On existence of normal p-complement of finite groups with restrictions on the conjugacy class sizes

Ilya B. Gorshkov

Abstract

The greatest power of a prime p dividing the natural number n will be denoted by n_{p}. Let $\operatorname{Ind}_{G}(g)=\left|G: C_{G}(g)\right|$. Suppose that G is a finite group and p is a prime. We prove that if there exists an integer $\alpha>0$ such that $\operatorname{Ind}_{G}(a)_{p} \in\left\{1, p^{\alpha}\right\}$ for every a of G and a p-element $x \in G$ such that $\operatorname{Ind}_{G}(x)_{p}>1$, then G includes a normal p-complement.

1 Introduction

In this paper, all groups are finite. Denote the set of prime divisors of positive integer n by $\pi(n)$, and by the set $\pi(|G|)$ for a group G by $\pi(G)$. For a set of primes π and a positive integer n we will denote $n_{\pi}=\prod_{p \in \pi}|n|_{p}$. Let G be a group and take $a \in G$. With a^{G} standing for the conjugacy class in G containing a, put $N(G)=\left\{\left|x^{G}\right|, x \in G\right\} \backslash\{1\}$. Denote by $\mid G \|_{p}$ the number p^{n} such that $N(G)$ contains a multiple of p^{n} and avoids multiples of p^{n+1}. For $\pi \subseteq \pi(G)$ put $\left|G\left\|_{\pi}=\prod_{p \in \pi}|G|\right\|_{p}\right.$. For brevity, $| G|\mid$ is meaning $| G \|_{\pi(G)}$. Observe that $|G|_{p}$ divides $|G|_{p}$ for each $p \in \pi(G)$. However, $|G|_{p}$ can be less than $|G|_{p}$. Take a set of primes π, denote $\Theta_{\pi}=\{\tau \subseteq \pi|\tau \neq \varnothing,|\tau| \geq|\pi|-1\}$.

Definition 1.1. Let π be a set of primes. We say that a group G satisfies the condition π^{*} or G is a π^{*}-group and write $G \in \pi^{*}$ if for every $a \in N(G)$ there exists $\tau_{a} \in \Theta_{\pi}$ such that $a_{\pi}=|G|_{\tau_{a}}$.

Ishikawa [8] proved that a group G with $N(G)=\left\{p^{\alpha}\right\}$ is nilpotent class at most 3. Casolo, Dolfi and Jabara [2] described the set of $\{p\}^{*}$-groups. In particular, they proved that any group of $\{p\}^{*}$ is solvable and includes a normal p-compliment. Camina [2.10] proved that a group G with $\{p, q\}^{*}$-property is nilpotent if $N(G)=\left\{p^{n}, q^{m}, p^{n} q^{m}\right\}$. Beltram and Filipe [1] extended Camina's theorem in the following way. Let G be a group whose set of conjugacy class sizes is $\{1, n, m, n m\}$, where n and m are coprime positive integers; then G is nilpotent and the integers n and m are prime-power numbers; in particular $G \in\{n, m\}^{*}$. The author of [7] investigate $\{p, q\}^{*}$-groups with trivial center.

In the present paper we will investigate some generalisations of the property $\{p\}^{*}$.
Definition 1.2. We say that a group G satisfies the condition $R(p)$ or G is a $R(p)$-group and write $G \in R(p)$ if there exists an integer $\alpha>0$ such that $a_{p} \in\left\{1, p^{\alpha}\right\}$ for each $a \in N(G)$.

Note that, if $G \in \pi^{*}$, then $G \in R(p)$ for each $p \in \pi$. The set of $R(p)$-group disjoins on two subsets $R(p)^{*}$ and $R(p)^{* *}$:
(i) $G \in R(p)^{*}$ if G contains a p-element h such that $\operatorname{Ind}_{G}(h)_{p}>1$;

[^0](ii) $G \in R(p)^{* *}$ if $\operatorname{Ind}_{G}(h)_{p}=1$ for each p-element $h \in G$.

We prove the following theorem.
Theorem 1.3. If $G \in R(p)^{*}$, then G has a normal p-complement.
It follows from the theorem that the center of a $R(p)^{*}$-group is not trivial.
Corollary 1.4. If $G \in R(p)^{*}$ and $P \in \operatorname{Syl}_{p}(G)$, then $Z(P) \leq Z(G)$.
Vasil'ev [15] proved that if G is a $R(p)$-group with trivial center and $\mid G \|_{p}=p$, then Sylow p-subgroups of G are abelian. This assertion is true in the general case.

Corollary 1.5. If $G \in R(p)$ and $Z(G)=1$, then Sylow p-subgroups of G are abelian.

2 Preliminary results

Lemma 2.1 ([5, Lemma 1.4]). For a finite group G, take $K \unlhd G$ and put $\bar{G}=G / K$. Take $x \in G$ and $\bar{x}=x K \in G / K$. The following claims hold:
(i) $\left|x^{K}\right|$ and $\left|\bar{x}^{\bar{G}}\right|$ divide $\left|x^{G}\right|$.
(ii) For neighboring members L and M of a composition series of G, with $L<M$, take $x \in M$ and the image $\widetilde{x}=x L$ of x. Then $\left|\widetilde{x}^{S}\right|$ divides $\left|x^{G}\right|$, where $S=M / L$.
(iii) If $y \in G$ with $x y=y x$ and $(|x|,|y|)=1$, then $C_{G}(x y)=C_{G}(x) \cap C_{G}(y)$.
(iv) If $(|x|,|K|)=1$, then $C_{\bar{G}}(\bar{x})=C_{G}(x) K / K$.
(v) $\overline{C_{G}(x)} \leq C_{\bar{G}}(\bar{x})$.

Lemma 2.2 ([2, Lemma 2.1]). Let x, y be elements of a group G and assume at least one of the following conditions:
(i) x and y commute and have coprime orders;
(ii) $x \in N, y \in M$ with $N, M \unlhd G$ and $N \cap M=1$.

Then $C_{G}(x y)=C_{G}(x) \cap C_{G}(y)$.
Lemma 2.3 ([2, Lemma 2.7]). Let A be a group acting via automorphisms on a group G and N be a normal A-invariant subgroup of G. If $(|A|,|N|)=1$, then:
(i) $C_{G / N}(A)=C_{G}(A) N / N$;
(ii) $\left|C_{G}(A)\right|=\left|C_{N}(A)\right|\left|C_{G / N}(A)\right|$.

Lemma 2.4 ([5, Lemma 4]). Take $g \in G$. If each conjugacy class of G contains an element h such that $g \in C_{G}(h)$, then $g \in Z(G)$.

Lemma 2.5. If $G \in R(p)$ and $N \unlhd G$ such that $|N|_{p}=|G|_{p}$, then $N \in R(p)$ or $\left.|N|\right|_{p}=1$.
Proof. Since N is a normal subgroup and N includes every Sylow p-subgroup of G, we have N includes every Sylow p-subgroup of $C_{G}(x)$ for any $x \in G$. Therefore, $\operatorname{Ind}_{G}(x)_{p}=\operatorname{Ind}_{N}(x)_{p}$ and the lemma is proved.

Lemma 2.6. If $G \in R(p), N \unlhd G$ is a p^{\prime}-group, then $G / N \in R(p)$ or $\mid G / N \|_{p}=1$.
Proof. Let ${ }^{-}: G \rightarrow G / N$ be a natural homomorphism. We have $\operatorname{Ind}_{G}(h)$ is a multiple of $\operatorname{Ind} d_{\bar{G}}(\bar{h})$ for any $h \in G$. Therefore, $\left|G\left\|_{p} \geq \mid \bar{G}\right\|_{p}\right.$. Assume that there exists $\bar{x} \in \bar{G}$ such that $\left.1<\operatorname{Ind} \bar{G}_{\bar{G}}(\bar{x})_{p}<\right| G \|_{p}$. Let H be a Sylow p-subgroup of $C_{\bar{G}}(\bar{x})$. Therefore, $|G|_{p}>|H|>|G|_{p} /|G|_{p}$. Put $T<G$ is a p-group such that $\bar{T}=H$. From Lemma 2.3 follows that $C_{G}(T)$ contains y such that $y N=\bar{x}$. Since $C_{G}(y) \geq T$, we obtain $\operatorname{Ind}_{G}(y)_{p} \leq|G|_{p} /|T|<|G|_{p}$. Therefore, $\operatorname{Ind}_{G}(y)_{p}=1$ and consequently $\operatorname{Ind} d_{\bar{G}}(y N)_{p}=1=\operatorname{Ind} d_{\bar{G}}(x)_{p}$; a contradiction.

The prime graph $G K(G)$ of a finite group G is defined as follows. The vertex set of $G K(G)$ is the set $\pi(G)$. Two distinct primes $p, q \in \pi(G)$ considered as vertices of the graph are adjacent by the edge if and only if there is an element of order $p q$ in G. Denote by $s(G)$ the number of connected components of $G K(G)$ and by $\pi_{i}(G), i=1, \ldots, s(G)$, its i-th connected component. If G has even order, then put $2 \in \pi_{1}(G)$.

Lemma 2.7. [18, Theorem A] If a finite group G has disconnected prime graph, then one of the following conditions holds:
(a) $s(G)=2$ and G is a Frobenius or 2-Frobenius group;
(b) there is a nonabelian simple group S such that $S \leq G=G / F(G) \leq \operatorname{Aut}(S)$, where $F(G)$ is the maximal normal nilpotent subgroup of G; moreover, $F(G)$ and G / S are $\pi_{1}(G)$-subgroups, $s(S) \geq s(G)$, and for every i with $2 \leq i \leq s(G)$ there is j with $2 \leq j \leq s(S)$ such that $\pi_{i}(G)=\pi_{j}(S)$.

Lemma 2.8 ([4, Lemma 5.3.4]). Let $A \times B$ be a group of automorphisms of the p-group P with A a p^{\prime}-group and B a p-group. If A acts trivially on $C_{P}(B)$, then $A=1$.

Lemma 2.9 ([4, Lemma 5.2.3]). Let A be a p^{\prime}-group of automorphisms of the abelian group P. Then we have $P=C_{P}(A) \times[P, A]$

Lemma 2.10. [2.10, Lemma 1] If, for some prime p, every p^{\prime}-element of a group G has index prime to p, then the Sylow p-subgroup of G is a direct factor of G.

Lemma 2.11. [16, Lemma 3.6] For distinct primes s and r, consider a semidirect product H of a normal r-subgroup T and a cyclic subgroup $C=\langle g\rangle$ of order s with $[T, g] \neq 1$. Suppose that H acts faithfully on a vector space V of positive characteristic t not equal to r. If the minimal polynomial of g on V does not equal $x^{s}-1$, then
(i) $C_{T}(g) \neq 1$;
(ii) T is nonabelian;
(iii) $r=2$ and s is a Fermat prime.

Lemma 2.12. [6, Lemma 11] If $S \leq A \leq A u t(S)$, where S is a nonabelian simple group, then $|A|=|A| \mid$.
Lemma 2.13. [11, Theorem B] Let G be a finite group and p a prime. Suppose that for every p-element x the number $\left|x^{G}\right|$ is a p^{\prime}-number. Then,

$$
O^{p^{\prime}}\left(G / O_{p^{\prime}}(G)\right)=S_{1} \times \cdots \times S_{r} \times H
$$

where H has an abelian Sylow p-subgroup, $r \geq 0$, and S_{i} is a nonabelian simple group with either
(i) $p=3$ and $S_{i} \simeq R u$ or J_{4} or $S_{i} \simeq{ }^{2} F_{4}(q)^{\prime}, 9 \nmid(q+1)$; or
(ii) $p=5$ and $S_{i} \simeq$ Th for all i.

3 Proof

Let G be a counterexample for assertion of the theorem of minimal order.
Lemma 3.1. $O_{p^{\prime}}(G)=1$
Proof. From Lemma 2.6 it follows that $G / O_{p^{\prime}}(G) \in R(p)$ or $\mid G / O_{p^{\prime}}(G) \|_{p}=1$. We can think that $G / O_{p^{\prime}}(G)$ does not include a normal p-complement, else G contains a normal p-complement. Therefore, $G / O_{p^{\prime}}$ a counterexample for assertion of theorem; a contradiction with minimality G. If $\mid G / O_{p^{\prime}}(G) \|_{p}=1$, then Lemma 2.10 implies that $G / O_{p^{\prime}}(G)$ is a p-group. Therefore, $O_{p^{\prime}}(G)$ is a normal p-compliment of G; a contradiction.

Lemma 3.2. Orders of minimal normal subgroups of G are multiples of p.
Proof. It follows from Lemma 3.1.
Lemma 3.3. Each minimal normal subgroup of G is a p-group.
Proof. Let H be the socle of G. Then H has expression in form $S \times X$, where $S=S_{1} \times S_{2} \times \ldots \times S_{n}$, for nonabelian simple groups S_{1}, \ldots, S_{n} and a p-group X. It follows from Lemma 3.2 that p divides the order of S_{i}
 We have $D=C_{S_{1} \times S_{1}^{x} \ldots}(x)$ and $D \simeq S_{1}$. Since $\left|S_{1}\right|$ is a multiple of p, we see that $I n d_{G}(x)_{p}>1$. By Lemma 2.12, we obtain D contains a p^{\prime}-element y such that $\operatorname{Ind}_{D}(y)_{p}=|D|_{p}$. Thus, $\operatorname{Ind}_{G}(x y)_{p}>\operatorname{Ind}_{G}(x)_{p}=\mid G \|_{p}$; a contradiction. It follows that $S_{i}^{y}=S_{i}$, for any $1 \leq i \leq n$ and for any p-element y. Take $h_{1} \in S_{1}$ and $h_{2} \in S_{2}$. We have a p-element $y \in C_{G}\left(h_{1} h_{2}\right)$ iff $y \in C_{G}\left(h_{1}\right) \cap C_{G}\left(h_{2}\right)$. Assume that $n>1$. Since $\left|S_{i}\right|=\left|S_{i}\right| \mid$, we see that S_{i} contains an element h_{i} such that $\left|h_{i}^{S_{i}}\right|_{p}=\left|S_{i}\right|_{p}$, in particular $\left|h_{i}^{G}\right|_{p}>1$. Let A be a Sylow p-subgroup of $C_{G}\left(h_{1} h_{2}\right)$ and B be a Sylow p-subgroup of $C_{G}\left(h_{1}\right)$. Then $A<C_{G}\left(h_{1}\right) \cap C_{G}\left(h_{2}\right)$ and $|G|_{p}>|B|>|A|$; a contradiction. Therefore, $n=1$.

From Lemma 2.12, it follows that S contains an element h such that a p-element $y \in C_{G}(h)$ iff $y \in C_{G}(S)$. If $C_{G}(S)$ contains y such that $\left|y^{C_{G}(S)}\right|_{p}>1$, then $\left|(y h)^{G}\right|_{p}>\left|h^{G}\right|_{p}$; a contradiction. From Lemma 2.10 it follows that $C_{G}(S)=O_{p}(G)$. Moreover $O=O_{p}(G)$ is abelian. We have $\left|h^{G}\right|_{p}=|G|_{p} /|O|_{p}$. Take $a \in S$ such that $\left|a^{S}\right|_{p}<|S|_{p}$. Hence $\left|a^{G}\right|_{p}<\left|h^{G}\right|_{p}$. This implies that $\left|a^{S}\right|_{p}=1$. From Lemma 2.13 it follows that a Sylow p-subgroup of S is abelian or S is isomorphic to one of groups $J_{4}, R u,{ }^{2} F_{4}(q)^{\prime}, T h$. Also it signifies that $S \in R(p)$.

Assume that there exists a p-element $x \in G \backslash H$ such that $\operatorname{Ind}_{G}(x)_{p}>1$ and x acts on S as an outer automorphism. From Lemma 2.10 and the equation $\operatorname{Ind}_{C_{G}(x)}(y)_{p}=1$ for each p^{\prime}-element $y \in C_{G}(x)$ it follows that $C_{G}(x)=L \times T$, where L is a Sylow p-subgroup of $C_{G}(x)$. Therefore, $C_{S}(x)=\widetilde{P} \times \widetilde{L}$, where \widetilde{P} is a Sylow p-subgroup of $C_{S}(x)$.

Assume that $S \simeq A l t_{n}$, where $n \geq 5$. Since $\pi(\operatorname{Out}(S))=\{2\}$, we obtain $p=2$. If $n \neq 6$, then $C_{S_{1}}(x) \simeq A l t_{n-2} ;$ a contradiction. If $n=6$, then $C_{S}(x) \simeq A l t_{4}$ or $C_{S_{1}}(x) \simeq S y m_{3}$; a contradiction.

From [3] it follows that S is not isomorphic to a sporadic simple group or the Tits group.
Therefore, S is a group of Lie type. Assume that a Sylow p-subgroup of S is nonabelian. Since S is not isomorphic to one of a sporadic groups, it follows that $S \simeq{ }^{2} F_{4}(q)^{\prime}, 9 \nmid q+1$ and $p=3$. Therefore, x acts on S as a field automorphism. Thus, $q=2^{3(2 m+1)}$; this contradicts with that $9 \nmid q+1$. Thus, Sylow p-subgroups of S are abelian.

Assume that $p=2$. From description of simple groups with abelian Sylow 2-subgroup [17] it follows that S is isomorphic to one of a groups $L_{2}(q)$ where $q=2^{f}$ or $q \equiv 3,5(\bmod 8), J_{1}$ or ${ }^{2} G_{2}(q)$ where $q=3^{2 m+1}$ and $m \geq 1$. Put $P \in \operatorname{Syl}_{2}(S)$. From [9, Theorems 1 and 7] it follows that $C_{S}(P)=Z(P)$ or S is isomorphic to $L_{2}(q)$ where q odd. Let S be isomorphic to $L_{2}(q)$ for some odd q. If x acts on S as a field automorphism, then $C_{S}(x) \simeq L_{2}(d)$, where d divides q, in particular $C_{S}(x)$ is not a direct product of a Sylow p-subgroup and a p-complement; a contradiction. Assume that x acts on S as diagonal automorphism or a diagonal-field automorphism. Therefore, S contains a 2 -element z such that $C_{G}(z) \cap x^{G}=\varnothing$. Consequently $1<\left|z^{G}\right|_{p}<$ $\left|h^{G}\right|_{p}$; a contradiction. Hence, S does not isomorphic $L_{2}(q)$ for odd q. It follows that $C_{S}(P)=Z(P)$. Since $|S|=|S| \mid$ and $S \in R(p)$, we see that $\{p\}$ is a connected component of $G K(S)$. The group of outer automorphisms of J_{1} is trivial, therefore S does not isomorphic J_{1}. If $S \simeq^{2} G_{2}(q)$, then from [14] it follows that 2 is not a connected components of $G K(S)$. If $S \simeq L_{2}(q)$ for even q, then $\operatorname{Out}(S)$ is isomorphic to a group of field automorphisms. By analogy as before we can assume that $C_{S}(x)$ is not a direct product of a Sylow p-subgroup and a p-complement; a contradiction. Thus, $p>2$.

From description of finite simple groups with an abelian Sylow p-subgroup [12] it follows that p does not divide the orders of graph and diagonal automorphism groups. Lemma 2.5 and fact that subgroup of field automorphisms is a normal subgroup of $\operatorname{Out}(S)$, implies $G \simeq(S \times X) . F$, where F is a some cyclic p-group. In particular, we get that $X . F$ is a p-group. We can assume that $F=\langle x X\rangle$. As noted above $C_{X}(x)<X$; a contradiction with fact that $\left|a^{G}\right|_{p}=1$ for each $a \in X$. Let $x \in G$ be a p-element such that $\operatorname{Ind}_{G}(x)_{p}>1$. We have $x \in S C_{G}(S)$. Since S and $C_{G}(S)$ are normal subgroups of G with trivial intersection, we obtain x has unique expression in form $x=x_{S} x_{C}$ where $x_{S} \in S, x_{C} \in C_{G}(S)$. Moreover from Lemma 2.2 it follows that $C_{G}(x)=C_{G}\left(x_{S}\right) \cap C_{G}\left(x_{C}\right)$. From Lemma 2.12 it follows that S contains h such that a p-element $y \in C_{G}(h)$
iff $y \in C_{G}(S)$. Therefore, for each $A \in S y l_{p}\left(C_{G}(h)\right)$ there exists $B \in S y l_{p}\left(C_{G}\left(x_{S}\right)\right)$ such that $A<B$. Since $\operatorname{Ind}_{S}\left(x_{S}\right)_{p}<\operatorname{Ind}_{S}(h)_{p}$ and $x_{C} \in C_{G}(h)$, we obtain $\operatorname{Ind} d_{G}(x)_{p}<\operatorname{In} n_{G}\left(h x_{C}\right)$; a contradiction.

Let $O=O_{p}(G)$. Lemma 3.3 implies that O includes the socle of G. Therefore, $C_{G}(O)=Z(O)$, and for each $h \in G \backslash O$ we have $\operatorname{Ind}_{G}(h)_{p}=|G|_{p}$.

Lemma 3.4. $|G|_{p}>|O|$
Proof. Assume that $|G|_{p}=|O|$. Let $x \in O$ such that $\operatorname{Ind}_{O}(x)>1$ and $h \in G$ be a p^{\prime}-element. We have $\left|C_{O}(x)\right|>|Z(O)|$. Therefore, $\left|C_{O}(h)\right|>|Z(O)|$, consequently $C_{O}(h)$ contains an element y such that $\operatorname{Ind}_{O}(y)>1$. Hence $C_{O}(y)=C_{O}(h)$. From Lemma 2.8 it follows that $C_{O}(h)=O$; a contradiction.

From Lemma 3.4 if follows that $|G|_{p}>|O|$. Let $h \in G$ be a p^{\prime}-element and $x \in C_{G}(h) \backslash O$ be a p-element. Using Lemma 2.8 we can show that $\operatorname{Ind}_{G}(x)_{p}=1$, so $x \in C_{G}(O)=Z(O)$, which is a contradiction. In particular p is a connected component of $G K(G / O)$.

Lemma 3.5. The group O is abelian.
Proof. Assume that there exists $x \in O \backslash Z(O)$. Put $h \in G$ is a p^{\prime}-element. We have $\left|C_{G}(h)\right|_{p}=\left|C_{G}(x)\right|_{p}$, in particular $C_{G}(h)$ contains a p-element y such that $\operatorname{Ind}_{G}(y)_{p}>1$. From Lemma 2.8 it follows that $O<C_{G}(h)$; a contradiction.

Lemma 3.6. $\operatorname{Ind}_{G}(x)_{p}=1$ for each $x \in O$.
Proof. Assume that there exists $x \in O$ such that $\operatorname{Ind}_{G}(x)_{p}>1$. Lemma 3.5 implies that O is abelian. Therefore, $C_{G}(x) \geq O$. Put $h \in G$ is a p^{\prime}-element. We know that p is a connected component of $G K(G / O)$, hence for each Sylow p-subgroup P of $C_{G}(h)$ we have $P \leq O$. Since $C_{G}(O)=Z(O)$, we see that $P \neq O$. Consequently $|G|_{p} /\left|C_{O}(x)\right| \geq|G|_{p} /\left|C_{G}(x)\right|_{p}=|G|_{p}$. Therefore, $|P| \geq|O|$; a contradiction.

Lemma 3.7. The group G is non solvable.
Proof. Assume that G is solvable. From Lemma 2.7 it follows that G / O is a Frobenius or 2-Frobenius group. Since kernel of G / O is a p^{\prime}-group and Lemma 2.5, we obtain G / O is a Frobenius group with p^{\prime}-kernel \bar{K} and complement \bar{F}, else G is not minimal. Put $K<G$ be a minimal subgroup such that $K O / O=\bar{K}$. From Frattini argument we have $N(K) O / O \simeq \bar{K}$. Let $F \leq N_{G}(K)$ be a minimal subgroup such that $F O / O=\bar{F}$. Since G / O is a Frobenius group with the complement \bar{F}, we see that $N_{G}(F)<O F$; in particular $\pi\left(N_{G}(F)\right)=\{p\}$.

Let $H<K$ be maximal with respect to inclusion subgroup of K such that $C_{O}(H)>Z(G)$. We show that H is not trivial. For each $h \in K$ and $y \in F \backslash O$ we have $\left|h^{G}\right|_{p}=\left|y^{G}\right|_{p}$ and $\left|C_{G}(y)\right|_{p}>|Z(G)|_{p}$. Therefore, $C_{O}(h)>Z(G)$, in particular $H>1$.

Let $x \in C_{O}(H) \backslash Z(G)$. Lemma 3.6 implies that $x \in Z(P)$ for some Sylow p-subgroup P of G. Hence $C_{G}(x)$ includes a subgroup V which is conjugated with F. We have $H<C_{G}(x)$. Since H is a maximal p^{\prime}-subgroup with a non trivial centralizer in O, we see that H is a Hall p^{\prime}-subgroup of $C_{G}(x)$. In particular $C_{G}(x)=O \cdot \bar{H} \cdot \bar{F}$, where $\bar{H}=H O / O$. Let $y \in C_{O}(H) \backslash Z(G)$. We can show that $C_{G}(y)=O \cdot \bar{H} \lambda \bar{R}$. Since $\bar{R}<N_{G / O}(\bar{H})$ and $\bar{F}<N_{G / O}(\bar{H})$, we have $\overline{H R F}$ is a Frobenius group with the kernel \bar{H} and the complement \bar{F}. Therefore, $\overline{H R F}=\overline{H R}=\overline{H F}$ and $C_{G}(y)=C_{G}(x)$. Thus, $C_{G}(x)=C_{G}\left(C_{O}(H)\right)$.

Let $N=N_{K}(H)$. Since K is nilpotent, we get that $H=K$ or $N>H$. We have $N<N_{G}\left(C_{G}(H)\right)$. Therefore, $N<N_{G}\left(C_{G}\left(C_{O}(H)\right)\right)$. If $N>H$, then $N \not \leq C_{G}\left(C_{O}(H)\right)$. Thus, $N_{G}(F)$ includes a subgroup X such that $(X / H) \simeq N / H$; a contradiction with fact that $N_{G}(F)$ is a p-group. It follows that $H=K$. We have $F<C_{G}\left(C_{O}(H)\right)$ and O is abelian. Therefore, $C_{O}(H) \leq Z(G)$; a contradiction.

From Lemmas 3.7 and 2.7 it follows that $G / O \simeq F . S$, where F is a nilpotent $\pi_{1}(G / O)$-group, and S is a nonabelian simple group. Let $g \in G$ be a p^{\prime}-element. Put $H_{g} \leq C_{G}(g)$ a subgroup generated by all $(\pi(|g|) \cup\{p\})^{\prime}$-elements. We have $H_{g} \leq C_{G}\left(C_{O}(g)\right)$. Therefore, H_{g} acts regularly on $O / C_{O}(g)$. Hence Sylow subgroups of H_{g} are cyclic or quaternion groups.

Lemma 3.8. $F=1$.
Proof. Assume that $|\pi(F)|>1$. Let $h \in F$ be a t-element for some $t \in \pi(F)$. We have $C_{F}(h)$ includes some Hall t^{\prime}-subgroup T of F. Since Sylow subgroups of H_{h} are cyclic or quaternion, we get S acts trivially on T. Therefore, F is a t-group for some prime $t \neq p$.

Assume that there exists $h \in Z(F)$ such that $\left|\pi\left(C_{F \cdot S}(h)\right)\right|>1$. Let $g \in C_{F . S}(h)$ be a t^{\prime}-element. Assume that $Z(F)<C_{F . S}(g)$. Since $Z(F)$ is a normal subgroup of $F . S$, we have $\left\langle g^{G}\right\rangle<C_{F . S}(Z(F))$. The group S is a simple group, therefore, $\left\langle g^{G}\right\rangle F / F=S$. In particular $F . S$ contains an element of order $p t$; a contradiction. Hence $[Z(F), g]>1$. We have H_{h} acts regularly on the $O / C_{O}(h)$ and $\left\langle g^{C_{F . S}(h)}\right\rangle \leq H_{h}$. This assertion contradicts with Lemma 2.11. Therefore, $\pi\left(C_{F . S}(h)\right)=\{t\}$ for each $h \in Z(F)$.

Assume that there exists $a \in F . S$ a t-element such that $\left|\pi\left(C_{F . S}(a)\right)\right|>1$. Since $C_{F . S}(a) \cap Z(F)>1$, we get a contradiction with Lemma 2.11.

Therefore, t is a connected component of $G K(F . S)$. Since $t \in \pi_{1}(G K(F . S))$, we get $t=2$. From a description of the prime graph of finite simple groups [14] it follows that $S \simeq A l t_{5}$. From Brauer 2-character tables [3] it follows that F. S contains an element x such that $|x| \in\{6,10\}$; a contradiction.

From Lemmas 3.7 and 3.8 it follows that G / O is a simple group and p is a connected component of $G K(G / O)$.

Lemma 3.9. $G \simeq O$
Proof. Assume that S is an alternating simple group of degree n. An alternating group has disconnected prime graph iff one of the numbers $n, n-1, n-2$ is prime, and this number is a connected component of the prime graph. In particular, if $n>6$, then $3 \in \pi_{1}(S)$. If $n>6$, then S contains an element g of order 3 such that $C_{S}(g) \simeq\langle g\rangle \times A l t_{n-3}$. Therefore, in this case H_{g} includes a Frobenius group; a contradiction with assertion that H_{g} acts regular on $O / C_{O}(g)$. Let $n \in\{5,6\}$. Therefore, S contains an element g such that for each p-element $h \in S$ we have $\langle h, g\rangle=S$. We have $C_{O}(g)>Z(G)$. Put $x \in C_{O}(g) \backslash Z(G)$. It follows from Lemma 3.5 that $\left|x^{G}\right|_{p}=1$. Hence, $C_{G}(x)$ includes a Sylow p-subgroup P of G. In particular $\langle g, P O / O\rangle=S$. That signifies that $C_{G}(x)=G$; a contradiction.

Assume that S is a group of Lie type. If Lie rank of S is more then 2 , then S contains an element g such that H_{g} includes a Frobenius group. Therefore, we can assume that Lie rank of S is 1 or 2. Assume that $S \simeq L_{2}(q)$. We have that S is generated by a pair a, b where $|a|=(q+1) / 2,|b|=(q-1) / 2$. Since $p=(q-1) / 2$ or $p=(q+1) / 2$, we can assume that $C_{O}(g) \leq Z(G)$; a contradiction. Groups $L_{3}(q)$ and $U_{3}(q)$ contain an element g such that $C_{S}(g)$ includes $L_{2}(q)$. Therefore, S is not isomorphic to one of a $L_{3}(q)$ or $U_{3}(q)$. Similarly, it can be shown that S is not isomorphic to $B_{2}(q),{ }^{2} B_{2}(q), G_{2}(q),{ }^{2} G_{2}(q)$ and sporadic groups.

Lemma 3.9 completes proof of the theorem.

4 Proof of Corollaries

Proof of Corollary 1.
Proof. If G is a p-group, then the corollary is satisfied. Let $h \in G$ be a p^{\prime}-element. We have $\left|C_{G}(h)\right|_{p}>|Z(P)|$, where $P \in \operatorname{Syl}_{p}(G)$. Let $H \in \operatorname{Syl}_{p}\left(C_{G}(h)\right)$. It follows from Lemma 2.6 that $G / O_{p^{\prime}}(G) \in R^{*}(p)$. From Theorem 1 we get that $G / O_{p^{\prime}}(G)$ is a p-group. Since $|H|>|Z(P)|$, we get that H contains x such that $\operatorname{Ind}_{G / O_{p^{\prime}}(G)}\left(x O_{p^{\prime}}(G)\right)=p^{e}$, for some $e>0$. Therefore, $\operatorname{Ind}_{G / O_{p^{\prime}}(G)}\left(x O_{p^{\prime}}(G)\right)_{p}=\operatorname{Ind}_{G}(x)_{p}=p^{e}$. Hence $C_{G}(h)$ includes some Sylow p-subgroup of $C_{G}(x)$. From Lemma 2.4 it follows that $Z(P) \leq Z(G)$.

Proof of Corollary 2.

Proof. If $G \in R^{*}(p)$, then from Corollary 1 it follows that $Z(G)>1$; a contradiction. Therefore, $\operatorname{Ind}_{G}(x)_{p}=1$ for each p-element x of G. From Lemma 2.13 it follows that $O^{p^{\prime}}\left(G / O_{p^{\prime}}(G)\right)=S_{1} \times \cdots \times S_{r} \times H$. From Lemmas 2.5 and 2.6 it follows that $O^{p^{\prime}}\left(G / O_{p^{\prime}}(G)\right) \in R(p)$. Since S_{1} is a subnormal subgroup of $G / O_{p^{\prime}}(G)$, we get $\left|x^{G / O_{p^{\prime}}(G)}\right|$ is a multiple of $\left|x^{S_{1}}\right|$ for each $x \in S_{1}$. Assume that $p=3$ and $S_{1} \simeq R u$. We have S_{1} contains x of order 12 such that $\left|C_{S_{1}}(x)\right|=24$. Therefore, $1<\left|x^{S_{1}}\right|_{3}<|G| \|_{3}$; a contradiction. If $S_{1} \simeq J_{4}$,
then S_{1} contains x of order 21 such that $\left|C_{S_{1}}(x)\right|=42$; a contradiction with definition of $R^{*}(p)$-groups. Assume that $S_{1} \simeq^{2} F_{4}(q)^{\prime}$. According to the results of [13], there is just one conjugacy class of elements of order 3 in S_{1}. Therefore, $N_{S_{1}}(\langle x\rangle) \simeq C_{S_{1}}(x): 2=3 \cdot U_{3}(q): 2$ where $x \in S_{1}$ is an element of order 3 [10]. Thus, S_{1} contains an element y of order 6 such that $1<\left|y^{S_{1}}\right|_{3}<\left.|G|\right|_{3}$; a contradiction. Assume that $p=5$ and $S_{1} \simeq T h$. In this case S_{1} contains an element x of order 8 such that $\left|C_{S_{1}}(x)\right|=96$; a contradiction. The assertion of Corollary 2 follows from Lemma 2.13.

References

[1] A. Beltran, M. Felipe: On the solvability of groups with four class sizes. J. Algebra Appl. 11 (9) (2012) 1-7.
[2] C. Casolo, S. Dolfi, E. Jabara: Finite groups whose noncentral class sizes have the same p-part for some prime p. Israel J. Math. 192 (2012) 197-219.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson: Atlas of finite groups. Oxford: Clarendon Press (1985).
[4] D. Gorenstein: Finite groups. New York-London (1968).
[5] I. B. Gorshkov,: On Thompson's conjecture for alternating and symmetric groups of degree more then 1361. Proceedings of the Steklov Institute of Mathematics 293 (1) (2016) 58-65.
[6] I. B. Gorshkov: On Thompson's conjecture for finite simple groups. Communications in Algebra 47 (2019) 5192-5206.
[7] I. B. Gorshkov: On a connection between the order of a finite group and the set of conjugacy classes size. arXiv:1804.04594.
[8] K. Ishikawa: On finite p-groups which have only two conjugacy length. Israel J. Math. 129 (2002) 119-123.
[9] A. S. Kondrat'ev, V. D. Mazurovv: 2-signalizers of finite simple groups. Algebra Logic 42 (5) (2003) 333-348.
[10] G. Malle: The Maximal Subgroups of ${ }^{2} F_{4}(q)$. J. Algebra 139 (1991) 52-69.
[11] G. Navarro, P. H. Tiep: Abelian Sylow subgroups in a finite group. J. Algebra 398 (2014) 519-526.
[12] R. Shen, Y. Zhou: Finite simple groups with some abelian Sylow subgroups. Kuwait J. Sci. 43 (2) (2016) 1-15.
[13] K. Shinoda,: The conjugacy classes of the finite Ree groups of type ${ }^{2} F_{4}(q)$. J. Fat. Sci. Uniu. Tokyo 22 (1975) 1-15.
[14] A. V. Vasilev, E. P. Vdovin: An Adjacency Criterion for the Prime Graph of a Finite Simple Group. Algebra Logic 44 (6) (2005) 381-406.
[15] A. V. Vasilev, E. P. Vdovin: On Thompson's conjecture. Siberian electronic mathematical reports 6 (2009) 457-464.
[16] A. V. Vasilev: On finite groups isospectral to simple classical groups. J. Algebra 423 (2015) 318-374.
[17] J. H. Walter: The characterization of finite groups with abelian Sylow 2-subgroups. Ann. of Math. 89 (2) (1969) 405-514.
[18] J. Williams: Prime graph components of finite groups. J. Algebra 69 (1981) 487-513.
Received: October 03, 2019
Accepted for publication: March 04, 2020
Communicated by: Ivan Kaygorodov

[^0]: MSC 2020: 20DXX,20E45
 Keywords: finite group, conjugacy classes, normal p-complement
 The work is supported by Russian Science Foundation (project 18-71-10007).
 Affiliation:
 Sobolev Institute of Mathematics SB RAS Novosibirsk, Russia Siberian Federal University, Krasnoyarks, Russia E-mail: ilygor8@gmail.com

