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On the Generalised Ricci Solitons and Sasakian Manifolds

A. Mohammed Cherif, K. Zegga and G. Beldjilali

Abstract. In this note, we find a necessary condition on odd-dimensional Riemannian manifolds under
which both of Sasakian structure and the generalised Ricci soliton equation are satisfied, and we give
some examples.

1 Introduction and main results

Let (M, g) be a smooth Riemannian manifold. By R and Ric we denote respectively the Riemannian curvature
tensor and the Ricci tensor of (M, g). Thus R and Ric are defined by

R(X, Y)Z =VxVyZ -VyVxZ— V[X7y]Z, (1)
Ric(X,Y) = g(R(X, e;)e;, Y), (2)

where V is the Levi-Civita connection with respect to g, {e;} is an orthonormal frame, and X,Y, Z € T'(T'M).
The gradient of a smooth function f on M is defined by

g(grad f, X) = X(f), gradf = ei(f)ei, (3)
where X € I'(T'M). The Hessian of f is defined by
(Hess f)(X,Y) = g(Vx grad f,Y), (4)
where X,Y € D(T'M). For X € [(T'M), we define X* € I'(T* M) by
X'(Y) = g(X.Y). (5)

(For more details of previous definitions, see for example [9]).
The generalised Ricci soliton equation in Riemannian manifold (M, g) is defined by (see [8])

Lxg=—2c1X"® X"+ 2¢, Ric +2)g, (6)
where X € T'(T'M), Lxg is the Lie-derivative of g along X given by
(‘CXg)(sz):g(VYXaZ)+g(vZX7Y)7 (7)
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for all Y, Z € T'(TM), and c1,c2, A € R. Equation (6), is a generalization of Killing’s equation (¢; = ¢ =
A = 0), Equation for homotheties (¢; = ¢2 = 0), Ricci soliton (¢; = 0, ¢a = —1), Cases of Einstein-Weyl
(c1=1,¢c0= n_—jz), Metric projective structures with skew-symmetric Ricci tensor in projective class (¢; = 1,
cy = n‘—}l, A = 0), Vacuum near-horzion geometry equation (¢; = 1, ¢ = %)7 and is also a generalization of
Einstein manifolds (For more details, see [1], [4], [5], [6], [8]).
In this paper, we give a new generalization of Ricci soliton equation in Riemannian manifold (M, g), given
by the following equation

Lx,g=—2c1X5® X} + 2co Ric+2)g, (8)
where X1, Xo € T'(T'M).
Note that, if X; = grad f; and Xy = grad fo, where f1, fo € C*°(M), the generalised Ricci soliton equation
(8) is given by

Hess f1 = —c1dfs ® dfy + co Ric +Mg. (9)

Example 1.1. Let H? = {(2,y) € R?|y > 0} be a 2-dimensional hyperbolic space equipped with the Rieman-

2 2
nian metric g = dxy%dy, the following functions

C1 ()\ — 62)

fl(x7y):_()‘_62)lnyv fg(l‘,y):— 1

Iny,

satisfy the generalised Ricci soliton equation (9) with ¢1 (A — ¢2) > 0.

Example 1.2. The product Riemannian manifold M3 = (0,00) x R? equipped with the Riemannian metric
g = dx? + 2%(dy® + dz?) satisfies the generalised Ricci soliton equation (9), with

vzae Inx

C1

)

A
fl(x,y,Z)ngQ—@lnx, f?(xayaz):_
where c1co < 0.

Remark 1.3. There are Riemannian manifolds that do not admit generalized soliton equation (9) such that
f1 = f2 (for example, the Riemannian manifold given in Example 1.2).

An (2n + 1)-dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold if
there exist on M a (1,1) tensor field ¢, a vector field £ (called the structure vector field) and a 1-form 7 such
that

n(€) =1, (X)) =-X+n(X)&  9(pX,9Y) = g(X,Y) = n(X)n(Y),

for any X, Y € T'(TM). In particular, in an almost contact metric manifold we also have p¢ = 0 and
no e = 0. Such a manifold is said to be a contact metric manifold if dn = ¢, where ¢(X,Y) = g(X, pY)
is called the fundamental 2-form of M. If, in addition, £ is a Killing vector field, then M is said to be a
K-contact manifold. It is well-known that a contact metric manifold is a K-contact manifold if and only if
Vx& = —pX, for any vector field X on M. The almost contact metric structure of M is said to be normal if
[0, 0](X,Y) = —=2dn (X,Y)E, for any X, Y € T'(T'M), where [p, ¢] denotes the Nijenhuis torsion of ¢, given
by

[0, P)(X,Y) = (X, Y] + [pX, 0Y] = p[pX, Y] - ¢[X, pY].
A normal contact metric manifold is called a Sasakian manifold. It can be proved that a Sasakian manifold
is K-contact, and that an almost contact metric manifold is Sasakian if and only if

(Vx)Y =g(X.Y)§ —n(Y)X, (10)
for any X Y. Moreover, for a Sasakian manifold the following equation holds

R(X,Y)§ =n(Y)X —n(X)Y.
From the formula (10) easily obtains

Vx¢ = —¢X, (Vxn)Y = —g(pX,Y). (11)



On the Generalised Ricci Solitons and Sasakian Manifolds 121

(For more details, see [2], [3], [10]).
The main result of this paper is the following:

Theorem 1.4. Suppose (M, p,&,m,g) is a Sasakian manifold, and satisfies the generalised Ricci soliton equa-
tion (9). Then
¢ =grad fi1 + c1£(§(f2)) grad f2 — c1§(f2) Ve grad fo = £(f1)€. (12)

Remark 1.5. The condition (12) is necessary for the existence of a Sasakian structure and the generalised
Ricci soliton equation (9) on an odd-dimensional Riemannian manifold.

Example 1.6. Consider the Sasakian manifold (R? x (0,7), ¢, &,7,9) endowed with the Sasakian structure
(¢,€,1,9) given by

PP+ 0 —q 0 -1 0
(9ij) = 0 p» 0 |, (pj)=|1 0 0 [,
—q 0 1 0 —qg O
0 4e¥ —e2y
§=5, N=-gdrtdz py,2) =g a@yn) = e

Then, the following smooth functions

fi(z,y,2) = QCQ;L A (ln(16+ezy) —2In < S >) ,

2co + A

1 2
fo(z,y, 2) = —5 [ — C2c+ A (2In(sin z) — In(16 + €*))
1

satisfy the generalised Ricci soliton equation (9), where ¢; < 0 and 2¢2 + A > 0. Furthermore,

¢ =¢&(f1)€ = —(2c2 + A) cot(2)€.

2 Proof of the result
For the proof of Theorem 1.4, we need the following lemmas.

Lemma 2.1. [7] Let (M,¢,&,m, g) be a Sasakian manifold. Then
(Le(Lx,9) (Y€)= g(X1,Y) +9(VeVeX1,Y) +Yg(VeXy,6),
where X1,Y € T(TM), with Y is orthogonal to &.

Lemma 2.2. [7] Let (M, g) be a Riemannian manifold, and let fo € C*°(M). Then
(Leldf2 © df2))(Y,€) = Y(&(f2))E(f2) + Y (f2)8(E(S2)),
where £, Y € T(TM).

Lemma 2.3. Let (M, p,&,n,9) be a Sasakian manifold of dimension (2n + 1), and satisfies the generalised
Ricci soliton equation (9). Then

Vegrad f1 = (A 4 2can)€ — c1&(f2) grad fo.
Proof. Let Y € T(T M), we have

Ric(§,Y) = g(R(§ ei)e;,Y)
= g(R(eivY)fvei)
= n(Y)g(ei,ei) —nle)g(X, e)
= (@n+1nY)—n)
= 2nn(Y)
= 2ng(§Y),
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where {e;} is an orthonormal frame on M, which implies

)‘g(fa Y) +c2 RIC(E, Y) = Ag(fa Y) + 202”9(&7 Y)
= (A4 2cn)g(£,Y). (13)

From equations (9) and (13), we obtain

(Hess f1)(&§,Y) = —ca&(f2)Y (f2) + (A +2c2n)g(§,Y)
= —le(fé)g(gl"ad f2’ Y) + (>‘ + 262”)9(57 Y), (14)

the Lemma follows from equation (14). |
Proof of Theorem 1.4. Let Y € T'(T'M), such that ¢(£,Y) =0, from Lemma 2.1, with X; = grad f1, we have

2(Le(Hess 1)) (Y,€) = Y(fi)+9(VeVegrad f1,Y)
+Yg(Ve grad f1,€). (15)

By Lemma 2.3, and equation (15), we get

2(55(Hess fl))(Y, §) = Y(fi)+ (A+2cn)g(Ved,Y)
—c19(Ve(é(f2) grad f2),Y)
+(A+2e2n)Y g(£,€) — 1Y (£(f2)?). (16)

Since V¢€ = 0 and ¢(&, &) = 1, from equation (16), we obtain
2(Le(Hess f1))(Y,€) = Y(f1) — cié(€(f2)Y (f2)

—c18(f2)9(Ve grad f2,Y)
—2c1€(f2)Y (€(f2))- (17)

Since L¢g = 0 (i.e. £ is a Killing vector field), it implies that £¢ Ric = 0. Taking the Lie derivative to the
generalised Ricci soliton equation (9) yields

2(Le(Hess f1)) (Y, €) = —2¢1(Le(df2 © df2)) (Y, €). (18)

Thus, from equations (17), (18) and Lemma 2.2, we have

Y (f1) —c1€(€(f2))Y (f2)
—c1&(f2)9(Vegrad f2,Y) — 2¢1€(f2)Y (€(f2))

= —2a1Y (£(f2))€(f2) — 21 Y (f2)€(&( f2)), (19)
which is equivalent to
Y (f1) +a€(§(f2)Y (f2) — a1€(f2)g9(Ve grad f2,Y) = 0, (20)
that is, the vector field
¢ =grad fi + c1(§(f2)) grad f2 — c1§(f2) Ve grad fo, (21)
is parallel to £&. The proof is completed. [ ]
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