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Bicomplex numbers as a normal complexified f -algebra

Hichem Gargoubi and Sayed Kossentini

In memoriam Christian Duval

Abstract. The algebra B of bicomplex numbers is viewed as a complexification of the Archimedean f -
algebra of hyperbolic numbers D. This lattice-theoretic approach allows us to establish new properties
of the so-called D-norms. In particular, we show that D-norms generate the same topology in B. We
develop the D-trigonometric form of a bicomplex number which leads us to a geometric interpretation
of the nth roots of a bicomplex number in terms of polyhedral tori. We use the concepts developed, in
particular that of Riesz subnorm of a D-norm, to study the uniform convergence of the bicomplex zeta
and gamma functions. The main result of this paper is the generalization to the bicomplex case of the
Riemann functional equation and Euler’s reflection formula.

It has been shown in a recent paper [10] that the unique (up to isomorphism) algebra that is both Clifford
algebra and Archimedean f -algebra containing R is the algebra of hyperbolic numbers

D =
{
z = x+ jy : x, y ∈ R, j /∈ R; j2 = 1

}
.

This noteworthy fact connects two classical domains of mathematics: Clifford algebras and Riesz spaces. The
aim of this paper is to study the complexification of the algebra D in the framework of Riesz space theory.

According to Arnold [16], attempts to complexify and to quaternionize mathematical theories are making
clear the fundamental unity of all parts of mathematics. . . Complexification is an informal operation for which
there are no axioms; we should try to guess.

In the same vein, the natural question seems to be the following: is the algebra B = D+ iD of bicomplex
numbers a simple ”multiplication” of the algebra D or is it rather a ”good” complexification of the structure
of Archimedean f -algebra of D? In this paper we will give elements of answer to this general question. In
particular, we prove that B is a normal complexified f -algebra. This theoretic-lattice consideration allows us
to establish D-extensions of well-known properties of complex numbers to B.

Recall that the algebra of bicomplex numbers

B :=
{
a+ bi + cj + dk : a, b, c, d ∈ R; i2 = k2 = −1, j2 = 1, ik = ki = j},

was introduced in 1892 by Segre [32] in his search for special algebras, and since then there was considerable
activity in the field for several years. One can cite, for instance, the paper of Scorza Dragoni [31] in 1934
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on holomorphic functions of a bicomplex variable, the work of Morin in 1935 on the algebra of bicomplex
numbers [23], the series of papers by Spampinato in 1935 and 1936 (see [34], [35], [36]) on functions of a
bicomplex variable, and the development of a generalized bicomplex variable due to Takasu [38] in 1943.

Bicomplex numbers has found applications in geometry and quantum physics (see e.g.[3], [7]) as a commu-
tative four dimensional algebra that generalizes complex numbers. In fact, the algebra of bicomplex numbers
is the unique commutative complex Clifford algebra that is not a division algebra [6]: B ∼= Cl1(C) which has
complex numbers C ∼= ClR(0, 1) and hyperbolic numbers D ∼= ClR(1, 0) as Clifford subalgebras [33].

The research on bicomplex and hyperbolic numbers has been revived some decades ago by Yaglom [39],
Riley [25], and Price [24]. In recent years, several properties of complex analysis have been generalized for
bicomplex numbers. The bicomplex Riemann zeta function is introduced by Rochon in [29] and bicomplex
quantum mechanics is investigated in [27], [28]. Kumar et al. studied bicomplex C∗-algebras and topological
bicomplex modules in [17] and in [18] respectively. Hahn-Banach theorems for bicomplex modules have been
proved by Luna-Elizarrarás et al. in [19]. Alpay et al. [2] developed the functional analysis with bicomplex
scalars. Further applications and properties of bicomplex numbers can be found in [8], [9], [12], [20].

It is well known that quaternions introduced in 1843 by Hamilton [14] are the only possible four-
dimensional real algebra without zero divisors. Quaternions form a field but are not commutative. From
a purely algebraic point of view, the loss of commutativity is not such a big problem, but it prevents from
developing a viable 1 theory of holomorphic functions of a quaternion variable. In return, and despite the
existence of zero divisors, many authors agree (see e.g. [2], [20]) that bicomplex numbers can represent a
reasonable alternative to quaternions to build a theory of functions of several complex variables.

In the present paper we consider a new direction. It consists in looking at the algebra D, somehow, as an
intermediate object between R and C (we show in an upcoming article that it is ”closer” to R than to C).
We believe that the fundamental structural difference between R and C is that of Archimedean f -algebra (C
can not be endowed with such a structure [10]). Therefore, to extend complex analysis in general to higher
dimensions with an underlying order structure, the key idea is to extend, in a manner to define, the structure
of Archimedean f -algebra. The complexification of D can be seen as the first step in this direction.

It is clear that the difficulty in using bicomplex numbers is that B is not a division algebra. As a conse-
quence, one crucial difference with the complex case is that in B there is no multiplicative norm. Therefore,
we introduced (Proposition 2.10) what we called a Riesz subnorm of a D-norm, which is submultiplicative,
to make the algebra B into a real Banach algebra.

Our goal in this paper is twofold. The first, is to give several new concepts of bicomplex analysis and
geometry based on the structure of normal complexified f -algebra of B. After a brief reminder (Section 2)
of basic properties of bicomplex and hyperbolic numbers necessary for this article, we introduce in section
3 the notion of D-trigonometric form of bicomplex numbers and some of their properties. For example, we
prove that the bicomplex nth roots of unity can be represented by the vertices of a regular polyhedral torus.
In section 4 we introduce the notion of D-norm on bicomplex numbers. In particular, we define the notion
of Riesz subnorm of a D-norm.

The second goal is to use the obtained lattice-theoretical results to go further in the development of
the theory of bicomplex zeta function introduced by Rochon in [29]. We establish uniform convergence of
the bicomplex Riemann zeta function and define the bicomplex gamma function as an absolute convergent
integral. Furthermore, a bicomplex Mellin integral and functional equations are obtained.

The main result of this paper is the following theorem, known as bicomplex Riemann functional equation
and Euler’s reflection formula.

Theorem 0.1. The following statements are satisfied.

(i) Γ(1 + ω) = ωΓ(ω) for ω ∈ Ω−;

(ii) Γ(1− ω)Γ(ω) =
π

sinπω
for ω ∈ Ω;

(iii) ζ(ω) = 2(2π)
ω−1

sin(
π

2
ω)Γ(1− ω)ζ(1− ω) for ω ∈ 1 + B∗.

1Regardless of the existence of several successful theories on holomorphicity in the quaternionic sitting such as the theory of
”regular functions” initiated by Fueter in 1936.
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The proof of Theorem 0.1 and details of the notations will be given in section 5.

1 Preliminaries
In this section we present some basic properties of hyperbolic numbers and bicomplex numbers. For more
details see [2], [10], [21], [26], [30] and [33]. For the used lattice concepts we refer the reader to the standard
books [22] and [40].

1.1 Riesz spaces and f -algebras

An ordered real vector space L is said to be Riesz space or (vector lattice) if the supremum u∨v; equivalently,
the infimum u ∧ v of two elements u and v exist in L. In this case the absolute value of u ∈ L is defined by
|u| = u ∨ (−u).

A Riesz space L is said to be Archimedean if inf{un−1 : n = 1, · · · } = 0 for all u ∈ L+, where L+ is
the set of all positive elements of L called the positive cone of L. A real algebra A (associative algebra with
usual algebraic operations) is said to be an f -algebra if A is a vector lattice in which the positive cone A+

satisfies the properties: a, b ∈ A+ then ab ∈ A+; a ∧ b = 0 implies ac ∧ b = a ∧ cb = 0 for all c ∈ A+. In any
f -algebra the squares are positive and the absolute value is multiplicative.

A typical example of f -algebras is the linear space of real valued continuous functions on a topological
space. Moreover, Archimedean f -algebras are known to be commutative (see e.g.[15]) and are even automat-
ically associative [4]. Of course, the fundamental example of Archimedean f -algebras is the field R of real
numbers.

1.2 Hyperbolic numbers

In this section we present the results of [10] used throughout this paper.
The ring of hyperbolic numbers

D :=
{
z = x+ jy : x, y ∈ R, j /∈ R; j2 = 1

}
,

defined in the introduction has zero divisors which are the multiples x(1 ± j) with x ∈ R \ {0}. Thus, the
group D∗ of units of D is characterized by all hyperbolic numbers z such that ‖z‖h 6= 0 where ‖z‖h is the
hyperbolic square modulus of z = x+ jy defined by

‖z‖h := zz̄ = x2 − y2,

where z̄ is the conjugate of z given by z̄ = x− jy.
The hyperbolic plane has an important basis defined by the two idempotent elements

e1 :=
1 + j

2
and e2 :=

1− j

2
=⇒ e1 + e2 = 1, e1e2 = 0.

It follows that, each hyperbolic number z can be expressed uniquely as

z = π1(z)e1 + π2(z)e2, (1)

where π1(x+ jy) = x+ y and π2(x+ jy) = x− y. The representation (1), called spectral decomposition [33],
allows us to reduce algebraic operations into component-wise operations. Moreover, the partial order defined
by

z, w ∈ D; z ≤ w if and only if πk(z) ≤ πk(w), (k = 1, 2),

makes D into Archimedean f -algebra where the lattice operations are given by

z ∨ w = max {π1(z), π1(w)} e1 + max {π2(z), π2(w)} e2, (2)

z ∧ w = min {π1(z), π1(w)} e1 + min {π2(z), π2(w)} e2. (3)

Note that the set of positive hyperbolic numbers D+, and therefore ordering in D was introduced first in [12,
Section 2] and considered in [2, Section 1.4] with the aim to generalize usual concept of real norm.



128 Hichem Gargoubi and Sayed Kossentini

The Riesz space D is Dedekind complete, that is, every nonempty set of D that is bounded from above
(resp. from below) has a supremum (resp. a infimum).

For z, w ∈ D write: z < v when (w − z) ∈ D+ \ {0} and z � w when (w − z) ∈ D+
∗ . So that, z, w ∈ R

implies z < w in R if and only if z � w in D.
Let a, b ∈ D be such that a ≤ b. The set

[a, b]D = {z ∈ D : a ≤ z ≤ b}

is called hyperbolic closed interval. Similarly, one can define open interval (a, b)D or semi-open intervals
(a, b]D and [a, b)D, replacing ≤ by � in left-right and left/right, respectively.

From (2) the absolute value of an hyperbolic number z is given by

|z| := z ∨ (−z) = |π1(z)|e1 + |π2(z)|e2. (4)

Thus, the kernel of group homomorphism |.| from D∗ to D+
∗ is the four Klein group S = {1,−1, j,−j} called

group of signs of D. For ε ∈ S, the set Dε := {z ∈ D : |z| = εz} is called the ε-cone of D. The (1)-cone is
the positive cone D+ and the (−1)-cone is the negative cone D−. The absolute value function yields a norm
in D given by the formula

‖z‖R := min
{
α ∈ R+ : α.1 ≥ |z|

}
= |z| ∨ |z| for all z ∈ D, (5)

and satisfying the following properties for all z, w ∈ D:

N1) ‖z‖R ≤ ‖w‖R whenever |z| ≤ |w|;

N2) ‖1‖R = 1, ‖zw‖R ≤ ‖z‖R‖w‖R.

It follows from the properties above that (D, ‖.‖R) is a Banach lattice. Consequently, the exponential of any
hyperbolic number z can be defined by the absolute convergent series

ez :=

∞∑
n=0

zn

n!
= eπ1(z)e1 + eπ2(z)e2.

According to the above spectral decomposition of ez one can easily verify that the hyperbolic exponential
function exp is a group isomorphism from D to D+

∗ that preserves conjugation and lattice operations :

ez = ez̄; ez ∧ ew = ez∧w; ez ∨ ew = ez∨w for all z, w ∈ D. (6)

Thus, the hyperbolic logarithm function ln is defined by the inverse isomorphism of exp.

1.3 Bicomplex numbers

The algebra of bicomplex numbers defined in the introduction is the set

B :=
{
x+ yi + zj + tk : x, y, z, t ∈ R; i, j,k /∈ R

}
,

where i, j,k are imaginary units satisfying the following multiplication rules

i2 = k2 = −1, j2 = 1, ik = ki = j.

B contains three two-dimensional real subalgebras: two copies of the field of complex numbers, R(u) :=
{x + uy : x, y ∈ R}, (u = i,k) and the algebra of hyperbolic numbers R(j) = D. This implies that each
bicomplex number ω has three R(u)-algebraic representations, given by

ω = Reu(ω) + π(u)Imu(ω), (7)

where π is the permutation π =

(
i j k
k i j

)
andReu(ω), Imu(ω) ∈ R(u) for each u ∈ {i, j,k}.
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Write ω = Rej(ω) + iImj(ω) then, from the representation (1) one can derive that

ω = P1(ω)e1 + P2(ω)e2, (8)

where Pk is the algebra homomorphism form B to C = R(i), defined by

Pk(ω) = πk(Rej(ω)) + iπk(Imj(ω)), (k = 1, 2).

It follows that each bicomplex number can be viewed as a pair (z1, z2) of the product algebra C×C via the
map ω 7→ (P1(ω),P2(ω)). Thus the group B∗ of units of B is the set of all bicomplex numbers ω such that
P1(ω) 6= 0 and P2(ω) 6= 0.

On bicomplex numbers one has three conjugations ωi, ωj and ωk called the conjugations with respect to
i, j and k, respectively ([26]). From the representation (7) we have

ωu = Reu(ω)− π(u)Imu(ω), (u = i, j,k). (9)

Therefore, from (9) and (7), ωωu belongs to R(u), (u = i, j,k). In particular, ωωj ∈ D+. Thus, since D is
square-root closed [10] (i.e., every positive hyperbolic number u has a unique positive square root

√
u) the

j-modulus |ω|j of ω is given by

|ω|j :=
√
ωωj. (10)

Some remarkable properties of |.|j are given by the following statements. For the proof see [26, Section 4.4].
Only for triangular inequality M3) we refer to [2, Section 1.5]. For ω, ψ ∈ B,

M1) |ω|j = 0 if and only if ω = 0;

M2) |ωψ|j = |ω|j|ψ|j;

M3) |ω + ψ|j ≤ |ω|j + |ψ|j;

M4) |ω|j = ‖P1(ω)‖e1 + ‖P2(ω)‖e2;

M5) ‖ω‖ =
√

Re(|ω|2j ),

where ‖.‖ is the Euclidean norm on B which coincides with that in R(u), (u = i, j,k) and with the modulus
for u = i,k.

Finally, recall that a function f : O −→ B defined in the open set O ⊂ B is said to be B- in O if, for every
ω ∈ O there exists a number f ′(ω) ∈ B such that

f ′(ω) := lim
ψ 7→ω

(ψ−ω)∈B∗

f(ψ)− f(ω)

ψ − ω
.

For more details concerning bicomplex holomorphicity, we refer the reader to the following references: [2],
[21] and [30].

2 Hyperbolic valued norm on bicomplex numbers
The notion of D-norm on bicomplex numbers is introduced by Alpay et al. in [2] and considered by Kumar et
al. [17] in the study of bicomplex C∗-algebra. In this section we establish additional properties for D-norms
on B viewed as the complexification of the f -algebra D. Special attention is paid to the notion of Riesz
subnorm of a D-norm that plays a crucial role in the proof of Theorem 0.1.
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2.1 Definition and properties

Recall that a function N : B→ D is called a hyperbolic valued norm or D-norm on B if the following properties
are satisfied:

(i) N(ω) = 0 implies ω = 0;

(ii) N(λω) = |λ|N(ω) for all λ ∈ R and for all ω ∈ B;

(iii) N(ω + ψ) ≤ N(ω) + N(ψ) for all ω, ψ ∈ B.

Clearly, every D-norm N is positive, i.e., N(ω) ∈ D+ for all ω ∈ B. Moreover, one can see that the second
triangular inequality holds.

Proposition 2.1. ∣∣∣N(ω)−N(ψ)
∣∣∣ ≤ N(ω − ψ) for all ω, ψ ∈ B. (11)

Proof. Observing that ±(N(ω)−N(ψ)) ≤ N(ω−ψ) one has, passing to supremum from the above, |N(ω)−
N(ψ)| ≤ N(ω − ψ) ≤ N(ω) + N(ψ). �

For example, according to the properties M1),M2) and M3), the j-modulus defined in (10) is a multi-
plicative D-norm on B and satisfies the following properties.

Proposition 2.2. For all ω ∈ B one has

(i) |ω|j = sup
{

Rej(ω) cos θ + Imj(ω) sin θ : θ ∈ [0, 2π]
}

;

(ii) |ω|j ≥ |Rej(ω)| and |ω|j ≥ |Imj(ω)|.

Proof. (i): Follows from the closure of D for the square mean ([10, Theorem 6.1]) by observing that |ω|j =√
Rej(ω)

2
+ Imj(ω)

2
.

(ii): The identity |ω|2j = Rej(ω)
2

+ Imj(ω)
2

implies that

|ω|2j ≥ Rej(ω)
2

and |ω|2j ≥ Imj(ω)
2
.

So, since the hyperbolic square-root function is increasing and we have
√
z2 = |z| for every z ∈ D. Then,

|ω|j ≥ |Rej(ω)| and |ω|j ≥ |Imj(ω)|. �

Recall that if A + iA is the complexification of the unitary Archimedean f -algebra A then for every
z = a+ ib ∈ A+ iA, the supremum

|z| := sup{a cos θ + b sin θ : θ ∈ [0, 2π]} (12)

exists in A and is called the modulus of z and satisfies the properties:

(i)|z| = 0 iff z = 0, (ii)|zw| = |z||w|, (iii)|z| ∧ |w| = 0 iff zw = 0.

A + iA is said to be normal if A + iA = {z}⊥ + {w}⊥ for all z,w ∈ A + iA such that |z| ∧ |w| = 0, where
{u}⊥ = {v ∈ A+ iA : |u| ∧ |v| = 0}. In this case every z ∈ A+ iA has a polar-decomposition, i.e., there exists
u ∈ A+ iA such that z = u|z| and |z| = ūz; here ū is the conjugate of u. More details about complexification
of f -algebras can be found in [5]. In the complexification B = D+ iD the modulus (12) of ω is its j-modulus
|ω|j (Proposition 2.2).

Proposition 2.3. B = D+ iD is normal.
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Proof. Let ω ∈ B and let ψ,ϕ ∈ B be such that |ψ|j ∧ |ϕ|j = 0, i.e., ψϕ = 0. If ψ = 0 we have {ψ}⊥ = B so
for ϕ1 ∈ {ϕ}⊥ and ψ1 ∈ {ψ}⊥ such that ψ1 = ω−ϕ1 we have, ω = ϕ1 +ψ1. Similarly if ϕ = 0. Assume now
that ψ 6= 0 and ϕ 6= 0. Therefore, ϕ = ze and ψ = wē for some z, w ∈ C \ {0} and some e = e1, e2. Thus,
{ϕ}⊥ = {zē : z ∈ C} and {ψ}⊥ = {ze : z ∈ C}. Which implies from the idempotent representation (8) that
ω = ϕ1 + ψ1 with ψ1 ∈ {ψ}⊥ and ϕ1 ∈ {ϕ}⊥. �

As mentioned above, normality yields polar decomposition. The following result is a direct consequence
of Proposition 2.3.

Proposition 2.4 (Polar decomposition ). For every ω ∈ B there exist υ ∈ B such that

ω = υ|ω|j (and |ω|j = υjω).

Remark 2.5. Obviously, the function N = N1e1 + N2e2 is a D-norm on B whenever N1 and N2 are two
real norms on B. But the converse is false. The components of a D-norm (in the spectral decomposition)
are semi-norms. Indeed, from M4) the components of the D-norm |.|j are ‖P1(.)‖ and ‖P2(.)‖. However,
‖P1(e2)‖ = ‖P2(e2)‖ = 0.

The above remark leads to the following definition

Definition 2.6. A D-norm N = N1e1 + N2e2 on B is said to be integral if the semi-norms N1 and N2 are
norms on B.

From the above definition a D-norm N on B is integral if and only if ‖N(ω)‖h = 0 implies ω = 0.
Now, equivalence of D-norms on B is defined as

Definition 2.7. Let G be the group constituted by the identity and the conjugation operator of D. Two
D-norms N1 and N2 on B are called equivalents if there exists two real numbers k, k′ > 0 and L ∈ G such
that

k′L(N2(ω)) ≤ N1(ω) ≤ kL(N2(ω)) for allω ∈ B.

Let us introduce the binary relation ∼ defined for a pair of D-norms by

N1 ∼ N2 if and only if N1 and N2 are equivalent.

It is easy to verify that ∼ is an equivalence relation. Note that N1 � N2 when N1 is integral and N2 is not.
Indeed, suppose the contrary, then there exist a real k > 0 and L ∈ G such that N1(ω) ≤ kL(N2(ω)) for all
ω ∈ B. Since N2 is not integral then there exist a nonzero ω0 ∈ B such that ‖N2(ω0)‖h = ‖kL(N2(ω0))‖h = 0.
This implies that kL(N2(ω0)) ∈ eR for some e = e1, e2. It follows that N1(ω0) ∈ eR, since eR is an order
ideal in D (see [10]). Therefore, ‖N1(ω0)‖h = 0. Which is a contradiction, since N1 is integral.

Proposition 2.8. Two integral D-norms on B are equivalent.

Proof. Straightforward since real norms are equivalent in finite dimensional vector spaces. �

In the following proposition we introduce our main tool in the study of the convergence of the bicomplex
zeta and gamma function.

Proposition 2.9 (Riesz subnorm). Let N be a D-norm on B. Then the function dNe : B −→ R defined by

dNe(ω) := min{α ∈ R+ : α ≥ N(ω)} = N(ω) ∨N(ω)

is a real norm on B, called Riesz subnorm of N, that satisfies the following properties for all ϕ,ψ ∈ B :

(i) dNe(ϕ) ≤ dNe(ψ) whenever N(ϕ) ≤ N(ψ);

(ii) N(ϕ) ≤ dNe(ϕ).
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Proof. The proof follows immediately from the properties of the norm ‖.‖R (5), by observing that dNe(ω) =
‖N(ω)‖R for all ω ∈ B. �

Applying ‖.‖R in triangle inequality (11) one can derive that every D-norm N is a Lipschitz function from
(B, ddNe) to (D, dR) where ddNe and dR are the metrics defined by the norms dNe and ‖.‖R respectively.

Throughout the paper we will write

dNe(ω) = ‖ω‖j for the D-norm N(ω) = |ω|j. (13)

Proposition 2.10. For every ω, ψ ∈ B

(i) ‖ω‖ ≤ ‖ω‖j ≤
√

2‖ω‖;

(ii) ‖ωψ‖j ≤ ‖ω‖j‖ψ‖j, with equality whenever ω ∈ R(u) or ψ ∈ R(u), (u = i,k). Thus, the real norm ‖.‖j
is submultiplicative.

Proof. For the proof we will use the following two elementary properties that hold in any f -algebra. For
u, v ≥ 0,

P1) (u ∨ v)
2

= u2 ∨ v2;

P2) u ∨ v ≤ u+ v.

(i) Let ω ∈ B. By definition of ‖ω‖j (Proposition 2.9), property P1) implies that

‖ω‖2j = |ω|2j ∨ |ω|j
2
. (14)

So, since the mapping z 7→ Re(z) is a positive operator from D to R (i.e., a linear form such that Re(z) ≤ Re(w)
for all z, w ∈ D with z ≤ w) then from Eq(14) and M5) (Section 2) one has

‖ω‖2j ≥ Re(|ω|2j ) = ‖ω‖2.

For the second inequality, Eq (14) together with P2) yields that ‖ω‖2j ≤ |ω|2j +|ω|j
2

and then ‖ω‖2j ≤ 2Re(|ω|2j ).
Hence, again by M5) we obtain

‖ω‖2j ≤ 2‖ω‖2.
(ii) Let ψ, ω ∈ B. It follows by N2) (section 2) and by ‖ωψ‖j = ‖|ωψ|j‖R that we have

‖ωψ‖j ≤ ‖ω‖j‖ψ‖j.

Suppose now that ω ∈ R(u), (u = i,k). Then ω = a + εuib where a, b ∈ R and εu be such that εi = 1 and
εk = j. Then |ω|j =

√
a2 + b2 = ‖ω‖. Which implies that ‖ωψ‖j = ‖ω‖j‖ψ‖j. �

Remark 2.11. Let S and Sj be the unit spheres in (B, ‖.‖) and (B, ‖.‖j), respectively. We have that ‖
√

2e1‖j =√
2 and ‖1‖ = 1 with

√
2e1 ∈ S and 1 ∈ Sj. This implies by inequality (i) (Proposition (2.10)) that

√
2 = sup

ω∈S
‖ω‖j and 1 = sup

ω∈Sj

‖ω‖.

Property (ii) of proposition 2.10 means that (B,+, ., ‖.‖j) is a real Banach algebra. Thus, for every
bicomplex number ω the exponential of ω can be defined as the absolute convergence series given by

eω :=

∞∑
n=0

ωn

n!
= eP1(ω)e1 + eP2(ω)e2. (15)

The bicomplex exponential function Exp is a group homomorphism from the additive group B to the multi-
plicative group B∗ with ker(Exp) = 2iπZ, where

Z := Ze1 + Ze2. (16)

Z is a sublattice and subring of D, called the ring of hyperbolic integers [11].
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2.2 Topology of Bicomplex numbers

Let N be a D-norm on B and let ω0 ∈ B and τ � 0. Define the open D-ball Bo
N(ω0, τ) and the closed D-ball

BN(ω0, τ) centered at ω0 with hyperbolic radius τ by

Bo
N(ω0, τ) : =

{
ω ∈ B : N(ω − ω0)� τ

}
;

BN(ω0, τ) : =
{
ω ∈ B : N(ω − ω0) ≤ τ

}
.

If N is a real function (i.e., N(ω) = N(w) for all ω ∈ B) so that N is a real norm then Bo
N(ω0, τ)) and

BN(ω0, τ) are usual balls in the normed space (B,N) with radius r = τ ∧ τ̄ ∈ R+
∗ .

Proposition 2.12. Every D-norm N on B generate a topology TN defined as follows: a nonempty subset O of
B is said to be open if, each point of O is the center of some D-ball.

Proof. For the proof, it suffice to shows that the intersection of finite open sets is an open set. This follows

from the closure of D+
∗ under the lattice operation ∧ by observing that

n⋂
i=1

BN(ω, τi) = BN(ω,

n∧
i=1

τi). �

From this topology the limit in bicomplex numbers can be formulated by

Proposition 2.13. Let f : (B, TN1) −→ (B, TN2). Then, a bicomplex number ψ is the limit of f at the point
ω0 ∈ B if and only if for every hyperbolic number ξ � 0 there exists a hyperbolic number η � 0 such that

N2(f(ω)− ψ) ≤ ξ whenever N1(ω − ω0) ≤ η.

Proposition 2.14. D-norms on B are topologically equivalent.

Proof. Let N be a D-norm on B. Since all real norms on finite dimensional real vector space are topologically
equivalent it suffice to prove that TN is equivalent to TdNe. One has to prove that Id : (B, TN) −→ (B, TdNe)
and its inverse Id−1 : (B, TdNe) −→ (B, TN) are continuous. Let ψ,ϕ ∈ B. For ε ∈ R+

∗ take η = ε we have

N(ψ − ϕ) ≤ η implies dNe(ψ − ϕ) = ‖N(ψ − ϕ)‖R ≤ ε.

Conversely, For ξ � 0, put η = ξ ∧ ξ̄ ∈ R+
∗ . Thus one has

dNe(ω − ψ) ≤ η implies N(ω − ψ) ≤ ξ. �

Remark 2.15. We know from Remark 2.5 that two D-norms on B are not necessarily equivalent in sens of
Definition 2.7. Nevertheless (by Proposition 2.14) they are topologically equivalent. Moreover, one can see
that D-bounded sets in a D-normed space (B,N) are bounded sets in the real normed space B.

3 Bicomplex trigonometry
In this section we develop the concept of D-trigonometric form of a nonzero bicomplex number introduced by
Luna-Elizarrarás et al. [20, Chapitre 3]. Using the f -algebra structure of D one is able to select a specified
D-valued modulus and argument of bicomplex numbers.

3.1 Basic concepts and properties

As in complex numbers, bicomplex trigonometry in his basic form is the study of the properties of hyperbolic
cosine and sine functions. From the Banach algebra structure of D, circular functions can be defined for all
z ∈ D as

cos(z) :=

∞∑
0

(−1)
n
z2n

2n!
= cos(π1(z))e1 + cos(π2(z))e2,

sin(z) :=

∞∑
0

(−1)
n
z2n+1

(2n+ 1)!
= sin(π1(z))e1 + sin(π2(z))e2.
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We will give some of the properties of cosine and sine. The proof follows immediately from usual properties
of the real cosine and sine functions, using the above spectral decompositions. For z, w ∈ D; ε ∈ S; h ∈ Z,

C1) eiz = cos z + i sin z.

C2) cos(z + 2πh) = cos(z) and cos(z + 2πh) = cos(z).

C3) cos(εz) = cos(z) and sin(εz) = ε sin(z).

C4) z2 + w2 = 1 if and only if z = cos θ and w = sin θ for some θ ∈ D.

C5) The restriction of the cosine function to [0, π]D establish a bijection with [−1, 1]D, its inverse is denoted
arccos.

C6) The restriction of the sine function to [−π2 , π2 ]D establish a bijection with [−1, 1]D, its inverse is denoted
arcsin.

Proposition 3.1. Every nonzero bicomplex number ω can be written in the form

ω = |ω|j (cosφ+ i sinφ) ,

where φ is an hyperbolic number called a D-argument of ω.

Proof. Let ω be a nonzero bicomplex number. If ω is invertible then from polar decomposition (Proposi-
tion 2.4), ω can be written as

ω = |ω|jυ,

where υ ∈ B with |υ|j = 1 that is, Rej(υ)
2

+ Imj(υ)
2

= 1 which implies from property C5) above that
υ = cosφ + i sinφ for some φ ∈ D. If ω is non-invertible, i.e., ω = ze for some nonzero complex number z
and some e ∈ {e1, e2}, then there exists φ ∈ R ⊂ D such that

ω = ‖z‖(cosφ+ i sinφ)e = |ω|j(cosφ+ i sinφ). �

Proposition 3.2. Let ω ∈ B∗ then the set argD(ω) of all D-arguments of ω has a unique element φp ∈ (−π, π]D
called principal D-argument of ω, denoted ArgD(ω).

Proof. Let ω ∈ B∗. So by Proposition 3.1 and C1), φ1, φ2 ∈ argD(ω) if and only if eiφ1 = eiφ2 , i.e., if and
only if i(φ1 − φ2) ∈ ker(Exp) = i2πZ. Hence

argD(ω) = φ0 + 2πZ, for some φ0 ∈ argD(ω).

It follows that argD(ω) has a unique element φp satisfying −π � φp ≤ π. �

The principal D-argument of ω ∈ B∗ is determined by the solution of the equations

cosφ =
Rej(ω)

|ω|j
and sinφ =

Imj(ω)

|ω|j
, φ ∈ (−π, π]D . (17)

For example, ArgD(1) = 0,ArgD(i) = π
2 ,ArgD(j) = πe1 and ArgD(k) = −π2 j. Notice that the existence of the

principal D-argument is not guaranteed when ω is a zero divisor. For example, the two D-arguments 0 and
πe1 of e1 belongs to (−π, π]D .

The following properties are direct consequence of proposition 3.2 (equalities are modulo 2πZ).
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Corollary 3.3. For ϕ,ψ ∈ B∗ one has :

A1) ArgD(ϕi) = ArgD(ϕ), ArgD(ϕk) = −ArgD(ϕ), ArgD(ϕj) = −ArgD(ϕ).

A2) ArgD(ϕ−1) = −ArgD(ϕ), ArgD(ϕψ) = ArgD(ϕ) + ArgD(ψ).

One can now give the following definition.

Definition 3.4. The principal branch of the bicomplex Logarithm of ω ∈ B∗ is given by

Log(ω) := ln(|ω|j) + iArgD(ω),

and for α ∈ B, the bicomplex exponentiation

Expω(α) = ωα := eαLog(ω). (18)

Proposition 3.5. For ϕ,ψ, ω ∈ B∗, α ∈ B and u = i,k, j, one has (equalities L1 and L2 are modulo 2iπZ)

L1) Log(ϕu) = Log(ϕ)
u
.

L2) Log(ϕ−1) = −Log(ϕ), Log(ϕψ) = Log(ϕ) + Log(ψ).

L3) ω−α = 1
ωα , ωαωβ = ωα+β and (ϕψ)

α
= ϕαψα if and only if α ∈ Z.

Proof. L3) is straightforward. L1) and L2) follows from A1) and A2). �

In order to give a geometrical interpretation of the principal D-argument, we introduce the function

< ., . >j: B × B −→ D defined by < ϕ,ψ >j:= Rej

(
ϕψ

j
)

. The inner product < ., . >j is symmetric,

D-bilinear, positive-definite, i.e., < ω,ω >j≥ 0 with equality if and only if ω = 0, and satisfies the hyperbolic
Cauchy-Schwartz inequality:

| < ϕ,ψ >j | ≤ |ϕ|j|ψ|j for all ϕ,ψ ∈ B. (19)

Thus from C5) and (19) we can define the D-angle between two invertible bicomplex numbers ψ and ϕ, by
the formula

anglD(ϕ,ψ) := arccos
(< ϕ,ψ >j

|ϕ|j|ψ|j

)
.

Let ω ∈ B∗. By (Theorem of signs [10]) we can write ArgD(ω) = ε|ArgD(ω)| for some ε ∈ S. So, by C3)
cos(|ArgD(ω)|) = cos(ArgD(ω)) with |ArgD(ω)| ∈ [0, π]D which implies from Eq (17) and the above formula
that

|ArgD(ω)| = anglD(ω, 1).

For example, anglD(i, 1) = anglD(k, 1) = π
2 and anglD(j, 1) = πe1.

Proposition 3.6. Let ε ∈ S and ω ∈ B∗ then ω ∈ Dε if and only if ArgD(ω) =
(

1−ε
2

)
π.

Proof. Let ε ∈ S and ω ∈ B∗. Since φε =:
(

1−ε
2

)
π satisfies −π � φε ≤ π, then from C3) and Eq (17),

ω ∈ Dε if and only if cosφε =
Rej(ω)
|ω|j and sinφε =

Imj(ω)
|ω|j , i.e. if and only if ArgD(ω) = φε. �

3.2 The nth roots of a bicomplex number.

Let n ≥ 1. Then each bicomplex number ω = z1e1 + z2e2, (z1, z2 ∈ C) has n(2−ν(ω)) nth roots, where ν(ω)
is the number of k ∈ {1, 2} such that zk = 0. If ω is invertible, i.e. zk 6= 0, (k = 1, 2) then, as in [20, Section
6.4], the n2 nth roots of ω are the numbers

ω(h1,h2) = n
√
|z1|ei(

2πh1+Arg(z1))
n e1 + n

√
|z2|ei(

2πh2+Arg(z2))
n e2; h1, h2 = 0, · · · , n− 1.

In the following, we give additional properties of the nth roots of an invertible bicomplex number. Using
hyperbolic integers Z ([11]), the n2 nth roots are given by

ωh = n

√
|ω|j ei(

2πh+ArgD(ω)

n ) : h ∈ Z, 0 ≤ h ≤ n− 1.

In particular, the nth-roots of unity are described by the following proposition.
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Proposition 3.7. (i) The nth-roots of unity are the set

Un :=
{
υh = e

2iπh
n : h ∈ Z, 0 ≤ h ≤ n− 1

}
.

It is a subgroup of the unit D-sphere SD := {ω ∈ B : |ω|j = 1} of the D-normed space (B, |.|j).

(ii) ‖υp − υq‖ = 2‖ sin (p−q)π
n ‖ for all υp, υq ∈ Un;

(iii)
∑
υ∈Un

υ = 0 and
∏
υ∈Un

υ = 1.

Proof. (i): Straightforward.

(ii): Follows from M5) using the identity: eiz − eiw = 2iei
(z+w)

2 sin (z−w)
2 holds for all z, w ∈ D.

(iii): For the sum one has∑
υ∈Un

υ =
∑
h∈Z

0≤h≤n−1

e
2iπh
n

= n
∑

0≤h1≤n−1

e
2iπh1
n e1 + n

∑
0≤h2≤n−1

e
2iπh2
n e2

= 0e1 + 0e2 = 0.

For the product, we have ∏
υ∈Un

υ = e
2iπ
n σn , σn =

∑
h∈Z

0≤h≤n−1

h.

We have

σn = n
∑

0≤h1≤n−1

h1e1 + n
∑

0≤h2≤n−1

h2e2

=
n2(n− 1)

2
e1 +

n2(n− 1)

2
e2

=
n2(n− 1)

2
.

Hence ∏
u∈Un

u = en(n−1)iπ = 1. �

In the complex plane the nth roots of unity are the vertices of a regular polygon inscribed in the euclidean
circle S1 w R/Z. For bicomplex numbers the nth roots of unity are in the unit D-sphere SD which has the
following topological structure.

Proposition 3.8. The unit D-sphere SD = {ω ∈ B : |ω|j = 1} is homeomorphic to the two dimensional torus
T2 = S1 × S1.

Proof. It follows from D/Z w R/Z × R/Z that SD is the two-dimensional torus T2 = S1 × S1 via the
homeomorphism f̄ : D/Z −→ SD : ẑ 7→ f(z) where f is the continuous group homomorphism from D to B∗
defined by f(z) = e2πiz, with ker(f) = Z, Im(f) = SD and (f̄)

−1
(ω) = ̂1

2iπLog(ω) for all ω ∈ SD. �

Recall that a toroid is an ordinary polyhedron, topologically torus-like. Its Euler number is then v−e+f =
0. A toroid is said to be regular if the same number of edges meet at each vertex, and each face has the same
number of edges. A toroid is in class T2 if each face has four edges and at each vertex exactly four edges
meet. For regular toroids and their classification see [37] and references therein.

Let n ≥ 3. In view of Proposition 3.8 the bicomplex nth-roots of unity can be identified with the vertices
of a regular toroid in class T2 that has n2 quadrilateral faces. In particular, a regular toroid with minimal
faces in class T2 has 3× 3 quadrilateral faces. It corresponds to the group U3 illustrated by Figure 1(a).
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Figure 1: Toroids (a), (b) and (c) represent in class T2 the groups U3, U4 and U5, respectively.

4 Proof of Theorem 0.1
The main purpose of this section is to prove Theorem 0.1. We start by the absolute and uniform convergence
of bicomplex zeta function. We introduce the bicomplex gamma function as an absolute convergent integral.
The Mellin transform of a bicomplex-valued function was first considered in [1] as a pair of complex Mellin
transform using idempotent representation. In this section we extend Mellin integral to bicomplex numbers
using absolute convergence of the integral. To the best of our knowledge this result and the method have
never been considered before.

First of all we need some preliminary notations and properties. Let us introduce two functions defined
on B with values in R by

sR(ω) = Rej(ω) ∨ Rej(ω) and iR(ω) = Rej(ω) ∧ Rej(ω). (20)

Proposition 4.1. For ω ∈ B and λ ∈ R,

R1) sR and iR are continuous and surjective.

R2) sR(λω) = λ+sR(ω)− λ−iR(ω) and iR(λω) = λ+iR(ω)− λ−sR(ω).

R3) iR(ω + λ) = iR(ω) + λ and sR(ω + λ) = sR(ω) + λ

R4) iR(ω) > λ in R if and only if Rej(ω)� λ in D.

Proof. R1) The continuity follows from the continuity of Rej(.). The surjectivity holds since sR(x) = iR(x) =
x for all x ∈ R.
R2) Follows from the identities: uz ∨ uw = u+(z ∨ w) − u−(z ∧ w) and uz ∧ uw = u+(z ∧ w) − u−(z ∧ w)
that hold in D (see [10]).
R3) Deduced from the identities: u+ (z ∨w) = (u+ z) ∨ (u+w) and u+ (z ∧w) = u+ (z ∧w) that hold in
any Riesz space.
R4) From Eq (3) we have

iR(ω)− λ = min{π1(Rej(ω))− λ, π2(Rej(ω))− λ}.

Then iR(ω)− λ > 0 if and only if π1(Rej(ω))− λ > 0 and π2(Rej(ω))− λ > 0, i.e. if and only if Rej(ω)� λ
in D. �

4.1 Bicomplex Riemann zeta function

The bicomplex Riemann zeta function is defined in [29] as the sum of the convergent series

ζ(ω) :=

∞∑
n=1

1

nω

on the open set U := {ω ∈ B : Re(P1(ω)) > 1 and Re(P2(ω)) > 1}. It’s clear that ω ∈ U if and only if
Rej(ω)� 0. Following our notations one has

U = {ω ∈ B : iR(ω) > 1}. (21)

Let us recall the main results of [29].
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• The bicomplex Euler product formula :

ζ(ω) =
∏
p∈P

1

1− 1
pω

for all ω ∈ U.

Where P is the set of all prime numbers.

• The analytic continuation of the bicomplex zeta Riemann function to the connected open set 1 +B∗ is
defined by

ζ(ω) = ζ(P1(ω))e1 + ζ(P2(ω))e2. (22)

• The set of the trivial zeros for the the bicomplex Riemann zeta function is given by

O = {ω ∈ B; ω = (−n− p) + j(−n+ p) : n, p ∈ N \ {0}}.

Note that using the notion of hyperbolic integers introduced in definition 16 one can see that the trivial
zeros of the bicomplex Riemann zeta function are

O = {ν = −2h : h ∈ Z, h ≥ 1}.

• Riemann hypothesis (RH) is generalized to a bicomplex Riemann hypothesis (BRH). It is shown that
(BRH) is equivalent to (RH).

In the sequel we will use the Riesz subnorm ‖.‖j defined by equation 13.

Theorem 4.2. (i) The series

∞∑
n=1

1

nω
is absolutely convergent if and only if ω ∈ U . Moreover,

∥∥∥ ∞∑
n=1

1

nω

∥∥∥
j
≤ ζ[iR(ω)].

(ii) The series

∞∑
n=1

1

nω
is uniformly convergent on each compact subset of U .

Proof. (i) Let ω ∈ B and an integer n ≥ 1. We have ArgD(n) = 0 then Eq (18) implies that
1

nω
=

e−ω ln(n). Therefore
∣∣∣ 1

nω

∣∣∣
j

= e−Rej(ω). ln(n). Since the hyperbolic exponential preserves lattice and conjugation

operations (6) then by the identity −z ∨ −w = −(z ∧ w) we obtain∥∥∥ 1

nω

∥∥∥
j

= esR(− ln(n)ω).

But sR(− ln(n)ω) = − ln(n)iR(ω) (by R3)). Hence∥∥∥ 1

nω

∥∥∥
j

=
1

niR(ω)
.

This proves that the series

∞∑
n=1

1

nω
is absolutely convergent if and only if iR(ω) > 1, i.e. (by Eq (21)) if and

only if ω ∈ U . Moreover, ∥∥∥ ∞∑
n=1

1

nω

∥∥∥
j
≤
∞∑
n=1

∥∥∥ 1

nω

∥∥∥
j

= ζ[iR(ω)].
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(ii) Let K be a compact subset of U . Then, iR(K) is a compact of iR(U) = iR[i−1
R [(1,∞)]] = (1,∞), since

iR : B −→ R is a surjective and continuous function. Which implies that iR(K) ⊂ [1 + α,∞) for some real
α > 0 and then

K ⊂ i−1
R iR(K) ⊂ i−1

R [{[1 + α,∞)}] = Uα.

Therefore

an = sup
ω∈K

∥∥∥ 1

nω

∥∥∥
j
≤ sup
ω∈Uα

∥∥∥ 1

nω

∥∥∥
j

≤ sup
ω∈Uα

1

niR(ω)

≤ 1

n1+α
.

This means that

∞∑
n=1

an is convergent and hence

∞∑
n=1

1

nω
is uniformly convergent in K. �

4.2 Bicomplex gamma function

The bicomplex gamma function was first introduced in [13] by an Euler product formula using the idempotent
decomposition on B. Therefore, it is defined as a pair of complex gamma functions. Our approach is novel and
extend classical proof to bicomplex numbers as a Banach algebra equipped with a Riesz subnorm. Contrary
to [13] we introduce the bicomplex gamma function as an absolute convergent integral.

Proposition 4.3 (Bicomplex gamma function). Let ω ∈ B be such that Rej(ω)� 0, then the integral

Γ(ω) =

∫ ∞
0

e−ttω−1dt

called bicomplex gamma function, is absolute convergent.

Proof. We have that |e−ttω−1|j = e−teln(t)(Rej(ω)−1) and then

‖e−ttω−1‖j = e−tesR[ln(t)(ω−1)].

From R3) we have sR [ln(t)(ω − 1)] = (ln t)
+

(sR(ω)− 1)− (ln t)
−

(iR(ω)− 1). Thus

‖e−ttω−1‖j ∼ tiR(ω)−1 as t −→ 0+

and
‖e−ttω−1‖j ∼ e−ttsR(ω)−1 as t −→∞

Assume that Rej(ω)� 0. So, iR(ω), sR(ω) > 0, since D+
∗ is closed under conjugation and lattice operations.

It follows that the integral defining Γ(ω) is absolute convergent. �

The next result extend Mellin integral to bicomplex numbers

Theorem 4.4 (Bicomplex Mellin Integral ). For Rej(ω) � 1 we have the following integral representation of
bicomplex zeta function

ζ(ω)Γ(ω) =

∫ ∞
0

tω−1

et − 1
dt.

Proof. Put t = ns in the integral representation of Γ, one gets

ζ(ω)Γ(ω) = lim
N→∞

ΦN (ω),

where ΦN (ω) =

N∑
n=1

∫ ∞
0

sω−1e−nsds. We have



140 Hichem Gargoubi and Sayed Kossentini

ΦN (ω) =

∫ ∞
0

sω−1

es − 1
ds−

∫ ∞
0

sω−1

es − 1
e−Nsds.

The above integrals are absolutely convergent for Rej(ω) � 1. Since iR(ω) > 1, sR(ω) > 1, and for every
integer N ≥ 0 we have ∥∥∥ sω−1

es − 1
e−Ns

∥∥∥
j

=


siR(ω)−1

es−1 e−Ns if 0 < s ≤ 1

ssR(ω)−1

es−1 e−Ns if s ≥ 1.

Set

IN (ω) =

∫ ∞
0

sω−1

es − 1
e−Nsds =

∫ ∞
0

sω−2 s

es − 1
e−Nsds.

We have

‖IN (ω)‖j ≤
∫ ∞

0

‖sω−2e−Ns‖jds =
1

N

∫ ∞
0

e−t‖( t
N

)
ω−2

‖jdt.

By ‖( tN )
ω−2‖j = ( tN )

iR(ω)−2
for 0 < t ≤ 1 and ‖( tN )

ω−2‖j = ( tN )
sR(ω)−2

for t ≥ 1 we obtain

1

N

∫ ∞
0

e−t‖( t
N

)
ω−2

‖jdt =
1

N

(∫ 1

0

e−t(
t

N
)
iR(ω)−2

dt+

∫ ∞
1

e−t(
t

N
)
sR(ω)−2

dt

)
≤ 1

N iR(ω)−1
Γ(iR(ω)− 1) +

1

NsR(ω)−1
Γ(sR(ω)− 1).

Therefore, lim
N→∞

IN (ω) = 0 and hence

ζ(ω)Γ(ω) = lim
N→∞

ΦN (ω) =

∫ ∞
0

tω−1

et − 1
dt. �

Theorem 4.5 (Analytic continuation). By analytic continuation, the bicomplex gamma function is B-holomorphic
on

Ω− := {ω ∈ B; P1(ω) /∈ Z− and P2(ω) /∈ Z−}.

Proof. Using idempotent decomposition of B, for each ω = z1e1 + z2e2 we have e−ttω−1 = e−ttz1e1 +
e−ttz2−1e2. Thus, for Rej(ω)� 0 we have Re(z1) > 0 and Re(z2) > 0. Therefore

Γ(z1e2 + z2e2) = Γ(z1)e1 + Γ(z2)e2. (23)

Knowing that the classical complex gamma function is extended, by analytic continuation, to a holomorphic
function on C \ Z−, the representation (23) allows us to extend the bicomplex gamma function Γ to a
B-holomorphic function on Ω as follows

Γ(ω) = Γ(P1(ω))e1 + Γ(P2(ω))e2. (24)
�

Corollary 4.6 (Weierstrass formula). For ω ∈ Ω one has

Γ(ω) =
e−γω

ω

∞∏
n=1

(
1 +

ω

n

)
e

−ω
n

.

Proof. From (24) we have that Pk(Γ(ω)) = Γ(Pk(ω)), (k = 1, 2). Thus, applying the classical Weierstrass
formula to Pk(ω) /∈ Z−, (k = 1, 2), one gets the above representation of Γ(ω). �
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Now we can achieve the proof of Theorem 0.1. According to circular functions defined on D (see section
4.1) one can define for a given bicomplex number ω, sinω as

sinω =

∞∑
n=0

(−1)
n ω2n+1

(2n+ 1)!
= sin(P1(ω))e1 + sin(P2(ω))e2. (25)

Note that sin(πω) is invertible if and only if

ω ∈ Ω := {ω ∈ B; P1(ω) /∈ Z and P2(ω) /∈ Z}.

Then, Theorem 0.1 follows immediately from usual complex functional equations, using the idempotent
representations of the bicomplex zeta, gamma and sine functions given by (22), (24) and (25).
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