t w
− (−1)mI

(
W2, D

m
t

∂L

∂Dα
t w

)
. (57)

Here,

I(f, g) =
1

Γ(m− α)

∫ t

0

∫ T

t

f(τ, x)g(µ, x)

(µ− τ)α+1−m dµdτ. (58)

Here Ĩ denotes the identity operator, andW1 = η−τut−ξux andW2 = ν−τwt−ξwx
denote the Lie characteristic functions.

The other conserved vector T 2 for x-component is represented as

T 2 = ξĨ +W1

[
∂L

∂ux
−Dx

∂L

∂uxx
+ (Dx)2 ∂L

∂uxxx
− . . .

]
(59)

+W2

[
∂L

∂wx
−Dx

∂L

∂wxx
+ (Dx)2 ∂L

∂wxxx
− . . .

]
+Dx(W1)

[
∂L

∂uxx
−Dx

∂L

∂uxxx
+ . . .

]
+Dx(W2)

[
∂L

∂wxx
−Dx

∂L

∂wxxx
+ . . .

]
+ (Dx)2(W1)

[
∂L

∂uxxx
− . . .

]
+ (Dx)2(W2)

[
∂L

∂wxxx
− . . .

]
+ . . . . (60)

Now, the Lie characteristic functions for the vector X3 are obtained as

W1 = −α
3
xux − tut −

2α

3
u, (61)

W2 = −α
3
xwx − twt −

2α

3
w. (62)

Now, substituting the value of the Lagrangian (53) in Eq. (57) and (59) and
using the values of W1 and W2 from Eqs. (61) and (62), we have obtained the
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t-component of the conserved vector for X3 as follows:

T 1 = τ Ĩ +Dα−1
t (W1)D0

t

∂L

∂Dα
t u

+ I

(
W1, Dt

∂L

∂Dα
t u

)
+Dα−1

t (W2)D0
t

∂L

∂Dα
t w

+ I

(
W2, Dt

∂L

∂Dα
t w

)
= γ1D

α−1
t

(
− α

3
xux − tut −

2α

3
u

)
+ I

[(
− α

3
xux − tut −

2α

3
u

)
, (γ1)t

]
+ γ2D

α−1
t

(
− α

3
xwx − twt −

2α

3
w

)
+ I

[(
− α

3
xwx − twt −

2α

3
w

)
, (γ2)t

]
.

(63)

Also, the x-component of the conserved vector for X3 is obtained in the following
form:

T 2 = ξĨ +W1

[
∂L

∂ux

]
+W2

[
∂L

∂wx
+ (Dx)2 ∂L

∂wxxx

]
(64)

+Dx(W2)

[
−Dx

∂L

∂wxxx

]
+ (Dx)2(W2)

[
∂L

∂wxxx

]
= b(γ2)x

(
αwx +

α

3
xwxx + twxt

)
− b(γ2)xx

(
α

3
xwx + twt +

2α

3
w

)
(65)

− γ1a

(
α

3
xwwx + twwt +

2α

3
w2

)
+ γ2

[
du

(
− α

3
xwx −

2α

3
w − twt

)
+ cw

(
− α

3
xux − tut −

2α

3
u

)
(66)

+ b

(
4α

3
wxx + twxxt +

α

3
xwxxx

)]
. (67)

6 Conclusion
In this article, we have applied the fractional Lie symmetry group-theoretic method
to solve the time FCDSW partial differential equations. Firstly, we have deter-
mined the Lie point symmetries for FCDSW equations. Using the Lie symmetries,
the time fractional coupled system of equations is transformed into a system of
FODEs with the help of fractional Erdélyi-Kober differential operator. Using the
symmetry analysis, we have obtained the exact solution of the FCDSW equations
in explicit form. The effects of fractional order α on the solution’s behaviour are
shown graphically. From the figures, one can observe that a small change in the
value α affects the soliton behaviour and the shape of wave, without changing the
nonlinearity in the medium. With the help of Noether operators and new conserva-
tion theorem, the new conserved vectors are obtained successfully along with formal
Lagrangian, which are used in the study of global behaviour and the stability of
solutions of FCDSW equations. One can use conservation laws for mathematical
analysis to develop appropriate numerical methods and for stability, uniqueness
and existence analysis.
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In this work, we have discussed only one vector field for both the systems for
symmetry reductions; however, for remaining vector fields, the symmetry reduc-
tions can also be discussed. We have avoided the discussion of remaining vector
fields due to the lack of physical importance of their results. There are some possible
extensions of this study, e.g. symmetry analysis for space-time fractional systems
of non-linear PDEs with or without variable coefficients. Some of the extensive
work will be discussed in the future work.
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