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Summability characterizations of positive sequences

Douglas Azevedo and Thiago P. de Andrade

Abstract. In this paper, we propose extensions for the classical Kummer’s test, which is a very
far-reaching criterion that provides sufficient and necessary conditions for convergence and divergence
of series of positive terms. Furthermore, we present and discuss some interesting consequences and
examples such as extensions of Olivier’s theorem and Raabe, Bertrand and Gauss’s test.

1 Introduction
The Kummer’s test is an advanced theoretical test which provides necessary and sufficient conditions that
ensures convergence and divergence of series of positive terms. Below we present the statement of this result.
Its proof and some additional historical background may be found in [1], [4], [9].

Theorem 1.1. (Kummer’s test) Consider the series
∑
an where {an} is a sequence of positive real numbers.

(i) The series
∑
an converges if and only if there exist a sequence {qn}, a real number c > 0 and an integer

N ≥ 1 for which

qn
an
an+1

− qn+1 ≥ c, n ≥ N.

(ii) The series
∑
an diverges if, and only if there exist a sequence {qn} and an integer N ≥ 1 for which∑

1
qn

is a divergent series and

qn
an
an+1

− qn+1 ≤ 0, n ≥ N.

Besides providing an extremely far-reaching characterization of convergence and divergence of series with
positive terms, the importance of Kummer’s test it is mostly ratified by its implications. For instance,
Bertrand’s test, Gauss’s test, Raabe’s test [9] are all special cases of Theorem 1.1. Kummer’s test may be
also usefull to characterize convergence in normed vector spaces [6, p. 7] and applications of this test can be
found in other branches of Analysis, such as difference equations [2], as well.

On the other hand, turning our focus to series of the form
∑
cnan, there are only few results dealing

with this type of series. The Abel’s test and test of Dedekind and Du-Bois Reymond (see for instance, [4,
p. 315], [3]) are probably the most famous, since they deal with general series of complex numbers. These
tests provide conditions that ensure convergence by means of independent assumptions on {cn} and {an}.
In this context, the main feature of our results (Theorem 3.1 and Theorem 3.2) is that they characterize
the relation between the sequences {an} and {cn} in order to ensure necessary and sufficient conditions for
the convergence and divergence of the series

∑
cnan, respectively. Moreover, we present some examples and

interesting consequences of this characterization. In particular, generalized versions of Raabe’s, Bertrand’s
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and Gauss’s test for convergence and divergence of series of the form
∑
cnan are obtained. Another important

consequence of Theorem 3.1 is that it is possible to show that Olivier’s theorem (see, for instance [4, p. 124]
or [7], [8] for more information) still holds when the monotonicity assumption on the sequence of positive
terms {an} is replaced by an additional assumption on a auxiliary sequence. We also present consequences
of Theorem 3.1 when it is combined to the well-know Abel summation formula and the Cauchy condensation
theorem. We refer to [4, pp. 120 and 313] for more details on these results.

The rest of the paper is organized as follows. In Section 2, we present necessary and sufficient conditions
for convergence/divergence of series generated by subsequences by extending Theorem 1.1. In Section 3 we
present the results dealing with convergence and divergence of series of the form

∑
cnan. The main ideia

is to obtain necessary and sufficient conditions by means of an extension of Theorems 2.1 and Theorem 2.2.
As we show, we characterize the relation between the sequences {cn} and {an} that ensures convergence and
divergence of the series. In Section 4 we present some consequences of the results obtained.

2 An extension of Kummer’s test: I
In this section we present a first extension of Theorem 1.1. Its main feature is that it showns that is possible
to obtain information about the summability of a sequence of positive real numbers based on the relation
between non-consecutive elements of this sequence. In partiular, the idea is to characterize the summability
of a sequence by comparing it to the elements of the translated sequence {an+m, n ≥ 1}, for some m ≥ 1.

The first main result of this section is presented below.

Theorem 2.1. Let {an} be a sequence of positive real numbers and m ≥ 1 any fixed positive integer.
If there exists a positive sequence {qn} such that

qn
an

an+m
− qn+m ≥ c,

for some c > 0, for all n sufficiently large, then
∑
an converges. The converse holds as well.

Proof. From the assumption we get that

qnan − an+mqn+m ≥ can+m,

for all n > N , for some N large. Hence

N+k∑
n=N+1

qnan − an+mqn+m ≥ c
N+k∑

n=N+1

an+m,

for all k ≥ 1. That is, by the telescopic sum and considering without loss of generality k > m, we have

qN+1aN+1 + · · ·+ qN+maN+m − aN+k+1qN+k+1 − · · · − aN+k+mqN+k+m

≥ c
N+k∑

n=N+1

an+m,

for all k > m. Since {an} and {qn} are positive, the left side of previous inequality is less than qN+1aN+1 +
· · ·+ qN+maN+m and then the series

∑
an+m converges. Therefore,

∑
an also converges.

Conversely, if
∑
an converges,

∑
an = S say, then let us write

∑
an+m−1 = Sm, for m ≥ 1, positive

integer. Let us define {qn} as

qn =
Sm −

∑n
i=1 ai+m−1
an

, n = 1, 2, 3, . . . ,

thus, for this {qn} we have that

qn
an

an+m
− qn+m =

∑n+m
i=n+1 ai+m−1

an+m

= 1 +
an+m+1 + · · ·+ an+2m−1

an+m

> 1,
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for all n ≥ 1. The proof is concluded. �

We proceed by presenting a divergence version for the previous theorem.

Theorem 2.2. Let {an} be a sequence of positive real and m ≥ 1 a fixed positive integer. If there exists
a positive sequence {qn} such that

∑
1
qn

diverges, qnan ≥ c > 0, and

qn
an

an+m
− qn+m ≤ 0,

for all n sufficiently large, then
∑∞
n=1 an diverges. The converse holds, as well.

Proof. From the assumptions we obtain that there exists N > 0 such that

qn
an

an+m
− qn+m ≤ 0,

for all n ≥ N . As so,

c
1

qn+m
≤ an+m,

for all n > N . Since
∑

1/qn diverges, we obtain from the comparsion test that
∑
an diverges.

Conversely, suppose that
∑
an diverges. Define for each n ≥ 1

qn =

∑n
i=1 ai
an

.

Note that the definition implies q1 = 1, hence anqn =
∑n
i=1 ai ≥ a1, for all n ≥ 1, that is, anqn ≥ a1q1 > 0

for all n ≥ 1. Clearly

qn
an

an+m
− qn+m ≤ 0,

for all n ≥ 1.
Let us now show that

∑
1
qn

diverges. From the divergence of
∑
an, given any positive integer k there

exists a positive integer n ≥ k such that

ak + · · ·+ an ≥ a1 + · · ·+ ak−1. (1)

Due to (1),

n∑
j=k

1

qj
=

ak
a1 + · · ·+ ak

+ · · ·+ an
a1 + · · ·+ an

≥ ak
a1 + · · ·+ an

+ · · ·+ an
a1 + · · ·+ an

=
1

a1+···+ak−1

ak+···+an + 1

>
1

2
.

Hence,
∑n
j=1

1
qj

is not a Cauchy sequence. Therefore the series
∑

1
qn

diverges. �

3 Extension of Kummer’s test: II
Let us now turn our atention to series of the form

∑
cnan with positive terms. The central idea in the

following result is that it characterizes the relation between the sequences {cn} and {an} in order to ensure
the convergence of the series. The reader will note that the proof follows the same lines as the proof of
Theorem 2.1 and also, that it could be obtained by some changes in the proof of Theorem 1.1, nevertherless,
as the reader will also note, our proof provides important informations about the relation between the
sequences {an} and {cn}.



84 Douglas Azevedo and Thiago P. de Andrade

Theorem 3.1. Consider the series
∑
cnan with {an} {cn} sequences of positive real numbers. The series∑

cnan converges if and only if that there exist a sequence {qn} of positive real numbers and a positive
integer N ≥ 1 for which

qn
an
an+1

− qn+1 ≥ cn+1, n ≥ N.

Proof. Let us show that
∑
cnan converges. For this, note that the condition

qn
an
an+1

− qn+1 ≥ cn+1, n ≥ N

implies that
anqn ≥ an+1(qn+1 + cn+1), n ≥ N. (2)

That is,

aNqN ≥ aN+1(qN+1 + cN+1)

≥ aN+2(qN+2 + cN+2) + aN+1cN+1

...

≥ aN+kqN+k +

k∑
i=1

cN+iaN+i

≥
k∑
i=1

cN+iaN+i > 0,

for all integer k ≥ 0. This implies the convergence of
∑
cnan.

For the converse, suppose that S :=
∑
cnan and let us define

qn =
S −

∑n
i=1 ciai
an

, n ≥ N. (3)

For this {qn}, clearly qn > 0 for all n ≥ 1 and it is easy to check that

qn
an
an+1

− qn+1 = cn+1, n ≥ N. �

Some remarks:

(i) One can observe that it is, of course, possible to reduce any series to this form, as any number can be
expressed as the product of two other numbers. Success in applying the above theorem will depend on
the skill with which the terms are so split up.

(ii) Note that in the first part of Theorem 3.1, the assumption of positivity of the sequences {an} and {cn}
can be replaced by the following assumptions: {an} is positive and {cn} is such that

∑k
i=1 ciai > 0 for

all k sufficiently large.

Next, we presente a version of Kummer’s test for divergent series of the form
∑
cnan. The reader will

note that it is more restrictive when it is compared to Theorem 1.1-(ii) however it may be suitable in some
cases.

Theorem 3.2. Consider the series
∑
cnan with {an} {cn} sequences of positive real numbers.

(i) Suppose that there exist a sequence {qn} and a positive integer N for which

qn
an
an+1

− qn+1 ≤ −cn+1, n ≥ N

with
∑

1
qn

being a divergent series. Then
∑
an,

∑
1
cn

,
∑

(qn − cn)an and
∑
qnan diverge. If, in

addition,
∑ cn

qn
diverges then

∑
cnan diverges.
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(ii) Suppose that both series
∑
cnan and

∑
an diverge. Also, suppose that for every m ∈ N there exists

r ≥ m, r ∈ N, such that
am + · · ·+ ar ≥ cmam + · · ·+ crar.

Then there exist a sequence {qn} and a positive integer N ≥ 1 such that
∑

1
qn

diverges and

qn
an
an+1

− qn+1 ≤ −cn+1, n ≥ N.

Proof. To prove (i) note that {qn} satisfies

an+1 ≥
qnan

qn+1 − cn+1
, n ≥ N, (4)

0 < qn+1 − cn+1 < qn+1, n ≥ N (5)

and

0 < cn+1 < qn+1, n ≥ N.

By last inequality and comparsion test we see that
∑

1
cn

diverges. Next, using (4) successively we see
that

aN+1 ≥
qNaN

qN+1 − cN+1
,

aN+2 ≥
qN+1aN+1

qN+2 − cN+2
≥ aNqNqN+1

(qN+2 − cN+2)(qN+1 − cN+1)
,

and in general,

aN+k+1 ≥
aNqNqN+1 . . . qN+k

(qN+1 − cN+1) . . . (qN+k+1 − cN+k+1)
, k ≥ 0. (6)

From (5) and (6) we get

aN+k+1 >
aNqN
qN+k+1

, k ≥ 0. (7)

Thus
∞∑
k=0

aN+k+1 > aNqN

∞∑
k=0

1

qN+k+1

and therefore
∑
an diverges. From (6)

(qN+k+1 − cN+k+1)aN+k+1 ≥
aNqNqN+1 . . . qN+k

(qN+1 − cN+1) . . . (qN+k − cN+k)
, k ≥ 0,

and applying once again (5) we obtain that

qN+k+1aN+k+1 > (qN+k+1 − cN+k+1)aN+k+1 ≥ aNqN > 0, k ≥ 0.

This last set of inequalities implies that

lim
n→∞

qN+k+1aN+k+1 6= 0 and lim
k→∞

(qN+k+1 − cN+k+1)aN+k+1 6= 0,

so both series
∑
qnan and

∑
(qn − cn)an diverge.

Note that from (7) we obtain that

cN+k+1aN+k+1 > aNqN
cN+k+1

qN+k+1
, k ≥ 0. (8)

Therefore, if
∑ cn

qn
diverges, then it is clear that

∑
cnan diverges.
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In order to prove (ii) define

qn =

∑n
i=1 ciai
an

, n ≥ 1.

Clearly, this is a sequence of positive real numbers that satisfies

qn
an
an+1

− qn+1 ≤ −cn+1, n ≥ 1.

Let us show that
∑

1
qn

diverges by concluding that the sequence {sk}, defined as sk =
∑k
i=1

1
qi

, for each

k ≥ 1, is not a Cauchy sequence. Since
∑
cnan is divergent, given m ∈ N there exists k > m, k ∈ N, such

that
cmam + · · ·+ ckak > c1a1 + · · ·+ cm−1am−1. (9)

Also, from the hypothesis, there exists r ≥ m such that

am + · · ·+ ar ≥ cmam + · · ·+ crar. (10)

Next, we split the proof in two cases: k ≤ r and k > r.
If k ≤ r, from (9) we see that

cmam + · · ·+ ckak + · · ·+ crar ≥ cmam + · · ·+ ckak > c1a1 + · · ·+ cm−1am−1. (11)

Thus, by (11) and (10)

r∑
n=m

1

qn
=

am
c1a1 + · · ·+ cmam

+ · · ·+ ar
c1a1 + · · ·+ crar

≥ am + · · ·+ ar
c1a1 + · · ·+ crar

≥ cmam + · · ·+ crar
c1a1 + · · ·+ crar

=
1

c1a1+···+cm−1am−1

cmam+···+crar + 1

>
1

2

and {sk} is not a Cauchy sequence. On the other hand, if k > r we can use hypothesis again (now applied
to m1 = r + 1) and to obtain r1 ≥ r + 1 such that

ar+1 + · · ·+ ar1 ≥ cr+1ar+1 + · · ·+ cr1ar1 .

Again, we can use the same argument to conclude that there exists r2 ≥ r1 + 1 such that

ar1+1 + · · ·+ ar2 ≥ cr1+1ar1+1 + · · ·+ cr2ar2 .

This procedure can be applied a finite number of times in order to obtain rj ≥ k for which

ar(j−1)+1 + · · ·+ arj ≥ cr(j−1)+1ar(j−1)+1 + · · ·+ crjarj .

Summing up (10) with all these previous inequalities we obtain that

am + · · ·+ arj ≥ cmam + · · ·+ crjarj

with k ≤ rj . This reduces the proof to the previous case which we have already proved. �
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4 Some examples and consequences
The main goal in this section is to present some of the implications of the main results of this paper.

The next three theorems are extensions of the Raabe, Bertrand and Gauss test derived from Theorem 3.1
and Theorem 3.2. For more information about these tests we refer to [1], [4] and references therein.

Consider the sequences

R−n = n
an
an+1

− (n+ 1)− cn+1 and R+
n = n

an
an+1

− (n+ 1) + cn+1,

for all positive integer n.

Theorem 4.1 (Raabe’s test). Let
∑
cnan be a series of positive terms and suppose that lim inf R−n = R1 and

lim supR−n = R2. If

(i) R1 > 0, then
∑
cnan converges;

(ii) R2 < 0 and
∑
cn/n diverges, then

∑
cnan diverges.

Proof. (i) If R1 > 0, then for all n sufficiently large we have that

n
an
an+1

− (n+ 1)− cn+1 ≥ 0,

hence Theorem 3.1, with qn = n for all n ≥ 1, implies that the series
∑
cnan converges.

(ii) If R2 < 0, then for all n sufficiently large

n
an
an+1

− (n+ 1) + cn+1 ≤ 0.

Again, we have qn = n for all n ≥ 1. So, due to the divergence of
∑
cn/n, Theorem 3.2 implies that∑

cnan diverges. �

Theorem 4.2 (Bertrand’s test). Let
∑
cnan be a series of positive terms.

(i) If
an
an+1

> 1 +
1

n
+
θn + cn+1

n ln(n)
,

for some sequence {θn}, such that θn ≥ θ > 1, for all n ≥ 1, then
∑
cnan converges.

(ii) If
an
an+1

≤ 1 +
1

n
+
θn − cn+1

n ln(n)
,

for some sequence {θn}, such that θn ≤ θ < 1, for all n ≥ 1, and
∑ cn

n ln(n) diverges, then
∑
cnan

diverges.

Proof. (i) From the assumption we get

n ln(n)
an
an+1

≥ n ln(n) + ln(n) + cn+1 + θn,

for all n sufficiently large. That is,

n ln(n)
an
an+1

− (n+ 1) ln(n+ 1) ≥ (n+ 1) ln

(
n

n+ 1

)
+ θn + cn+1,

for all n sufficiently large. It follows from the assumption on {θn} that

(n+ 1) ln

(
n

n+ 1

)
+ θn > 0,
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for all n > 1 sufficiently large hence we conclude that

n ln(n)
an
an+1

− (n+ 1) ln(n+ 1) > cn+1,

for all n sufficiently large. Therefore, the convergence of
∑
cnan follows from an application of Theo-

rem 3.1.

(ii) It suffices to note that

n ln(n)
an
an+1

− (n+ 1) ln(n+ 1) ≤ (n+ 1) ln

(
n

n+ 1

)
+ θn − cn+1,

for all n sufficiently large. Since (n+ 1) ln
(

n
n+1

)
+ θn < 0 for all n > 1 sufficiently large we obtain

n ln(n)
an
an+1

− (n+ 1) ln(n+ 1) < −cn+1,

for all n sufficiently large. The conclusion follows from Theorem 3.2. �

Theorem 4.3 (Gauss’s test). Let
∑
cnan be a series of positive terms, γ ≥ 1 and {θn} a bounded sequence of

real numbers.

(i) Suppose that there exists a µ ∈ R such that θn ≥ (1− µ)nγ−1 holds for all n sufficiently large. If

an
an+1

≥ 1 +
cn+1

n
+
µ

n
+
θn
nγ
,

holds for all n sufficiently large, then
∑
cnan converges.

(ii) Suppose that there exists a µ ∈ R such that θn ≤ (1−µ)nγ−1 holds for all n sufficiently large. If
∑
cn/n

diverges and
an
an+1

≤ 1− cn+1

n
+
µ

n
+
θn
nγ
,

for all n sufficiently large, then
∑
cnan diverges.

Proof. (i) From the assumption we obtain that

n
an
an+1

− (n+ 1) ≥ cn+1 + (µ− 1) +
θn
nγ−1

,

for all n sufficiently large. Taking N > 0 such that µ− 1 + θn
nγ−1 ≥ 0, for all n > N , we concude that

n
an
an+1

− (n+ 1) ≥ cn+1,

for all n > N . Therefore, by Theorem 3.1, the series
∑
cnan converges.

(ii) Due to the assumptions on (ii), we have that µ− 1 + θn
nγ−1 < 0 and

n
an
an+1

− (n+ 1) ≤ −cn+1 + (µ− 1) +
θn
nγ−1

≤ −cn+1,

for all n sufficiently large. The conclusion follows from an application of Theorem 3.2. �

Theorem 3.1 also allows us to provide a different approach for the well-know Cauchy’s condensation test,
which we present in the next lemma.
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Lemma 4.4. [4, p. 120](Cauchy’s condensation test) Let {an} be a decreasing sequence of positive numbers.
Then

∑
an converges if, and only if,

∑
2na2n converges.

For a decreasing sequence {an} of positive real numbers, combining Lemma 4.4 with Theorem 3.1, we
obtain a the following characterization of convergence.

Theorem 4.5. Let
∑
an be a series with {an} being a decreasing sequence. Then

∑
an converges if, and only

if, there exists a sequence {qn} of positive numbers such that

qn − 2qn+1 ≥ 2a2n+1 ,

for all n sufficiently large.

Proof. By Lemma 4.4,
∑
an coverges if, and only if,

∑
2na2n converges. On the other hand, an application

of Theorem 3.1 with an = 2n and cn = a2n show us that
∑

2na2n converges if, and only if, there exists
a sequence {qn} of positive real numbers such that

qn − 2qn+1 ≥ 2a2n+1 ,

for all n sufficiently large. The proof is concluded. �

To close this section of applications we present a result related to the Olivier’s Theorem, which is stated
below.

Lemma 4.6 ([4, p. 124] or [7]). Let {an} be summable decreasing sequence of positive real numbers. Then
limnan = 0.

We are going to show that it possible to recover the same Olivier’s asymptotic behavior for {an} with-
out the decreasigness assumption on {an}. Instead of using the monotonicity, we consider an additional
assumption on the sequence {qn} (that auxiliary sequence of Theorem 3.1).

Theorem 4.7. Suppose that {an} is a sequence of positive numbers. We have that
∑
an converges if, and

only if, there exists a sequence {qn} of positive numbers such that

qn
n+ 1

n
− qn+1 ≥ (n+ 1)an+1,

for all n sufficiently large. Moreover, if {qn} satisfies

lim qn
n+ 1

n
− qn+1 = 0,

then limnan = 0.

Proof. It is clear that
∑
an converges if and only if

∑
1
nnan also converges. From Theorem 3.1, with an = 1/n

and cn = nan, we can conclude that
∑
an converges if, and only if, there exists a sequence {qn} such that

qn
n+ 1

n
− qn+1 ≥ (n+ 1)an+1,

for all n sufficiently large. Hence, limnan = 0 certainly occurs when the sequence {qn} above is such that

lim qn
n+ 1

n
− qn+1 = 0. �

For more information on this asymptotic behavior of summable sequences of positive numbers we refer
to [5], [7], [8] and references therein.
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