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An existence result for p-Laplace equation with gradient
nonlinearity in RY

Shilpa Gupta and Gaurav Dwivedi

Abstract. We prove the existence of a weak solution to the problem
—Apu+V(@)uf?u = fu, [VulP V),
u(x) >0 Vo e RY,

where Apu = div(|Vu[P~2Vu) is the p-Laplace operator, 1 < p < N and the non-
linearity f : R x RV — R is continuous and it depends on gradient of the solution.
We use an iterative technique based on the Mountain pass theorem to prove our
existence result.

1 Introduction

In this article, we prove the existence of a weak solution to the problem:
Ay V(@) ul R = flu, |Vl V),
u(r) >0 VreRY, (1)

where 1 < p < N and the non-linearity f : R x R¥ — R is a continuous function.

The Problem (1) is non-variational in nature, as the nonlinearity f depends on gradient
of the solution. Such type of problems have been studied widely in literature through non-
variational techniques, such as method of sub-solution and super-solution [11], [16], [24],
degree theory [20], [22] etc. In 2004, Figueiredo et al. [7] used an iterative technique based
on Mountain Pass Theorem to establish the existence of a positive and a negative solution
to the problem:

—Au = f(x,u,Vu) in ,
u=0 on 0,
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where 2 C R™ is a smooth and bounded domain. Motivated by the techniques used by
Figueiredo et. al [7], several authors established existence results for second order elliptic
equations with gradient nonlinearities, see for instance [6], [12], [13], [15], [18], [21] and
references therein.

This work is motivated the existence results of G.M. Figueiredo [12], where the author
obtained existence of a positive solution to (1) with V(z) = 1. Recently, an existence result
for (1) in case of p = N is discussed by Chen et al. [5]. For some existence results for the
problems of the type (1) with potential V(x) and without gradient dependence, we refer
to [1], [9], [17] and references therein.

The plan of this article is as follows: In section 2, we state our hypotheses and main
result. Section 3 deals with the proof of our main result, i.e., Theorem 2.1.

2 Hypotheses and Main Result

In this section, we state hypotheses on the nonlinearity f and the potential V. We
assume the following conditions on the nonlinearity f:

(f1) f(t,]€P726) =0forallt <0, £ € RV,

(3] N
lim ———————== = R,
(f2) lim T 0, V¢e
t, &P
(f3) There exists ¢ € (p,p*) such that lim tHoo%# =0, V ¢ € RY, where
._ _Np
p = N—p

(f1) There exists 6 > p such that

0 < OF(t, |€]P28) < tf(t,|<[P2¢),
for all t > 0, & € RN, where F(t, |¢[P7%¢) = /t f(s,1€P72€)ds.
0

(f5) There exist positive real numbers a and b such that
P(t, |€["7%¢) = at” — b,
forall t >0, £ € RV,
(f6) There exist positive constants L; and Ly such that
(81, [€1772€) — f(t2, [P < Lafts — tof™
for all t1,t, € [0, p1], [€] < po,

|f(t1&]P26) = f &P 26)| < Lo|& — &l
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for all t € [0, p1] and |&;], |€2] < po, where py, ps depend on ¢, N and §. Moreover, L,

L,

C,— L,

1/p—1
and Lo satisfy ( ) < 1, where C,, is the constant in the inequality (3).

In the following, we state conditions on the potential V' :
(Vi) V(z) >V > 0 for all z € RY;

(Va) V(x) is a continuous 1-periodic function, i.e., V(z +y) = V(z), Yy € Z" and
Vo € RV,

For further details about the periodic potential V', we refer to [1] and references therein.

Let
W = {uecW"R"Y): /}RN(]VUV’ + V(z)|ulP)dx < oo}

W is a reflexive Banach space with the norm

= ( [ v+ vepur)

Moreover, we have the continuous inclusions W — WP (RY) — L*(RY) for all s € [p, p*].
For the details, we refer to [9, Lemma 2.1].

Next, in the spirit of Figueiredo et al. [7], we associate with (1), a family of problems
with no dependence on the gradient of solution. To be precise, for every, w € WﬂCllo’f (RM)
with 0 < 8 < 1, we consider the problem

—Ayu+ V(aj)\u|p_2u = f(u, |Vw]p_2Vw),

u(z) >0 Vo e RY. @)

Problem (2) is variational in nature and the critical points of the functional

1 1
I,(u) = 1_9/ |Vu|Pdx + 1—)/ V(z)|uPdx —/ F(u, |Vw|P~*Vw)dz
RN RN RN

are the weak solutions to (2).
To prove our main result, we will use the following inequality [10] :

(l]P2x = |yl %y, z —y) > Cplz — ylP, (3)

for all z,y € RY, where (-,-) is the usual inner product in RY. Now, we state our main
result:

Theorem 2.1. Suppose that the conditions (f1) — (fs) and (V1), (Va) are satisfied. Then,
there exists a positive solution to (1).



152 Shilpa Gupta and Gaurav Dwivedi

3 Proof of Theorem 2.1

This section deals with the proof of Theorem 2.1. The proof is divided in a series of

lemmas.

Lemma 3.1. Let w € WNCLP(RN) with 0 < B < 1. Then there exist positive real numbers

loc

a and p independent of w such that

I,(u) > a >0, YueW such that ||u|| = p.
Proof. From (f) we have, for any ¢ > 0, there exists d; > 0 such that

(s [EP POl < elsP~, W|s| <1, € €RY.
From (f3) we have, for any € > 0, there exists d, > 0 such that

[f(s, 1672 < els|”™!, V|s| > 6, £ €RY.

By (4) and (5) we have,
» 1 1
|F (u, |Vw|P~*Vw)| < —€|ul]? + —€lu|?, Yue W.
p q

Thus,

1
Tulw) =l = | Pl [Fup V.

It follows from (6) and embedding result that
1
Lu(u) 2 (0 = ere)l[ull” = coelul]"

1
1_cie

co€

a—p
Now choose € such that % —cie>0and p < (p ) . This completes the proof. H

Lemma 3.2. Let w € W N CLY(RN) with 0 < 8 < 1. Fiz vy € C2(RN) with ||vo|| = 1.

Then 3 ty > 0, independent of w, such that
]w(t’Uo) S 0, Vit Z to.

Proof. By (fs) we get,

P
I, (tvg) < r_ / (at®vf — b)dx
p Supp(vo)
tr 0 0
=——at / vodx + b|Supp(wvo)|,
p Supp(vo)

Since 6 > p, the result follows.
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Lemma 3.3. Let conditions (f1) — (fs) and (V1), (Va) hold. Then, the Problem (2) admits
a positive solution wu,, € W.

Proof. Lemmas 3.1 and 3.2 tell us that the functional I, satisfies the geometric conditions
of the Mountain Pass Theorem. Hence, by the version of Mountain Pass Theorem without
(PS) conditions [23], there exist a sequence {u,} C W such that

Io(un) = ¢ and I (u,) =0, asn — oo

where
= inf I
¢ = Inf max w(¥(t)) >0,
with
I'={yeC([0,1], W) : v(0) = 0, v(1) = tovo}

where ty and vy are as in Lemma 3.2.
By (f1), we have c||u,||”< ¢, + ||un||. This implies that {u,} is bounded in W, hence
there exists its subsequence still denoted by {u,}, as

Up — Uy in W, (7)
Up —> Uy in Ly, for p<s<p" (8)
On following the arguments from [8, Proposition 4.4], we obtain

ou ou
- - . in RV,
Bz, (r) — oz, (x) a.e. in 9)

This implies,
Vun(z) = Vu,(z) ae. in RY. (10)

Using (10), we get
IV, P2V, — [V, [P ?Vu, a.e. in RY.

Since {|Vu,|P~?Vu,} is bounded in LP/P~Y we get,
|V, P2V, — |V, P>V, in LP/E"D(RY).

By the definition of weak convergence, we have
/ |V, [P*Vu, Ve dv — |V, |P2Vu, Vo do for all p € W.
RN RN
In view of Brezis-Lieb lemma [4], we have

/ V() |[tn [P U dz — V(@) |t |P 2t dr for all ¢ € W.
RN

RN
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By the help of [4] and Lebesgue Generalized Theorem [3], we get
[, [VwP2Vw)p do — / f (o, [Vw[P2Vw)p dz  for all p € W.
RN RN
Therefore, we have

Il (uy)e :/ (VP 2Vu, Vo d$+/ V() [t [P 20 da
RN RN
(11)
N / f (U, [VwP2Vw)p dx = 0, for all p € W.
RN

This implies, u is the weak solution of (2).
Let u,, # 0. Next, we show that u,, > 0. By taking ¢ = u,, in (11), we get

/ |Vuw|p_2V(uf; — u,, )Vu,, dz —|—/ V(x)]uw|p_2(uf; — Uy, )u,, dx
RN

RN

- / [, |02 Vw)uy, da,
RN

which gives

—/ (VP2 |V, |? dx:/ f (U, |V [P 2Vw)u, dx—l—/ V(@) |uw|P 2 (uy)? da.
RN RN R

N
Thus,
/ V(@) (uy)* = 0.
RN

This implies, |, [P~%(uy)? = |uf — ugy [P%(uy,)* = 0 as V(z) > 0. Therefore, we have

0; Up(z) >0
0=lu () —u ()P 2(u_(z))? = ’ AT =
Hence, u,, = u} — u, = u}, > 0. Moreover, Harnack inequality implies that u,(z) > 0 for
all v € RY.

If u,, = 0, then there exist a sequence {z,} C RY and 6, R > 0 such that

/ |un|Pdx > 0. (12)
Br(zn)

For, if on the contrary

lim sup / | [Pdx = 0,
Br(z)

n—oo r€ERN

then by using [14, Lemma 1.1], u,, — 0 in L¥(RY) with p < s < p*, which implies that
I,(u,) — 0 as n — oo. It contradicts the fact that ¢, > 0.
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Let us define v,(z) = u,(x + z,). Since V(x) is a l-periodic function, we can use
the invariance of RY under translations to conclude that I,,(v,) — ¢, and I’,(v,) — 0.
Moreover, up to a subsequence, v,, — v, in W and v, — v,, in LP(Bg(0)), where v, is a
critical point of I,,. By (12), we conclude that v, is non zero. Arguing as above, we get
that v, is a positive solution to (2). This completes the proof. [ |

Lemma 3.4. Letw € WNCLY(RN) with 0 < § < 1. Then there exists positive real number
n independent of w, such that

|| <,

where uy, is the solution of (2) obtained in Lemma 3.5.

Proof. Using the characterization of c,,, we have

<
Cow < I?Zaox(tu).

Fix v € W such that ||v|| = 1. By (f5), we have

tP 0
Cow < max I,(tv) < max . cst’ —cr ) =no.

By (fs), we have

1 1
MW@Z—W%W——/ Flt, [V~ 2V 0t (13)
p 9 RN
Also, we have
1 (1) (1) = [J] [P — / F (tts [ V0PV 0 )t (14)
]RN

By (13) and (14), we obtain

(%_$>deg%@w—%%wwww-

Next, by using the fact that I} (u,)(uy) = 0 and I, (u,) = ¢, we get

1 1
(G-5) llP <co<m

and the proof is complete. [

Lemma 3.5. If u,, is a positive solution of the equation (2) obtained in Lemma 3.3, then
Uy € C’llo’f N LS (RY) with 0 < B < 1. Moreover, there exist positive numbers p; and pa,
independent of w, such that [|uwl|cos @< pr and [[Vuw|| cos g < pa.
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Proof. By using the fact that V(z) > V4 and u,, > 0, we have
f (g, [VwP72Vw) = V(@) [P0 < f (s, [VwlP72Vw) — Voluy [P~
By the help of (f2) and (f3), one gets
[f (o, VP2V w)| < e [P+ w7 + Voluw P71 < (e + Vo) (Juw P71 + [u] 7).

By [19, Theorem 2.2], for any compact set K C RY, we have ||uyl|r~) < C, where
the constant C' depends on p,q, N and |[uyl| 1 (k). By Sobolev embedding theorem and
Lemma 3.4, there exist Cy independent of w such that |||z x) < Co. By [2, Theorem 1],
| V|| ooy < Ch, for some constant Cy dependent on p, ¢, N and |[w, ||~ (x). Hence there
exists a constant Cy independent of w such that ||Vl zex) < Cs.

By [2, Theorem 2|, we obtain ||uw”cl1(;5(RN) < (3, where C3 is dependent on p,q, N

and ||Vl ze(k). Thus there exists a positive number p independent of w such that,
Huw”c}gf(RN) < p. Subsequently, there exist positive real numbers p; and p,, independent

of w, such that ||UW||C?55(RN)§ p1 and ”Vuch?va(RN)S p2. This completes the proof. N

Lemma 3.6. Let w € WNCLY(RN) with 0 < 5 < 1. Then there exists positive real number

loc

A independent of w, such that
[uw|| > A,

where u,, is the solution of (2) obtained in Lemma 3.3.

Proof. Since u,, is the weak solution of (2) obtained in Lemma 3.3, for all v € W, we have
I! (uy)(v) = 0. In particular, by putting v = wu,, we get

/ |Vuw|pdx—|—/ V($)|Uw|pd$:/ f (W, V0P 2V w)u,,da
luall? = [ G [Vl 2T
RN

By using (4) and (5) we have,
[l [” < caellun[” + cselfuw].

1—C4€

g—p
Since ¢ > p, we get ||uy|| > ( ) . This completes the proof. [ |

Cy€

Now, we are in position to prove Theorem 2.1.
Proof of Theorem 2.1: Starting with an arbitrary uy € W N C’llo’f(]RN) with 0 < 8 < 1,
we construct a sequence {u,} C W as solution of

—Ayup, + V(x)|un|p_2u = f(tn, |Vun_1|p_2Vun_1), in RY (P)
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obtained in Lemma 3.3. By Lemma 3.5, {u,} € W N CY/(RY) with 0 < 8 < 1,

loc
HU”HC?ACE(RN) < p1 and HVU”H(JZOO’f(RN) < ps. Since u,.1 is the weak solution of (P,y1),

we have
/RN (Vs 1|P 2V, 1 Vo do + /RN V() [ty [P U1 do (15)
= /RN f(Ung1, [Vun P2V, ) d, Vo e W. (16)
Similarly, u, is the weak solution of (P,), we have

/ |V, |’ 2Vu, Ve d:c—l—/ V() |un|P 2unp do (17)
RN

RN

= / [ (i, | Vi1 [P 2Vu,_1 ) dz, Yo e W. (18)
RN
Set ¢ = Uy41 — uy,. On subtracting (17) from (15) and by using the inequality (3), we get

1
[t — unl” < C / [f (1, [Vun P72 V) — f (s [V P72 V)| (ung1 — up)de
RN

p

1
+ = f (s [Vt [PV ) = f (i, [Vt 1 [P2 V1)) (41 — 1),
Cp RN

By using (fs), we obtain

L _ _
Hun—l—l - Uan S 51 /N |un+1 - un|p l(un—H - un)dx + 52 . |un - un—1|p l(un—H - un)dx
p JR P JR
On simplification, we have
C, — Ly
Cp

Ly
Cp

i =l < 22 [ i = a7 e~ )
R

Thanks to Holder inequality, we get

Ly
C,— L

1/p—1
s =l < (G2 ) = sl =l = ]
Ly
Cp,— Ly
u € W such that {u,} converges to u in W. Next, we will prove that u is a solution of the
Problem (1). Since ”VUHHC&E(RN) < py, we have | |Vu,|[P"2Vu, V| < g '|Ve|. Then,
by the help of Lebesgue’s Dominated Convergence Theorem, we get

1/p—1
where d = ( ) . Since d < 1, {u,} is a Cauchy sequence in W, there exists

/ Vu, [P ?Vu, Ve dr — \VulP~2VuVe dr  for all ¢ € W.
RN RN



158 Shilpa Gupta and Gaurav Dwivedi

In view of Brezis-Lieb lemma [4], we have

/ V(@) |[tn P2 une do — V(z)|uP?up dr  for all ¢ € W.
RN

RN

By the help of Lebesgue Generalized Theorem [3], we get
Iy [ Vy 1PV, 1) do — / fu, |[VulP2Vu)p dz  for all ¢ € W.
RN RN
Therefore, as n — oo, (17) implies

/ |VulP2VuVp dv + / V() |ulP2up do — / f(u, |Vu|P~>Vu)p dr = 0,
RN RN RN

for all ¢ € W. This implies that u is the weak solution of Problem (1). By Lemma 3.6,
u > 0in RV, m
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