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On existence of normal p-complement of finite groups with restrictions

on the conjugacy class sizes

Ilya B. Gorshkov

Abstract. The greatest power of a prime p dividing the natural number n will be denoted by np. Let
IndG(g) = |G : CG(g)|. Suppose that G is a finite group and p is a prime. We prove that if there
exists an integer α > 0 such that IndG(a)p ∈ {1, pα} for every a of G and a p-element x ∈ G such that
IndG(x)p > 1, then G includes a normal p-complement.

1 Introduction
In this paper, all groups are finite. Denote the set of prime divisors of positive integer n by π(n), and
by the set π(|G|) for a group G by π(G). For a set of primes π and a positive integer n we will denote
nπ =

∏
p∈π |n|p. Let G be a group and take a ∈ G. With aG standing for the conjugacy class in G containing

a, put N(G) = {|xG|, x ∈ G} \ {1}. Denote by |G||p the number pn such that N(G) contains a multiple of
pn and avoids multiples of pn+1. For π ⊆ π(G) put |G||π =

∏
p∈π |G||p. For brevity, |G|| is meaning |G||π(G).

Observe that |G||p divides |G|p for each p ∈ π(G). However, |G||p can be less than |G|p. Take a set of primes
π, denote Θπ = {τ ⊆ π | τ 6= ∅, |τ | ≥ |π| − 1}.

Definition 1.1. Let π be a set of primes. We say that a group G satisfies the condition π∗ or G is a π∗-group
and write G ∈ π∗ if for every a ∈ N(G) there exists τa ∈ Θπ such that aπ = |G||τa .

Ishikawa [8] proved that a group G with N(G) = {pα} is nilpotent class at most 3. Casolo, Dolfi and
Jabara [2] described the set of {p}∗-groups. In particular, they proved that any group of {p}∗ is solvable and
includes a normal p-compliment. Camina [2.10] proved that a group G with {p, q}∗-property is nilpotent if
N(G) = {pn, qm, pnqm}. Beltram and Filipe [1] extended Camina’s theorem in the following way. Let G be a
group whose set of conjugacy class sizes is {1, n,m, nm}, where n and m are coprime positive integers; then
G is nilpotent and the integers n and m are prime-power numbers; in particular G ∈ {n,m}∗. The author of
[7] investigate {p, q}∗-groups with trivial center.

In the present paper we will investigate some generalisations of the property {p}∗.

Definition 1.2. We say that a group G satisfies the condition R(p) or G is a R(p)-group and write G ∈ R(p)
if there exists an integer α > 0 such that ap ∈ {1, pα} for each a ∈ N(G).

Note that, if G ∈ π∗, then G ∈ R(p) for each p ∈ π. The set of R(p)-group disjoins on two subsets R(p)∗

and R(p)∗∗:

(i) G ∈ R(p)∗ if G contains a p-element h such that IndG(h)p > 1;

MSC 2020: 20DXX,20E45
Keywords: finite group, conjugacy classes, normal p-complement
The work is supported by Russian Science Foundation (project 18-71-10007).

Affiliation:
Sobolev Institute of Mathematics SB RAS Novosibirsk, Russia Siberian Federal University, Krasnoyarks, Russia

E-mail: ilygor8@gmail.com

ar
X

iv
:1

81
2.

03
64

1v
2 

 [
m

at
h.

G
R

] 
 2

4 
A

pr
 2

02
2



94 Ilya B. Gorshkov

(ii) G ∈ R(p)∗∗ if IndG(h)p = 1 for each p-element h ∈ G.

We prove the following theorem.

Theorem 1.3. If G ∈ R(p)∗, then G has a normal p-complement.

It follows from the theorem that the center of a R(p)∗-group is not trivial.

Corollary 1.4. If G ∈ R(p)∗ and P ∈ Sylp(G), then Z(P ) ≤ Z(G).

Vasil’ev [15] proved that if G is a R(p)-group with trivial center and |G||p = p, then Sylow p-subgroups
of G are abelian. This assertion is true in the general case.

Corollary 1.5. If G ∈ R(p) and Z(G) = 1, then Sylow p-subgroups of G are abelian.

2 Preliminary results
Lemma 2.1 ([5, Lemma 1.4]). For a finite group G, take K E G and put G = G/K. Take x ∈ G and
x = xK ∈ G/K. The following claims hold:

(i) |xK | and |xG| divide |xG|.

(ii) For neighboring members L and M of a composition series of G, with L < M , take x ∈ M and the
image x̃ = xL of x. Then |x̃S | divides |xG|, where S = M/L.

(iii) If y ∈ G with xy = yx and (|x|, |y|) = 1, then CG(xy) = CG(x) ∩ CG(y).

(iv) If (|x|, |K|) = 1, then CG(x) = CG(x)K/K.

(v) CG(x) ≤ CG(x).

Lemma 2.2 ([2, Lemma 2.1]). Let x, y be elements of a group G and assume at least one of the following
conditions:

(i) x and y commute and have coprime orders;

(ii) x ∈ N, y ∈M with N,M EG and N ∩M = 1.

Then CG(xy) = CG(x) ∩ CG(y).

Lemma 2.3 ([2, Lemma 2.7]). Let A be a group acting via automorphisms on a group G and N be a normal
A-invariant subgroup of G. If (|A|, |N |) = 1, then:

(i) CG/N (A) = CG(A)N/N ;

(ii) |CG(A)| = |CN (A)||CG/N (A)|.

Lemma 2.4 ([5, Lemma 4]). Take g ∈ G. If each conjugacy class of G contains an element h such that
g ∈ CG(h), then g ∈ Z(G).

Lemma 2.5. If G ∈ R(p) and N EG such that |N |p = |G|p, then N ∈ R(p) or |N ||p = 1.

Proof. Since N is a normal subgroup and N includes every Sylow p-subgroup of G, we have N includes every
Sylow p-subgroup of CG(x) for any x ∈ G. Therefore, IndG(x)p = IndN (x)p and the lemma is proved. �

Lemma 2.6. If G ∈ R(p), N EG is a p′-group, then G/N ∈ R(p) or |G/N ||p = 1.

Proof. Let a : G → G/N be a natural homomorphism. We have IndG(h) is a multiple of IndG(h) for any
h ∈ G. Therefore, |G||p ≥ |G||p. Assume that there exists x ∈ G such that 1 < IndG(x)p < |G||p. Let H
be a Sylow p-subgroup of CG(x). Therefore, |G|p > |H| > |G|p/|G||p. Put T < G is a p-group such that
T = H. From Lemma 2.3 follows that CG(T ) contains y such that yN = x. Since CG(y) ≥ T , we obtain
IndG(y)p ≤ |G|p/|T | < |G||p. Therefore, IndG(y)p = 1 and consequently IndG(yN)p = 1 = IndG(x)p; a
contradiction. �
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The prime graph GK(G) of a finite group G is defined as follows. The vertex set of GK(G) is the set
π(G). Two distinct primes p, q ∈ π(G) considered as vertices of the graph are adjacent by the edge if and
only if there is an element of order pq in G. Denote by s(G) the number of connected components of GK(G)
and by πi(G), i = 1, ..., s(G), its i-th connected component. If G has even order, then put 2 ∈ π1(G).

Lemma 2.7. [18, Theorem A] If a finite group G has disconnected prime graph, then one of the following
conditions holds:

(a) s(G) = 2 and G is a Frobenius or 2-Frobenius group;

(b) there is a nonabelian simple group S such that S ≤ G = G/F (G) ≤ Aut(S), where F (G) is the maximal
normal nilpotent subgroup of G; moreover, F (G) and G/S are π1(G)-subgroups, s(S) ≥ s(G), and for
every i with 2 ≤ i ≤ s(G) there is j with 2 ≤ j ≤ s(S) such that πi(G) = πj(S).

Lemma 2.8 ([4, Lemma 5.3.4]). Let A×B be a group of automorphisms of the p-group P with A a p′-group
and B a p-group. If A acts trivially on CP (B), then A = 1.

Lemma 2.9 ([4, Lemma 5.2.3]). Let A be a p′-group of automorphisms of the abelian group P . Then we have
P = CP (A)× [P,A]

Lemma 2.10. [2.10, Lemma 1] If, for some prime p, every p′-element of a group G has index prime to p,
then the Sylow p-subgroup of G is a direct factor of G.

Lemma 2.11. [16, Lemma 3.6] For distinct primes s and r, consider a semidirect product H of a normal
r-subgroup T and a cyclic subgroup C = 〈g〉 of order s with [T, g] 6= 1. Suppose that H acts faithfully on a
vector space V of positive characteristic t not equal to r. If the minimal polynomial of g on V does not equal
xs − 1, then

(i) CT (g) 6= 1;

(ii) T is nonabelian;

(iii) r = 2 and s is a Fermat prime.

Lemma 2.12. [6, Lemma 11] If S ≤ A ≤ Aut(S), where S is a nonabelian simple group, then |A| = |A||.

Lemma 2.13. [11, Theorem B] Let G be a finite group and p a prime. Suppose that for every p-element x
the number |xG| is a p′-number. Then,

Op
′
(G/Op′(G)) = S1 × · · · × Sr ×H,

where H has an abelian Sylow p-subgroup, r ≥ 0 , and Si is a nonabelian simple group with either

(i) p = 3 and Si ' Ru or J4 or Si ' 2F4(q)′, 9 - (q + 1); or

(ii) p = 5 and Si ' Th for all i.

3 Proof
Let G be a counterexample for assertion of the theorem of minimal order.

Lemma 3.1. Op′(G) = 1

Proof. From Lemma 2.6 it follows that G/Op′(G) ∈ R(p) or |G/Op′(G)||p = 1. We can think that G/Op′(G)
does not include a normal p-complement, else G contains a normal p-complement. Therefore, G/Op′ a
counterexample for assertion of theorem; a contradiction with minimality G. If |G/Op′(G)||p = 1, then
Lemma 2.10 implies that G/Op′(G) is a p-group. Therefore, Op′(G) is a normal p-compliment of G; a
contradiction. �
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Lemma 3.2. Orders of minimal normal subgroups of G are multiples of p.

Proof. It follows from Lemma 3.1. �

Lemma 3.3. Each minimal normal subgroup of G is a p-group.

Proof. Let H be the socle of G. Then H has expression in form S ×X, where S = S1 × S2 × ... × Sn, for
nonabelian simple groups S1, ..., Sn and a p-group X. It follows from Lemma 3.2 that p divides the order of Si
for all 1 ≤ i ≤ n. Assume that G contains a p-element x such that Sx1 6= S1. Let D = 〈aaxax2

...a|x|−1|a ∈ S1〉.
We have D = CS1×Sx

1 ...
(x) and D ' S1. Since |S1| is a multiple of p, we see that IndG(x)p > 1. By Lemma

2.12, we obtain D contains a p′-element y such that IndD(y)p = |D|p. Thus, IndG(xy)p > IndG(x)p = |G||p;
a contradiction. It follows that Syi = Si, for any 1 ≤ i ≤ n and for any p-element y. Take h1 ∈ S1 and h2 ∈ S2.
We have a p-element y ∈ CG(h1h2) iff y ∈ CG(h1) ∩ CG(h2). Assume that n > 1. Since |Si| = |Si||, we see
that Si contains an element hi such that |hSi

i |p = |Si|p, in particular |hGi |p > 1. Let A be a Sylow p-subgroup
of CG(h1h2) and B be a Sylow p-subgroup of CG(h1). Then A < CG(h1) ∩ CG(h2) and |G|p > |B| > |A|; a
contradiction. Therefore, n = 1.

From Lemma 2.12, it follows that S contains an element h such that a p-element y ∈ CG(h) iff y ∈ CG(S).
If CG(S) contains y such that |yCG(S)|p > 1, then |(yh)G|p > |hG|p; a contradiction. From Lemma 2.10 it
follows that CG(S) = Op(G). Moreover O = Op(G) is abelian. We have |hG|p = |G|p/|O|p. Take a ∈ S such
that |aS |p < |S|p. Hence |aG|p < |hG|p. This implies that |aS |p = 1. From Lemma 2.13 it follows that a
Sylow p-subgroup of S is abelian or S is isomorphic to one of groups J4, Ru,

2F4(q)′, Th. Also it signifies
that S ∈ R(p).

Assume that there exists a p-element x ∈ G \ H such that IndG(x)p > 1 and x acts on S as an outer
automorphism. From Lemma 2.10 and the equation IndCG(x)(y)p = 1 for each p′-element y ∈ CG(x) it

follows that CG(x) = L× T , where L is a Sylow p-subgroup of CG(x). Therefore, CS(x) = P̃ × L̃, where P̃
is a Sylow p-subgroup of CS(x).

Assume that S ' Altn, where n ≥ 5. Since π(Out(S)) = {2}, we obtain p = 2. If n 6= 6, then
CS1

(x) ' Altn−2; a contradiction. If n = 6, then CS(x) ' Alt4 or CS1
(x) ' Sym3; a contradiction.

From [3] it follows that S is not isomorphic to a sporadic simple group or the Tits group.
Therefore, S is a group of Lie type. Assume that a Sylow p-subgroup of S is nonabelian. Since S is not

isomorphic to one of a sporadic groups, it follows that S ' 2F4(q)′, 9 - q+ 1 and p = 3. Therefore, x acts on
S as a field automorphism. Thus, q = 23(2m+1); this contradicts with that 9 - q+1. Thus, Sylow p-subgroups
of S are abelian.

Assume that p = 2. From description of simple groups with abelian Sylow 2-subgroup [17] it follows that
S is isomorphic to one of a groups L2(q) where q = 2f or q ≡ 3, 5(mod 8), J1 or 2G2(q) where q = 32m+1

and m ≥ 1. Put P ∈ Syl2(S). From [9, Theorems 1 and 7] it follows that CS(P ) = Z(P ) or S is isomorphic
to L2(q) where q odd. Let S be isomorphic to L2(q) for some odd q. If x acts on S as a field automorphism,
then CS(x) ' L2(d), where d divides q, in particular CS(x) is not a direct product of a Sylow p-subgroup
and a p-complement; a contradiction. Assume that x acts on S as diagonal automorphism or a diagonal-field
automorphism. Therefore, S contains a 2-element z such that CG(z) ∩ xG = ∅. Consequently 1 < |zG|p <
|hG|p; a contradiction. Hence, S does not isomorphic L2(q) for odd q. It follows that CS(P ) = Z(P ).
Since |S| = |S|| and S ∈ R(p), we see that {p} is a connected component of GK(S). The group of outer
automorphisms of J1 is trivial, therefore S does not isomorphic J1. If S '2 G2(q), then from [14] it follows
that 2 is not a connected components of GK(S). If S ' L2(q) for even q, then Out(S) is isomorphic to a
group of field automorphisms. By analogy as before we can assume that CS(x) is not a direct product of a
Sylow p-subgroup and a p-complement; a contradiction. Thus, p > 2.

From description of finite simple groups with an abelian Sylow p-subgroup [12] it follows that p does not
divide the orders of graph and diagonal automorphism groups. Lemma 2.5 and fact that subgroup of field
automorphisms is a normal subgroup of Out(S), implies G ' (S ×X).F , where F is a some cyclic p-group.
In particular, we get that X.F is a p-group. We can assume that F = 〈xX〉. As noted above CX(x) < X; a
contradiction with fact that |aG|p = 1 for each a ∈ X. Let x ∈ G be a p-element such that IndG(x)p > 1. We
have x ∈ SCG(S). Since S and CG(S) are normal subgroups of G with trivial intersection, we obtain x has
unique expression in form x = xSxC where xS ∈ S, xC ∈ CG(S). Moreover from Lemma 2.2 it follows that
CG(x) = CG(xS)∩CG(xC). From Lemma 2.12 it follows that S contains h such that a p-element y ∈ CG(h)
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iff y ∈ CG(S). Therefore, for each A ∈ Sylp(CG(h)) there exists B ∈ Sylp(CG(xS)) such that A < B. Since
IndS(xS)p < IndS(h)p and xC ∈ CG(h), we obtain IndG(x)p < InG(hxC); a contradiction. �

Let O = Op(G). Lemma 3.3 implies that O includes the socle of G. Therefore, CG(O) = Z(O), and for
each h ∈ G \O we have IndG(h)p = |G||p.

Lemma 3.4. |G|p > |O|

Proof. Assume that |G|p = |O|. Let x ∈ O such that IndO(x) > 1 and h ∈ G be a p′-element. We
have |CO(x)| > |Z(O)|. Therefore, |CO(h)| > |Z(O)|, consequently CO(h) contains an element y such that
IndO(y) > 1. Hence CO(y) = CO(h). From Lemma 2.8 it follows that CO(h) = O; a contradiction. �

From Lemma 3.4 if follows that |G|p > |O|. Let h ∈ G be a p′-element and x ∈ CG(h) \O be a p-element.
Using Lemma 2.8 we can show that IndG(x)p = 1, so x ∈ CG(O) = Z(O), which is a contradiction. In
particular p is a connected component of GK(G/O).

Lemma 3.5. The group O is abelian.

Proof. Assume that there exists x ∈ O \ Z(O). Put h ∈ G is a p′-element. We have |CG(h)|p = |CG(x)|p, in
particular CG(h) contains a p-element y such that IndG(y)p > 1. From Lemma 2.8 it follows that O < CG(h);
a contradiction. �

Lemma 3.6. IndG(x)p = 1 for each x ∈ O.

Proof. Assume that there exists x ∈ O such that IndG(x)p > 1. Lemma 3.5 implies that O is abelian.
Therefore, CG(x) ≥ O. Put h ∈ G is a p′-element. We know that p is a connected component of GK(G/O),
hence for each Sylow p-subgroup P of CG(h) we have P ≤ O. Since CG(O) = Z(O), we see that P 6= O.
Consequently |G|p/|CO(x)| ≥ |G|p/|CG(x)|p = |G||p. Therefore, |P | ≥ |O|; a contradiction. �

Lemma 3.7. The group G is non solvable.

Proof. Assume that G is solvable. From Lemma 2.7 it follows that G/O is a Frobenius or 2-Frobenius group.
Since kernel of G/O is a p′-group and Lemma 2.5, we obtain G/O is a Frobenius group with p′-kernel K
and complement F , else G is not minimal. Put K < G be a minimal subgroup such that KO/O = K.
From Frattini argument we have N(K)O/O ' K. Let F ≤ NG(K) be a minimal subgroup such that
FO/O = F . Since G/O is a Frobenius group with the complement F , we see that NG(F ) < OF ; in
particular π(NG(F )) = {p}.

Let H < K be maximal with respect to inclusion subgroup of K such that CO(H) > Z(G). We show that
H is not trivial. For each h ∈ K and y ∈ F \ O we have |hG|p = |yG|p and |CG(y)|p > |Z(G)|p. Therefore,
CO(h) > Z(G), in particular H > 1.

Let x ∈ CO(H) \ Z(G). Lemma 3.6 implies that x ∈ Z(P ) for some Sylow p-subgroup P of G. Hence
CG(x) includes a subgroup V which is conjugated with F . We have H < CG(x). Since H is a maximal
p′-subgroup with a non trivial centralizer in O, we see that H is a Hall p′-subgroup of CG(x). In particular
CG(x) = O.H.F , where H = HO/O. Let y ∈ CO(H) \ Z(G). We can show that CG(y) = O.H h R. Since
R < NG/O(H) and F < NG/O(H), we have HRF is a Frobenius group with the kernel H and the complement

F . Therefore, HRF = HR = HF and CG(y) = CG(x). Thus, CG(x) = CG(CO(H)).
Let N = NK(H). Since K is nilpotent, we get that H = K or N > H. We have N < NG(CG(H)).

Therefore, N < NG(CG(CO(H))). If N > H, then N 6≤ CG(CO(H)). Thus, NG(F ) includes a subgroup X
such that (X/H) ' N/H; a contradiction with fact that NG(F ) is a p-group. It follows that H = K. We
have F < CG(CO(H)) and O is abelian. Therefore, CO(H) ≤ Z(G); a contradiction. �

From Lemmas 3.7 and 2.7 it follows that G/O ' F.S, where F is a nilpotent π1(G/O)-group, and S
is a nonabelian simple group. Let g ∈ G be a p′-element. Put Hg ≤ CG(g) a subgroup generated by all
(π(|g|)∪ {p})′-elements. We have Hg ≤ CG(CO(g)). Therefore, Hg acts regularly on O/CO(g). Hence Sylow
subgroups of Hg are cyclic or quaternion groups.
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Lemma 3.8. F = 1.

Proof. Assume that |π(F )| > 1. Let h ∈ F be a t-element for some t ∈ π(F ). We have CF (h) includes some
Hall t′-subgroup T of F . Since Sylow subgroups of Hh are cyclic or quaternion, we get S acts trivially on T .
Therefore, F is a t-group for some prime t 6= p.

Assume that there exists h ∈ Z(F ) such that |π(CF.S(h))| > 1. Let g ∈ CF.S(h) be a t′-element. Assume
that Z(F ) < CF.S(g). Since Z(F ) is a normal subgroup of F.S, we have 〈gG〉 < CF.S(Z(F )). The group S is
a simple group, therefore, 〈gG〉F/F = S. In particular F.S contains an element of order pt; a contradiction.
Hence [Z(F ), g] > 1. We have Hh acts regularly on the O/CO(h) and 〈gCF.S(h)〉 ≤ Hh. This assertion
contradicts with Lemma 2.11. Therefore, π(CF.S(h)) = {t} for each h ∈ Z(F ).

Assume that there exists a ∈ F.S a t-element such that |π(CF.S(a))| > 1. Since CF.S(a) ∩ Z(F ) > 1, we
get a contradiction with Lemma 2.11.

Therefore, t is a connected component of GK(F.S). Since t ∈ π1(GK(F.S)), we get t = 2. From a
description of the prime graph of finite simple groups [14] it follows that S ' Alt5. From Brauer 2-character
tables [3] it follows that F.S contains an element x such that |x| ∈ {6, 10}; a contradiction. �

From Lemmas 3.7 and 3.8 it follows that G/O is a simple group and p is a connected component of
GK(G/O).

Lemma 3.9. G ' O

Proof. Assume that S is an alternating simple group of degree n. An alternating group has disconnected
prime graph iff one of the numbers n, n − 1, n − 2 is prime, and this number is a connected component of
the prime graph. In particular, if n > 6, then 3 ∈ π1(S). If n > 6, then S contains an element g of order 3
such that CS(g) ' 〈g〉 ×Altn−3. Therefore, in this case Hg includes a Frobenius group; a contradiction with
assertion that Hg acts regular on O/CO(g). Let n ∈ {5, 6}. Therefore, S contains an element g such that for
each p-element h ∈ S we have 〈h, g〉 = S. We have CO(g) > Z(G). Put x ∈ CO(g) \ Z(G). It follows from
Lemma 3.5 that |xG|p = 1. Hence, CG(x) includes a Sylow p-subgroup P of G. In particular 〈g, PO/O〉 = S.
That signifies that CG(x) = G; a contradiction.

Assume that S is a group of Lie type. If Lie rank of S is more then 2, then S contains an element g
such that Hg includes a Frobenius group. Therefore, we can assume that Lie rank of S is 1 or 2. Assume
that S ' L2(q). We have that S is generated by a pair a, b where |a| = (q + 1)/2, |b| = (q − 1)/2. Since
p = (q − 1)/2 or p = (q + 1)/2, we can assume that CO(g) ≤ Z(G); a contradiction. Groups L3(q) and
U3(q) contain an element g such that CS(g) includes L2(q). Therefore, S is not isomorphic to one of a L3(q)
or U3(q). Similarly, it can be shown that S is not isomorphic to B2(q),2B2(q), G2(q),2G2(q) and sporadic
groups. �

Lemma 3.9 completes proof of the theorem.

4 Proof of Corollaries
Proof of Corollary 1.

Proof. IfG is a p-group, then the corollary is satisfied. Let h ∈ G be a p′-element. We have |CG(h)|p > |Z(P )|,
where P ∈ Sylp(G). Let H ∈ Sylp(CG(h)). It follows from Lemma 2.6 that G/Op′(G) ∈ R∗(p). From
Theorem 1 we get that G/Op′(G) is a p-group. Since |H| > |Z(P )|, we get that H contains x such that
IndG/Op′ (G)(xOp′(G)) = pe, for some e > 0. Therefore, IndG/Op′ (G)(xOp′(G))p = IndG(x)p = pe. Hence

CG(h) includes some Sylow p-subgroup of CG(x). From Lemma 2.4 it follows that Z(P ) ≤ Z(G). �

Proof of Corollary 2.

Proof. IfG ∈ R∗(p), then from Corollary 1 it follows that Z(G) > 1; a contradiction. Therefore, IndG(x)p = 1

for each p-element x of G. From Lemma 2.13 it follows that Op
′
(G/Op′(G)) = S1 × · · · × Sr × H. From

Lemmas 2.5 and 2.6 it follows that Op
′
(G/Op′(G)) ∈ R(p). Since S1 is a subnormal subgroup of G/Op′(G),

we get |xG/Op′ (G)| is a multiple of |xS1 | for each x ∈ S1. Assume that p = 3 and S1 ' Ru. We have S1

contains x of order 12 such that |CS1
(x)| = 24. Therefore, 1 < |xS1 |3 < |G||3; a contradiction. If S1 ' J4,
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then S1 contains x of order 21 such that |CS1
(x)| = 42; a contradiction with definition of R∗(p)-groups.

Assume that S1 '2 F4(q)′. According to the results of [13], there is just one conjugacy class of elements of
order 3 in S1. Therefore, NS1

(〈x〉) ' CS1
(x) : 2 = 3.U3(q) : 2 where x ∈ S1 is an element of order 3 [10].

Thus, S1 contains an element y of order 6 such that 1 < |yS1 |3 < |G||3; a contradiction. Assume that p = 5
and S1 ' Th. In this case S1 contains an element x of order 8 such that |CS1(x)| = 96; a contradiction. The
assertion of Corollary 2 follows from Lemma 2.13. �
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