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A generalization of certain associated Bessel functions in connection

with a group of shifts

Junesang Choi, Ilya A. Shilin

Abstract. Considering the kernel of an integral operator intertwining two realizations of the group
of motions of the pseudo-Euclidean space, we derive two formulas for series containing Whittaker’s
functions or Weber’s parabolic cylinder functions. We can consider this kernel as a special function.
Some particular values of parameters involved in this special function are found to coincide with certain
variants of Bessel functions. Using these connections, we also establish some analogues of orthogonality
relations for Macdonald and Hankel functions.

1 Introduction and preliminaries
It is well known that any Lie group depends on a finite set of continuously changing parameters. The cardi-
nality of this set is small for a group of a low dimension. In this case, the matrix elements of representation
operators, the matrix elements of bases transformations, kernels of the corresponding integral operators, in-
tertwined different realizations of representations, can be expressed in terms of classical special functions. For
more complicated groups, the above matrix elements and kernels of subrepresentations to some subgroups
and kernels of intertwining operators are found to yield new special functions, which can be considered either
generalizations or analogues of known (classical) special functions. For instance, in [13], the matrix elements
of the restriction of the representation of Lorentz group on some diagonal matrices were shown to be able
to be expressed in terms of modified hyper Bessel functions of the first kind. The connection between these
matrix elements written in two different bases of a representation space leads to new formulas for series
containing above-mentioned hyper functions and converging to (ordinary) modified Bessel functions.

Vilenkin [15] showed that many known and new properties of variants of Bessel functions are related to
representations of the group ISO(1, 1) (denoted by MH(2) there) of motions of the pseudo-Euclidean plane
and group M(n) of motions of Euclidean n-dimensional space. In this paper, we consider an one-parameter
subgroup in more complicated group ISO(n, 1) and show that the kernel of an intertwined integral operator
can be considered as a generalization of Macdonald and Hankel functions, in a sense that some simple cases
of the kernel coincide with those variants of Bessel functions.

Recall that the pseudo-Euclidean (n+ 1)-dimensional space of signature

{−, . . . ,−,+}
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is the linear space in Rn+1 endowed with the bilinear form

µ(x, y) = xn+1yn+1 −
n∑
i=1

xiyi .

Here and throughout, let N, Z, R, R+, and C denote the sets of positive integers, integers, real numbers,
positive real numbers, and complex numbers, respectively, and let N0 := N ∪ {0} and R+

0 := R+ ∪ {0}. Let
µ̃(x) = µ(x, x) be the corresponding quadratic form. A motion of the pseudo-Euclidean space is an isometry
with respect to the distance

√
µ̃(x) that preserves orientation. These motions form a group denoted by

ISO(n, 1). For any g ∈ ISO(n, 1) and any x ∈ Rn+1, we have

g(x) = g0x+ g1 ,

where g0 ∈ SO(n, 1) and g1 is a shift vector. Therefore, g = g(g0, g1). Let D be the linear space consisting
of infinitely differentiable functions defined on the upper cone µ̃(x) = 1, where x = (x1, . . . , xn+1) with each
xj ∈ R+.

For any τ ∈ C, we consider a map Tτ defined by

Tτ : ISO(n, 1)→ GL(D), f 7→ exp
(
− τµ(g1, x)

)
f(g−10 x)

where GL(D) is the multiplicative group of linear operators of D whose rank is nonzero. Since for any
g, g̃ ∈ ISO(n, 1) and any x ∈ Rn+1 we have

g̃g(x) = g̃(g0x+ g1) = g̃0g0x+ g̃0g1 + g̃1 .

So we obtain g̃g = ĝ(ĝ0, ĝ1), where ĝ0 = g̃0g0 and ĝ1 = g̃0g1 + g̃1. Then

[Tτ (g̃)Tτ (g)](f(x)] = [Tτ (g̃)]
(
(exp

(
− τµ(g1, x)

)
f(g−10 x)

)
= exp

(
−τ, µ(ĝ1, x)

)
f(ĝ−10 x) .

We thus find that Tτ is a homomorphism.
In order to simplify the representation of the group SH(n+1) of hyperbolic rotations in Rn+1, Vilenkin [15,

Chapter 10] employed the so-called horosphere method. Indeed, Vilenkin used the Gelfand-Graev integral
transformation, which maps f ∈ D into the space L of σ̂-homogeneous functions defined on the intersection
of the cone µ̃(x) = 0 and the plane xn+1 = 1. Let K = (k0, . . . , kn−2) ∈ Zn−1, k0 > k1 . . . > kn−3 > |kn−2|,
Crk be the Gegenbauer polynomials, and

(AK)
2

= 2n−3π−
1
2 Γ−1

(n
2

)
×
n−3∏
i=0

22ki+1−i(ki − ki+1)!(2ki + n− 2− i)Γ2
(
n−i
2 + ki+1 − 1

)
Γ(ki + ki+1 + n− i− 2)

.

It was shown that for any f ∈ D, the ‘coordinates’ aK of the image of f (arising after action of Gelfand-Graev
transform) with respect to the basis

ΞK(x) = AK

n−3∏
i=0

C
n−i−2

2

ki−ki+1+1(cosϕn−i−1) sinki+1 ϕn−i−1 exp(±ikn−2ϕ1)

(where Ak is the normalizing factor) can be expressed as the integral transform (see [15, Entry 10.5.4])

aK = I[f ](σ) =

∫
µ̃(x)=1

ker(x,K, σ)f(x) dx .
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Here the kernel ker(x,K, σ) coincides with the matrix elements of the SH(n+ 1)-representation in the space
L situating in the ‘zero’ column which is exactly described by formula [15, Entry 10.4.9]. The corresponding
formulas for the inverse transform are given by (see [15, Entries 10.5.5 and 10.5.6])

f(x) =
(−1)

n−η
2 i

2nπ
n
2 Γ
(
n
2

) ∑
K

c+i∞∫
c−i∞

(σ)n−1 [cot(πσ)]1−η aK(σ) ker(x,K, 1− n− σ) dσ . (1)

Here and elsewhere, i =
√
−1 and η is the remainder of n divided by 2, that is, either η = 0 or η = 1. We also

recall some functions and notations, which are used in the following sections. The generalized hypergeometric
series pFq (p, q ∈ N0) is defined by (see [12, p. 73]):

pFq

[
α1, . . . , αp;

β1, . . . , βq;
z

]
=

∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!

= pFq(α1, . . . , αp;β1, . . . , βq; z) ,

where (λ)ν denotes the Pochhammer symbol which is defined (for λ, ν ∈ C), in terms of the familiar Gamma
function Γ, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

{
1 (ν = 0;λ ∈ C \ {0})
λ(λ+ 1) . . . (λ+ n− 1) (ν = n ∈ N;λ ∈ C),

it being understood conventionally that (0)0 := 1. The Gegenbauer function Cλν (z) is defined by (see, e.g., [11,
p. 791])

Cλν (z) =
Γ(2λ+ ν)

Γ(2λ) Γ(ν + 1)
2F1

(
−ν, 2λ+ ν;λ+

1

2
;

1− z
2

)
,

the cases ν = n ∈ N0 of which are the Gegenbauer polynomials. The associated Legendre function of the
first kind Pµν (z) is defined by (see, e.g., [11, p. 795])

Pµν (z) =
1

Γ(1− µ)

(
z+1
z−1

)µ
2

2F1

(
−ν, ν + 1; 1− µ;

1− z
2

)
(2)

(|arg(z ± 1)| < π; µ ∈ C \ N) .

The confluent hypergeometric function Ψ is given by (see, e.g., [8, Entry 13.6.21])

Ψ(a, b; z) = z−a2F0

(
a, a− b+ 1;−;−1

z

)
.

The Whittaker function of the second kind Wκ,µ(z) is defined by (see, for instance, [4, p. 264, Eq. (5)] and [8,
p. 334, Entry 13.14.3])

Wκ,µ(z) = e−
z
2 zκ 2F0

(1

2
− κ+ µ,

1

2
− κ− µ;−;−1

z

)
(3)(

|arg(z)| < π, |z| > 0;
1

2
− κ+ µ,

1

2
− κ− µ ∈ C \ Z−0

)
.

Recall the following relation (see, e.g., [8, Entry 13.14.3])

Wκ,µ(z) = zµ+
1
2 e−

z
2 Ψ
(1

2
− κ+ µ, 2µ+ 1; z

)
. (4)

The parabolic cylinder function Dν(z) is given by (see, for instance, [2, p. 674] and [11, p. 792])

Dν(z) = 2
ν
2 e−

z2

4 Ψ
(
−ν

2
,

1

2
;
z2

4

)
.

The modified Bessel function of the 1st kind Iν(z) is given by (see, e.g., [11, p. 794])

Iν(z) =
1

Γ(ν + 1)

(
z
2

)ν
0F1

(
−; ν + 1;

z2

4

)
= e−

νπi
2 Jν(e

πi
2 z) ,
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where Jν(z) is the Bessel function of the 1st kind given by (see, e.g., [11, p. 794])

Jν(z) =
1

Γ(ν + 1)

(
z
2

)ν
0F1

(
−; ν + 1;−z

2

4

)
.

The MacDonald function (modified Bessel function of the 3rd kind) Kν(z) is given by (see, e.g., [11, p. 794])

Kν(z) =
π[I−ν(z)− Iν(z)]

2 sin(νπ)
, (v ∈ C \ Z), (5)

whose integral representation of pure imaginary index ν = it and the argument z = x ∈ R was used as a
definition in [3, p. 873, Eq. (16)]:

Kit(x) =

∞∫
0

e−x coshu cos(tu) du .

The Hankel functions of the first and second kind (the Bessel functions of the third kind) are given, respec-
tively, by (see, e.g., [2, p. 675])

H(1)
ν (z) = Jν(z) + iYν(z) and H(2)

ν (z) = Jν(z)− iYν(z),

where Yν(z) is the Bessel function of the second kind (the Neumann function) (see, e.g., [2, p. 677])

Yν(z) =
cos(νπ) Jν(z)− J−ν(z)

cos(νπ)
, (ν ∈ C \ Z).

The Kronecker symbol δm,n is defined by δm,n = 1 when m = n and δm,n = 0 when m 6= n.

2 Kernels of integral operators of the subrepresentation to the subgroup of shifts
along the axis Oxn+1

Consider the subgroup
H = {h(λ) := g(diag(1, . . . , 1), (0, . . . , 0, λ)) | λ ∈ R}

in M(n, 1). In this section and elsewhere, we deal with the integral operator B which acts in the ‘space of
functions aK(σ)’ and corresponds with the representation operator Tτ

(
h(λ)

)
, where h(λ) ∈ H.

Lemma 2.1. For any h(λ) ∈ H, the integral operator B can be written as a Barnes integral

B[aK(σ)] =

c+i∞∫
c−i∞

k̃er(τ, λ;n,K, σ, σ̂)aK̂(σ̂) dσ̂ ,

where the kernel admits the integral representation

k̃er(τ, λ;n,K, σ, σ̂) =
[
(−1)

n
2 cot(πσ̂)δη,0 + (−1)

n+1
2 δη,1

]
2−1i(−σ)k0

× (σ̂)n−1(σ̂ + n− 1)k0

∞∫
1

P
1−k0−n2
n
2 +σ−1 (t)P

1−k0−n2
−n2−σ̂

(t) e−τλt dt. (6)

Proof. The inverse transform formulas (1) (which will be applied in this proof) coincide for even and odd
cases up to factor ± cot(πσ). Therefore, it is sufficient to prove the result for an arbitrary odd n. Introduce
the following parametrization on µ̃(x) = 1, where x = (x1, . . . , xn+1) with xn+1 ∈ R+ (see [15, Entry 10.1.1]):

xi =

n∑
j=1

δi,j sinh θn

n−1∏
s=i

sin θs

n∑
t=2

δt,i cos θi−1 + δi,n+1 cosh θn,

θ1 ∈ [−π, π], θ2, . . . , θn−1 ∈ [0, π], θn ∈ R+
0 .
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Given x = (x1, . . . , xn+1) with xn+1 ∈ R+, the corresponding SH(n + 1)-invariant measure on µ̃(x) = 1 is
given by (see [15, Entry 10.1.6])

dx = sinhn−1 θn

n−1∏
i=1

sini−1 θi dθi .

Then we find from [15, Entry 10.4.9] that

ker (x,K, σ)

= (−1)
k02

n
2−1Γ(σ + 1)Γ−1(σ − k0 + 1) sinh1−n2 θn exp(±ikn−2θ1)

×
[
Γ
(n

2

) n−3∏
i=0

22ki+1+n−i−4(n+ 2ki − i− 2)(ki − ki+1)!Γ
(
n−i
2 + ki+1 − 1

)
π
n
2−1Γ(n+ ki + ki+1 − i− 2)

] 1
2

× P 1+k0−n2
n
2 +σ−1 (cosh θn)

n−3∏
i=0

C
n−i
2 +ki+1−1

ki−ki+1
(cos θn−i−1) sinki+1 θn−i−1

and [Tτ (h)][f(x)] = exp(−τλ cosh θn)f(x). Therefore we obtain

B[ak(σ)] =
(−1)

n
2 i21−n

π
n
2 Γ
(
n
2

) ∑
K̂

c+i∞∫
c−i∞

(σ̂)n−1 aK̂(σ̂) dσ̂

× ker(x,K, σ) ker(x, K̂, 1− n− σ̂)

π∫
−π

exp
[
±i(kn−2 − k̂n−2)θ1

]
dθ1

×
n−3∏
i=0

π∫
0

C
n−i
2 +ki+1−1

ki−ki+1
(cos θn−i−1)C

n−i
2 +k̂i+1−1

k̂i−k̂i+1
(cos θn−i−1)

× sinki+1+k̂i+1+n−i−2 θn−i−1 dθn−i−1

×
+∞∫
0

P
1−k0−n2
n
2 +σ−1 (cosh θn)P

1−k̂0−n2
−n2−σ̂−1

(cosh θn) sinh θn dθn.

Obviously B[ak(σ)] = 0 for kn−2 6= k̂n−2. Otherwise, in view of orthogonality property for Gegenbauer
polynomials (see, e.g., [1, p. 198])

1∫
−1

(1− x2)
%− 1

2 C%k(x)C%m(x) dx =
21−2λπΓ(k + 2%)δk,m

k!(k + %)Γ2(%)
,

we see that the integral

π∫
0

C
1
2+kn−2

kn−3−kn−2
(cos θ2)C

1
2+k̂n−2

k̂n−3−k̂n−2
(cos θ2) sinkn−2+k̂n−2+1 θ2 dθ2 = 0

for kn−3 6= k̂n−3. Since, for K = K̂

π∫
−π

exp
[
±i(kn−2 − k̂n−2)θ1

]
dθ1 = 2π
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and

n−3∏
i=0

π∫
0

C
n−i
2 +ki+1−1

ki−ki+1
(cos θn−i−1)C

n−i
2 +k̂i+1−1

k̂i−k̂i+1
(cos θn−i−1)

× sinki+1+k̂i+1+n−i−2 θn−i−1 dθn−i−1 = πn−2
[
Γ
(n

2

)
(AK)

2
]−1

,

we have

B[ak(σ)] = (−1)
n+1
2 2iΓ(σ + 1)Γ−1(1 + σ − k0)

×
c+i∞∫
c−i∞

(σ̂)n−1(2− n− σ̂)
k0aK(σ̂) dσ̂

×
+∞∫
1

P
1−k0−n2
n
2 +σ−1 (t)P

1−k0−n2
−n2−σ̂

(t) exp(−τλt) dt .

This completes the proof. �

We find from Lemma 2.1 that the kernel k̃er(τ, λ;n,K, σ, σ̂) does not depend on k1, . . . , kn−2, in fact,

k̃er(τ, λ;n,K, σ, σ̂) ≡ k̃er(τ, λ;n, k0, σ, σ̂) .

Lemma 2.2. The kernel k̃er(τ, λ;n, k0, σ, σ̂) admits the following series representation:

• The case η = 0

k̃er(τ, λ;n, k0, σ, σ̂) (7)

= (−1)
n
2 (2τλ)

−n+σ+σ̂
2 i cot(πσ̂)

× (−σ)k0(σ̂ + n− 1)k0(σ̂)n−1

[
Γ
(n

2
+ k0

)]−1
×
∞∑
i=0

(
1− σ − n

2

)
i
(k0 − σ)i

i!
4F3

[
1− n

2 − k0 − i, 1 + σ̂ − n
2 , k0 − σ̂,−i;

n
2 + k0,

n
2 + σ − i, 1 + σ − k0 − i;

1

]
×Wσ+σ̂

2 −k0−i,
n+σ+σ̂−1

2
(2τλ). (8)

• The other case η = 1

k̃er(τ, λ;n, k0, σ, σ̂) = (−1)
n+1
2 (2τλ)

σ̂−σ−1
2 i(−σ)k0(σ̂ + n− 1)k0

× (σ̂)n−1

[
Γ
(n

2
+ k0

)]−1 ∞∑
i=0

(
1− σ − n

2

)
i
(k0 − σ)i

i!

× 4F3

[
1− n

2 − k0 − i,
n
2 + σ̂, n+ k0 + σ̂ − 1,−i;

n
2 + k0,

n
2 − σ − i, 1 + σ − k0 − i;

1

]
×W 1+σ−σ̂−n

2 −k0−i,σ−σ̂2
(2τλ) .

Proof. We prove this theorem only for the case η = 1. Using (2) and a product formula of functions pFq (see,
e.g., [11, p. 441, Entry 7.2.3-44])

pFq

[
a1, . . . , ap;
b1, . . . , bq;

cz

]
rFs

[
â1, . . . , âr;

b̂1, . . . , b̂s;
ĉz

]
=

∞∑
i=0

γiz
i ,
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where

γi =
ci

p∏
j=1

(aj)i

i!
q∏
j=1

(bj)i
q+r+1Fp+s

[
−i, 1− b1 − i, . . . , 1− bq − i, â1, . . . , âr;

1− a1 − i, . . . , 1− ap − i, b̂1, . . . , b̂s;
(−1)p+q+1ĉ

c

]
,

we obtain

∞∫
1

P
1−k0−n2
n
2 +σ−1 (t)P

1−k0−n2
−n2−σ̂

(t) exp(−τλt) dt (9)

=
21−σ−σ̂

Γ2
(
n
2 + k0

)
×
∞∑
i=0

(
1− σ − n

2

)
i

(k0 − σ)i

i!
(
n
2 + k0

)
i

4F3

[
−i, σ̂ + n+ k0 − 1, σ̂ + n

2 , 1− k0 − i−
n
2

n
2 + k0,

n
2 + σ − i, 1 + σ − k0 − i

1

]

× exp(−τλ)

∞∫
0

t
n
2 +k0+i−1 (t+ 2)

σ−σ̂−k0−i−n2 exp(−τλt) dt. (10)

Using a known integral formula (see, e.g., [10, Entry 2.3.6.-9)])

∞∫
0

tα−1(t+ u)
−β
e−pt dt = Γ(α)uα−βU(α; 1 + α− β;up)

(|arg(u)| < π,min{<(α),<(p)} > 0)

and the relation (4), we complete the proof for the case η = 1. Similarly the case η = 0 can be shown. �

We find from Lemma 2.2 that the kernel k̃er(τ, λ;n, k0, σ, σ̂) depends on the product u := τλ, in fact,

k̃er(τ, λ;n, k0, σ, σ̂) ≡ k̃er(u;n, k0, σ, σ̂) .

It is noted that some particular values of parameters of k̃er(u;n, k0, σ, σ̂) can yield certain other series
representations. For example, replacing σ̂ by σ+ 1

2 in (10), we can use a known formula (see, e.g., [10, Entry
2.3.6.-12])

∞∫
0

tα−1(x+ u)
−α− 1

2 e−pt dt = 2αu−
1
2 Γ(α)e

pu
2 D−2α

(√
2pu
)

(11)

(|arg(u)| < π,min{<(α),<(p)} > 0) .

Then we may obtain the series involving the product of 4F3 and the parabolic cylinder function.

3 Series representations of Macdonald functions
Using the result in Lemma 2.2, the Macdonald function in (5) can be expressed as a series involving the
Whittaker function of the second kind Wκ,µ(z) (3), asserted in the following theorem.

Theorem 3.1. Let n be even and <(u) > 0. Then

Kσ+n−1
2

(u) = (2u)
−σ+1

2 π
1
2

∞∑
i=0

(−σ)i
(
1− σ − n

2

)
i

i!
Wσ

2−i,
σ+n−1

2
(2u) . (12)
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Proof. Considering that, for any permutation s acting on the set {a1, . . . , ap} containing zero,

pFq

[
s(a1), . . . , s(ap);

b1, . . . , bq;
z

]
= 1 ,

we obtain from (8) that

k̃er(u;n, 0, σ, 0) =
(−1)

n
2 iΓ(n− 1)

π(2u)
n+σ

2 Γ
(
n
2

) ∞∑
i=0

(−σ)i
(
1− σ − n

2

)
i

i!
Wσ

2−i,
σ+n−1

2
(2u) . (13)

Also, in view of the identity
π

sin(πz)
= Γ(z)Γ(1− z) , (14)

we have

k̃er(u;n, 0, σ, 0) =
(−1)

n
2 i(n− 2)!

2π

∞∫
1

P
1−n2
n
2 +σ−1(t)P

1−n2
−n2

(t) exp(−ut) dt .

From (2), we get

P
1−n2
−n2

(t) =
{

Γ
(n

2

)}−1(
t+1
t−1

) 1
2−

n
4

1F0

(
1− n

2
;−;

1− t
2

)
= 21−

n
2

{
Γ
(n

2

)}−1
(t2 − 1)

n
4−

1
2 .

Therefore,

k̃er(u;n, 0, σ, 0) =
(−1)

n
2 i(n− 2)!

2
n
2 πΓ

(
n
2

) ∞∫
1

P
1−n2
n
2 +σ−1(t)(t2 − 1)

n
4−

1
2 exp(−ut) dt.

Using a known integral formula (see, e.g., [11, Entry 2.17.7.-5])

∞∫
b

(t2 − b2)
−µ2 exp(−pt)Pµν

( t
b

)
dt =

(
2b
π

) 1
2

pµ−
1
2Kν+ 1

2
(bp) (15)

(b ∈ R+,<(p) > 0,<(µ) < 1) ,

we get

k̃er(u;n, 0, σ, 0) =
(−1)

n
2 i(2u)

1−n
2 (n− 2)!

π
3
2 Γ
(
n
2

) Kn−1
2 +σ(u) . (16)

Finally, equating (13) and (16) leads to the desired identity (12). �

The particular case n = 2 of (12) gives

Kσ+ 1
2
(u) = (2u)

−σ+1
2 π

1
2

∞∑
j=0

[(−σ)j ]
2

j!
Wσ

2−j,
σ+1
2

(2u) .

4 A series involving parabolic cylinder functions
A series associated with parabolic cylinder functions can be evaluated as in the following theorem.

Theorem 4.1. Let <(u) > 0. Then

∞∑
j=0

22j Γ

(
j +

1

2

)
D−2j−1(2

√
u) =

√
π e−2u

2
√
u

. (17)
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Proof. Taking the definition

Γ(z) =

∞∫
0

tz−1 e−t dt (<(z) > 0)

of the Gamma function, from (6) we obtain

k̃er
(
u; 1, 0,−1

2
, 0
)

=
1

2i

∞∫
1

P
1
2
−1(t)P

1
2

− 1
2

(t) exp(−ut) dt

=
1√
2πi

∞∫
1

(t− 1)
− 1

2 exp(−ut) dt =
1

i
√

2πu exp(u)
.

(18)

From the proof of Lemma 2.2 and (11) we get

k̃er
(
u; 1, 0,−1

2
, 0
)

=

√
2

πi

∞∑
j=0

2i
∞∫
0

tj−
1
2 dt

(t+ 2)
j+1

exp(ut)

=

√
2 eu

πi

∞∑
j=0

22jΓ

(
j +

1

2

)
D−2j−1

(√
4u
)
.

(19)

Now, equating (18) and (19) yields the desired identity (17). �

5 Orthogonality relations for kernels k̃er(u;n, k0, σ, σ̂)

It is noted that some particular cases of the kernel k̃er(u;n, k0, σ, σ̂) coincide with known variants of Bessel
functions. For example, applying (14) and two known integral formulas (see [10, Entries 2.3.5.-4 and 2.3.5.-5])

∞∫
a

(
t2 − a2

)β−1
e−pt dt =

Γ(β)√
π

(
2a

p

)β− 1
2

Kβ− 1
2
(ap)

(min{<(β),<(p)} > 0)

and
∞∫
a

eεiλt
(
t2 − a2

)β−1
dt = εi

√
πΓ(β) 2β−

3
2

(
λ

a

) 1
2−β

H
( 3

2−
ε
2 )

1
2−β

(aλ)

[ε = ±1;<(β) > 0,±<(iλ) < 0 (0 < <(β) < 1,<(iλ) = 0)]

to (6), respectively, we obtain, for even n,

k̃er(u;n, 0, 0, 0) = (−1)
n
2 (2u)

1−n
2 π−

3
2 i(n− 2)!

[
Γ
(n

2

)]−1
Kn−1

2
(u) (<(u) > 0)

and

k̃er(εiω;n, 0, 0, 0) = (−1)
n
2 2−

n+1
2 ω

1−n
2 π−

1
2 i

n+1
2 (n− 1)!

[
Γ
(n

2

)]−1
H

(1+η)
1−n
2

(ω)(
(−1)

η<(iω) > 0
)
.

Therefore, the kernel k̃er(u;n, k0, σ, σ̂) as a function can be considered as a generalization of some functions

associated with the Bessel functions. Certain properties of k̃er(u;n, k0, σ, σ̂) become generalizations and
analogues of those associated Bessel functions. Here, in order to prove a family of orthogonality relations for
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k̃er(u;n, 0, σ, 0) and k̃er(u;n, 0, 0, σ̂), we use a known integral formula belonging to the Kontorovich-Lebedev
integral transform (see, e.g., [6, Eq. (1.1)] and two references therein include the origin of this transformation)

∞∫
0

u−1Kiρ(u)Kiρ̂(u) du =
π2 δ(ρ− ρ̂)

2ρ sinh(πρ)
(min {<(ρ),<(ρ̂)} > 0), (20)

where δ is the Dirac delta function. In [9], several approaches of proof of (20) were given. In [14], (20) was
proved in a simpler way than those in [9] by appealing to a technique occasionally used in mathematical
physics.

Applying the the relation between Hankel and MacDonald functions (see [7, Eq. 5.33])

H(1+η)
ν (u) = (−1)

η
2(πi)

−1
exp

(
(−1)

η+1
νπi

2

)
Kν

[
exp

(
(−1)

η+1
πi

2

)
u

]
to (20), we get an orthogonality formula for Hankel functions

∞∫
0

u−1H
(1+η)
iρ (u)H

(1+η)
iρ̂ (u) du = −

2 exp
(
(−1)

η
πρ
)
δ(ρ− ρ̂)

ρ sinh(πρ)

(min {<(ρ),<(ρ̂)} > 0).

In [6], the Kontorovich-Lebedev transform with Hankel function as a kernel was discussed in a detailed
manner.

Assume here that u ∈ R. The orthogonality formulae for the kernel functions are given in the following
theorems.

Theorem 5.1. The following integral formula holds.

∞∫
0

k̃er
(
u; 2, 0,−1

2
+ iρ, 0

)
k̃er
(
u; 2, 0,−1

2
+ iρ̂, 0

)
du

= − δ(ρ− ρ̂)

4πρ sinh(πρ)
(min {<(ρ), <(ρ̂)} > 0) . (21)

Proof. In view of (16), for any even n we have

k̃er
(
u;n, 0,

1− n
2

+ iρ, 0
)

k̃er
(
u;n, 0,

1− n
2

+ iρ̂, 0
)

= − [(n− 2)!]2

(2u)
n−1

π
(
n
2 − 1

)
!
Kiρ(u)Kiρ̂(u) . (22)

Then, setting here n = 2 and integrating both sides of (22) with respect to u from 0 to∞ with the aid of (20)
gives (21). �

Theorem 5.2. The following integral formula holds.

∞∫
0

k̃er
(
u; 2, 0, 0,−1

2
+ iρ

)
k̃er
(
u; 2, 0, 0,−1

2
+ iρ̂

)
du

= −
(
−1

2 + iρ
)2
π sinh(πρ)

4ρ cosh2(πρ)
δ(ρ− ρ̂) (min{<(ρ),<(ρ̂)} > 0).
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Proof. We derive from (2) that P−νν (z) = 2−ν{Γ(ν + 1)}−1(z2 − 1)
ν
2 . Applying it to (6), we obtain

k̃er(u;n, 0, 0, σ̂) =
(−1)

n
2 i(σ̂)n−1

2
n
2 tan(πσ̂)Γ

(
n
2

) ∞∫
0

P
1−n2
−n2−σ̂

(t)(t2 − 1)
n
4−

1
2 e−ut dt .

Using (15), we get

k̃er(u;n, 0, 0, σ̂) =
(−1)

n
2 i cot(πσ̂)(σ̂)n−1

(2u)
n−1
2
√
πΓ
(
n
2

) Kσ̂+n−1
2

(u) ,

and, therefore,

∞∫
0

k̃er

(
u; 2, 0, 0,−1

2
+ iρ

)
k̃er

(
u; 2, 0, 0,−1

2
+ iρ̂

)
du

= −
(
− 1

2 + iρ
)(
− 1

2 + iρ̂
)

2π coth(πρ) coth(πρ̂)

∞∫
0

u−1Kiρ(u)Kiρ̂(u) du.

Applying (20), we complete the proof. �

Theorem 5.3. The following integral formula holds.

∞∫
0

k̃er

(
u; 2, 0,−1

2
+ iρ, 0

)
k̃er
(
u; 2, 0, 0,−1

2
+ iρ̂

)
du

= − i cosh(πρ)δ(ρ− ρ̂)

4ρ sinh2(πρ)
(min{<(ρ),<(ρ̂)} > 0). (23)

Proof. Integrating both sides of the equality

k̃er
(
u; 2, 0,−1

2
+ iρ, 0

)
k̃er
(
u; 2, 0, 0,−1

2
+ iρ̂

)
=

i coth(πρ)

2π2
Kiρ(u)Kiρ̂(u)

with respect to u from 0 to ∞ with the aid of (20), we derive (23). �

Theorem 5.4. The following integral formula holds.

∞∫
0

k̃er(u; 1, 0, 0, iρ)k̃er(u; 3, 0, 0,−1 + iρ̂) du

= − ρ+ i

2 sinh(πρ)
δ(ρ− ρ̂) (min{<(ρ),<(ρ̂)} > 0).

Proof. We obtain from (2) that for any odd n

k̃er(u;n, 0, 0, σ̂) =
(−1)

n−1
2 (σ̂)n−1
2i

∞∫
1

P
1−n2
n
2−1

(t)P
1−n2
−n2−σ̂

(t)e−ut dt

=
(−1)

n+1
2 i(σ̂)n−1

(2u)
n−1
2
√
πΓ
(
n
2

)Kσ̂+n−1
2

(u) .

(24)

Integrating both sides of

k̃er(u; 1, 0, 0, iρ)k̃er(u; 3, 0, 0,−1 + iρ̂) = − ρ̂
2 + iρ̂

π2u
Kiρ(u)Kiρ̂(u)

and using (20), we complete the proof. �
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Theorem 5.5. The following integral formula holds.

∞∫
0

k̃er (u; 1, 0, iρ, 0) k̃er (u; 3, 0, 0,−1 + iρ̂) du

= − (ρ+ i)δ(ρ− ρ̂)

2 sinh(πρ)
(min{<(ρ),<(ρ̂)} > 0). (25)

Proof. For any odd n, we have

k̃er(u;n, 0, σ, 0) =
(−1)

n−1
2 (0)n−1
2i

∞∫
1

P
1−n2
n
2 +σ−1(t)P

1−n2
−n2

(t)e−ut dt

=
(−1)

n+1
2 i(0)n−1

(2u)
n−1
2
√
πΓ
(
n
2

)Kσ+n−1
2

(u) .

(26)

The equality (25) follows from the identity

k̃er(u; 1, 0, iρ, 0)k̃er(u; 3, 0, 0,−1 + iρ̂) =
iρ̂(−1 + iρ̂)

πu
Kiρ(u)Kiρ̂(u). �

6 Concluding Remarks

In this paper we have shown that the kernel k̃er(u;n, k0, σ, σ̂) plays the same role as the function P lmn and
the kernel K(w, z, g) in [11] in the sense that some particular cases of P lmn reduce to Jacobi and Legendre
polynomials, Legendre and Bessel functions, the kernel K(w, z, g) can be expressed in terms of gamma

function. Here, properties of the kernel function k̃er(u;n, k0, σ, σ̂) yield those identities corresponding to
variants of Bessel functions and their related functions. For example, choosing σ = 0 in Theorem 3.1, we
obtain the well-known relation [5, Entry 9.235.2]

Kn−1
2

(u) =

√
π

2u
W0,n−1

2
(2u) .

For other examples, the particular cases of of (24) and (26) when ρ̂ = ρ give the following integral formula:

∞∫
0

k̃er
2
(u; 1, 0, iρ, 0) du =

∞∫
0

k̃er
2
(u; 1, 0, 0, iρ) du = − sech(πρ)

16π2
,

which may be considered as an analogue of the following known integral formula [3, Lemma 2.3]

∞∫
0

[Kiρ(2πu)]2 du =
π

8 cosh(πρ)
.
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