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Galois cohomology of reductive algebraic groups
over the field of real numbers

Mikhail Borovoi

Abstract. We describe functorially the first Galois cohomology set H1(R, G) of a
connected reductive algebraic group G over the field R of real numbers in terms of a
certain action of the Weyl group on the real points of order dividing 2 of the maximal
torus containing a maximal compact torus.

This result was announced with a sketch of proof in the author’s 1988 note [3].
Here we give a detailed proof and a few examples.

To the memory of Arkady L’vovich Onishchik

1 Introduction
Let G be a connected reductive algebraic group over the field R of real numbers. We wish
to compute the first Galois cohomology set H1(R, G) = H1(Gal(C/R), G(C)). In terms of
Galois cohomology one can state answers to many natural questions; see Serre [19], Section
III.1, and Berhuy [1].

The Galois cohomology of classical groups and adjoint groups is well known. The
Galois cohomology of compact groups was computed by Borel and Serre [2], Theorem 6.8;
see also Serre’s book [19], Section III.4.5. Here we consider the case of a general connected
reductive group over R. We describe H1(R, G) in terms of a certain action of the Weyl
group on the first Galois cohomology of the maximal torus containing a maximal compact
torus. Our main result is Theorem 3.1.

Our description of H1(R, G) is inspired by Borel and Serre [2]. Our result was an-
nounced in [3]; here we give a detailed proof and a few examples.

Since it was announced in [3], our Theorem 3.1 has been used in a few articles, in
particular, in [17], [10], and [15]. In [4], Gornitskii, Rosengarten, and the author described,
using Theorem 3.1, the Galois cohomology of quasi-connected reductive R-groups (normal
subgroups of connected reductive R-groups). Our description in [4] is similar to that of
Theorem 3.1. In [5] Evenor and the author used Theorem 3.1 to describe explicitly the
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Galois cohomology of simply connected semisimple R-groups. In [6] and [7], Timashev and
the author used Theorem 3.1 to describe explicitly the Galois cohomology of connected
reductive R-groups.

Note that cited articles refer to Theorem 9 of an early preprint version of this note. In
this published version, Theorem 9 became Theorem 3.1.

2 Preliminaries
We recall the definition of the first Galois cohomology set H1(R, G) of an algebraic group
G defined over R. The set of 1-cocycles is defined by Z1(R, G) = {z ∈ G(C) | zz̄ = 1}
where the bar denotes complex conjugation. The group G(C) acts on the right on Z1(R, G)
by

z ∗ x = x−1zx̄,

where z ∈ Z1(R, G) and x ∈ G(C). By definition H1(R, G) = Z1(R, G)/G(C). Let G(R)2

denote the subset of elements of G(R) of order 2 or 1. Then G(R)2 ⊂ Z1(R, G), and we
obtain a canonical map G(R)2 → H1(R, G).

2.1. Lemma. Let S be an algebraic R-torus. Let S0 denote the largest compact (that is,
anisotropic) R-subtorus in S, and let S1 denote the largest split subtorus in S. Then :

(a) The map λ : S(R)2 → H1(R, S) induces a canonical isomorphism

S(R)2/S1(R)2
∼−→H1(R, S).

(b) The composite map µ : S0(R)2 → H1(R, S0)→ H1(R, S) is surjective.

(c) (S0 ∩ S1)(R) = S0(R)2 ∩ S1(R)2, and the surjective map µ of (b) induces an isomor-
phism

S0(R)2/(S0 ∩ S1)(R)
∼−→H1(R, S).

Proof. Any R-torus is isomorphic to a direct product of tori of three types, see Casselman
[9], Section 2:

(1) Gm,R,
(2) RC/R Gm,C,
(3) R1

C/R Gm,C. Here Gm denotes the multiplicative group, RC/R denotes the Weil re-
striction of scalars, and

R1
C/R Gm,C = ker

[
NmC/R : RC/R Gm,C → Gm,R

]
,

where NmC/R is the norm map.
We prove (a). The composite homomorphism S1(R)2 ↪→ S(R)2 → H1(R, S) factors via

H1(R, S1) = 1, and hence it is trivial. We obtain an induced homomorphism

S(R)2/S1(R)2 → H1(R, S);
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we must prove that it is bijective. It suffices to consider the three cases:
(1) S = Gm,R, that is, S(R) = R×. Then H1(R, S) = 1. We have S1 = S, so

S(R)2/S1(R)2 = 1. This proves (a) in case (1).
(2) S = RC/RGm,C, that is S(R) = C×. Then H1(R, S) = 1. We have S1 = Gm,R,

S1(R) = R×, S1(R)2 = {1,−1} = S(R)2, so S(R)2/S1(R)2 = 1. This proves (a) in case
(2).

(3) S = R1
C/RGm,C, that is S(R) = {x ∈ C× | Nm(x) = 1}, where Nm(x) = xx̄.

Then by the definition of Galois cohomology H1(R, S) = R×/Nm(C×) ' {−1, 1}. The
homomorphism S(R)2 = {−1, 1} → H1(R, S) is an isomorphism. This proves (a) in case
(3).

Assertion (b) reduces to the cases (1), (2), (3), where it is obvious (note that only in
case (3) we have H1(R, S) 6= 1).

Concerning (c), we have a commutative diagram

S0(R)2
� � //

��

µ

''

S(R)2

λ
��

H1(R, S0) // H1(R, S).

We see from (a) that kerµ = S0(R)2 ∩ S1(R)2, and we know from (b) that µ is surjective.
Thus we obtain a canonical isomorphism

S0(R)2/(S0(R)2 ∩ S1(R)2)
∼−→H1(R, S).

It remains only to check that S0(R)2 ∩ S1(R)2 = (S0 ∩ S1)(R). This can be easily checked
in each of the cases (1), (2), (3) (note that only in case (2) this group is nontrivial). �

2.2. Corollary. Assume that S is an R-torus such that S = S ′×S ′′, where S ′ is a compact
torus and S ′′ = RC/R T , where T is a C-torus. Then H1(R, S) = H1(R, S ′) = S ′(R)2.

Proof. The assertion follows from the proof of Lemma 2.1(a), because S ′ is a direct product
of tori of type (3); hence H1(R, S ′) = S ′(R)2 , and S ′′ is a direct product of tori of type
(2), whence H1(R, S ′′) = 1. �

We say that a connected real algebraic group H is compact, if the group H(R) is
compact, that is, H is reductive and anisotropic. We shall need the following two standard
facts.

2.3 Lemma (well-known). Any nontrivial semisimple algebraic group H over R con-
tains a nontrivial connected compact subgroup.

Proof. This assertion follows from the classification, (see, for instance, Helgason [12], Sec-
tion X.6.2, Table V). We prove it without using the classification.
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Let κ : h×h→ R denote the Killing form on h. Let h = k+p be a Cartan decomposition
of the real semisimple Lie algebra h = Lie H. This means that the linear transformation

θ : h→ h, k + p 7→ k − p for k ∈ k, p ∈ p

is an automorphism of h, and that the bilinear form

bθ(x, y) = −κ
(
x, θ(y)

)
is positive definite on h. Set

K =
{
h ∈ H | Ad h ∈ O(h, bθ)

}
.

Then K is a real algebraic subgroup of H. We have Lie K = k; see Gorbatsevich, On-
ishchik, and Vinberg [11], Section 4.3.2. Since H(R) has finitely many connected compo-
nents and the center of H(R)0 is finite, by [11], Corollary 5 of Theorem 4.3.2, the group
K(R) is compact.

Since p and k are the eigenspaces of θ with eigenvalues −1, and +1, respectively, we
have [p, p] ⊂ k. If k = 0, then h = p and [p, p] = 0, whence h is commutative, which is
clearly impossible. Thus k 6= 0. But k is the Lie algebra of the identity component K0 of
K, which is a connected compact algebraic subgroup of H. Thus H contains a nontrivial
connected compact algebraic subgroup. �

2.4 Lemma (well-known). Any two maximal compact tori in a connected reductive real
algebraic group H are conjugate under H(R).

Proof. It suffices to prove that any two maximal compact tori in the derived group [H,H]
of H are conjugate. This follows from the following well-known facts from the theory of
Lie groups: (1) Any two maximal compact subgroups in a connected semisimple Lie group
are conjugate (see, for instance, Gorbatsevich, Onishchik, and Vinberg [11], Section 4.3.4,
Theorem 3.5); (2) Any two maximal tori in a connected compact Lie group are conjugate
(see, for instance, Onishchik and Vinberg [16], Section 5.2.7, Theorem 15). �

3 Main result
Let G be a connected reductive algebraic group over R. Let T0 be a maximal compact torus
in G. Set T = Z(T0), N0 = N (T0), W0 = N0/T , where Z and N denote the centralizer
and the normalizer in G, respectively.

We prove that T is a torus. By Humphreys [13], Theorem 22.3 and Corollary 26.2.A,
the centralizer T of T0 is a connected reductive R-group. The torus T0 is a maximal
compact torus in T , and it is central in T . Since by Lemma 2.4 all the maximal compact
tori in T are conjugate under T (R), we see that T0 is the only maximal compact torus in
T . It follows that the derived group [T, T ] of T contains no nontrivial compact tori. By
Lemma 2.3 every nontrivial semisimple group over R has a nontrivial compact connected
algebraic subgroup, hence a nontrivial compact torus. We conclude that [T, T ] = 1, and
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hence T is a torus. We see that T is a fundamental torus in G, that is, a maximal torus
containing a maximal compact torus.

We have a right action of W0 on T0 defined by (t, w) 7→ t ·w := n−1tn, where t ∈ T0(C),
n ∈ N0(C), n represents w ∈ W0(C). This action is defined over R. We prove that W0(C)
acts on T0 effectively. Indeed, if w ∈ W0(C) with representative n ∈ N0(C) acts trivially
on T0, then n−1tn = t for any t ∈ T0(C), and hence n ∈ T (C) (because the centralizer of
T0 is T ), whence w = 1.

We prove that W0(C) = W0(R). We have seen that W0(C) embeds in AutC(T0). Since
T0 is a compact torus, all the complex automorphisms of T0 are defined over R. We
see that the complex conjugation acts trivially on AutC(T0), and hence on W0(C). Thus
W0(R) = W0(C).

Note that N0 normalizes T ; hence W0 acts on T . We define a right action ∗ of W0(R)
(which is equal to W0(C)) on H1(R, T ). Let z ∈ Z1(R, T ), n ∈ N0(C), z represents
ξ ∈ H1(R, T ), n represents w ∈ W0(R) = W0(C). We set

ξ ∗ w = [n−1zn̄] = [n−1zn · n−1n̄],

where brackets [ ] denote the cohomology class.
We prove that ∗ is a well defined action. First, since N0 normalizes T and z ∈ T (C),

we see that n−1zn ∈ T (C). Now w ∈ W0(R), whence w−1w̄ = 1 and n−1n̄ ∈ T (C). It
follows that n−1zn̄ = n−1zn · n−1n̄ ∈ T (C). We have

n−1zn̄ · n−1zn̄ = n−1zn̄n̄−1z̄n = 1

because zz̄ = 1. Thus n−1zn̄ ∈ Z1(R, T ). If z′ ∈ Z1(R, T ) is another representative of ξ,
then z′ = t−1zt̄ for some t ∈ T (C), and

n−1z′n̄ = n−1t−1zt̄n̄ = (n−1tn)−1 · n−1zn̄ · n−1tn = (t′)−1(n−1zn̄)t′

where t′ = n−1tn, t′ ∈ T (C). We see that the cocycle n−1z′n̄ ∈ Z1(R, T ) is cohomologous
to n−1zn̄. If n′ is another representative of w in N0(C), then n′ = nt for some t ∈ T (C),
and (n′)−1zn′ = t−1n−1xn̄t̄. We see that (n′)−1zn′ is cohomologous to n−1zn̄. Thus ∗ is
indeed a well defined action of the group W0(R) on the set H1(R, T ).

Note that in general [1] ∗w = [n−1n̄] 6= [1], and therefore, the action ∗ does not respect
the group structure in H1(R, T ).

Let ξ ∈ H1(R, T ) and w ∈ W0(R). It follows from the definition of the action ∗ that the
images of ξ and ξ ∗ w in H1(R, G) are equal. We see that the map H1(R, T )→ H1(R, G)
induces a map H1(R, T )/W0(R)→ H1(R, G).

The following theorem is the main result of this note:

3.1. Theorem. Let G, T0, T , and W0 be as above. The map

H1(R, T )/W0(R)→ H1(R, G)

induced by the map H1(R, T )→ H1(R, G) is a bijection.
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Proof. We prove the surjectivity. It suffices to show that the map H1(R, T )→ H1(R, G) is
surjective. This was proved by Kottwitz [14], Lemma 10.2, with a reference to Shelstad [20].
We give a different proof. Let η ∈ H1(R, G), η = [z], z ∈ G(C), zz̄ = 1. Let z = us = su,
where s and u are the semisimple and the unipotent parts of z, respectively (see Humphreys
[13], Theorem 15.3). We have usūs̄ = 1, where ūs̄ = s̄ū (because us = su). Thus
us = ū−1s̄−1, where u and ū−1 are unipotent, s and s̄−1 are semisimple, us = su. From
the equality ūs̄ = s̄ū it follows that ū−1s̄−1 = s̄−1ū−1. Since the Jordan decomposition in
G(C) is unique (see Humphreys [13], Theorem 15.3), we conclude that s = s̄−1, u = ū−1.
In other words, ss̄ = 1, uū = 1, that is, s and u are cocycles.

Since u is unipotent, the logarithm log(u) ∈ Lie GC is defined. We have:

log(u) + log(u) = 0.

Set y = 1
2

log(u), then y + ȳ = 0. We have −y + log(u) + ȳ = 0, where −y, ȳ and log(u)
pairwise commute. Set u′ = exp(y), then (u′)−1uu′ = 1. Since s commutes with u, we
have Ad(s)y = y, and hence s commutes with u′. We obtain (u′)−1suu′ = s, and hence
the cocycle z = su is cohomologous to the cocycle s, where s is semisimple.

We may and shall therefore assume that z is semisimple. Set C = ZGC(z). Since
z̄ = z−1, we have C = C, and hence the algebraic subgroup C of GC is defined over R.
The semisimple element z is contained in a maximal torus of GC (see Humphreys [13],
Theorem 22.2); hence z is contained in the identity component C0 of C. The group C0 is
reductive, see Steinberg [21], Section 2.7(a). Let T ′ be a maximal torus of C0 defined over
R, then z ∈ T ′(C), because z is contained in the center of C0. By Lemma 2.1(b) the class
η of z comes from the maximal compact subtorus T ′0 of T ′. By Lemma 2.4 any compact
torus in G is conjugate under G(R) to a subtorus of T0. Thus η comes from H1(R, T0),
hence from H1(R, T ). This proves the surjectivity in Theorem 3.1.

We prove the injectivity in Theorem 3.1. Let z, z′ ∈ T (C), zz̄ = 1, z′z′ = 1, z = x−1z′x̄,
where x ∈ G(C). We shall prove that z = n−1z′n̄ for some n ∈ N0(C).

For g ∈ G(C) set gν = zḡz−1. Then ν is an involutive antilinear automorphism of GC,
and in this way we obtain a twisted form zG of G. Since z ∈ T (C), the embeddings of the
tori TC and T0,C into zGC are defined over R. We denote the corresponding R-tori of zG
again by T and T0, respectively. The centralizer of T0 in zG is T . The compact torus T0

of zG is contained in some maximal compact torus S of zG, and clearly S is contained in
the centralizer T of T0 in zG. Since T0 is the largest compact subtorus of T , we conclude
that the S = T0. Thus T0 is a maximal compact torus in zG.

Consider the embedding ix : t 7→ x−1tx : T0,C → zGC . We have ix(t)
ν = zx̄−1t̄x̄z−1.

Since zx̄−1 = x−1z′, we obtain

zx̄−1t̄x̄z−1 = x−1z′t̄(z′)−1x = x−1t̄x = ix(t̄) .

We see that ix(t)
ν = ix(t̄); hence ix is defined over R. Set T ′0 = ix(T0); it is a compact

algebraic torus in zG, and dimT ′0 = dimT0. Therefore, the torus T ′0 is conjugate to T0

under zG(R), say, T0,C = h−1T ′0,Ch, where h ∈ zG(R). Set n = xh. Then

n−1T0,C n = h−1x−1T0,C xh = h−1T ′0,Ch = T0,C,
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whence n ∈ N0(C). The condition h ∈ zG(R) means that zh̄z−1 = h, or h−1zh̄ = z. It
follows that

n−1z′n̄ = h−1x−1z′x̄h̄ = h−1zh̄ = z.

We have proved that there exists n ∈ N0(C) such that z = n−1z′n̄, and hence the coho-
mology classes [z], [z′] ∈ H1(R, T ) lie in the same orbit of W0(R) in H1(R, T ). This proves
the injectivity in Theorem 3.1. �

3.2. Remark. If G is a compact group, then Theorem 3.1 asserts that

H1(R, G) = T (R)2/W,

where T is a maximal torus in G, and W is the Weyl group with the usual action. This
was earlier proved by Borel and Serre [2].

3.3. Remark. The real form G of GC defines an involutive automorphism τ of the based
root datum of GC, see [6], Proposition 3.7, and hence an involutive automorphism τD of the
Dynkin diagram D = D(GC). This automorphism τD is trivial if and only if the derived
group [G,G] of G is an inner form of a compact group, that is, has a compact maximal
torus. Let D denote the twisted Dynkin diagram corresponding to D and τD. Then W0 is
isomorphic to the Weyl group of D; see [6], Proposition 7.11(iii). This Coxeter group is
described in the book of Carter [8], Chapter 13.

4 Examples
In this section, written following a suggestion of the referee, we compute, using Theo-
rem 3.1, the sets H1(R, G) when G = GLn,R, Sp2m,R, SOp,q.

4.1. Example. Let G = GL2m,R, m ∈ Z>0. For z = a+ bi ∈ C, we write

M(z) =

(
a b
−b a

)
.

Consider the tori T and T0 in G such that

T (R) =
{

diag(M(z1), . . . ,M(zm))
∣∣ zk = ak + bki ∈ C×, k = 1, . . . ,m

}
,

T0(R) =
{

diag(M(z1), . . . ,M(zm)) ∈ T (R)
∣∣ zk = ak + bki, a

2
k + b2

k = 1
}
.

Then T0 is a maximal compact torus in G, and T is a fundamental torus containing T0.
Since T ' (RC/R Gm,C)m, by the proof of Lemma 2.1, case (2), we have H1(R, T ) = {1},
and by Theorem 3.1 we conclude that H1(R, G) = {1}.

Similarly, if G = GL2m+1,R, then G has a fundamental torus

T ' Gm,R × (RC/R Gm,C)m.

Again we have H1(R, T ) = {1} and H1(R, G) = {1}. Note that it is well known that
H1(K,GLn) = {1} for any n and any field K; see Serre [18], Section X.1, Proposition 3.



198 Mikhail Borovoi

4.2. Example. Let G = SL2,R. It has a maximal torus T = T0 with group of R-points

T (R) =
{
M(z)

∣∣ z = a+ bi, a2 + b2 = 1
}
.

Set n = diag(i,−i) ∈ G(C); then n ∈ N(C), where N = N0 = NG(T ). We have
#H1(R, T ) = 2 with representatives M(1),M(−1). An easy calculation shows that

n−1M(−1)n̄ = n−1M(−1)n · n−1n̄ =M(1) = 1.

Thus H1(R, T )/W0 = {1}, and by Theorem 3.1 we have H1(R, G) = 1.
Note that in this case the group W = W0 = N0/T has two elements, and that the

element w := [n−1] ∈ W (R) has no representative in N0(R), because otherwise we would
have [1] ∗ w = [1]. Thus in this case W0(R) 6= N0(R)/T (R).

4.3. Example. Let G = Sp2m = Sp(R2m, ψ), where ψ is the skew-symmetric bilinear form
with matrix

Mψ = diag(J, . . . , J) where J =M(i) =

(
0 1
−1 0

)
.

The group G has a compact maximal torus T = T0 with

T (R) =
{

diag(M(z1), . . . ,M(zm))
∣∣ zk = ak + bki, a

2
k + b2

k = 1
}
.

We have
T (R)2 =

{
diag(M(z1), . . . ,M(zm)) ∈ T (R)

∣∣ zk = ±1
}
.

Let t = diag(M(z1), . . . ,M(zm)) ∈ T (R)2. Write

n = diag(n1, . . . , nm), where nk =

{
diag(i,−i) if zk = −1,

diag(1, 1) if zk = 1.

Then n ∈ N0(C) and
n−1 · t · n̄ = 1.

We see that for any [t] ∈ H1(R, T ) there exists w = [n] ∈ W0(R) with

[t] ∗ w = [1].

Thus H1(R, T )/W0 = {1}, and by Theorem 3.1 we have H1(R, G) = {1}. Note that
it is well known that H1(K, Sp2m) = {1} for any m and any field K; see Serre [19,
Section III.1.2, Proposition 3] .

4.4. Example. Let G = SO(p′, p′′) = SO(Rp′+p′′ , f), where f is the diagonal quadratic
form with matrix

Mf = diag
(

+1, . . . ,+1︸ ︷︷ ︸
p′ times

,−1, . . . ,−1︸ ︷︷ ︸
p′′ times

)
.
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We consider the case when both p′ and p′′ are even: p′ = 2r′, p′′ = 2r′′. Our group G has
a compact maximal torus T = T0 with group of R-points

T (R) =
{

diag
(
M(z1), . . .M(zr′+r′′)

) ∣∣ zk = ak + ibk, a
2
k + b2

k = 1
}
.

We have
T (R)2 =

{
diag

(
M(z1), . . .M(zr′+r′′)

) ∣∣ zk = ±1
}
.

The Weyl group W = W (GC, TC) is isomorphic to (±1)r
′+r′′−1 oSr′+r′′ , where Sr′+r′′ is the

symmetric group on the r′ + r′′ symbols 1, . . . , r′ + r′′. The subgroup (±1)r
′+r′′−1 acts on

T (R)2 trivially. We compute T (R)2/Sr′+r′′ .
For a subset Ξ ⊆ {1, . . . , r′ + r′′}, we set

cΞ = diag
(
M(z1), . . . ,M(zr′+r′′)

)
with zk =

{
−1 if k ∈ Ξ,

+1 otherwise.

Then
T (R)2 =

{
cΞ

∣∣ Ξ ⊆ {1, . . . , r′ + r′′}
}
.

Consider the subgroup Sr′ × Sr′′ ⊆ Sr′+r′′ , where Sr′′ is the symmetric group on the r′′

symbols r′ + 1, . . . , r′ + r′′. Its elements are represented by elements of N(R), and hence
they act on T (R)2 by the usual conjugation:

cΞ ∗ σ = cσ−1Ξ for σ ∈ Sr′ × Sr′′ .

Write Ξ = Ξ′ ∪ Ξ′′ where

Ξ′ = Ξ ∩ {1, . . . , r′}, Ξ′′ = Ξ ∩ {r′ + 1, . . . , r′ + r′′}.

We see that the W -orbit of cΞ depends only on the cardinalities of Ξ′ and Ξ′′.
The group Sr′+r′′ is generated by its subgroup Sr′ × Sr′′ and σ1,r′+1 = (1, r′ + 1). In

order to compute the action of σ1,r′+1 on T (R)2, we consider the case r′ = 1, r′′ = 1,
G = SO(2, 2). Consider the block matrix

n = i

(
0 I2

I2 0

)
where I2 = diag(1, 1).

One can check that n ∈ N(C) ⊂ G(C) and n represents σ1,2. Let

c = c{1,1} = diag(−1,−1,−1,−1).

We have
n−1cn̄ = cn−1n̄ = 1.

Returning to the case of arbitrary r′ and r′′, we see that when both Ξ′ and Ξ′′ are
non-empty, an element of Ξ′ can be cancelled with an element of Ξ′′. Thus the W -orbit of
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a cocycle cΞ depends only on the difference #Ξ′−#Ξ′′. For s′ and s′′ such that 1 ≤ s′ ≤ r′,
1 ≤ s′′ ≤ r′′, we write

c′s′ = cΞ′ with Ξ′ = {1, . . . , s′},
c′′s′′ = cΞ′′ with Ξ′′ = {r′ + 1, . . . , r′ + s′′}.

By Theorem 3.1 we conclude that

#H1(R, G) = r′ + r′′ + 1

with representatives

1 ∪
{
c′s′ | 1 ≤ s′ ≤ r′

}
∪
{
c′′s′′ | 1 ≤ s′′ ≤ r′′

}
.

The cases G = SO(2r′, 2r′′ + 1) and G = SO(2r′ + 1, 2r′′ + 1) are similar to the case
SO(2r′, 2r′′); in both cases we have #H1(R, G) = r′ + r′′ + 1.

Alternatively, one can use the fact that H1(R, G) for G = SO(Rn, f) classifies isomor-
phism classes of real quadratic forms f ′ on Rn with detMf ′ = detMf (see Serre [18],
Section X.2, Proposition 4), and one can classify the isomorphism classes of such f ′ using
Sylvester’s law of inertia.
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