Galois cohomology of reductive algebraic groups over the field of real numbers

Mikhail Borovoi

Abstract

We describe functorially the first Galois cohomology set $H^{1}(\mathbb{R}, G)$ of a connected reductive algebraic group G over the field \mathbb{R} of real numbers in terms of a certain action of the Weyl group on the real points of order dividing 2 of the maximal torus containing a maximal compact torus.

This result was announced with a sketch of proof in the author's 1988 note [3]. Here we give a detailed proof and a few examples.

To the memory of Arkady L'vovich Onishchik

1 Introduction

Let G be a connected reductive algebraic group over the field \mathbb{R} of real numbers. We wish to compute the first Galois cohomology set $H^{1}(\mathbb{R}, G)=H^{1}(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), G(\mathbb{C}))$. In terms of Galois cohomology one can state answers to many natural questions; see Serre [19], Section III.1, and Berhuy [1].

The Galois cohomology of classical groups and adjoint groups is well known. The Galois cohomology of compact groups was computed by Borel and Serre [2], Theorem 6.8; see also Serre's book [19], Section III.4.5. Here we consider the case of a general connected reductive group over \mathbb{R}. We describe $H^{1}(\mathbb{R}, G)$ in terms of a certain action of the Weyl group on the first Galois cohomology of the maximal torus containing a maximal compact torus. Our main result is Theorem 3.1.

Our description of $H^{1}(\mathbb{R}, G)$ is inspired by Borel and Serre [2]. Our result was announced in [3]; here we give a detailed proof and a few examples.

Since it was announced in [3], our Theorem 3.1 has been used in a few articles, in particular, in [17], [10], and [15]. In [4], Gornitskii, Rosengarten, and the author described, using Theorem 3.1, the Galois cohomology of quasi-connected reductive \mathbb{R}-groups (normal subgroups of connected reductive \mathbb{R}-groups). Our description in [4] is similar to that of Theorem 3.1. In [5] Evenor and the author used Theorem 3.1 to describe explicitly the

[^0]Galois cohomology of simply connected semisimple \mathbb{R}-groups. In [6] and [7], Timashev and the author used Theorem 3.1 to describe explicitly the Galois cohomology of connected reductive \mathbb{R}-groups.

Note that cited articles refer to Theorem 9 of an early preprint version of this note. In this published version, Theorem 9 became Theorem 3.1.

2 Preliminaries

We recall the definition of the first Galois cohomology set $H^{1}(\mathbb{R}, G)$ of an algebraic group G defined over \mathbb{R}. The set of 1-cocycles is defined by $Z^{1}(\mathbb{R}, G)=\{z \in G(\mathbb{C}) \mid z \bar{z}=1\}$ where the bar denotes complex conjugation. The group $G(\mathbb{C})$ acts on the right on $Z^{1}(\mathbb{R}, G)$ by

$$
z * x=x^{-1} z \bar{x}
$$

where $z \in Z^{1}(\mathbb{R}, G)$ and $x \in G(\mathbb{C})$. By definition $H^{1}(\mathbb{R}, G)=Z^{1}(\mathbb{R}, G) / G(\mathbb{C})$. Let $G(\mathbb{R})_{2}$ denote the subset of elements of $G(\mathbb{R})$ of order 2 or 1 . Then $G(\mathbb{R})_{2} \subset Z^{1}(\mathbb{R}, G)$, and we obtain a canonical map $G(\mathbb{R})_{2} \rightarrow H^{1}(\mathbb{R}, G)$.
2.1. Lemma. Let S be an algebraic \mathbb{R}-torus. Let S_{0} denote the largest compact (that is, anisotropic) \mathbb{R}-subtorus in S, and let S_{1} denote the largest split subtorus in S. Then :
(a) The map $\lambda: S(\mathbb{R})_{2} \rightarrow H^{1}(\mathbb{R}, S)$ induces a canonical isomorphism

$$
S(\mathbb{R})_{2} / S_{1}(\mathbb{R})_{2} \xrightarrow{\sim} H^{1}(\mathbb{R}, S)
$$

(b) The composite map $\mu: S_{0}(\mathbb{R})_{2} \rightarrow H^{1}\left(\mathbb{R}, S_{0}\right) \rightarrow H^{1}(\mathbb{R}, S)$ is surjective.
(c) $\left(S_{0} \cap S_{1}\right)(\mathbb{R})=S_{0}(\mathbb{R})_{2} \cap S_{1}(\mathbb{R})_{2}$, and the surjective map μ of (b) induces an isomorphism

$$
S_{0}(\mathbb{R})_{2} /\left(S_{0} \cap S_{1}\right)(\mathbb{R}) \xrightarrow{\sim} H^{1}(\mathbb{R}, S)
$$

Proof. Any \mathbb{R}-torus is isomorphic to a direct product of tori of three types, see Casselman [9], Section 2:
(1) $\mathbb{G}_{m, \mathbb{R}}$,
(2) $R_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{m, \mathbb{C}}$,
(3) $R_{\mathbb{C} / \mathbb{R}}^{1} \mathbb{G}_{\mathrm{m}, \mathbb{C}}$. Here \mathbb{G}_{m} denotes the multiplicative group, $\mathrm{R}_{\mathbb{C} / \mathbb{R}}$ denotes the Weil restriction of scalars, and

$$
\mathrm{R}_{\mathbb{C} / \mathbb{R}}^{1} \mathbb{G}_{\mathrm{m}, \mathbb{C}}=\operatorname{ker}\left[\mathrm{Nm}_{\mathbb{C} / \mathbb{R}}: \mathrm{R}_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{\mathrm{m}, \mathbb{C}} \rightarrow \mathbb{G}_{\mathrm{m}, \mathbb{R}}\right]
$$

where $\mathrm{Nm}_{\mathbb{C} / \mathbb{R}}$ is the norm map.
We prove (a). The composite homomorphism $S_{1}(\mathbb{R})_{2} \hookrightarrow S(\mathbb{R})_{2} \rightarrow H^{1}(\mathbb{R}, S)$ factors via $H^{1}\left(\mathbb{R}, S_{1}\right)=1$, and hence it is trivial. We obtain an induced homomorphism

$$
S(\mathbb{R})_{2} / S_{1}(\mathbb{R})_{2} \rightarrow H^{1}(\mathbb{R}, S)
$$

we must prove that it is bijective. It suffices to consider the three cases:
(1) $S=\mathbb{G}_{\mathrm{m}, \mathbb{R}}$, that is, $S(\mathbb{R})=\mathbb{R}^{\times}$. Then $H^{1}(\mathbb{R}, S)=1$. We have $S_{1}=S$, so $S(\mathbb{R})_{2} / S_{1}(\mathbb{R})_{2}=1$. This proves (a) in case (1).
(2) $S=\mathbb{R}_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{\mathrm{m}, \mathbb{C}}$, that is $S(\mathbb{R})=\mathbb{C}^{\times}$. Then $H^{1}(\mathbb{R}, S)=1$. We have $S_{1}=\mathbb{G}_{\mathrm{m}, \mathbb{R}}$, $S_{1}(\mathbb{R})=\mathbb{R}^{\times}, S_{1}(\mathbb{R})_{2}=\{1,-1\}=S(\mathbb{R})_{2}$, so $S(\mathbb{R})_{2} / S_{1}(\mathbb{R})_{2}=1$. This proves (a) in case (2).
(3) $S=\mathrm{R}_{\mathbb{C} / \mathbb{R}}^{1} \mathbb{G}_{\mathrm{m}, \mathbb{C}}$, that is $S(\mathbb{R})=\left\{x \in \mathbb{C}^{\times} \mid \operatorname{Nm}(x)=1\right\}$, where $\operatorname{Nm}(x)=x \bar{x}$. Then by the definition of Galois cohomology $H^{1}(\mathbb{R}, S)=\mathbb{R}^{\times} / \operatorname{Nm}\left(\mathbb{C}^{\times}\right) \simeq\{-1,1\}$. The homomorphism $S(\mathbb{R})_{2}=\{-1,1\} \rightarrow H^{1}(\mathbb{R}, S)$ is an isomorphism. This proves (a) in case (3).

Assertion (b) reduces to the cases (1), (2), (3), where it is obvious (note that only in case (3) we have $\left.H^{1}(\mathbb{R}, S) \neq 1\right)$.

Concerning (c), we have a commutative diagram

We see from (a) that ker $\mu=S_{0}(\mathbb{R})_{2} \cap S_{1}(\mathbb{R})_{2}$, and we know from (b) that μ is surjective. Thus we obtain a canonical isomorphism

$$
S_{0}(\mathbb{R})_{2} /\left(S_{0}(\mathbb{R})_{2} \cap S_{1}(\mathbb{R})_{2}\right) \xrightarrow{\sim} H^{1}(\mathbb{R}, S)
$$

It remains only to check that $S_{0}(\mathbb{R})_{2} \cap S_{1}(\mathbb{R})_{2}=\left(S_{0} \cap S_{1}\right)(\mathbb{R})$. This can be easily checked in each of the cases (1), (2), (3) (note that only in case (2) this group is nontrivial).
2.2. Corollary. Assume that S is an \mathbb{R}-torus such that $S=S^{\prime} \times S^{\prime \prime}$, where S^{\prime} is a compact torus and $S^{\prime \prime}=\mathbb{R}_{\mathbb{C} / \mathbb{R}} T$, where T is a \mathbb{C}-torus. Then $H^{1}(\mathbb{R}, S)=H^{1}\left(\mathbb{R}, S^{\prime}\right)=S^{\prime}(\mathbb{R})_{2}$.

Proof. The assertion follows from the proof of Lemma 2.1(a), because S^{\prime} is a direct product of tori of type (3); hence $H^{1}\left(\mathbb{R}, S^{\prime}\right)=S^{\prime}(\mathbb{R})_{2}$, and $S^{\prime \prime}$ is a direct product of tori of type (2), whence $H^{1}\left(\mathbb{R}, S^{\prime \prime}\right)=1$.

We say that a connected real algebraic group H is compact, if the group $H(\mathbb{R})$ is compact, that is, H is reductive and anisotropic. We shall need the following two standard facts.
2.3 Lemma (well-known). Any nontrivial semisimple algebraic group H over \mathbb{R} contains a nontrivial connected compact subgroup.

Proof. This assertion follows from the classification, (see, for instance, Helgason [12], Section X.6.2, Table V). We prove it without using the classification.

Let $\kappa: \mathfrak{h} \times \mathfrak{h} \rightarrow \mathbb{R}$ denote the Killing form on \mathfrak{h}. Let $\mathfrak{h}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of the real semisimple Lie algebra $\mathfrak{h}=$ Lie H. This means that the linear transformation

$$
\theta: \mathfrak{h} \rightarrow \mathfrak{h}, \quad k+p \mapsto k-p \quad \text { for } k \in \mathfrak{k}, p \in \mathfrak{p}
$$

is an automorphism of \mathfrak{h}, and that the bilinear form

$$
b_{\theta}(x, y)=-\kappa(x, \theta(y))
$$

is positive definite on \mathfrak{h}. Set

$$
K=\left\{h \in H \mid \operatorname{Ad} h \in O\left(\mathfrak{h}, b_{\theta}\right)\right\} .
$$

Then K is a real algebraic subgroup of H. We have Lie $K=\mathfrak{k}$; see Gorbatsevich, Onishchik, and Vinberg [11], Section 4.3.2. Since $H(\mathbb{R})$ has finitely many connected components and the center of $H(\mathbb{R})^{0}$ is finite, by [11], Corollary 5 of Theorem 4.3.2, the group $K(\mathbb{R})$ is compact.

Since \mathfrak{p} and \mathfrak{k} are the eigenspaces of θ with eigenvalues -1 , and +1 , respectively, we have $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$. If $\mathfrak{k}=0$, then $\mathfrak{h}=\mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}]=0$, whence \mathfrak{h} is commutative, which is clearly impossible. Thus $\mathfrak{k} \neq 0$. But \mathfrak{k} is the Lie algebra of the identity component K^{0} of K, which is a connected compact algebraic subgroup of H. Thus H contains a nontrivial connected compact algebraic subgroup.
2.4 Lemma (well-known). Any two maximal compact tori in a connected reductive real algebraic group H are conjugate under $H(\mathbb{R})$.

Proof. It suffices to prove that any two maximal compact tori in the derived group [H, H] of H are conjugate. This follows from the following well-known facts from the theory of Lie groups: (1) Any two maximal compact subgroups in a connected semisimple Lie group are conjugate (see, for instance, Gorbatsevich, Onishchik, and Vinberg [11], Section 4.3.4, Theorem 3.5); (2) Any two maximal tori in a connected compact Lie group are conjugate (see, for instance, Onishchik and Vinberg [16], Section 5.2.7, Theorem 15).

3 Main result

Let G be a connected reductive algebraic group over \mathbb{R}. Let T_{0} be a maximal compact torus in G. Set $T=\mathcal{Z}\left(T_{0}\right), N_{0}=\mathcal{N}\left(T_{0}\right), W_{0}=N_{0} / T$, where \mathcal{Z} and \mathcal{N} denote the centralizer and the normalizer in G, respectively.

We prove that T is a torus. By Humphreys [13], Theorem 22.3 and Corollary 26.2.A, the centralizer T of T_{0} is a connected reductive \mathbb{R}-group. The torus T_{0} is a maximal compact torus in T, and it is central in T. Since by Lemma 2.4 all the maximal compact tori in T are conjugate under $T(\mathbb{R})$, we see that T_{0} is the only maximal compact torus in T. It follows that the derived group $[T, T]$ of T contains no nontrivial compact tori. By Lemma 2.3 every nontrivial semisimple group over \mathbb{R} has a nontrivial compact connected algebraic subgroup, hence a nontrivial compact torus. We conclude that $[T, T]=1$, and
hence T is a torus. We see that T is a fundamental torus in G, that is, a maximal torus containing a maximal compact torus.

We have a right action of W_{0} on T_{0} defined by $(t, w) \mapsto t \cdot w:=n^{-1} t n$, where $t \in T_{0}(\mathbb{C})$, $n \in N_{0}(\mathbb{C}), n$ represents $w \in W_{0}(\mathbb{C})$. This action is defined over \mathbb{R}. We prove that $W_{0}(\mathbb{C})$ acts on T_{0} effectively. Indeed, if $w \in W_{0}(\mathbb{C})$ with representative $n \in N_{0}(\mathbb{C})$ acts trivially on T_{0}, then $n^{-1} t n=t$ for any $t \in T_{0}(\mathbb{C})$, and hence $n \in T(\mathbb{C})$ (because the centralizer of T_{0} is T), whence $w=1$.

We prove that $W_{0}(\mathbb{C})=W_{0}(\mathbb{R})$. We have seen that $W_{0}(\mathbb{C})$ embeds in $\operatorname{Aut}_{\mathbb{C}}\left(T_{0}\right)$. Since T_{0} is a compact torus, all the complex automorphisms of T_{0} are defined over \mathbb{R}. We see that the complex conjugation acts trivially on $\operatorname{Aut}_{\mathbb{C}}\left(T_{0}\right)$, and hence on $W_{0}(\mathbb{C})$. Thus $W_{0}(\mathbb{R})=W_{0}(\mathbb{C})$.

Note that N_{0} normalizes T; hence W_{0} acts on T. We define a right action $*$ of $W_{0}(\mathbb{R})$ (which is equal to $W_{0}(\mathbb{C})$) on $H^{1}(\mathbb{R}, T)$. Let $z \in Z^{1}(\mathbb{R}, T)$, $n \in N_{0}(\mathbb{C})$, z represents $\xi \in H^{1}(\mathbb{R}, T)$, n represents $w \in W_{0}(\mathbb{R})=W_{0}(\mathbb{C})$. We set

$$
\xi * w=\left[n^{-1} z \bar{n}\right]=\left[n^{-1} z n \cdot n^{-1} \bar{n}\right]
$$

where brackets [] denote the cohomology class.
We prove that $*$ is a well defined action. First, since N_{0} normalizes T and $z \in T(\mathbb{C})$, we see that $n^{-1} z n \in T(\mathbb{C})$. Now $w \in W_{0}(\mathbb{R})$, whence $w^{-1} \bar{w}=1$ and $n^{-1} \bar{n} \in T(\mathbb{C})$. It follows that $n^{-1} z \bar{n}=n^{-1} z n \cdot n^{-1} \bar{n} \in T(\mathbb{C})$. We have

$$
n^{-1} z \bar{n} \cdot \overline{n^{-1} z \bar{n}}=n^{-1} z \bar{n} \bar{n}^{-1} \bar{z} n=1
$$

because $z \bar{z}=1$. Thus $n^{-1} z \bar{n} \in Z^{1}(\mathbb{R}, T)$. If $z^{\prime} \in Z^{1}(\mathbb{R}, T)$ is another representative of ξ, then $z^{\prime}=t^{-1} z \bar{t}$ for some $t \in T(\mathbb{C})$, and

$$
n^{-1} z^{\prime} \bar{n}=n^{-1} t^{-1} z \bar{t} \bar{n}=\left(n^{-1} t n\right)^{-1} \cdot n^{-1} z \bar{n} \cdot \overline{n^{-1} t n}=\left(t^{\prime}\right)^{-1}\left(n^{-1} z \bar{n}\right) \overline{t^{\prime}}
$$

where $t^{\prime}=n^{-1} t n, t^{\prime} \in T(\mathbb{C})$. We see that the cocycle $n^{-1} z^{\prime} \bar{n} \in Z^{1}(\mathbb{R}, T)$ is cohomologous to $n^{-1} z \bar{n}$. If n^{\prime} is another representative of w in $N_{0}(\mathbb{C})$, then $n^{\prime}=n t$ for some $t \in T(\mathbb{C})$, and $\left(n^{\prime}\right)^{-1} z \overline{n^{\prime}}=t^{-1} n^{-1} x \bar{n} \bar{t}$. We see that $\left(n^{\prime}\right)^{-1} z \overline{n^{\prime}}$ is cohomologous to $n^{-1} z \bar{n}$. Thus $*$ is indeed a well defined action of the group $W_{0}(\mathbb{R})$ on the set $H^{1}(\mathbb{R}, T)$.

Note that in general $[1] * w=\left[n^{-1} \bar{n}\right] \neq[1]$, and therefore, the action $*$ does not respect the group structure in $H^{1}(\mathbb{R}, T)$.

Let $\xi \in H^{1}(\mathbb{R}, T)$ and $w \in W_{0}(\mathbb{R})$. It follows from the definition of the action $*$ that the images of ξ and $\xi * w$ in $H^{1}(\mathbb{R}, G)$ are equal. We see that the map $H^{1}(\mathbb{R}, T) \rightarrow H^{1}(\mathbb{R}, G)$ induces a $\operatorname{map} H^{1}(\mathbb{R}, T) / W_{0}(\mathbb{R}) \rightarrow H^{1}(\mathbb{R}, G)$.

The following theorem is the main result of this note:
3.1. Theorem. Let G, T_{0}, T, and W_{0} be as above. The map

$$
H^{1}(\mathbb{R}, T) / W_{0}(\mathbb{R}) \rightarrow H^{1}(\mathbb{R}, G)
$$

induced by the map $H^{1}(\mathbb{R}, T) \rightarrow H^{1}(\mathbb{R}, G)$ is a bijection.

Proof. We prove the surjectivity. It suffices to show that the map $H^{1}(\mathbb{R}, T) \rightarrow H^{1}(\mathbb{R}, G)$ is surjective. This was proved by Kottwitz [14], Lemma 10.2, with a reference to Shelstad [20]. We give a different proof. Let $\eta \in H^{1}(\mathbb{R}, G), \eta=[z], z \in G(\mathbb{C}), z \bar{z}=1$. Let $z=u s=s u$, where s and u are the semisimple and the unipotent parts of z, respectively (see Humphreys [13], Theorem 15.3). We have $u s \bar{u} \bar{s}=1$, where $\bar{u} \bar{s}=\bar{s} \bar{u}$ (because $u s=s u$). Thus $u s=\bar{u}^{-1} \bar{s}^{-1}$, where u and \bar{u}^{-1} are unipotent, s and \bar{s}^{-1} are semisimple, $u s=s u$. From the equality $\bar{u} \bar{s}=\bar{s} \bar{u}$ it follows that $\bar{u}^{-1} \bar{s}^{-1}=\bar{s}^{-1} \bar{u}^{-1}$. Since the Jordan decomposition in $G(\mathbb{C})$ is unique (see Humphreys [13], Theorem 15.3), we conclude that $s=\bar{s}^{-1}, u=\bar{u}^{-1}$. In other words, $s \bar{s}=1, u \bar{u}=1$, that is, s and u are cocycles.

Since u is unipotent, the logarithm $\log (u) \in$ Lie $G_{\mathbb{C}}$ is defined. We have:

$$
\log (u)+\overline{\log (u)}=0
$$

Set $y=\frac{1}{2} \log (u)$, then $y+\bar{y}=0$. We have $-y+\log (u)+\bar{y}=0$, where $-y, \bar{y}$ and $\log (u)$ pairwise commute. Set $u^{\prime}=\exp (y)$, then $\left(u^{\prime}\right)^{-1} u \overline{u^{\prime}}=1$. Since s commutes with u, we have $\operatorname{Ad}(s) y=y$, and hence s commutes with u^{\prime}. We obtain $\left(u^{\prime}\right)^{-1} s u \overline{u^{\prime}}=s$, and hence the cocycle $z=s u$ is cohomologous to the cocycle s, where s is semisimple.

We may and shall therefore assume that z is semisimple. Set $C=\mathcal{Z}_{G_{\mathbb{C}}}(z)$. Since $\bar{z}=z^{-1}$, we have $\bar{C}=C$, and hence the algebraic subgroup C of $G_{\mathbb{C}}$ is defined over \mathbb{R}. The semisimple element z is contained in a maximal torus of $G_{\mathbb{C}}$ (see Humphreys [13], Theorem 22.2); hence z is contained in the identity component C^{0} of C. The group C^{0} is reductive, see Steinberg [21], Section 2.7(a). Let T^{\prime} be a maximal torus of C^{0} defined over \mathbb{R}, then $z \in T^{\prime}(\mathbb{C})$, because z is contained in the center of C^{0}. By Lemma 2.1(b) the class η of z comes from the maximal compact subtorus T_{0}^{\prime} of T^{\prime}. By Lemma 2.4 any compact torus in G is conjugate under $G(\mathbb{R})$ to a subtorus of T_{0}. Thus η comes from $H^{1}\left(\mathbb{R}, T_{0}\right)$, hence from $H^{1}(\mathbb{R}, T)$. This proves the surjectivity in Theorem 3.1.

We prove the injectivity in Theorem 3.1. Let $z, z^{\prime} \in T(\mathbb{C}), z \bar{z}=1, z^{\prime} \overline{z^{\prime}}=1, z=x^{-1} z^{\prime} \bar{x}$, where $x \in G(\mathbb{C})$. We shall prove that $z=n^{-1} z^{\prime} \bar{n}$ for some $n \in N_{0}(\mathbb{C})$.

For $g \in G(\mathbb{C})$ set $g^{\nu}=z \bar{g} z^{-1}$. Then ν is an involutive antilinear automorphism of $G_{\mathbb{C}}$, and in this way we obtain a twisted form ${ }_{z} G$ of G. Since $z \in T(\mathbb{C})$, the embeddings of the tori $T_{\mathbb{C}}$ and $T_{0, \mathbb{C}}$ into ${ }_{z} G_{\mathbb{C}}$ are defined over \mathbb{R}. We denote the corresponding \mathbb{R}-tori of ${ }_{z} G$ again by T and T_{0}, respectively. The centralizer of T_{0} in ${ }_{z} G$ is T. The compact torus T_{0} of ${ }_{z} G$ is contained in some maximal compact torus S of ${ }_{z} G$, and clearly S is contained in the centralizer T of T_{0} in ${ }_{z} G$. Since T_{0} is the largest compact subtorus of T, we conclude that the $S=T_{0}$. Thus T_{0} is a maximal compact torus in ${ }_{z} G$.

Consider the embedding $i_{x}: t \mapsto x^{-1} t x: T_{0, \mathbb{C}} \rightarrow{ }_{z} G_{\mathbb{C}}$. We have $i_{x}(t)^{\nu}=z \bar{x}^{-1} \bar{t} \bar{x} z^{-1}$. Since $z \bar{x}^{-1}=x^{-1} z^{\prime}$, we obtain

$$
z \bar{x}^{-1} \bar{t} \bar{x} z^{-1}=x^{-1} z^{\prime} \bar{t}\left(z^{\prime}\right)^{-1} x=x^{-1} \bar{t} x=i_{x}(\bar{t}) .
$$

We see that $i_{x}(t)^{\nu}=i_{x}(\bar{t})$; hence i_{x} is defined over \mathbb{R}. Set $T_{0}^{\prime}=i_{x}\left(T_{0}\right)$; it is a compact algebraic torus in ${ }_{z} G$, and $\operatorname{dim} T_{0}^{\prime}=\operatorname{dim} T_{0}$. Therefore, the torus T_{0}^{\prime} is conjugate to T_{0} under ${ }_{z} G(\mathbb{R})$, say, $T_{0, \mathbb{C}}=h^{-1} T_{0, \mathbb{C}}^{\prime} h$, where $h \in{ }_{z} G(\mathbb{R})$. Set $n=x h$. Then

$$
n^{-1} T_{0, \mathbb{C}} n=h^{-1} x^{-1} T_{0, \mathbb{C}} x h=h^{-1} T_{0, \mathbb{C}}^{\prime} h=T_{0, \mathbb{C}}
$$

whence $n \in N_{0}(\mathbb{C})$. The condition $h \in{ }_{z} G(\mathbb{R})$ means that $z \bar{h} z^{-1}=h$, or $h^{-1} z \bar{h}=z$. It follows that

$$
n^{-1} z^{\prime} \bar{n}=h^{-1} x^{-1} z^{\prime} \bar{x} \bar{h}=h^{-1} z \bar{h}=z .
$$

We have proved that there exists $n \in N_{0}(\mathbb{C})$ such that $z=n^{-1} z^{\prime} \bar{n}$, and hence the cohomology classes $[z],\left[z^{\prime}\right] \in H^{1}(\mathbb{R}, T)$ lie in the same orbit of $W_{0}(\mathbb{R})$ in $H^{1}(\mathbb{R}, T)$. This proves the injectivity in Theorem 3.1.
3.2. Remark. If G is a compact group, then Theorem 3.1 asserts that

$$
H^{1}(\mathbb{R}, G)=T(\mathbb{R})_{2} / W
$$

where T is a maximal torus in G, and W is the Weyl group with the usual action. This was earlier proved by Borel and Serre [2].
3.3. Remark. The real form G of $G_{\mathbb{C}}$ defines an involutive automorphism τ of the based root datum of $G_{\mathbb{C}}$, see [6], Proposition 3.7, and hence an involutive automorphism τ_{D} of the Dynkin diagram $D=D\left(G_{\mathbb{C}}\right)$. This automorphism τ_{D} is trivial if and only if the derived group $[G, G]$ of G is an inner form of a compact group, that is, has a compact maximal torus. Let \bar{D} denote the twisted Dynkin diagram corresponding to D and τ_{D}. Then W_{0} is isomorphic to the Weyl group of \bar{D}; see [6], Proposition 7.11 (iii). This Coxeter group is described in the book of Carter [8], Chapter 13.

4 Examples

In this section, written following a suggestion of the referee, we compute, using Theorem 3.1, the sets $H^{1}(\mathbb{R}, G)$ when $G=\mathrm{GL}_{n, \mathbb{R}}, \mathrm{Sp}_{2 m, \mathbb{R}}, \mathrm{SO}_{p, q}$.
4.1. Example. Let $G=\mathrm{GL}_{2 m, \mathbb{R}}, m \in \mathbb{Z}_{>0}$. For $z=a+b \boldsymbol{i} \in \mathbb{C}$, we write

$$
\mathcal{M}(z)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) .
$$

Consider the tori T and T_{0} in G such that

$$
\begin{aligned}
& T(\mathbb{R})=\left\{\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots, \mathcal{M}\left(z_{m}\right)\right) \mid z_{k}=a_{k}+b_{k} \boldsymbol{i} \in \mathbb{C}^{\times}, k=1, \ldots, m\right\} \\
& T_{0}(\mathbb{R})=\left\{\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots, \mathcal{M}\left(z_{m}\right)\right) \in T(\mathbb{R}) \mid z_{k}=a_{k}+b_{k} \boldsymbol{i}, a_{k}^{2}+b_{k}^{2}=1\right\}
\end{aligned}
$$

Then T_{0} is a maximal compact torus in G, and T is a fundamental torus containing T_{0}. Since $T \simeq\left(\mathrm{R}_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{\mathrm{m}, \mathbb{C}}\right)^{m}$, by the proof of Lemma 2.1, case (2), we have $H^{1}(\mathbb{R}, T)=\{1\}$, and by Theorem 3.1 we conclude that $H^{1}(\mathbb{R}, G)=\{1\}$.

Similarly, if $G=\mathrm{GL}_{2 m+1, \mathbb{R}}$, then G has a fundamental torus

$$
T \simeq \mathbb{G}_{\mathrm{m}, \mathbb{R}} \times\left(\mathrm{R}_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{\mathrm{m}, \mathbb{C}}\right)^{m}
$$

Again we have $H^{1}(\mathbb{R}, T)=\{1\}$ and $H^{1}(\mathbb{R}, G)=\{1\}$. Note that it is well known that $H^{1}\left(K, \mathrm{GL}_{n}\right)=\{1\}$ for any n and any field K; see Serre [18], Section X.1, Proposition 3.
4.2. Example. Let $G=\mathrm{SL}_{2, \mathbb{R}}$. It has a maximal torus $T=T_{0}$ with group of \mathbb{R}-points

$$
T(\mathbb{R})=\left\{\mathcal{M}(z) \mid z=a+b \boldsymbol{i}, a^{2}+b^{2}=1\right\}
$$

Set $n=\operatorname{diag}(\boldsymbol{i},-\boldsymbol{i}) \in G(\mathbb{C})$; then $n \in N(\mathbb{C})$, where $N=N_{0}=\mathcal{N}_{G}(T)$. We have $\# H^{1}(\mathbb{R}, T)=2$ with representatives $\mathcal{M}(1), \mathcal{M}(-1)$. An easy calculation shows that

$$
n^{-1} \mathcal{M}(-1) \bar{n}=n^{-1} \mathcal{M}(-1) n \cdot n^{-1} \bar{n}=\mathcal{M}(1)=1
$$

Thus $H^{1}(\mathbb{R}, T) / W_{0}=\{1\}$, and by Theorem 3.1 we have $H^{1}(\mathbb{R}, G)=1$.
Note that in this case the group $W=W_{0}=N_{0} / T$ has two elements, and that the element $w:=\left[n^{-1}\right] \in W(\mathbb{R})$ has no representative in $N_{0}(\mathbb{R})$, because otherwise we would have $[1] * w=[1]$. Thus in this case $W_{0}(\mathbb{R}) \neq N_{0}(\mathbb{R}) / T(\mathbb{R})$.
4.3. Example. Let $G=\operatorname{Sp}_{2 m}=\operatorname{Sp}\left(\mathbb{R}^{2 m}, \psi\right)$, where ψ is the skew-symmetric bilinear form with matrix

$$
M_{\psi}=\operatorname{diag}(J, \ldots, J) \quad \text { where } J=\mathcal{M}(\boldsymbol{i})=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

The group G has a compact maximal torus $T=T_{0}$ with

$$
T(\mathbb{R})=\left\{\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots, \mathcal{M}\left(z_{m}\right)\right) \mid z_{k}=a_{k}+b_{k} \boldsymbol{i}, a_{k}^{2}+b_{k}^{2}=1\right\}
$$

We have

$$
T(\mathbb{R})_{2}=\left\{\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots, \mathcal{M}\left(z_{m}\right)\right) \in T(\mathbb{R}) \mid z_{k}= \pm 1\right\}
$$

Let $t=\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots, \mathcal{M}\left(z_{m}\right)\right) \in T(\mathbb{R})_{2}$. Write

$$
n=\operatorname{diag}\left(n_{1}, \ldots, n_{m}\right), \quad \text { where } n_{k}= \begin{cases}\operatorname{diag}(\boldsymbol{i},-\boldsymbol{i}) & \text { if } z_{k}=-1 \\ \operatorname{diag}(1,1) & \text { if } z_{k}=1\end{cases}
$$

Then $n \in N_{0}(\mathbb{C})$ and

$$
n^{-1} \cdot t \cdot \bar{n}=1
$$

We see that for any $[t] \in H^{1}(\mathbb{R}, T)$ there exists $w=[n] \in W_{0}(\mathbb{R})$ with

$$
[t] * w=[1]
$$

Thus $H^{1}(\mathbb{R}, T) / W_{0}=\{1\}$, and by Theorem 3.1 we have $H^{1}(\mathbb{R}, G)=\{1\}$. Note that it is well known that $H^{1}\left(K, \mathrm{Sp}_{2 m}\right)=\{1\}$ for any m and any field K; see Serre [19, Section III.1.2, Proposition 3] .
4.4. Example. Let $G=\operatorname{SO}\left(p^{\prime}, p^{\prime \prime}\right)=\operatorname{SO}\left(\mathbb{R}^{p^{\prime}+p^{\prime \prime}}, f\right)$, where f is the diagonal quadratic form with matrix

$$
M_{f}=\operatorname{diag}(\underbrace{+1, \ldots,+1}_{p^{\prime} \text { times }}, \underbrace{-1, \ldots,-1}_{p^{\prime \prime} \text { times }}) \text {. }
$$

We consider the case when both p^{\prime} and $p^{\prime \prime}$ are even: $p^{\prime}=2 r^{\prime}, p^{\prime \prime}=2 r^{\prime \prime}$. Our group G has a compact maximal torus $T=T_{0}$ with group of \mathbb{R}-points

$$
T(\mathbb{R})=\left\{\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots \mathcal{M}\left(z_{r^{\prime}+r^{\prime \prime}}\right)\right) \mid z_{k}=a_{k}+\boldsymbol{i} b_{k}, a_{k}^{2}+b_{k}^{2}=1\right\} .
$$

We have

$$
T(\mathbb{R})_{2}=\left\{\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots \mathcal{M}\left(z_{r^{\prime}+r^{\prime \prime}}\right)\right) \mid z_{k}= \pm 1\right\}
$$

The Weyl group $W=W\left(G_{\mathbb{C}}, T_{\mathbb{C}}\right)$ is isomorphic to $(\pm 1)^{r^{\prime}+r^{\prime \prime}-1} \rtimes S_{r^{\prime}+r^{\prime \prime}}$, where $S_{r^{\prime}+r^{\prime \prime}}$ is the symmetric group on the $r^{\prime}+r^{\prime \prime}$ symbols $1, \ldots, r^{\prime}+r^{\prime \prime}$. The subgroup $(\pm 1)^{r^{\prime}+r^{\prime \prime}-1}$ acts on $T(\mathbb{R})_{2}$ trivially. We compute $T(\mathbb{R})_{2} / S_{r^{\prime}+r^{\prime \prime}}$.

For a subset $\Xi \subseteq\left\{1, \ldots, r^{\prime}+r^{\prime \prime}\right\}$, we set

$$
c_{\Xi}=\operatorname{diag}\left(\mathcal{M}\left(z_{1}\right), \ldots, \mathcal{M}\left(z_{r^{\prime}+r^{\prime \prime}}\right)\right) \text { with } z_{k}= \begin{cases}-1 & \text { if } k \in \Xi \\ +1 & \text { otherwise }\end{cases}
$$

Then

$$
T(\mathbb{R})_{2}=\left\{c_{\Xi} \mid \Xi \subseteq\left\{1, \ldots, r^{\prime}+r^{\prime \prime}\right\}\right\} .
$$

Consider the subgroup $S_{r^{\prime}} \times S_{r^{\prime \prime}} \subseteq S_{r^{\prime}+r^{\prime \prime}}$, where $S_{r^{\prime \prime}}$ is the symmetric group on the $r^{\prime \prime}$ symbols $r^{\prime}+1, \ldots, r^{\prime}+r^{\prime \prime}$. Its elements are represented by elements of $N(\mathbb{R})$, and hence they act on $T(\mathbb{R})_{2}$ by the usual conjugation:

$$
c_{\Xi} * \sigma=c_{\sigma^{-1} \Xi} \quad \text { for } \sigma \in S_{r^{\prime}} \times S_{r^{\prime \prime}} .
$$

Write $\Xi=\Xi^{\prime} \cup \Xi^{\prime \prime}$ where

$$
\Xi^{\prime}=\Xi \cap\left\{1, \ldots, r^{\prime}\right\}, \quad \Xi^{\prime \prime}=\Xi \cap\left\{r^{\prime}+1, \ldots, r^{\prime}+r^{\prime \prime}\right\} .
$$

We see that the W-orbit of c_{Ξ} depends only on the cardinalities of Ξ^{\prime} and $\Xi^{\prime \prime}$.
The group $S_{r^{\prime}+r^{\prime \prime}}$ is generated by its subgroup $S_{r^{\prime}} \times S_{r^{\prime \prime}}$ and $\sigma_{1, r^{\prime}+1}=\left(1, r^{\prime}+1\right)$. In order to compute the action of $\sigma_{1, r^{\prime}+1}$ on $T(\mathbb{R})_{2}$, we consider the case $r^{\prime}=1, r^{\prime \prime}=1$, $G=\mathrm{SO}(2,2)$. Consider the block matrix

$$
n=\boldsymbol{i}\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right) \quad \text { where } I_{2}=\operatorname{diag}(1,1)
$$

One can check that $n \in N(\mathbb{C}) \subset G(\mathbb{C})$ and n represents $\sigma_{1,2}$. Let

$$
c=c_{\{1,1\}}=\operatorname{diag}(-1,-1,-1,-1) .
$$

We have

$$
n^{-1} c \bar{n}=c n^{-1} \bar{n}=1 .
$$

Returning to the case of arbitrary r^{\prime} and $r^{\prime \prime}$, we see that when both Ξ^{\prime} and $\Xi^{\prime \prime}$ are non-empty, an element of Ξ^{\prime} can be cancelled with an element of $\Xi^{\prime \prime}$. Thus the W-orbit of
a cocycle c_{Ξ} depends only on the difference $\# \Xi^{\prime}-\# \Xi^{\prime \prime}$. For s^{\prime} and $s^{\prime \prime}$ such that $1 \leq s^{\prime} \leq r^{\prime}$, $1 \leq s^{\prime \prime} \leq r^{\prime \prime}$, we write

$$
\begin{aligned}
& c_{s^{\prime}}^{\prime}=c_{\Xi^{\prime}} \quad \text { with } \Xi^{\prime}=\left\{1, \ldots, s^{\prime}\right\}, \\
& c_{s^{\prime \prime}}^{\prime \prime}=c_{\Xi^{\prime \prime}} \quad \text { with } \quad \Xi^{\prime \prime}=\left\{r^{\prime}+1, \ldots, r^{\prime}+s^{\prime \prime}\right\} .
\end{aligned}
$$

By Theorem 3.1 we conclude that

$$
\# H^{1}(\mathbb{R}, G)=r^{\prime}+r^{\prime \prime}+1
$$

with representatives

$$
1 \cup\left\{c_{s^{\prime}}^{\prime} \mid 1 \leq s^{\prime} \leq r^{\prime}\right\} \cup\left\{c_{s^{\prime \prime}}^{\prime \prime} \mid 1 \leq s^{\prime \prime} \leq r^{\prime \prime}\right\}
$$

The cases $G=\mathrm{SO}\left(2 r^{\prime}, 2 r^{\prime \prime}+1\right)$ and $G=\mathrm{SO}\left(2 r^{\prime}+1,2 r^{\prime \prime}+1\right)$ are similar to the case $\mathrm{SO}\left(2 r^{\prime}, 2 r^{\prime \prime}\right)$; in both cases we have $\# H^{1}(\mathbb{R}, G)=r^{\prime}+r^{\prime \prime}+1$.

Alternatively, one can use the fact that $H^{1}(\mathbb{R}, G)$ for $G=\mathrm{SO}\left(\mathbb{R}^{n}, f\right)$ classifies isomorphism classes of real quadratic forms f^{\prime} on \mathbb{R}^{n} with $\operatorname{det} M_{f^{\prime}}=\operatorname{det} M_{f}$ (see Serre [18], Section X.2, Proposition 4), and one can classify the isomorphism classes of such f^{\prime} using Sylvester's law of inertia.

Acknowledgements

The author was partially supported by the Hermann Minkowski Center for Geometry. The author thanks the anonymous referee for helpful suggestions, and Dmitry A. Timashev for helpful email correspondence.

References

[1] Berhuy G., An Introduction to Galois Cohomology and its Applications. Cambridge University Press, Cambridge, 2010.
[2] Borel A., Serre J.-P., Théorèmes de finitude en cohomologie galoisienne. Comm. Math. Helv. 39 (1964), 111-164 (Borel A., Euvres: collected papers, 64, Vol. II, Springer-Verlag, Berlin, 1983).
[3] Borovoi M.V., Galois cohomology of real reductive groups, and real forms of simple Lie algebras. Functional. Anal. Appl. 22:2 (1988), 135-136.
[4] Borovoi M., Gornitskii A.A., Rosengarten Z., Galois cohomology of real quasi-connected reductive groups. Arch. Math. (Basel) 118 (2022), no. 1, 27-38.
[5] Borovoi M., Evenor Z., Real homogeneous spaces, Galois cohomology, and Reeder puzzles. J. Algebra 467 (2016), 307-365.
[6] Borovoi M., Timashev D.A., Galois cohomology of real semisimple groups via Kac labelings. Transform. Groups 26 (2021), 433-477.
[7] Borovoi M., Timashev D.A., Galois cohomology and component group of a real reductive group. arXiv:2110.13062 [math.GR].
[8] Carter R.W., Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley \& Sons, London-New York-Sydney, 1972.
[9] Casselman W.A., Computations in real tori. In: Representation theory of real reductive Lie groups, vol. 472 of Contemp. Math., pp. 137-151. Amer. Math. Soc., Providence, RI, 2008.
[10] Conrad B., Non-split reductive groups over Z. In: Autours des schémas en groupes, Vol. II, 193-253, Panor. Synthèses, 46, Soc. Math. France, Paris, 2015.
[11] Gorbatsevich V.V., Onishchik A.L., Vinberg E.B., Structure of Lie groups and Lie algebras. In: Lie Groups and Lie Algebras III, Encyclopaedia of Mathematical Sciences, Vol. 41, pp. 1-244, Springer-Verlag, Berlin, 1994.
[12] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, 1978.
[13] Humphreys J.E., Linear Algebraic Groups. Springer-Verlag, Berlin, 1975.
[14] Kottwitz R.E., Stable trace formula: elliptic singular terms. Math. Ann. 275 (1986), 365-399.
[15] Nair A., Prasad D., Cohomological representations for real reductive groups. J. Lond. Math. Soc. (2) 104 (2021), no. 4, 1515-1571.
[16] Onishchik A.L., Vinberg E.B., Lie Groups and Algebraic Groups. Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990.
[17] Scheiderer C., Hasse principles and approximation theorems for homogeneous spaces over fields of virtual cohomological dimension one. Invent. Math. 125 (1996), no. 2, 307-365.
[18] Serre J.-P., Local fields. Graduate Texts in Mathematics, 67, Springer-Verlag, New York-Berlin, 1979.
[19] Serre J.-P., Galois cohomology. Springer-Verlag, Berlin, 1997.
[20] Shelstad D., Characters and inner forms of quasi-split groups over \mathbb{R}. Compos. Math. 39 (1979), 11-45.
[21] Steinberg R., Regular elements in semisimple groups. Publ. Math. IHES 25 (1965), 281-312 (= [19], Ch. III, Appendix 1).

[^0]: MSC 2020: Primary: 11E72, 20G20
 Keywords: Galois cohomology, real algebraic group
 Affiliation: Tel Aviv University, Israel
 E-mail: borovoi@tauex.tau.ac.il

